
I N T E G R A L  OPERATORS D E T E R M I N E D  
BY QUASIELLIPTIC EQUATIONS.  II 

G. V.  D e m i d e n k o  UDC 517.954 + 517.983 

In this article we continue the study of properties of the families of integral operators which are 
connected with quasielliptic equations [1]. The operators under consideration were introduced by the 
author in [2, 3] while constructing approximate solutions to the following quasielliptic equations in 
the half-space: 

L ( D , ) u = f ( x ) ,  x � 9  +, (1) 
Bj(D.)ul..=o = 0, j = 1 , . . . , V ,  

with boundary operators satisfying the LopatinskiY condition. Study of their properties enables us to 
obtain a number of new results in the theory of boundary value problems (1). 

w Def in i t ions  and S t a t e m e n t  of the  Main  Resu l t s  

We shall assume that the operator L(Dx) is quasielliptic and its symbol L(i~) is homogeneous 
with respect to some vector a = ( a l , . . . , a n ) ,  where 1/ai are naturals; i.e., L(c~i~) = cL(i~), c: > O. 
Without loss of generality we can suppose that the coefficient of the highest derivative with respect 
to zn equals unity. By virtue of quasiellipticity of L(Dz), the equation 

L(is, iA) = O, s �9 Rn-,  \ {0}, (2) 

has 1~an roots in A; moreover, none of them can be real. Denote all roots with positive imaginary 
part by A+(s), k = 1 , . . . , # ,  and let 

# 

= 

k = l  

We now specify the conditions on the boundary operators Bj(D~) for xn = 0. Assume that the 
number of the boundary operators Bj(D=) equals # and each of them has the form 

Bj(D~) D mi + ~ k x' , . .  = Sj ,k(nz,)D~,,  = (xl ., Zn--1); 
k<mj 

moreover, the symbols Bj(i{) are homogeneous with respect to the vector a and homogeneity exponent 
/3j, 0 _</Sj < 1; i.e., 

B j ( c % { )  = ca, B j ( i { ) ,  c > 0. 

We let Sn stand for the trace operator on the hyperplane {Xn = 0}. 
We assume that the LopatinskiY condition is satisfied for the operator 

{L(D=), Sn o B , (D~) , . . . , Sn  o B~(D=)}; 

i.e., the polynomials Bj(is,  iA), j = 1 , . . . ,  #, are rood M+(s,  A) linearly independent for s �9 Rn-1 \ {0} 
as polynomials in A. This means that det (bj,k(s)) # O, s �9 Rn-1 \ {0}, where the elements bj,k(S) are 
determined from the identities 

P 

bj,k(s)(i)~) k-1 =_ Bj(is, i)~) (modM+(s,A)) .  
k = l  
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Now we describe the construction of an approximate solution to problem (1) which was presented 
in [2, 3]. It is based on the use of the following special averaging [4] for the functions I(x) E Lp(Rk): 

h - I  

1 f v-,~ i f 
h Rk Rk 

exp ( i - ~ ( ) G ( ~ ) f ( y ) d ( d y d v ,  (3) 

k k 
-21oti where G({) = rn(~) TM exp(-(sx)m), m = 21 > k + 1, ({)2 = E {i , WI = E ~ .  

i=1 i=1 

Let F+(s) denote a contour, in the complex plane, which encloses the roots A+(s) of equation (2), 
and let I ' - ( s ) ,  be a contour enclosing all roots in the lower half-plane. Define the contour integrals 

1 /  exp(ixn)OdA, J-(s, xn) 1 i exp(ixnA) 
J+(s, xn) = ~ L(is, iA) = - 2 7  L(is, iA) dA, 

r+(~) r-(~) 

1 i exp( /x ,A)N. .  A) dA, j 1 aj(s,z,~) = 27ri _ ~ - ~  ,(s, = , . . . , # ,  
r+o) 

where Nj(s, .k) are polynomials in ,~ such that the following equalities are valid [5]: 

1 [ Bk(is, i,~)Nj(s,A) 
dA 

2~i j m+(~, A) - 
r+(~) 

Using the integral representation (3) for k = n -  1 together with the contour integrals introduced, 
we define some linear integral operators R+h, R~, Rjh, , j = 1 , . . .  ,/z, h E (0, 1), as follows. Given an 
arbitrary function f (x)  e Lp(R+)N LI(R+), we define 

h -1 xn 

' i'll ie'.('I"- v~ R + f ( x ) -  (2rrT._ , ~ 
h 0 Rn_ 1 Rn_ 1 

x = (x' ,  ~ , , ) ,  y = ( d , v . ) ,  ~ = (~',~.), 

h -1 

[ V 
h x, ~ - 1  /~-1 

h - I  

R j , h f ( x ) -  (27rjn_l i 1 
h R n - I  R n - I  

where j = 1 , . . . , #  and 

exp(i(x'  - y')s)G(sv~')J_(s, xn - Yn)f(Y) dsdy'dy.dv, 

O 0  

exp(i(z '  - y')s)G(svU)Jj(s,x.) f lj(s, 
0 

y.)f(y ' ,  y.) dy.dsdy'dv, 

lj(s, yn) = -Bj( is ,  D~.)J_(s, zn - yn)l~,,=o, 

n--1 

a ( s )  = m ( s ) ' e x p ( - ( ~ ) " ) ,  m = 2; > ~, (s)  2 = ~ ~1". 
i=1 
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From the definition of the integral operators R +, R~, and Rj, h, j = 1 , . . . ,  U, it follows (see [2, 3]) 
that,  for small h > 0, the function 

j = l  

f ( x )  

is an approximate solution to the boundary value problem (1). 
Now, by analogy with [1], we define some scale of function spaces in which we shall investigate 

the action of the operators R +, Rh, Rj,h, j = 1 , . . . , # ,  h e (0,1). 
Let r = ( 1 / a l , . . . , 1 / a n ) ,  1 < p < c~, lip' + l ip  = 1, 0 < a < 1, and ami~ = m i n { a l , . . . , a n } .  

r -I- . Introduce the weighted Sobolev space W~,,~(R n ), by definition, W~,,r(R +) is the completion, of the set 

of functions in C~176 +) vanishing at large [xl, in the norm 

IN(x), w~,~(n~)ll = ~ I1(1 + (z))-~0-a~)O~u(x), Lp(R+~)[], 
o_<,oa<_l 

n 2 / a i  r + 
where (x) 2 = ~ ~i . For cr = 0, the space indicated is the Sobolev space W~ (Rn).  

i = 1  

Denote by Ll,v( R + ) the space of summable functions u(~) with the finite norm I1~(~), L1,~(R~ +)11 = 
I1(1 + (x))-'ru(z), L,(R+)I[. In particular, for 3' = 0 we have L1,0(R +) = LI(R+) .  

