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Introduction

In the last decade Boolean-valued models of set theory find interesting applications to operator
algebras and C*-algebras, see [1-7]. In particular, for type 1 AW*-algebras a negative solution was
given to the Kaplansky problem of uniqueness for decomposition into the direct sum of homogeneous
algebras [4] and some presentation was obtained in the form of a direct sum of algebras of strongly
continuous operator-functions [7]. It was observed in [8] that Boolean-valued methods can be of similar
use in the theory of JB-algebras; however, this direction is not duly developed yet. The purpose of
the present article is to fill this gap somehow.

J B-algebras are nonassociative real analogs of C'*-algebras and von Neumann operator algebras.
The theory of such algebras stems from the article [9] by Jordan, von Neumann, and Wigner, and it
exists as a branch of functional analysis since the middle of the 1960s. Stages of its development are
reflected in [10]. The theory of JB-algebras undergoes intensive study, the range of its applications
widens. Among the main directions of research are: the structure and classification of JB-algebras,
nonassociative integration and quantum probability theory, the geometry of states of JB-algebras,
etc. (see [11-13] and references therein).

In §1 of the article we present some definitions, notation, and terminology. In §2 we consider
Banach spaces with complete Boolean algebras of projections and establish some results on their
Boolean-valued representation. These results provide a uniform approach to AW*-algebras and J B-
algebras (cf. [7]). In §3 we prove a theorem on representation of JB-algebras with a distinguished
complete Boolean algebra of central projections in a Boolean-valued model. Some applications pre-
senting Boolean-valued interpretation of the well-known results of Shultz [14] are given in §4. Here
we also introduce a new class of B-J BW-algebras which is broader than the class of JBW-algebras.
The principal difference between the two classes is in the fact that in general a B-JBW -algebra has
a faithful representation in the algebra of selfadjoint operators on a AW*-module rather than on a
Hilbert space as in the case of JBW-algebras. Certainly, these applications only illustrate ability of
the Boolean-valued machinery. It is possible to advance far afield and obtain many other results by
using the direct Boolean-valued interpretation as in [1-3, 5, 6], or forcing as in [4], or the combined
method of [7]. The space limitation of the article does not allow us to expose all these in more detail.

The necessary background of the theory of J B-algebras and Boolean-valued models can be found
in [11] and [15].

§1. Preliminaries

We recall some definitions and fix terminology and notation.

1.1. Throughout the article, B is a fixed complete Boolean algebra, V() is the corresponding
Boolean-valued model of set theory, R stands for the conventional field of reals, and R is the same
field in the model V(B), As is known, the descent R | is a real K-space, i.e., an order-complete vector
lattice isomorphic to the vector lattice Coo (@), where @ is the Stone compact space of the algebra B.
We denote by B (R) the bounded part of the K-space R | that is isomorphic to C(Q), and denote
the norm in B(R) by || - |lo- Note that B(R) is a commutative and associative Banach algebra.
The idempotents of this algebra form a complete Boolean algebra which is isomorphic to B. Every
idempotent e determines a positive projection, the operator of multiplication by e.
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Henceforth, we take the liberty of identifying the Boolean algebras of idempotents and projections
with B and write B C B (R). In particular, the units of these algebras as well as the unity in B (R)
are denoted by the same symbol 1.

1.2. Recall that a J B-algebra is simultaneously a real Banach space A and a unital Jordan algebra;
moreover, A must satisfy the conditions:

(1) eyl < ll=ll NIyl (=,y € 4),

(2) 2] = ] (z € A),
(3) lo?| < llo* +3% (myeA).
The set Ay := {z* : z € A}, presenting a salient convex cone, determines the structure of an

ordered vector space in A so that the unity 1 of the algebra A serves as a strong order unit, and the
order interval [—-1,1] := {z € A: —1 < z < 1} serves as the unit ball. Moreover, the inequalities
—1<z<1and0< z? <1 are equivalent.

The intersection of all maximal associative subalgebras of A is called the center of A and denoted
by Z(A). The element a belongs to Z(A) if and only if (az)y = a(zy) for arbitrary z,y € A. If
Z(A) =R-1, then A is said to be a JB-factor. The center Z(A) is an associative J B-algebra, and
any such algebra is isometrically isomorphic to the real Banach algebra C'(K) of continuous functions
on some compact set K.

