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I n t r o d u c t i o n  

In the last decade Boolean-valued models of set theory find interesting applications to operator 
algebras and C*-algebras, see [1-7]. In particular, for type 1 AW*-algebras a negative solution was 
given to the Kaplansky problem of uniqueness for decomposition into the direct sum of homogeneous 
algebras [4] and some presentation was obtained in the form of a direct sum of algebras of strongly 
continuous operator-functions [7]. It was observed in [8] that Boolean-valued methods can be of similar 
use in the theory of JB-algebras; however, this direction is not duly developed yet. The purpose of 
the present article is to fill this gap somehow. 

JB-algebras are nonassociative real analogs of C*-algebras and yon Neumann operator algebras. 
The theory of such algebras stems from the article [9] by Jordan, yon Neumann, and Wigner, and it 
exists as a branch of functional analysis since the middle of the 1960s. Stages of its development are 
reflected in [10]. The theory of JB-algebras undergoes intensive study, the range of its applications 
widens. Among the main directions of research are: the structure and classification of JB-algebras, 
nonassociative integration and quantum probability theory, the geometry of states of JB-algebras, 
etc. (see [11-13] and references therein). 

In w of the article we present some definitions, notation, and terminology. In w we consider 
Banach spaces with complete Boolean algebras of projections and establish some results on their 
Boolean-valued representation. These results provide a uniform approach to AW*-algebras and JB- 
algebras (cf. [7]). In w we prove a theorem on representation of JB-algebras with a distinguished 
complete Boolean algebra of central projections in a Boolean-valued model. Some applications pre- 
senting Boolean-valued interpretation of the well-known results of Shultz [14] are given in w Here 
we also introduce a new class of ~-JBW-algebras which is broader than the class of JBW-algebras. 
The principal difference between the two classes is in the fact that in general a ]$-JBW-algebra has 
a faithful representation in the algebra of selfadjoint operators on a AW*-module rather than on a 
Hilbert space as in the case of JBW-algebras. Certainly, these applications only illustrate ability of 
the Boolean-valued machinery. It is possible to advance far afield and obtain many other results by 
using the direct Boolean-valued interpretation as in [1-3, 5, 6], or forcing as in [4], or the combined 
method of [7]. The space limitation of the article does not allow us to expose all these in more detail. 

The necessary background of the theory of JB-algebras and Boolean-valued models can be found 
in [11] and [15]. 

w P re l im ina r i e s  

We recall some definitions and fix terminology and notation. 
1.1. Throughout the article, B is a fixed complete Boolean algebra, V (~) is the corresponding 

Boolean-valued model of set theory, R stands for the conventional field of reals, and 7~ is the same 
field in the model V (~). As is known, the descent 7 ~  is a real K-space, i.e., an order-complete vector 
lattice isomorphic to the vector lattice Coo(Q), where Q is the Stone compact space of the algebra ~. 
We denote by B (R) the bounded part of the K-space 7~ ~. that is isomorphic to C(Q), and denote 
the norm in B(R) by H" I]oo. Note that ~ (R)  is a commutative and associative Banach algebra. 
The idempotents of this algebra form a complete Boolean algebra which is isomorphic to 15. Every 
idempotent e determines a positive projection, the operator of multiplication by e. 
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Henceforth,  we take the liberty of identifying the Boolean algebras of idempoten ts  and projections 
with B and write B C 11~ (R). In particular,  the units of these algebras as well as the  uni ty in B (R) 
are denoted by the same symbol 1. 

1.2. Recall tha t  a JB-algebra is s imultaneously a real Banach space A and a unital  Jordan algebra; 
moreover,  A must  satisfy the conditions: 

(1) I[xyll <_ I[x][. []YI[ (x ,y  �9 A), 
(2) Ilx_2ll- llx]l 2 (x �9 A), 
(3) IIx"ll < IIx +_v211 (x,v �9 m). 
The  set A+ := {x z : x �9 A}, presenting a salient convex cone, determines  the s t ructure  of an 

ordered vector space in A so that  the unity 1 of the algebra A serves as a strong order unit ,  and the 
order interval [ - 1 ,  1] := {x �9 A : - 1  < x < 1} serves as the unit  ball. Moreover, the  inequalities 
- 1  _< x < 1 and 0 _< x 2 _< 1 are equivalent. 