Let s +) be the subspace of Lp(R +) constituted by the functions f ( x )  satisfying the con- 
ditions 

(1 + (x))~+Nlalf(x) e LI(R+), (4) 

f z3 f (x )  dx=O,  [ f l l = 0 , . . . , N -  1. (5) 

e~ 

We recall one definition of [1]. 

DEFINITION. Let V and U be normed vector spaces. We say that  a family of linear operators Rh, 
h E (0, 1), is fundamental in the pair of spaces {V, U} as h ---, 0 if, for every h E (0, 1), the operator 
Rh : V ~ U is bounded; moreover, 

sup IIRhll < c < oo 
0 < h < l  

and 
[IRhl -- Rh2[I ---* 0, hl,h2 ~ O. 

Now we formulate the main results of the present article. 

T h e o r e m  1. Assume I~l > 1 and lal/p > cr > 1 -- la[/p'.  Then the operator  family (R + + R-~) 
is fundamental in the pair of spaces {Lp(R +) f~ L1,_c~(R+), W;,~(R+) } as h --~ 0. 

T h e o r e m  2. Assume [a]/p > a and 1 _> Is] > 1 - Namin, where N is a natural number and 

1 -[a] /p '  - (N - 1)Otmi n ~ O" > 1 --[Otl/p'-- Namin. (6) 

r + Then the operator family ( R + + Rh ) is fundamental in the pair of spaces { E.p,c~,N ( R +), W~,c~ ( Rn ) } 
a s h ~ O .  

T h e o r e m  3. Let lal > 1 and ]a]/p > cr > 1 - [ a l / p ' .  Then the operator family Rj,h is 
fundamental in the pair of spaces {Lp(R+) N L1,_c,(R+), W~,c~(R+) } as h --*0. 
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T h e o r e m  4. Assume Iallp > ~, 1 _> I~l > 1 - Namin, where N is a natural number satisfying 
(6). Then the operator family Rj, h is fundamental in the pair of spaces {s W~,e(R +) } 
a s h ~ O .  

In consequence of the theorems we separately formulate the results on the operator family Rh, 
h �9 (0, 1), where 

# 

Rh : + R;  + nj,h. 
j = l  

T h e o r e m  5. Let [c~[ > 1 and ]al/p > ~ > 1 - la l /p ' .  Then the operator family Rh is fundamental 
in the pair of spaces { L,(FI+) N Li,_~r(R+), W;,=(R+) } as h ---~ 0. 

T h e o r e m  6. Assume [a[Ip > cr and 1 > in[ > 1-Namin, where N is a natural number satisfying 
inequalities (6). Then the operator family Rh is fundamental in the pair of spaces {s 
w ; , : ( n + ) )  as h 0 

Using Theorems 5 and 6, one can prove the following assertion on well-posedness of the boundary 
value problem (1). 

T h e o r e m  7. Let lal > 1 and Iallp > ~ > 1 - la l l p ' .  Then, for every function f ( z )  �9 Lp(R+)N 
L1 _e(R+),  the boundary value problem (1) has a unique solution u(x) E W;,a(R+); moreover, the 
following estimate is valid: 

tlu(=), w.. (R+)II < L.(R.+)II + IIs(:), L,,-:(R.+)It) i l l ,a" (7) 

with a constant c > 0 independent of f ( z ) .  

T h e o r e m  8. Assume I~]/p > ~ and 1 _> I~l > 1 - N a m i n ,  where N is a natural number 
sat is fyi .g inequalities (6). Then, for every function f ( x )  �9 s there exists a unique 

/ r  + solution u(z) �9 14p,~(R n) to the boundary value problem (1) which satisfies the inequality 

r + (s) 

with a constant c > 0 independent of f (x) .  
From Theorems 7 and 8 ensues the next assertion on well-posedness of the boundary value problem 

(1) in the Sobolev space W;(R+) .  

T h e o r e m  9. If  la[/p' > t then, for every function f ( z )  6 L , ( R  +) N LI(R+),  the boundary 
value problem (1) has a unique solution u(z) E W ; ( R  +) which satisfies inequality (7) for cr = O. If 
]al/p' < 1 and if f ( x )  E Lp(R +) meets conditions (4), (5) for ~r = 0 and some natural N determined 
from inequalities (6), then problem (1) is also uniquely solvable in ki~ ( R +) and its solution satisfies 
estimate (8) for cz = O. 

Observe that in the presented theorems we specify sufficient conditions on the right-hand side f ( z )  
under which the boundary value problem (1) is well-posed in W~,e(R +). The natural question arises: 
to what extent are these additional conditions essential? The question is still open; nevertheless, as 
follows from the theorem formulated below, the orthogonality conditions (5) are close to necessary 
solvability conditions. 

T h e o r e m  10. Let r(s)  be a contour, in the complex plane, which encloses all roots of the 
equation L(is, iA) = O, s E Rn-i  \ {0}. If [a[/p' + ~min > 1 > [od/p t, 1 < p < 2, and 

i Bj(is,  iA) 
L(is, iA) 

r(~) 
d ~ O  
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for some j = 1 , . . . , # ,  then for solvability of the boundary value problem (1) in W~(R +) it is 
necessary that 

f (x )  dx O. 

From this theorem it follows in particular that the condition f f ( x ) d x  = 0 is necessary for the 
R+ 

solvability of the Neumann problem 

A u  = f ( x ) ,  x �9 R+3, D=3ul=~=o = 0 

in W ~ ( R + ) ,  p <_ 2. 
At present, there are many articles devoted to study of boundary value problems for quasielliptic 

equations (see, for instance, [6-15]), but the theory is not yet sufficiently complete. 

REMARK. In the case of a compactly-supported right-hand side f (x) ,  Theorem 7 follows from 
[15]. The assertion of Theorem 8 for a -- 0 strengthens the author's result [2, 3]. The main results o[ 
the article are announced in [16]. 

w Mul t ip l i e r s  

This section is auxiliary. Here we present estimates and some identities for the contour integrals 
J+(s,x,~), J_(s,  xn), Jj(s, xn), and /j(s,x,,) ,  j = 1, . . .  ,#, as well as indicate several functions #(~), 

= (s, ~n), that are multipliers in Lp(Rn). All of these will be essentially used below. 
The following two lemmas hold [3]: 

L e m m a  1. Forzn  > 0  and s � 9  R , - I  \ {O} the estimates 

D k an [ ~ D~sJ+(s, xn)l < c(s) ( k + ' ) " " - 0 a - l e x p ( - 3 z n ( s ) ) ,  
k ~ a.  <_ ), 

D Jj(s,:.)I < exp(-gx,,(s)"") 

are valid for arbitrary k and/3 = (/31,... ,/3n-1), where c and 6 > 0 are constants. 