1.3. The idempotents of JB-algebras are also called projections. The set of all projections that
are in the center forms a Boolean algebra which is denoted by B.(A). Assume that B is a subalgebra
of the Boolean algebra PB:(A) or, equivalently, that B (R) is a subalgebra of the center Z(A). Then
we say that A is a B-JB-algebra if, for any partition of unity (e¢)¢ez in B and any family (z¢)ee=
in A, there exists a unique B-mixing z := mixgez (eez¢), ie., a unique element z € A such that
eeze = ecz for all £ € Z. If B(R) = Z(A), then a B-JB-algebra is also referred to as centrally
ertended J B-algebra.

1.4. The unit ball of a B-J B-algebra is closed under B-mixings.

< Since the unit ball of a J B-algebra coincides with the order interval [—1, 1], the required assertion
is equivalent to the following: If an z € A and a partition of unity (e¢)¢e= C B are such that egz > 0
for all £ € =, then z > 0. This follows from the fact that if egz = a? (€ € Z) for a suitable family (a¢)

in A, then the element a = mix (eca¢) satisfies the equality z = a%. »

1.5. Given an arbitrary a € A, we introduce the operators Ty, U, : A — A by the formulas
Ta:z +— az, Uy : z+— 2a(az) — a’z  (z € A).

We say that elements a,b € A commute operatorwise if T4 0 Ty = Ty o T,. Obviously, the center Z(A)
consists of elements that commute operatorwise with each of the elements of A.

The operator U, is positive, i.e., Us(A+) C A4. If a € Z(A), then U = Tp2.

1.6. Let B be a subalgebra of B.(A). Then we can define a B-valued semimetric d in A by the
formula

d(z,y) := V{l —e:e€Bex=ey} (z,y € A).

This semimetric is a metric (i.e., d(z,y) = 0 — z = y) if and only if, for every a € A, there exists
some greatest element e in B such that ea = 0. In case the latter proviso is fulfilled, we say that the
J B-algebra A is B-metrizable. By applying the operation of B-extension to a B-metrizable J B-algebra
(see [8; 3.5.8(2)]), we can derive the following assertion: _
_ Every B-metrizable JB-algebra A can be extended to a B-JB-algebra A in such a way that
A = mix (A), i.e., each element of the algebra A is a mixing of a family in A.

With this circumstance in mind, we shall only handle B-J B-algebras in what follows, although
some results could be formulated for a more general case of B-metrizable J B-algebras.

§2. Cyclic Banach Spaces

Here we expose a Boolean-valued approach to studying Banach spaces with complete Boolean
algebras of projections. Such spaces appear in different branches of analysis and are especially frequent
in the theory of operator algebras.
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2.1. Let X be a Banach space and let £(X) stand for the set of all bounded linear operators on
X. Assume that a mapping ¢ := @y : B — L(X) is injective and satisfies the following conditions:

(1) (b) is a projection with norm one for all b € B; moreover, ¢(1) and ¢(0) coincide with the
identity and zero operators respectively;

(2) the projections ¢(b) and ¢(b') commute for arbitrary 4,8’ € B;

(3) the equalities @(bV &) = ¢(b) 0 (¥') and p(b*) = Ix — ¢(b) hold for all b and ¥'.

In this case the set B := @(B) is referred to as the complete Boolean algebra of projections in the
space X. We shall symbolize the above situation by B C £(X). In the sequel we identify the Boolean
algebras B and B and shall take the liberty of speaking about the Boolean algebra B of projections.

If (e¢)ee= is a partition of umty in B and (:1:5)56- is a family in X, then an element z € X for
which egz¢ = egz for all ¢ € = is called a mizing of (z¢) with respect to (e¢). A Banach space X is
said to be B-cyclzc if B C £(X) and the following conditions hold:

(4) a mixing of each bounded family in X with respect to every partition of unity in B (with the
same index set) exists and is unique;

(5) the unit ball of X is closed under each mixing.