The  intersection of all maximal  associative subalgebras of A is called the center of A and denoted 
by Z(A) .  The  element  a belongs to Z ( A ) i f  and only if (az)y = a(xy) for arbi t rary x , y  �9 A. If 
Z (A)  = R .  1, then A is said to be a JB-factor .  The  center Z(A) is an associative JB-a lgebra ,  and 
any such algebra is isometrically isomorphic to the real Banach algebra C(K)  of continuous functions 
on some compact  set K. 

1.3.  The  idempoten ts  of JB-algebras  are also called projections. The  set of all project ions that  
are in the center forms a Boolean algebra which is denoted by ~c(A) .  Assume tha t  ~ is a subalgebra 
of the Boolean algebra ~c (A)  or, equivalently, that  • (R) is a subalgebra of the center Z(A) .  Then 
we say tha t  A is a B-JB-algebra if, for any part i t ion of unity ( e l ) re -  in B and any family (xf)fe-- 
in A, there exists a unique ]~-mixing x := mixfe~.(efxf),  i.e., a unique element  x �9 A such that  
efxf -- efx for all ~ �9 --. If B (R) -:- Z(A) ,  then a ~ -JB-a lgebra  is also referred to as centrally 
extended J B-algebra. 

1.4. The unit ball of a B-JB-algebra is closed under B-mixings. 
,~ Since the uni t  ball of a JB-a lgebra  coincides with the order interval [ - 1 ,  1], the required assertion 

is equivalent to the following: If an x �9 A and a part i t ion of unity (el)re E C B are such tha t  efx > 0 
for all ~ �9 -~, then x > 0. This follows from the fact that  if efx = a~ (~ �9 2) for a suitable family (af) 

in A, then the element  a = mix (efaf) satisfies the equality x = a 2. t> 
1.5. Given an arbi trary a �9 A, we introduce the operators Ta, Ua : A ~ A by the formulas 

T~: x ,  , ax, Ua: x ,  , 2a(ax) - a2x (~: �9 A). 

We say tha t  e lements  a, b �9 A commute operato~wise if Ta o Tb = Tb o Ta. Obviously, the center Z(A)  
consists of elements that  commute  operatorwise with each of the elements of A. 

The  operator  Ua is positive, i.e., Ua(A+) C A+. If a �9 Z(A) ,  then Ua = Ta~. 
1.6. Let B be a subalgebra of q3c(A). Then we can define a B-valued semimetr ic  d in A by the 

formula 
d ( x , y ) : = V { 1 - e : e e B ,  e x = e y  } ( x , y e A ) .  

This semimetr ic  is a metric (i.e., d(x,y) = 0 , x = y) if and only if, for every a �9 A, there exists 
some greatest  element  e in ~ such that  ea = 0. In case the latter proviso is fulfilled, we say that  the 
JB-a lgebra  A is B-metrizable.  By applying the operation of B-extension to a B-metr izable JB-a lgebra  
(see [8; 3.5.8(2)]), we can derive the following assertion: 

Every B-metrizable JB-a lgebra  A can be extended to a B-JB-a lgebra  ,4 in such a way that  
,4 = mix (m), i.e., each element  of the algebra A is a mixing of a family in m. 