L e m m a  2. For s �9 Rn-1 \ {0}, the identities 

D k (J+(s, x n ) -  J - ( s , x . ) ) l~ .= o k ~- ~rn--1 k = O, m - 1, 

hold, where 6~_ 1 is the Kronecker symbol. 
With the help of these lemmas we prove the next three lemmas. 

L e m m a  3. For s �9 Rn-1 \ {0}, the identity 

1 
exp(- iAxn)(O(x . )J+(s ,x . )  + O ( - x . ) J _ ( s , x . ) ) d x .  - L(is, iA) (9) 

R1 

holds, where O(xn) iS the Heaviside [unction. 
PROOF. Let ~o(xn) be an arbitrary function in C~~ Consider the following boundary value 

problem on the real axis for an ordinary differential equation with parameter s �9 Rn-1 \ {0}: 

L(is, Dx.)v < oo, = .  �9 R1. 
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Since the  characterist ic  equation L(is, iA) = 0 has no real roots in A, the problem has a unique 
solution. Using L e m m a  2, it is easy to prove that  such a solution can be represented as 

v(s, xn) = [(O(xn - yn)g+(s, xn - Yn) + O(yn -- x , )J - (s ,  x n -  yn))qo(yn)dyn. 
Rl 

From L e m m a  1 it follows that  we can apply the Fourier transform to this function.  Taking into 
account a formula  for the Fourier t ransform of convolution, we have 

~(s,~) = / exp(--iAXn)(O(Xn)J+(s, xn) + O(-xn )J-(  s, xn ) ) dxn~( A ). 

R1 

On the other  hand,  L(is,iA)O(s, A) = ~(A). Hence (9) follows in view of arbitrariness of the function 
~o(x,~). The  l emma is proven. 

L e m m a  4. For s E Rn-1 \ {0}, the following identity is valid: 

exp(iAx,)  L(is, iA) d), = 2~r(O(xn)J+(s,x,~) + O(-x,)J_(s,  xn)). 
Rx 

The  proof is obtainable  from (9) by applying the inverse Fourier t ransform. 

L e m m a  5. Assume f(x ' ,xn) �9 LI(R +) and let f(s,  xn) be the partial Fourier transform with 
respect to x ~. Then, for s �9 Rn-i \ {0}, the following identities are vaBd: 

c o  

gj(~, x.) f b(s, y.)/(~, y.) dy. 
0 

= - j D . .  Jj(s,=.+z.) dz., j= l , . . . , . .  
0 o 

The  proof  is s t raightforward from Lemma  1. 
Using the contour  integrals J+(s, xn), Jk(s, xn), and Ik(s, z,,), we introduce the function 

tJ 

U(s , z , , y , )  = J+(s,x, - Yn) + Z Jk(s, xn)lk(s, yn) 
k = l  

for x,, > 0 and s E R,,-1 \ {0}. From the definitions of the integrals J+(s, x,,), Jk(s, xn), and Ik(s, x,,) 
immedia te ly  follows 

L e m m a  6. The identity holds: 

U ( c ~  - ~ - ' + ~ ~  ~ > o. 

Henceforth we use the following notation:  

M+(~,D~~ = H y ~~ - ~-~(s) 
k = l  

/ Bj(is, iA) 
Cj(s) = ~ i - - ~ )  dA, j = 1, . . . ,# ,  

r(,) 

A = max {)~i(st)[, (s t) = 1, 
i j s  I 
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L e m m a  7. The function U(s, x,~, 0) is a solution to the boundary value problem 

M+(s, Dz.)U = O, xn > O, 
Bj(is, D~,,)UIx,= o = Cj(s), j = 1, . . . , i t ,  

U ~ O as  x, ,  ~ + o o .  

PROOF. From the definitions of the contour integrals J+(s, xn) and Jk(s, xn) and L e m m a  1 it is 
obvious tha t  

M+(s,D~,)U(s, xn, O) -O ,  IU(s, Xn ,0 ) I - - ,0  for xn ---~ +oo. 
Verify the boundary  conditions. Recalling the definitions of the integrals Jk(s, xn) and lk(s, x,,), 

we have 

B3(is, D~.)U(s, xn,O)l~,,=o = Bj(is, Dz.) J + ( s , z . )  + ~ Jk(s,x.)lk(s,O) 
k = l  z n = O  

= Bj(is, D~.)J+(s,x.)l~.,=o + lj(s,O) = Bj(is, D~:.)(J+(s,x.)-  J _ ( s , z . ) ) l ~ . = o  

1 / Bj(is, iA) 
= 2--~ L(is,iA) dA = r  

r(~) 

The  l emma is proven. 

L e m m a  8. The following representation holds: 

u ( s , x . , 0 )  = J k ( s , x . ) r  
k = l  

The  proof is s traightforward from the preceding lemma. 
At the conclusion of the section we state a l emma on multipliers. 

L e m m a  9. For every vector u = (u I, Un), ua = ul a ' + urban = 1, the functions 
oo 

#+(~) = (is) ~/ / e -i&~:" D~" J+(s,z,)  dx,~, 

0 

0 

#-~(~) = (is)"' / ei&~"O;"J_(s, zn)dxn, 
- -00 

O0 

#j,v(~) = (s) oi-u'a" / e i~'*z" O;:+ljj(s,  Xn) dxn, 

0 

oo 

mj, v(() = (is)~'J ei~"~"(s)u"~"-~JBj(is, Dy,,)g-(s, yn - xn)ly,,=odz,,, j = 1 , . . . , # ,  

0 

are multipliers in Lv( Rn). 
PROOF. By Lizorkin's theorem [17], it is sufficient to prove that ,  for every vector 7 = (7~, - - . ,  7,0, 

where ei ther 7i = 0 or 7i = 1, the inequalities 

< c, < c, < c, < c 

hold for r r 0, I = 1 , . . . , n ,  with some constant  c > 0 independent  of (. The  verification of the 
inequalities causes no difficulties and can be accomplished with the  help of L e m m a  1. 
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w Proofs  of t h e  T h e o r e m s  S ta t ing  t h a t  the  O p e r a t o r  F a m i l y  

(R.+ 4- n ; )  is ~ n d a m e n t a l  as h ~ 0 

In this section we prove the main results on the property of fundamentalness of the operator family 
(R + 4- R ; )  in the corresponding pairs of weighted spaces as h ---* 0. 