The simplest example of a B-cyclic Banach space is B(R). It is seen from 1.4 that every B-JB-
algebra is also a B-cyclic Banach space.

2.2. Let X and Y be Banach spaces; moreover, B — £(X) and B C L(Y). An operator
T: X — Y is called B-linear if it is linear and commutes with projections in B, i.e.,if boT =T ob.
(Here we certainly bear in mind py(b) o T = T o @x(b).) Denote the set of all bounded B-linear
operators from X into Y by Lg(X,Y). Then Z := Lg(X,Y) is a Banach space and, clearly, B C Z.
Indeed, the projection pz(b) can be determined by the formula T +— bo T (T € Z). It is easily
verified that the space Z is B-cyclic if Y is B-cyclic. The converse assertion is also true if X # {0}.
We shall call a bijective B-linear operator a B-isomorphism and if, in addition, the operator is norm-
preserving, we shall speak about an isometric B-isomorphism.

The space X! := Lp(X,B (R)) is called the B-dual of X. If the spaces Y and X! are isometrically
B-isomorphic, then Y is said to be a B-dual space, and X is a B-predual space of it.

2.3. Theorem. The restricted descent of a Banach space from the model V(®) js a B-cyclic
Banach space. Conversely, if X is a B-cyclic Banach space, then in the model V(®) there exists
a Banach space X which is unique up to isometric isomorphism and whose restricted descent is
isometrically B-isomorphic to X.

a The first part of the theorem follows immediately from [16, Theorem 4.8] or [6, Theorem 4.1].
Now, assume X to be a B-cyclic Banach space. It is demonstrated in [16, Theorem 4.8] that X can be
transformed into a Banach-Kantorovich space with some B (R)-valued norm | - |; moreover, the scalar
norm in X is mixed, i.e., ||| = || |2| ||co. According to Gordon’s theorem, we can identify B (R) with
the bounded part of the descent R |. By [17, Theorem 3.4.4], X can be represented as a Banach
space A in the model v (B), moreover, the descent X | serves as universal completion of X; i.e.,, X |
coincides with the set mix (X) of all mixings of elements in X. An element z € X' | belongs to X if
and only if its vector norm |z| is contained in B (R). However, since [|z| = ||z||x] = 1, we conclude
that X is the bounded part of X' |. b

2.4. An element X € V(B mentioned in Theorem 2.3 is referred to as the Boolean valued repre-
sentation of X. Let X and ) be the Boolean-valued representations of B-cyclic Banach spaces X and
Y respectively. We let £(X,)) denote the element in V() that represents the space of all bounded
linear operators from X into ).

Theorem. The restricted descent of the Banach space L(X,)Y) and the B-cyclic Banach space
Ly(X,Y) are isometrically B-isomorphic. Such an isomorphism is executed by assigning to any
bounded B-linear operator T : X —— Y the element t := T 1 that is defined by the relations
[t: X —Y]=1and [i(z)=T(z)]= 1 (z€ X).

aLlet Xo =X ] and Yo = YV |. By [17, Theorem 3.4.8], £{X,V)] and Ly(Xo, Ys) are linearly
isometric as regards vector norms. Here L£;(Xq, Yp) consists of the linear operators Tp : Xo — Yp
that satisfy the inequality [Toz]| < c¢|z] (z € Xo) for some c € R|. The smallest element ¢ with the
indicated property is exactly the vector norm |Ty| of the operator Ty. The bounded part £;(Xo, Yo)
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consists of those operators Ty for which |Ty| € B (R). Since the norms in X and Y are mixed (see
[16, Theorem 4.8]), it follows that £4(X,Y) = Lg(X,Y). Let an operator ¢t : X — Y inside V(B) be
connected with the operator Ty by the relation [t(z) = To(z)] =1 (z € X). Then [||t|| = |Tol] = 1;
therefore, ¢t belongs to the bounded part of £L(X,)) if and only if T is contained in the bounded part
of Ly(Xo, Yp). It remains to observe that every operator Ty € L( Xy, Yy) with the norm |Tp| € B(R)
is uniquely determined by its restriction to X, while every operator T in L4(X,Y) has exactly one
norm-preserving extension Ty € L4( Xy, Y3). »

2.5. Corollary. Let X* be the dual Banach space of X and let >~ and = denote isometric
isomorphy and isometric B-isomorphy respectively. Then

X2y [x~)]=1

2.6. Consider the category Ban(B) whose objects are Banach spaces X such that B C £(X). The
morphisms of this category are bounded B-linear operators. Let C-Ban(B) stand for the complete
subcategory of Ban(B) whose objects are B-cyclic Banach spaces.