Wi th  this c i rcumstance in mind,  we shall only handle B-JB-algebras  in what  follows, a l though 
some results could be formulated for a more general case of B-metrizable JB-algebras .  

w Cyclic Banach Spaces 
Here we expose a Boolean-valued approach to s tudying Banach spaces with complete  Boolean 

algebras of projections.  Such spaces appear in different branches of analysis and are especially frequent 
in the theory of operator  algebras. 
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2.1. Let X be a Banach space and let s  stand for the set of all bounded linear operators on 
X. Assume that  a mapping ~o := TX : B ~ s  is injective and satisfies the following conditions: 

(1) T(b) is a projection with norm one for all b E B; moreover, ~(1) and ~(0) coincide with the 
identity and zero operators respectively; 

(2) the projections ~o(b) and ~(b t) commute for arbitrary b, b ~ E B; 
(3) the equalities T(b V b ~) = ~(b) o ~(b t) and ~(b*) = I x  - ~(b) hold for all b and b'. 
In this case the set B := T(B) is referred to as the complete Boolean algebra of projections in the 

space X. We shall symbolize the above situation by B t- s  In the sequel we identify the Boolean 
algebras B and B and shall take the liberty of speaking about the Boolean algebra B of projections. 

If (er is a partition of unity in B and ( x r  is a family in X,  then an element x E X for 
which esxr -- er for all r E .--. is called a mixing of (xr with respect to (e~). A Banach space X is 
said to be B-cyclic if B E s  and the following conditions hold: 

(4) a mixing of each bounded family in X with respect to every partition of unity in B (with the 
same index set) exists and is unique; 

(5) the unit ball of X is closed under each mixing. 
The simplest example of a B-cyclic Banach space is B (II(). It is seen from 1.4 that every B-JB- 

algebra is also a B-cyclic Banach space. 
2.2. Let X and Y be Banach spaces; moreover, B r- s  and B r- s  An operator 

T : X ~ Y is called B-linear if it is linear and commutes with projections in B, i.e., if b o T = T o b. 
(Here we certainly bear in mind cpy(b) o T = T o ~px(b).) Denote the set of all bounded B-linear 
operators from X into Y by s  Y). Then Z := s  Y) is a Banach space and, clearly, B U Z. 
Indeed, the projection ~pz(b) can be determined by the formula T ,  ~ b o T (T E Z). It is easily 
verified that  the space Z is B-cyclic if Y is B-cyclic. The converse assertion is also true if X -~ {0}. 
We shall call a bijective B-linear operator a ~-isomorphism and if, in addition, the operator is norm- 
preserving, we shall speak about an isometric B-isomorphism. 

The space X ~ :-- s  B (R)) is called the B-dual of X. If the spaces Y and X ~ are isometrically 
B-isomorphic, then Y is said to be a B-dual space, and X is a B-predual space of it. 

2.3. T h e o r e m .  The restricted descent of a Banach space from the model V (~) is a ~-cyclic 
Banach space. Conversely, if X is a B-cyclic Banach space, then in the model V (~) there exists 
a Banach space 2l which is unique up to isometric isomorphism and whose restricted descent is 
isometrically B-isomorphic to X .  

The first part of the theorem follows immediately from [16, Theorem 4.8] or [6, Theorem 4.1]. 
Now, assume X to be a B-cyclic Banach space. It is demonstrated in [16, Theorem 4.8] that  X can be 
transformed into a Banach-Kantorovich space with some B (R)-valued norm [. [; moreover, the scalar 
norm in X is mixed, i.e., I[x[I-- [[ Ix[ [[oo. According to Gordon's theorem, we can identify B(R)  with 
the bounded part of the descent 7~ ~. By [17, Theorem 3.4.4], X can be represented as a Banach 
space X in the model V(~); moreover, the descent X~ serves as universal completion of X; i.e., 2( 
coincides with the set mix (X) of all mixings of elements in X. An element x E 2( ~ belongs to X if 
and only if its vector norm [xl is contained in ll~ (R). However, since gix[ = []x[[,r] = 1, we conclude 
that X is the bounded part of , ~ .  ~, 

2.4. An element A" E V (~) mentioned in Theorem 2.3 is referred to as the Boolean-valued repre- 
sentation of X.  Let A" and J) be the Boolean-valued representations of B-cyclic Banach spaces X and 
Y respectively. We let s  3)) denote the element in V (~) that represents the space of all bounded 
linear operators from X into y .  