We begin proving Theorem 1. First of all, we observe that cr belongs to the nonempty interval 
(1 - lal/p', lal/p), since lal > 1. 

The proof of the theorem is divided into three lemmas. In the first lemma we estimate the higher 
derivative 

D~z(R + 4- R h ) f ( x  ), h a =  1, 

in the Lp-norm; in the second we estimate all derivatives with fla < 1 in the corresponding weighted 
norms; and in the third we prove that the function Uh(X)= (R + + R h ) f ( x  ) can be approximated by 
functions vanishing for Ix[ >> 0 in the norm of I,V~,~ (R +). 

L e m m a  1. Let lal > 0, f (x )  �9 Lp(R +) A L l ( R + ) ,  and Uh(X) = (R + 4- R h ) f ( x  ). Then 

1105,,,(~),L.(n+)ll _< cllf(x),z..(n+)ll, na = 1, 0 < h < 1, 

where the constant c > 0 is independent of h and f(x); moreover, 

IID~uh,(x)- D~uh2(X), L,(n:+)ll-> 0, h , , h ~  --+ O. 

The proof of the lemma for ~ = ( 1 / a , , . . . , 1 / a n )  and a compactly-supported function f (x )  is 
contained in [3] (see Lemma 3). The general case is settled by the same scheme by using Lemma 9 of 
w 

L e m m a  2. Let f (x )  �9 Lp(R+), (1 +(x))~f (x)  �9 LI(R+),  Uh(X) = (R + + Rh)Z(x  ) and lal > 1, 
l a l l p  > ~ > 1 - l a l l p ' .  Then, for 1 > fla > O, the following estimate is valid: 

II(~ + (x))-<"(i-~~ L,(R~)II 
< c(lls(x), L,,(n:+)II + I1(1 + (x>)<'('-'~<')f(~), L,(R~)II), 

where the constant c > 0 is independent of h �9 (0, 1) and f(x); moreover, 

0 < h < l ,  (10) 

N(1 4-(x))-<~(i-Z~)(D~uh,(X)- D~uh2(x)), L,(R+)[[ 
<_ ~(h,,h~)(llf(x), L,(n+)ll + II(1 + (z))~(1-z~)f(x), L1 (R+)]i) 

and e(ha, h2) --+ 0, hi,h2 --+ O. 
PROOF. Since r < 1, we have 0 _< fin < 1~an. Consequently, 

( l l )  

where 

D~uh(x) = ~o+(z) + ~Oh (X ), 

_~(~) _ 1 
( 2 ~ ) . - 1  

h - I  zrt 

h 0 Rn-1 Rn-I 

xn - yn)f(Y) dsdy'dyndv, 

1 

~;(x) -  (2~)--' 

h - 1  ( ~  

h z,, R n - 1 P ~ - I  

J_(s, xn - Yn)f(Y) dsdy'dyndv. 
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Consider the function ~o~(x). By Minkowski's inequality, we have 

'11 /s y I1(' + (x))-"('-"<%Z(x), L,,(R.+)II_ J" ~ (1 + (x ) ) - " ( ' -~ ' )  exp( i (d - V ' ) s l C ( ~ .  <" ) 

h 0 R n - I  R n - I  

x(is)YDfl"J+(s, xn-Y,*) f (y)dsdytdy,~,z ,  Lp(R+)It dv 

h -1 xn 

/111 is s .>.>.,-, 
+ 1 + (x)) -''(,-'a`~) e x p ( i ( x ' -  ' " '  

1 0 R n - i  R-~-i 

x(is)B'D~,J+(s, xn-ya)f(y)dsdy'dyn, L,(R +)lldv=II,h+12,h �9 

Since o'(1 - fla) > 0 and 0 _</~a < l, repeating the arguments  in the proof of L e m m a  5 in [3], we 
obtain 

s,,h _< c, l l / (y),  L . (R+) I I  (~21 
with a constant  cl independent  of f(x) and h E (0, 1). 

Es t imate  the s u m m a n d  I2, h. On using the function 

K+(v,x',x,,) = f exp(ix's)G(svd)(is)~'O(x,,)D~: g+(s, zn)ds, (13) 

Rn- 1 
it can be rewri t ten as 

h-1 

1 R~ 

' '  IL x -y,xn-y,~)O(y,~)f(y)dy, Lp(R +) dv 

(here and in the sequel we assume f(y', yn) = 0 for y,, < 0). By applying the es t imate  

(x - y)(1 + (x)) -1 < a(1 + (y)) (14) 

together  with Minkowski 's  inequality and Young's inequality, we obtain 

h-I 

S2,h <_ a t v-lli(x)-a(1-~~ L,(n+)iidvll(1 + (y))a(1-~a)~7(yn)f(y)dy, LI (Ra) i  I. 
1 

involving the equali ty 

K+(v, x', x,,) = v i - /~ - I~ lK+(1 ,  z'v-"', xnv-~"), (15) 

we rewrite the preceding inequality as follows: 

h-I 

s2,,, _< ,~ J v-w,:'-,~<,--(,-,~-)a.ll<z)-<,-,~<~) 
] 

xK+O,z',z.), S-.,,(R.+) II II(1 + (y))'0-"")S(y), L, (R.+)II- 
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Since I~[/p > ~(1 - / 3 a ) ,  from the definition (13) of the function K+(v,x'xn) and L e m m a  1 of w it 
follows that  the first norm is finite. Recalling also that  1 _> ~ > 1 - [a]/p' and /3c~ _> 0, we have 
[al/p' + fl~ + or(1 - flc~) > 1. Consequently,  for h E (0, 1), we obtain the inequality 

h,. _< c~[1(1 + <~))=('-~)f(x), L, (R~+)[[ (16) 

with a constant  c2 > 0 independent  of f(x) and h. 
From est imates  (12) and (16) we infer the es t imate  

II(1 + (x ) ) - a ( l -~ )~o+(x ) ,  Lp(R+)II <_ clltf(x), L,(R+)I! + c211(l + (x))'~O-B~') f(x),  L1 (R+)I[. 