Introduce one more category Bang). Its objects are the elements X € V(B for which [Xis a

Banach space ] = 1. The morphisms of this category are the elements & € V(B such that [a is a
bounded linear operator] = 1 and [[ja]] £ X'] = 1 for some number A € R.

Theorem. The categories C-Ban(B) and Bang) are equivalent. Such an equivalence is established
by the pair of adjoint functors, the functor of immersion and the functor of restricted descent.
4 See [17, Theorem 3.2.11] and Subsections 2.3 and 2.4. o

§3. Boolean-Valued Representation of JB-Algebras

Since any B-J B-algebra is a B-cyclic Banach space, the results of the previous section apply to
them too. '

3.1. Theorem. The restricted descent of a JB-algebra in the model VB) is a B-J B-algebra.
Conversely, for any B-J B-algebra A there exists a unique (up to isomorphism) J B-algebra A whose
restricted descent is isometrically B-isomorphic to A. Moreover, [A is a JB-factor] = 1 if and only
if B(R)=Z2(A).

4 Take an arbitrary B-J B-algebra A. According to Theorem 2.3, we can suppose that, as a Banach
space A, coincides with the restricted descent of some Banach space A € V() Let us introduce the
structure of a Jordan algebra in A. To this end, we must verify that the multiplication in A is
extensional. Take z,y,z',y' € A and put e := [z = 2] A [y = y']. Since the relations e < [u = v] and
eu = ev are equivalent, it follows that ez = ez’ and ey = ey’. Since e is a central projection, we can
write

e(zy) = (ex)y = (ez')y = (ey)z’ = (ey')z’ = e(zy').
Hence
[z=2IAly=y]=e < [zy = Y);

i.e., the multiplication of A is extensional.

Now we define a binary operation (z,y) — z oy in A as the ascent of the multiplication of A.
It means that, for any z,y € A, there exists exactly one element z oy € V(B such that [zoy €
A] = [z oy = zy] = 1. Demonstrate that (A,o0) is a JB-algebra inside V). From what was said
above it is seen that the operator T, is extensional. If 7; is the operator z — a0 z (z € A) inside
V) then, obviously, [7Ta = T. 1] = 1. Therefore the operators T; and Ty commute if and only if
the operators 7; and 7; commute inside V(B) For y = z?, it follows in particular that the Jordan

identity z o (y 0 %) = (z 0 y) 0 z? holds in A. Moreover, it is clear that an element z € A belongs to
the center Z(A) if and only if [z € Z(A)] = 1. But this amounts to the equality

[2(4)1= Z(A)] = L.
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It remains to show that conditions 1.2(1)-(3) hold in .A. To this end, it suffices to establish that
the vector norm in A satisfies conditions that are analogous to 1.2(1)-(3). First, observe that the
following equivalences hold:

[z <1 e |llzlflc £ 1 e— Jz] £ 1.

Now, take arbitrary z,y € A and 0 < ¢ € R. Put z¢ := o'z and yp := 7'y, where a := |z]| + €l
and B := |y| + €1. Since |zo| = |a~!|z| < 1, it follows that [|zo|| < 1. Similarly, |lyo|| < 1. Hence
lzoyo|] <1 or |zoye] < 1. From this we obtain

lzyl < Izt - lyle(lz] + Iyl) + 1.