T h e o r e m .  The restricted descent of the Banach space s Y) and the B-cyclic Banach space 
s  Y)  are isometrically B-isomorphic. Such an isomorphism is executed by assigning to any 
hounded B-linear operator T : X ~ Y the element t := T T that is defined by the relations 
[ t : X  , y ] = l  and ~t(x) = T(x)] = 1 (x E X) .  

Let X0 -- A" J, and Y0 = Y~.  By [17, Theorem 3.4.8], s  and f~b(Xo, Yo) are linearly 
isometric as regards vector norms. Here f-b(Xo, Yo) consists of the linear operators To : X0 ~ )to 
that  satisfy the inequality [T0x[ _~ c[x[ (x ~ X0) for some c ~ R~. The smallest element c with the 
indicated property is exactly the vector norm IT0[ of the operator To. The bounded part s Y0) 
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consists of those operators To for which IT0l e B (R). Since the norms in X and Y are mixed (see 
[16, Theorem 4.8]), it follows that  f-.b(X, Y) = s Y). Let an operator t : PC ,31 inside V (~) be 
connected with the operator To by the relation [It(x) = To(x)] = 1 (x E X) .  Then [lltll = IT01] = 1; 
therefore, t belongs to the bounded part of s  32) if and only if T is contained in the bounded part  
of/ :b(X0, Y0). It remains to observe that  every operator To E/:b(X0, Y0) with the norm 17"01 e B(R) 
is uniquely determined by its restriction to X, while every operator T in s Y )  has exactly one 
norm-preserving extension To E Lb(Xo, 1Io). ~" 

2.5. C o r o l l a r y .  Let X* be the dual Banach space of  X and let " and ~- denote isometric 
isomorphy and isometric B-isomorphy respectively. Then 

~ I x *  y ]  = Y ,  ~ ~_ = 1 .  

2.6. Consider the category Ban(B) whose objects are Banach spaces X such that  B E / : ( X ) .  The 
morphisms of this category are bounded B-linear operators. Let C-Ban(B) stand for the complete 
subcategory of Ban(B) whose objects are B-cyclic Banach spaces. 

Introduce one more category B a n ~  ). Its objects are the elements X' E V (~) for which [2( is a 
Banach space ] = 1. The morphisms of this category are the elements ~ E V (~) such that  ~c~ is a 
bounded linear operator  ] = 1 and []lal[ < X ] = I for some number A e R. 

T h e o r e m .  The categories C-Ban(l~) and B a n ~  ) are equivalent. Such an equivalence is established 
by the pair of  adjoint functors, the functor o[ immersion and the [unctor of  restricted descent. 

See [17, Theorem 3.2.11] and Subsections 2.3 and 2.4. 

w Boolean-Valued Representation of JB-Algebras 

Since any ~ - JB-a lgebra  is a ~-cyclic Banach space, the results of the previous section apply to 
them too. 

3.1. T h e o r e m .  The restricted descent of a JB-algebra in the model  V (~) is a B-JB-algebra.  
Conversely, for any ]~-JB-algebra A there exists a unique (up to isomorphism) JB-algebra A whose 
restricted descent is isometrically ]- isomorphic to A. Moreover, [.A is a JB- fac tor]  = 1 i f  and onty 
if B ( R ) =  Z ( A ) .  

,~ Take an arbitrary ~-JB-a lgebra  A. According to Theorem 2.3, we can suppose that ,  as a Banach 
space A, coincides with the restricted descent of some Banach space .A E V (~). Let us introduce the 
s tructure of a Jordan algebra in .A. To this end, we must verify that  the multiplication in A is 
extensional. Take x, y, x', y' e A and put e := Ix = x']] h ~y = y']. Since the relations e < [u = v]] and 
eu = ev are equivalent, it follows that  ex = ex I and ey = ey t. Since e is a central projection, we can 
write 

Hence 

= = = = = 

i.e., the multiplication of A is extensional. 
Now we define a binary operation (z ,y)  H z o y in A as the ascent of the multiplication of A. 