In exactly the same way one can establish the inequality 

[[(1 + (x))-~o-~)~oZ(x), L,(n~+)[I ~ c([[f(x), g~(~+)l I + I1(~ + ( x ) )a<l -~a ) f ( x )  ' 5, (m)ll) 

with a constant  c > 0 independent  of f(x) and h. 
The  est imates  wri t ten down yield inequality (10). Inequali ty (11) can be proven analogously. The  

lemma is proven. 

Consider the function x(s), X(s) e C~(R+), 0 <_ X(s) <_ i, 

1 for O < s < l ,  
X ( s ) =  0 for s > 2 .  

L e m m a  3. Assume that the conditions of Theorem 1 are satisfied. Then, for every h E (0, 1) 
and 1 >_ 13a > O, the limit relation 

il(l + (x) )-'~('-H~) D~ (uh(X) -- Uh(X)X( (X~)p2~) ) ,  Lp(R+)II --~ O (17) 

holds as p --~ oo. 
The  lemma can be proven in exactly the same manner  as Lemma  3 in [1]. 
From Lemmas  1-3 it follows that ,  for every f(x) E Lp(R +) f3 L] _ ~ ( R + ) ,  the function Uh(X) = 

(R + + Rh) f (x  ) belongs to the space W; , . (R+) ;  moreover, the es t imate  

r + II=h(=), wL=(R.)II-< c(llf(~), L.(R~)II + [[(1 + <=>Vf(=), LI(R~)II) 
holds with a constant  c > 0 independent  of h E (0, 1) and f(x), and 

l[(1 + <~))-<'-~)(D~uh~ (x)-  D~u~(~)), L.(R+)I I --, 0 

as hi ,  h2 ~ 0. Consequently,  the operator  family (R + + Rh)  is fundamenta l  in the pair of spaces 
{Lp(R+)NLI_~(R+),W;,a(R+)} a s h  -+0 .  Theorem 1 is proven. 

The  proof  of Theorem 2 can be carried out by the scheme exposed above. We expat ia te  on major  
differences. 

Recall tha t  the assertion of L e m m a  1 is valid for every [a[ > 0. We formulate  an analog of 
Lemma  2. 

L e m m a  2 ~ Let the conditions of Lemma 2 be satist~ed. Then, for every f(x) E s (R +) 
and 1 > fla > O, the estimate 

[l(1 + (=))-'rO-~'~)D~uh(x), Lp(R+)][ 
c(llf(=), L,(R+~)II + II(1 + <=>)<l-~)+~'"'f(=),i,(R+~)ll), 0 < h < 1, (18) 
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holds for the function uh(x) = (R + + Rh)f(x ), where the constant c > 0 is independent of h �9 (O, 1) 
and f (x) ;  moreover, 

II(~ + ( x ) ) - " C l - ~ t ~  - -  DZ*uh,(x)), c.(R;)II 
<_ <(h,, h~)(llf(x), C.(R+)II + II(i + (~)):(,-n:)+Ni<,if(~), C,(R+)ll) (19) 

and r  h2) --* 0, hi ,  h2 ~ 0. 

PROOF. From the arguments given in the proof of Lemma 2, it is seen that  the main difficulty in 
proving estimates (18) and (19) relates to the case in which all j3i's equal zero. Consider the case in 
more detail. 

Assume N = 1 under the conditions of Theorem 2, i.e., assume 

1 >__ I~1 > 1 - ~ m i n ,  1 - -  la l lP'  >_ ~ > 1 - I ~ l l p '  - ~ 

( I + ( x ) ) ~ + I ~ I f ( x ) E L I ( R + ) ,  f f (z)dz=O. 
R.+ 

I~llp > ~, 

Then 
oo 

S ](.,-.)l.:oa.. 
0 

Represent the function Uh(X) as follows: 

=0.  (2o) 

h -1 Zn 

(<i s i s s s =..., .,,.,,<.-,,+< .,-. u h ( x )  = 2~  "-1  
1 0 R-n-1 R n - I  

yn)f(y)dsdy'dyndv 

h -1 oo 
1 , ) 

,,,+-, i l l  i i +)')'('+ 
1 Xn Rn-1  R n - I  

] ~ri (' S l i i i < x . < , +  , ,  ., - - y ).)G(sv )J+(s,z. - y.)f(y)d.dy'dyndv 
+ (2,~"-~ . 

h 0 R n - I  R n - I  

_ _  
1 oo 

1 
; Y)S)V(sv )J_(s, (2~)n_l f l f f f exp(i(/- ' ~ 

h :r.n Rn-1  R n - I  

xn - Yn)f(y) dsdy'dyndv) ~b2[x ~ = r  + h~ ,- 

Consider the function r Using the Heaviside function, rewrite the former as 

r = 

h - I  

1 i 1 f exp(ix,s)G(sva,)(/(O(xn_Yn)J+(s ' 
( 2 r ) ( " - l ) / 2  v 

1 R n - I  R1 

+o(u.- ~.)a_(~, ~ . -  y.))o@.)](~, y.)dy.) d~dv. 

Xn - -  Yn ) 
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By the formula for the Fourier transform of convolution and Lemma 3 of w the preceding equality 
can be rewritten as 

h - I  

1 i liexp(ix~)G(sv")(L(is, i~n))-Ifo(s,~n)d~dv,~= (s,~n). CJ(') = i2.)n/,  
] Rn 

Taking condition (20) into account, by Hadamard's lemma we have 

h-1  

(2~r)n/2 / ; f exp(zxe)C(sv )(L(zs, i~n))-](fO(s, en)-/0(0,0)) dedv 
1 Rn 

1 h -1 

_- ~ i f / i /exp(i(z- ,~y)~)G(svC/)(-i~k)(L(is, i~n))-iyk0(yn)f(y)d~dydvdA. 
k=1 ( 2 r p  v 

0 1 Rn Rn 

Grounding on the representation obtained, we estimate the function r 
Applying Minkowski's inequality, Young's inequality, and an estimate of the form (14), 

we obtain 

h- l  

n 1 / v -Ial/p'-a-~k dv 
J k=l 1 

" "a'~' ( - i ~ )  
II+-" J '+ ," li<,+ <.,,-+'-',+. (,+)li. 

R~ 

We have lal/p t + ami n -b o" > 1; therefore, for proving the estimate 

[t(~ + <x))--~(x) ,  L,(n+~)ll < ell(1 + <x))=+l~V(x), L, (n~+)lt 
with some constant c > 0 independent of f(z), h E (0, 1), it suNces to demonstrate that 

II f (-i~k) d~' LP(R")II <- ck < c~" Bk = (x) -~ exp(i(x's + z,~(,~))G(S) L(is, i(n) 
R~ 

To this end we use Lemma 4 of w For instance, for k = 1 it implies 

B l =  2rcll(x)-~ / exp(ix's)G(s)sl(O(xn)J+(s, xn) + O(-xn)J-(s, xn)) ds, L,(R+)I  I. 