By tending ¢ to zero, we find |zy| < |z| - |y|. Further, put 42 := |z2| + ¢l and ' := 4y~ !z. Then
|z%] = |772||z?|; whence ||z'||? = [|2’2]| < 1 or ||#'|| < 1. Therefore, |z'| < 1, and also |z’|2 < 1 and
Jz] 2 < 4%. Consequently, |z|? < |z2| +¢€1, and as € — 0 we get |z|? < |:1:2| The reverse inequality
follows from what was proved already; therefore, |z]? = lzzl. Finally, by putting §% := Ia:2 + y2| +el,
we easily observe that |6‘222| < 1 since

67222 < 1167222 + 6722 = 11672 [«® + y*l|oo < 1.

But then |z2l < 62, and as e — 0 we come to the inequality |x2| < Iz2 + yzl.

From the relation [||z||l4 = |z]] = 1 and the above-proven properties of the vector norm, we
can derive the assertion: [ the norm in A satisfies conditions 1.2(1)-(3) ] = 1 by straightforward
calculation of Boolean truth values.

Denote A := B(R). If A = Z(A), then
1= [2(A)1= AT=R- 1] A [(4) = Z(A)] < [Z(4) = R 1].

Consequently, [A is a JB-factor ] = 1. Conversely, suppose that [Z(A) = R-1] = 1. Then
[Z(A)T= R - 1] = 1; therefore,

mix(Z(A4)) = Z(A) =R | -1 = mix(A).

Distinguishing the bounded parts, we obtain A = Z(A).>

3.2, Let A and B be some B-J B-algebras. A B-linear operator that is a homomorphism of the
algebras is referred to as B-homomorphism.

Theorem. Let A and B be the Boolean-valued representations of B-J B-algebras A and B re-
spectively. Let ® be a B-linear operator from A into B and ¢ := ®1. Then the following assertions
hold:

(1) @ is a B-homomorphism «— [y is a homomorphism] = 1;

(2) @ is positive «— [ is positive] = 1;

(3) ® is normal «— [ is normal] = 1.

84. Some Applications

Now we give several applications of the results on Boolean-valued representation to the structure
of B-J B-algebras. The theorems appear by transfer of the corresponding facts from the theory of
J B-algebras.

4.1. Let A be a B-J B-algebra and let A := B(R). An operator & € A! is called a A-valued state if
® >0 and ®(1) = 1. A state ® is said to be normalif, for any increasing net (z) in A with the least
upper bound 7 := sup z4, we have ®(z) = o—lim ®(z4). If A is the Boolean-valued representation of
the algebra A, then the ascent ¢ := ® 1 is a bounded linear functional on A as it follows from 2.4.
Moreover, ¢ is positive and o-continuous; i.e., ¢ is a normal state on \A. The converse is also true: if
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[ is a normal state on A] = 1, then the restriction of the operator ¢ | to A is a A-valued normal
state. Now we will characterize B-J B-algebras that are B-dual spaces. Toward this end, it suffices
to give Boolean-valued interpretation for Theorem 2.3 of [14] that declares a J B-algebra to be a dual
Banach space if and only if it is monotone complete and has a separating family of normal states.

4.2. Theorem. For a B-J B-algebra A, the following assertions are equivalent:

(1) A is a B-dual space;

{(2) A is monotone complete and admits a separating set of A-valued normal states.

If one of these conditions holds, then the part of A! consisting of order-continuous operators serves
as a B-predual space of A.

< By Theorem 3.1, we can assume that A coincides with the restricted descent of a J B-algebra
A in the model V(B). According to the transfer principle, Theorem 2.3 of [14], and Corollary 2.5, it
suffices to demonstrate that:

(a) the algebras A and A are simultaneously either monotone complete or not;

(b) A has a separating set of normal A-valued states if and only if [A has a separating set of
normal states] = 1.

The first claim follows from the fact that the operations of descent and ascent preserve polars
(see {15, Theorems 3.2.13 and 3.3.12]). Moreover, the fact should be taken into consideration that
the polar m<(M) with respect to < (where < stands for the order relation in A or A) is the set of
upper bounds of the set M, and if there exists sup M, then {sup M} = 7<(M) N 2} (r<(M)) (cE.
(15, Theorems 4.2.9 and 4.4.10(2)]). -