It means that,  for any x ,y  E A, there exists exactly one element x o y E V (~) such that  [Ix o y E 
.A] = Ix o y = xy] = 1. Demonstrate  that (.A, o) is a JB-algebra  inside V (~). From what was said 
above it is seen that  the operator Ta is extensional. If Ta is the operator x i , a o x (x E A) inside 
V (B), then, obviously, ETa = Ta T] = 1. Therefore the operators Tz and Ty commute  if and only if 

the operators "Tx and T u commute  inside V (B). For y = x 2, it follows in particular that  the Jordan 
identity x o (y o x 2) = (x o y) o z 2 holds in .A. Moreover, it is clear that  an element x E A belongs to 
the center Z ( A )  if and only if Ix E Z ( A ) ]  = 1. But this amounts to  the equality 

[[Z(A)T= Z ( A ) i  = 1. 
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It remains to show that  conditions 1.2(1)-(3) hold in "4. To this end, it suffices to establish that  
the vector norm in A satisfies conditions that  are analogous to 1.2(1)-(3). First,  observe that  the 
following equivalences hold: 

II~ll ~ 1 , , I] I~l I1~ < 1 ,  , I~1 < 1. 

Now, take arbi trary z , y  E A and 0 < e E R. Put  xo := a - i x  and yo := ~ - l y ,  where a := Ix[ + e l  
and ~ := [y[ + e l .  Since ]xo[ = [a -11 Ix[ < 1, it follows that  [[xo[[ < 1. Similarly, [[yo[[ < 1. Hence 
Ilxoyoll < 1 or I~oyol _< 1. From this we obtain 

Izyl < Ixl" lyl e(l~l + lyl) + 821. 

By tending e to zero, we find Ixyl <_ Ixl .  lyl. Further,  put  7 2 := Ix2[ + e l  and x' := 7-1x .  Then 
Ix '2] = 17-511xsI; whence Ilz'[I 5 = [[x'2l[ < 1 or [Iz'll < 1. Therefore, [x'[ _< 1, and also [x'[ 5 _< 1 and 
Ix] 2 < 7 5. Consequently,  Izl ~ _< 1~51 + el, and as e , 0 we get I 15 < IxSI . The  reverse inequality 

follows from what  was proved already; therefore, Ixl 2 = Ix2[. Finally, by pu t t ing  65 := Ix 5 + y51 + e l ,  
we easily observe that  1(~-2x5] _< 1 since 

II a-Sx211 -< II 6-5x5 + a-2ysII = 116 -5 1 ~2 + ys[ I1~ -< 1. 

But then Izs[ < ~5 and as e , 0  we come to the inequality [z2[ < [z 2 + y2[. 
From the relation lllxll~ = I~1] = 1 and the above-proven properties of the vector norm, we 

can derive the assertion: I[ the norm in "4 satisfies conditions 1.2(1)-(3) ]] = I by straightforward 
calculation of Boolean t ru th  values. 

Denote A := B(R) .  If A = Z(A) ,  then 

1 = [Z(A)  T= A T = R .  1]~ A [[(A) = Z(.4)]] _< [[Z("4) = T~. 1~. 

Consequently,  ~"4 is a JB-fac tor  ] = 1. Conversely, suppose that  IZ("4) = 7~-1~ = 1. Then 
[ Z ( A ) T =  7~-1] = 1; therefore, 

mix(Z(A))  = Z(A)T~= 7 ~  .1 = mix(A). 

Dist inguishing the  bounded  parts,  we obtain A = Z(A).t,  
3.2.  Let A and B be some B-JB-algebras.  A B-linear operator  tha t  is a h o m o m o r p h i s m  of the 

algebras is referred to as l~-homomorphism. 
T h e o r e m .  Let .4 and B be the Boolean-valued representations of IB-JB-algebras A and B re- 

spectively. Let ~ be a b-linear operator from A into B and ~o := q~ T- Then the following assertions 
hold: 

(1) ~ is a N-homomorphism ~ , ~qo is a homomorphism] = 1; 
(2) ~ is posit ive,  , ~o is positive] = 1; 
(3) ~ is normal ,  , ~o is normal] = 1. 

w Some Applications 

Now we give several applications of the results on Boolean-valued representat ion to the s t ructure  
of B-JB-algebras .  The  theorems appear  by transfer of the corresponding facts from the theory of 
JB-algebras .  