Rn-1 

Hence, 

IBf+?cl_<2k R._~ 
d l  

48 

(21) 



Taking note  of the es t imates  for contour integrals given by in Lemma  1 of w we obtain 

I,Ol+l-rl<_2k R,,_~ 

v....II<.>--<1+,,,->-'<,+,...>-' / 
l~l+l'fl_<~-k R._~ 

Lett ing k >_ [(n - 1)/2p] + 1, we obtain B1 _< cl < oo from the definition of the kernel G(s), since 
]a[/p > a. In exactly the same fashion we can est imate the other norms Bk. Inequali ty (21) is thus 
established. 

Consider the funct ion r Since a >_ 0, arguing as in the proof of L e m m a  5 of [3], we can easily 
demons t ra te  tha t  the es t imate  

II(t + (=))-'r L,,(R+)[I <_ cllf(=), L~(R+)I] (22) 

holds with a constant  c > 0 independent  of f ( x )  and h e (0, 1). 
From inequalities (21) and (22), es t imate (18) is straightforward in the case when f la  = 0 and 

N = 1. Inequali ty (19) can be proven in the same way. 
Observe that ,  in the case considered, the orthogonali ty condition (5) wri t ten down in the form 

(20) is essentially used in es t imat ing the function r whereas the condit ion is not required in 
es t imat ing r  (cf. [3]). Therefore,  while dealing with the general case g > 2, we are to represent 

the function f0(s ,~n) as 

1 1 
1 

0 0 Rn 

x (-iy's - iy,,~,,)~o(y,,)f(y) dy) a~- I . . .  :~,_2:~A,-1 e,h.. ,  a,~v, (23) 

by using Hadamard ' s  l emma and afterward repeating the above arguments  for r  We omit  these 
easy calculations. The  l emma is proven. 

We also have an analog of Lemma  3: 

L e m m a  3 ~ Assume that the conditions of Theorem 2 are satisfied. Then, for every h E (0, l) 
and 1 > fla > O, the limit relation (17) holds as p --) oo. 

The  l emma can be proven in exactly the same way as Lemma 3 in [1]. 
From Lemmas  1, 2 ~ and 3 ~ it follows that ,  for every f ( x )  e s the function uh(x) = 

r + . (R + + R h ) f ( x  ) belongs to the space W~,#(R,) ,  moreover, the es t imate  

<_ c(llS(=), L.(n )ll + I1(1 + (x))~ L,(R;)II) 

holds with a constant  c > 0 independent  of h E (0, 1) and f (x ) ,  and 

Ilu ,(x)- uh2(x), 0 

as hi ,  h2 --4 0. Consequently,  the operator  family (R + + Rh)  is fundamenta l  in the  pair of spaces 
r + {Ev,~,Iv(R+),Wr as h ~ 0. Theorem 2 is proven. 
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w P r o o f s  o f  t h e  T h e o r e m s  S t a t i n g  t h a t  t h e  O p e r a t o r  F a m i l y  

Rj,h is F u n d a m e n t a l  as h --* 0 

In this section we prove Theorems 3 and 4. 
The  proof  of Theorem 3 is carried out by the same scheme as in w we divide it into three lemmas. 

In the first l emma  we give an es t imate  for the highest derivatives D~Rj, hf(x),/3c~ = 1, in the Lp-norm; 
in the second we es t imate  all derivatives with /3a < 1 in the corresponding weighted norms; and in 
the third we demons t ra te  that  the function Uh(X) = Rj, hf(x) can be approximated  in the norm of 

/ r  + Hp,#(Rn) by functions vanishing at Ixl >> 0. 

L e m m a  1. Let ]cr[ > O, f(x) �9 Lp(R +) (1LI(R+), and Uh(X)= Rj, hf(x). Then 

IID~uh(=), L,,(R+)II-< ~ll.r(~), s-..(n+)ll, /3<~ = ~, o < h < ~, 

with some constant c > 0 independent of h and f (x) ;  moreover, 

IID:n~,h,(=)- D:~u~,,(=), L,(R~)I[  ---> 0, h,,h~ - +  o. 

A proof of the l emma for/3 = ( a / ~ , , . . . ,  1 / a , )  and f(x) compact ly-suppor ted  is contained in [3] 
(see L e m m a  4). The  general case can be considered along the same lines by using L e m m a  9 of w 

L e m m a  2. Let f(x) e Lp(R+), (1 + (x))r �9 Li(R+), Uh(X) = Ry,hf(x ) and I~1 > 1, 
Io~llp > cr > 1 - I~llp'. Then, for 1 >/3~ > O, the following estimate is valid: 

I1(~ + <=))-=<'-~+DS<,,(~), L.(R+)II 
-< e(llf(~), LP(R~)II + II(a + ( x ) ) ' : ' ( a -~ t~ ' ) f ( x )  , L,(RZ)II), o < h < l, (24) 

where the constant c > 0 is independent of h e (0, 1) and f (x) ;  moreover, 

II(~ + (~))-<'~'- ' :)(D~,,, (~ ) -  ~,,:(=)), s-..(n+) II 
_< ~(h,, h~)(ll/(=), L.(R+)II + II(~ + (=))=('-~'+/(=), L,(R+)II) (25) 

and e(hl, h2) --+ 0, hi ,  h2 --> 0. 

PROOF. Represent  D~uh(z) as 

1 

h Rn-1 R n - I  

x(is)~'D~'JJ(s'x") i Ij(s, yn)f(y',y,)dyndsdy'dv 
0 

h- l  

' 1'1 iex,+'- +,,+:, +(2.).-~ 7 
1 R,_~ P~_~ 

oo 

x D~: Jj(s, xn) i b(s, yn)f(y', yn) dyndsdy'dv = Fl,h(X) + F2,n(x). 

0 

(26) 
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Consider the function FLh(x ). Since a(1 - 3a) > 0 and 0 <_ 3a  < 1, by repeating the arguments 
in the proof of Lemma 6 of [3], we obtain 

I1(1 + <:))--o-,:)F:,~(:),/.(R~+)II < ~,llf(x), L.(R~+)II, (~.7) 

with some constant cl > 0 independent of f (z)  and h e (0, 1). 
Estimate the function F2,h(X). Since a(1 - fla) > 0, from inequality (14) we obtain 

h-I 

1 R + R n -  1 

" i I xa(sv )(is) ~ D~:Ji(~,~)lj-(~,y~)d~ (1 + (y)) 'O-~")lf(y)ldy, L,(R~). d. 

h-I  

=a/lll/Kj(v,z'-y',x,~,y.)((l§ 

• + (y)l"O-~')lf(Ylll '/P'dy, Lv(R +) dr. 