Prove claim (b). Let S(A) denote the set of all states on A inside V(B) and let Sg(A) be the
set of all A-valued states on A. Since any state ® € Sg(A) is B-linear, it is extensional and admits
of the ascent ¢ := ® T that represents a functional ¢ : A — R. The ascent preserves linearity and
positivity and, as was already noted in 2.4, [||¢|| = |®]] = 1. Therefore, the correspondence ® — ¢
is a bijection between Sg(A) and S(.A) |. Moreover, a state ® will be normal if and only if [y is
a normal state] = 1 (see 3.2). Suppose that Sg(A) is a separating set of states. Take a nonzero
element z € A. Choose a state &g € Sg(A4) so as to have ®¢(z) # 0. Since ® is extensional, we have
[z # 0] < [®o(z) # 0]. Using the calculation rules for Boolean truth values and involving the above
facts, we can write

[S(A) is a separating set of states] = [(Vz € A)(z # 0 — (3p € S(A))p(z) # 0]
= Alz#0l=> \/ [@1(2)#012 A [z # 0] = [po(z) # 0] = 1.

z€A deSy(A) z€EA

Thus S(A) is a separating set of states inside V(B). Conversely, assume that the preceding condition
holds. Then, for every 0 # z € A, we have b := [z # 0] > 0; therefore, by the maximum principle,
there exists ¢ € S(A) | such that b < [p(z) # 0]. Denote by ® the restriction of ¢ | to A C A|.
Then ® € Sg(A) and b < [®(z) # 0]. From here it is seen that the support of the element ®(z) is
greater than or equal to b; hence ®(z) # 0. »

4.3. An algebra A satisfying one of the equivalent conditions 4.2(1), (2) is called a B-J BW -algebra.
If, moreover, B coincides with the set of all central projections, then A is said to be a B-J BW-factor.
It follows from Theorems 2.1 and 4.2 that A is a B-J BW-algebra (B-J BW-factor) if and only if its
Boolean-valued representation A € V(B) is a JBW-algebra (JBW-factor).

Consider an example. Let X be an AW*-module over the algebra A := B(C) (see [4, 7]). Then
X is a B-cyclic Banach space and Lg(X) is a type 1 AW*-algebra. For arbitrary z,y € X, define the

seminorm Pz y(a) := ||(az,9)lleo (@ € Ly(X)),

where (-, ') is the inner product in X with values in A. Denote by oo the topology on Lg(X) that is
generated by the system of seminorms p; y. It is possible to demonstrate (see the proof in 4.4 below)
that a geo-closed B-J B-algebra of selfadjoint operators in Lg(X) is a monotone closed subalgebra in
Lg(X)sq. At the same time, the latter algebra is monotone complete and admits a separating set of
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A-valued normal states. Thus, a oc-closed B-J B-algebra of selfadjoint operators presents an example
of a B-J BW-algebra.

4.4. Theorem. A special B-J B-algebra A is a B-J BW -algebra if and only if it is isomorphic to
a 0o-closed B-J B-subalgebra of Lg(X )sa for some AW?*-module X.

4 Again we can assume that A coincides with the restricted descent of a JB-algebra A in the
model V(B Moreover, it is easy to show that A is special too.

Let X be a complex Hilbert space inside V(®). The restricted descent X of the space X is an
AW*-module and, conversely, any AW*-module has such a representation (see [4, 7]). Furthermore,
it is known from [14] that a special JBW-algebra is a JW-algebra, i.e., it is isomorphic to a weakly
closed subalgebra of the algebra £(X),,. Thus, we can suppose that A is a uniformly closed Jordan
subalgebra in L(X),,, and it now sufhces to prove that A is a oo-closed subalgebra in Lg(X)sq if
and only if V(B) |= “A4 is a weakly closed subalgebra in LX),

The algebraic part of the claim is obvious. Let the formula (A, u) formalize the sentence: an
operator u belongs to the weak closure of A. Then the formula can be written as

(Vn € w)(V81,02 € Prin(X))(Fv € A)(Vz € 01)(Vy € 02) [(u(z) — v(z),y)| < n”",

where w is the set of natural numbers, (-, -) is the inner product in X, and Pg,(X) is the set of all
finite subsets of X. Suppose that [¢(A,u)] = 1. Calculation of Boolean truth values with the help
of the maximum principle and the relation (cf. [15, 3.1.11])

'Pf,'n(X) = {0T: 0 e 'Pf,'n(X)}T

yields the following assertion: For any n € w and any finite collections 6; := {zi,...,z,} C X and
02 := {y1,...,ym} C X, there exists v € A such that

[(Vz € 61)(Vy € 62)l(u(z) ~ v(z),y)| <n~'] = 1.