4 .1 .  Let A be a B-JB-a lgebra  and let A := I~ (R). An operator  ~ E A tl is called a A-valued state if 
(I) > 0 and (I)(1) = 1. A state (I) is said to be normal if, for any increasing net (z,~) in A with the least 
upper  bound  x :=  sup x~, we have (I)(x) = o - l i m  (I)(xa). If .4 is the Boolean-valued representat ion of 
the algebra A, then  the ascent ~o := (I)T is a bounded linear functional on .4 as it follows from 2.4. 
Moreover, qo is positive and o-continuous; i.e., ~o is a normal state on .4. The  converse is also true: if 
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[~ is a normal  s tate  on A9 = 1, then the restriction of the operator  ~ l to A is a A-valued normal 
state. Now we will characterize B-JB-algebras  that  are B-dual spaces. Toward this end, it suffices 
to give Boolean-valued interpreta t ion for Theorem 2.3 of [14] that  declares a JB-a lgeb ra  to be a dual 
Banach space if and only if it is monotone  complete and has a separating family of normal  states. 

4.2.  T h e o r e m .  For a B-J B-algebra A, the following assertions are equivalent: 
(1) A is a B-dual  space; 
(2) A is monotone complete and admits a separating set of A-valued normal states. 
H one of these conditions holds, then the part of A t consisting of order-continuous operators serves 

as a B-predual  space of A. 
,a By Theorem 3.1, we can assume that  A coincides with the restricted descent of a JB-a lgebra  

A in the model  V (~). According to the transfer principle, Theorem 2.3 of [14], and Corollary 2.5, it 
suffices to demons t ra te  that :  

(a) the algebras A and ,4 are simultaneously either monotone  complete  or not; 
(b) A has a separat ing set of normal  A-valued states if and only if [[A has a separat ing set of 

normal  states 9 = 1. 
The  first claim follows from the fact that  the operations of descent and ascent preserve polars 

(see [15, Theorems  3.2.13 and 3.3.12]). Moreover, the fact should be taken into consideration that  
the polar v_<(M) with respect to < (where < stands for the order relation in A or A) is the set of 
upper  bounds  of the set M,  and if there exists sup M,  then {sup M} = 7r<(M) f3 7r~l(Tr<(M)) (cf. 
[15, Theorems  4.2.9 and 4.4.10(2)]). 

Prove claim (b). Let S(A) denote the set of all states on A inside V (~) and let S~(A) be the 
set of all A-valued states on A. Since any state r �9 S~(A) is B-linear, it is extensional and admits  
of the ascent ~o := r T tha t  represents a functional ~v : A ~ T~. The  ascent preserves linearity and 
posit ivity and, as was already noted in 2.4, KII II = 1r = x. Therefore, the correspondence r  ~ 
is a bijection between S~(A) and S(A)  ~. Moreover, a state r will be normal  if and only if [~v is 
a normal  s tate  9 = 1 (see 3.2). Suppose that  S~(A) is a separating set of states. Take a nonzero 
element x �9 A. Choose a state ~0 �9 S~(A) so as to have r  # 0. Since r is extensional,  we have 
[Ix # 0 9 <_ [r  # 0]. Using the calculation rules for Boolean t ruth  values and involving the above 
facts, we can write 

IS(A) is a separat ing set of states 9 = ~(Vx 

= V 
zEA CES~(A) 

�9 # o , �9 # 09 

A IIz # # 09 = 1 .  

xEA 

Thus S(.A) is a separat ing set of states inside V (l~). Conversely, assume tha t  the preceding condition 
holds. Then ,  for every 0 ~ x �9 A, we have b := Ix ~ 0 9 > 0; therefore, by the max imum principle, 
there exists T �9 S(.A) 1 such that  b < lifo(x) -~ 0 9. Denote by r the restriction of ~ l to A C A l- 
Then  r �9 s~(m) and b < [ r  -fi 0]. From here it is seen that  the suppor t  of the element  r  is 
greater than  or equal to b; hence ~(x)  -fi 0. ~. 