Applying Young's inequality, we obtain the estimate 

II(1 + (x))-~O-~')F2,h(X), Lp(R+)[I 
h-~ 1/p 

)  .I.;lll <_ a - I K j ( v , x ' - y  ,xn,yn)[P(1 + (y))aO-~a)If(y)Idy , 
U 

• + (z)VO-z")/(z),  LI(R+)I] 1/p'. 

dv 

By the Tonelli theorem, the inequality can be rewritten as 

h-I  
/ 1 ( /  

I1(1 + (~))-~(,-~lr~. , (x) .  L.(R~+)]] < a - If(y)l 
V 

1 a +  

R~ 
h-~ 1/p 

--a-- / l dv]](1+{z))a(l-")f(z)'Ll(R+n)lll/" (28) 
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Estimate the function Aj(v, y). By definition, it is obvious that 

Aj(v'Y) = i [ K i ( v ' x ' -  { ,  x., y,,)l"O(:~.)o(y.)dx = f IKs(v, ~', ~. + y.,y.)l"O(z. + y.lO(y.)dz 
R. Rn 

S <z)-p~176 i , a' ~' " ds" = exp(iz s)G(sv )(is)" D~: aj(s, zn + y.)O(zn + yn)O(yn)lj(s,y,,) dz 
Rn R n -  1 

~ V(- iai /PJ+(1--a)(I--Ba))P i ( x ) - p a ( 1 - - f l a ) [  i exp(ix~() 
Rn Rn - 1 

I" xa(()(i()~'Dn"Ji(Lx.~. + y.v-"")O(~.v ~o + y . )O(y, , )b(Ly.v-""  ) d~ a~. 

Put A = -lal/p' + (1 - a)(1 - / ~ a )  and represent Aj(v,y) as 

Aj(v,y)=v A" f<:~)-p<'o-,~<')(l+ Ix'12~:)-' I f (((1+ (--1)kAk)exp(ix '~))G(~) 

Rn Rn - 1 

1' x(i~)~'D~:g~.(~, ~. + y.v-~")o(~.v "" + y.)o(y.)b(~, y.~-~") d~ d~ 

<_ ~ c.,~ ~, f(x)-~O-~~ + I~'l~k)-~ 
I,,l+l~,l<2k R, 

• ID#a(~)l[DT(~n'Dn2,.Ss(~,=,,+y,,.-<'")O(=,,v<~"+y,,)e(y,,)b(~,y,,.-"")) dz. 
R n -  1 

Now, by Lemma 2 of w we obtain 

Aj(v,y)<_ E 
I,,l+l'rl_<2k 

c,, . , .  (x)-p~(1-n")(I + 1~:'12k) -p 
R. 

If ex'(-'('" 
Rn-i 

xO(xnv c'" + yn)O(yn)exp(-6ynv-'"(~)"")ds ' 

Since [al/p > a, we have 

dz. 

Aj(v,y) <__ cvA'O(y.) (29) 
with some constant c > 0 independent of v, y. Inserting (29) into (28), we obtain 

h-1 

I[(l + (x))-a(1-Ba)F2'h(X)' LP(R+n)H <- acl/p i v- l+A dvll(1 + (z))a(l-Ba) f(z)' L1 (R+)I[. 

1 

By the conditions of the lemma, we have A < O. Therefore, 

[[(1 + (x>)-"(i-~')F2,h(x), Lp(R+)H < c2[I(1 + <x))"O-B")f(z), LI(R+)N (30) 

for h E (0, 1), where the constant c2 > 0 is independent of f(x) and h. 
Estimates (27) and (30) yield (24). Inequality (25) can be established analogously. The lemma is 

proven. 
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L e m m a  3. Assume that the conditions of Theorem 3 are satisfied. Then, for every h E (0, 1) 
and 1 _> tim >_ 0, the limit relation (17) holds as p ~ oo. 

The  l emma can be proven in exactly the same way as Lemma 3 in [1]. 
From Lemmas  1-3 it follows that ,  for every function f ( x )  E Lp(R +) N L1,_~(R+),  the function 

r --1- . uh(x) = Rj,hf(x ) belongs to W~,a(R,, ), moreover, the following es t imate  is valid: 

w;,~(n~)ll-< c([[f(~), L~(R~)II + 11(1 + <~)V/(~), L, (n~)ll), I1~(-), " + 

with a constant  c > 0 independent  of h E (0, 1) and f (x) ,  and 

I1(' + < : ) ) - ~ ( ' - ~ ~  - o ~ ( = ) ) ,  Lp(n~+) [I -+ 0 

as hl,h2 --+ O. Consequently, the operator family Rj,h, j = l , . . . , # ,  is fundamental in the pair of 
spaces {L~(R +) n LI_:(R+), W;,:(R+)} as h -+ 0. Theorem 3 is proven. 

The proof of Theorem 4 can be carried out by the scheme described above. We expatiate on major 
differences. 

Recall that  the assertion of Lemma 1 is valid for every [al > O. We formulate  an analog of 
L e m m a  2: 

L e m m a  2 ~ Let the conditions of Theorem 4 be satisfied. Then, for every f ( x )  �9 s +) 
and 1 > fla >>_ O, the estimate 

<_ c(llf(=), L~(R~+)II + I1(1 + <x>)~(,-~)+~,~,f(=), L,(R~+)II), 0 < h < ,, (31) 

holds for the function uh(x) = Rj,hf(x), where the constant c > 0 is independent of h C (0, 1) and 
f (x) ;  moreover,  

11(1 + (x)) -a(1-~)(D~uhl(X)--  D~uh2(X)), Lp(R+)II 
<_ ~(hl,h~)(llf(x), L,(R~+)II + I1(1 + (x))~('- '~176 i l  (]:~+) II) (3~) 

and e(h l ,  h2) ~ 0, hi ,  h2 -* 0. 
PROOF. From the arguments  presented while we prove Lemma 2 it is seen that  the main difficulty 

in demons t ra t ing  est imates  (30) and (31) is in the case/~a = 0. We analyze this case in more detail. 
Assume N = 1 in Theorem 4, i.e., assume similarly as in the proof of Theorem 2 that  equality 