According to the Kaplansky density theorem (see [10, Theorem 4.5.12]), we can choose v so that the
extra condition [|Jv|| € ||u]|]] = 1 holds. If U and V are the respective restrictions of the operators u |
and v} to X, then

Ul <1y,
(U = V)(zx),u)| <n™'1 (k:i=1,..,n;1:=1,...,m).

There exists a fixed partition of unity (e¢)ge= C B which depends only on u and is such that e¢ [U] € A
for all £. From here it is seen that e, € A and e,V € A. Moreover,

eV = V)(zk),w)lleo < n™" (k= 1yeemy L= 1, oy m).

Repeating the above argument in the opposite direction, we come to the following conclusion: The
formula (A, u) is true inside V(® if and only if there exist a partition of unity (ee)eez in B and a
family (Ug)¢e=, where U belongs to the ooo-closure of A, such that e < [u = U Tﬁ for all ¢, i.e.,
u = mix(eEUE T)

Now, assume that A is ooo-closed and the formula 1(A, u) is true inside V(). Then U is contained
in A by assumption and [U¢T€ A] = 1. Hence e¢ < [u € A] for all ¢, i.e., [u € A] = 1. Therefore,

VB = (Vu e L(X))y(4,u) > u € A
Conversely, assume A to be weakly closed. If U belongs to the ogoo-closure of A, then u = U T is
contained in the weak closure of A. By assumption, [u € A] =1 or u € A|. The restriction of the
operator u | to X, coinciding with U, belongs to A. >
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4.5. Let M2 := M3(0) be the algebra of Hermitian (3 x 3)-matrices over the Cayley numbers O.
If (-)" denotes the canonical embeddin§ into the Boolean-valued universe V() then [0 is a normed
algebra over the field R] = 1 and [(Mj)"is an R-algebra of Hermitian (3 x 3)—matrices over Q] = 1.
Let O and M$ be the norm completions of the algebras @ and (M3Y inside V(®) respectively. It is
easy to show (using, for example, the Hurwitz theorem) that [O is an algebra of the Cayley numbers
] = 1 and [M} is an algebra of Hermitian (3 x 3)-matrices over the Cayley numbers | = 1. By
Theorem 2.1, the restricted descent M$ is a B-J B-algebra. At the same time, the restricted descent
of the J B-algebra M3} is isomorphic to the algebra C(Q, M$) of continuous vector-functions, where
Q is the Stone compact space of the Boolean algebra B. Actually M$ and C(Q, M8) are isometrically
isomorphic (see [18]). Taking all the above into account, we give a Boolean-valued interpretation

to the following fact (see [12, Theorem 8.6)): Each JBW-factor is isomorphic either to M? or to a
JC-algebra.

4.6. Theorem. Each B-JBW -factor A admits a unique decomposition A = eA @ e*A with a
central projection e € B,e* := 1 — e, such that the algebra eA is special and the algebra e* A is purely
exceptional. Moreover, eA is B-isomorphic to a ox-closed subalgebra of selfadjoint endomorphisms
of some AW*-module and e* 4 is isomorphic to C(Q, ME), where Q is the Stone compact space of the
Boolean algebra e*B := (0, e*].

a If A is the Boolean-valued representation of the algebra A, then [Ais a JBW-factor | = 1 (see
4.3). Consequently, by the transfer principle, [A is isomorphic either to JC-algebra or to MZ] = 1.
Put e := [ A is special |. Then e* = [A is isomorphic to M§]. Moreover, the following assertions hold:

V(eB) = «e A is a special JBW-factor;”
V("B) L “e* A is an algebra isomorphic to M3.”

The restricted descent of e.A presents a special eB-algebra. . It remains to apply Theorem 4.4 and a
remark in 4.5.
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