4.3.  An algebra A satisfying one of the equivalent conditions 4.2(1), (2) is called a tB-JBW-atgebra. 
If, moreover,  B coincides with the set of all central projections, then A is said to be a B-JBW-factor. 
It follows from Theorems  2.1 and 4.2 that  A is a B-JBW-algebra (B-JBW-factor) if and only if its 
Boolean-valued representat ion .A �9 V (]) is a JBW-algebra (JBW-factor). 

Consider an example.  Let X be an AW*-module  over the algebra A := B ( C )  (see [4, 7]). Then 
X is a B-cyclic Banach space and s is a type 1 AW*-algebra. For arbi trary x,y �9 X,  define the 
seminorm 

:= Jl(az,Y)lloo Ca �9 

where (., .) is the  inner product  in X with values in A. Denote by aoo the topology o n / : B ( X )  tha t  is 
generated by the sys tem of seminorms p~,~. It is possible to demonst ra te  (see the proof in 4.4 below) 
tha t  a croo-closed ~ - JB-a lgeb ra  of selfadjoint operators in s  is a mono tone  closed subalgebra in 
s  At the  same t ime,  the lat ter  algebra is monotone  complete  and admits  a separat ing set of 
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A-valued normal  states. Thus,  a aoo-closed B-JB-algebra  of selfadjoint operators  presents an example 
of a B-JBW-algebra. 

4.4.  T h e o r e m .  A special B-JB-algebra A is a ~-JBW-algebra if and only if it is isomorphic to 
a o'oo-closed B-JB-subalgebra ofs  for some AW*-module X.  

,~ Again we can assume that  A coincides with the restricted descent of a JB-a lgeb ra  .4 in the 
model V(~). Moreover, it is easy to show that  .4 is special too. 

Let X be a complex Hilbert space inside V(~). The  restricted descent X of the space X is an 
AW*-module  and, conversely, any AW*-module  has such a representation (see [4, 7]). Furthermore,  
it is known from [14] that  a special JBW-algebra is a JW-algebra ,  i.e., it is isomorphic  to a weakly 
closed subalgebra of the algebra s a. Thus, we can suppose that  .4 is a uniformly closed Jordan 
subalgebra in s  and it now suffices to prove that  A is a aoo-closed subalgebra in s  if 
and only if V (g) [= ".4 is a weakly closed subalgebra in s  

The  algebraic part  of the claim is obvious. Let the formula r  u) formalize the sentence: an 
operator  u belongs to the weak closure of .4. Then the formula can be writ ten as 

(vn e ~)(vo, ,  02 e P l ; . ( x ) ) ( g v  e .4 ) (w  �9 0~)(vu e 0~)I(~(~) - . (~) ,y ) l  _< - a ,  

where w is the set of natural  numbers,  ( . ,  .) is the inner product  in X, and "P~n(X) is the set of all 
finite subsets of X. Suppose that  [r  u)1 = 1. Calculation of Boolean t ru th  values with the help 
of the m a x i m u m  principle and the relation (cf. [15, 3.1.11]) 

7~s;.(x) = {0T: 0 ~ P s M x ) }  T 

yields the following assertion: For any n E w and any finite collections 01 := {xl , . . . ,xn} C X and 
09. := {yl, ..., y,,,} C X,  there exists v E .4~ such that  

]](v.,: e o,)(vu e o2) l (u(x) -  v(x), u)l _< n-~ l  = 1. 

According to the Kaplansky density theorem (see [10, Theorem 4.5.12]), we can choose v so that  the 
extra condit ion IIIMI < II~ll~ = I holds. If U and V are the respective restrictions of the operators u 
and v ~ to X,  then 

IUl < IVl,  
I((U - v ) ( ~ , ) , u t ) l  < n - l l  (k := 1 , . . . ,n;  / := 1 , . . . , m ) .  

There exists a fixed par t i t ion of unity (e~)~e- C ]~ which depends only on u and is such that  e~ [U] E A 
for all ~. From here it is seen that  e~U E A and e~V E A. Moreover, 

II(edU - V)('k),U,)lloo < =-~ (k := 1,.. . ,~; I := 1, . . . ,m).  

Repeat ing the above a rgument  in the opposite direction, we come to the following conclusion: The 
formula r  u) is t rue inside V(*) if and only if there exist a part i t ion of unity (e~)~ E in B and a 
family (Ur162 where Ur belongs to the goo-closure of A, such that  e~ _< ]]u = U~ T~ for all ~, i.e., 
u = mix(e~U~ T). 

Now, assume that  A is aoo-closed and the formula r  u) is t rue inside V(~). Then  U~ is contained 
in A by assumpt ion  and ]]U~ TE .4]] = 1. Hence er < ]]u E .4]] for all ~, i.e., [[u E .4]] = 1. Therefore,  

v(*) ~ (v,~ e z : (x))r  u) ---, ,, e .4. 

Conversely, assume ,4 to be weakly closed. If U belongs to the croo-closure of A, then u = U T is 
contained in the weak closure of .4. By assumption,  ]]u E .4]] = 1 or u E .4.(. The  restriction of the 
operator  u ~ to X,  coinciding with U, belongs to A. ~. 
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4.5. Let M s := Ma(O) be the algebra of Hermitian (3 x 3)-matrices over the Cayley numbers O. 
If (-)^ denotes the canonical embeddin~ into the Boolean-valued universe Y (]), then J[O ̂  is a normed 
algebra over the field R]  = 1 and [(M 3)~ is an R-algebra of nermitian (3 x 3)-matrices over O] = 1. 
Let O and s ~  be the norm completions of the algebras O and (MS)" inside V (~) respectively. It is 

~ asy to show (using, for example, the Hurwitz theorem) that ~O is an algebra of the Cayley numbers 
= 1 and [[.M38 is an algebra of Hermitian (3 x 3)-matrices over the Cayley numbers ]] --- 1. By 

Theorem 2.1, the restricted descent .Ms is a B-JB-algebra. At the same time, the restricted descent 
of the JB-algebra J~4~ is isomorphic to the algebra C(Q, MS) of continuous vector-functions, where 
Q is the Stone compact space of the Boolean algebra B. Actually A/[~ and C(Q, MS) are isometrically 
isomorphic (see [18]). Taking all the above into account, we give a Boolean-valued interpretation 
to the following fact (see [12, Theorem 8.6]): Each JBW-factor is isomorphic either to M s or to a 
JC-algebra. 

4.6. T h e o r e m .  Each B-J BW-factor A admits a unique decomposition A = eA @ e*A with a 
central projection e E B, e* := 1 - e, such that the algebra eA is special and the algebra e* A is purely 
exceptional. Moreover, eA is B-isomorphic to a aoo-closed subalgebra of selfadjoint endomorphisms 
of some AW*-module and e*A is isomorphic to C(Q, MS) , where Q is the Stone compact space of the 
Boolean algebra e*B := [0, e*]. 

,~ If .A is the Boolean-valued representation of the algebra A, then [.A is a JBW-factor ] = 1 (see 
4.3). Consequently, by the transfer principle, [.A is isomorphic either to JC-algebra or to MS] = 1. 
Put e := ~.A is special ]. Then e* = ~.A is isomorphic to A438]. Moreover, the following assertions hold: 

V (e~) ~ "eft. is a special JBW-factor;" 

V (~'~) ~ "e*.A is an algebra isomorphic to .h43s. '' 

The restricted descent of e,A presents a special eB-algebra.. It remains to apply Theorem 4.4 and a 
remark in 4.5. ~, 
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