(20) holds for the function f (x) .  
While proving the preceding lemma, we expressed the function Uh(X) in the form (26), where 

= (0, . . . ,  0), i.e., 

From the a rguments  presented while we es t imate  the summands  Fl,h(X) and F2,h(X) it follows that  
inequali ty (27) is satisfied for all N > 0. Consequently,  to prove es t imate  (31) for N = 1 a n d / ~ a  = 0 
it suffices to establish the inequality 

I1(' + <x>)-~F~,~(~), L~(n~) II -< cll( '+ (~>V+l~lf(~),L,(n+~)ll (33) 

with some constant  c > 0 independent  of f ( x )  and h E (0, 1). 
By definition, the function F2,h(X) can be writ ten down as 

h - I  

/ _ /  , o, 1 1 exp(~ s)a(sv )Jj(~,~n) 
F2,h(:~)- (2~)(._,)/2 v 

' R n -  1 

o o  

/ b(s, yn)](s, yn) dyndsav 
0 
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and, on account  of  (20),  as 

h - I  

1 / 1 /_  exp(ix,s)G(svd ) f :  U --~ ]RnF2,h(X) -- (2~r)(n_,)/2 v 
1 Rn-I 

oo 

xJj(s, xn) f Ij(s, yn)(](s, yn)- ](O, yn))dy.dsdv 
0 

h-I 
, / 1 /  , , - exp(ix s)G(sv ~ )Jj(s, xn) Jr (2~r)(n-l)/2 v 

1 R n -  ! 

oo 

• f(lh, u.)- Ij(s,O))](O, yn)dy.dsdv = F~,a(X ) + F2,h(X). 
0 

First, we consider the function F~,h(X ). Represent it as follows: 

h - l  

1 f 1 f exp(ixls)G(sva,)jj(S, Xn ) F~,h(x)- (2~)(.-')/~ ~ 
1 Rn- 1 

oo 1 

0 0 

h - 1  

1 . :B ! 

(2~r)(--1)/2 f 1 vl'~l+ '~n f exp (z-~r~) a(()Jj(('xnv-~') 

oo 1 

x / / DznIJ(~,Zn)[zn=AynV-~,nYnf(O, yn) d'~dyndsdv 
o o 

(in the last equality we use the substitution ~k = sk v~k, k = 1 , . . . , n  -. 1). Est imate  the function 
F~h(x ). Since a _> O, we obviously have 

1 h - 1  

'-'p,' '.' L,(";)li<- ' S S"-i'il"-~ 1[(1 + (x), ,,hX ,, (2~.)n-~ 
0 1 

Represent the function [ynf(y)[ as 

l y . f (y ) l  = ly . f (u ) l l /P ty . f (u ) l  1/'' 
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By using Halder's inequality, we obtain 

I h -1  

II(1 + (~>)-~Fb,(~), L,,(R+)II -< (2,r)"-' 
0 1 

X ( /  /(x)-'~ I f exp(ixt~)G(~)Jj(~,xn) 
R~ R~ ~-~ 

xD,,,ls(~, z,,)i,,,=:~u,,,,-,,,, d~ PIY,,f(Y)[ dydx) 

Introduce the notation 

R~ R n -  1 

lip 
dvdAllz.f(z), LI ( R+ ) II 1Iv. (34) 

exp(iz'~)G(~)Jj((,z,,)O(v,,)D~,,lj(~,z,,)l~.=~v,,,,-,., d(] p dz 

and demonstrate  that  the estimate 

IAj(A,v,y)I _< c p < ~ (35)  

holds for A > 0 and v > 0, with a constant c > 0 independent of A, v, and y. Represent Aj(A, v, y) in 
the form 

Aj(A,v,y)  = f(~>-.~(1 + t~'l")-.[ f ((1 + (--1)kAk)exp(ix ' : ))  

R+ R,~_ l 

• d: d~. 

Now, integrating by parts and involving the definition of the function G(:) ,  we obtain 

Ai(A,v,y ) <_ ~ cv,.y f(~>-.*(1 + 1~'12k)-po(y.) 
I vl+l~l-<2k 

R n -  I 

From the estimates for contour integrals indicated in Lemma 1 of w it follows 

Aj(~, v, y) < 

Rn-1 

Ix'[2k)-PO(yn) 
I,~l+l.-rl<__2k R.~ 

ID;O(:)I (:)~~ exp(-6(z. + Ay.v-~~ )d:l" 

< 

oen ]P • '~+'~-~ exp(-6x.<~) )d~ dx. 

dz 
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Since I~l/p > - ,  from the definition of the kernel a(s)  we derive estimate (35). 
Inserting (35) into (34), we obtain 

h - 1  

I1(1 + (=))-: F#,,.(=), r . ( < )  II < c i v-I<~ilr d'llz"/(=)' L, (n~) II. 
1 

Hence, 
I1(1 + (=))-:r#,,,(x), s-.,,(n+)II _< c~[Iz,,f(z), L, (R.+)II 

with a constant c~ > 0 independent of f ( x )  and h E (0, 1). 
Consider the function F~,h(z ). Using Hadamard's lemma, we write the function in the form 

(36) 

n - - 1  1 h - I  

1 i l ' i  lex,((':'-->.'),) FT, h(~) = ~ (2~-)',-' ~ 
k = l  o l ~_, R+ 

x G(svt~')(-isk)Jj(s, xn)b(s,  yn)ykf(y' ,  yn) dydsdvdA. 

Repeating the calculations of the proof of estimate (30), we obtain the inequality 

II(1 + (~))-:&',h(x), L.(R$)II _< 41l(1 + (z))<'+l<~lf(z), D, (n2)ll (37) 

with a constant c~ > 0 independent of f ( x )  and h E (0, 1). 
Estimates (36) and (at) imply (33). 
By virtue of representation (26) and inequalities (27) and (33), we obtain inequality (31) in the 

case/33 = 0 and N = 1. Inequality (32) can be proven in exactly the same manner. 
The general case N > 2 can be considered similarly. The lemma is proven. 
We have the following analog of Lemma 3: 

L e m m a  3 ~ Assume that the conditions of Theorem 4 are satisfied. Then, for every h E (0, 1) 
and 1 > fla > 0, the limit relation (17) holds as p ~ or 

The lemma can be proven as Lemma 3 in [1]. 
From Lemmas i, 2 ~ and 3 ~ it follows that, for every f ( x )  E s the function Uh(X) = 

r + . Rj, hf(x)  belongs to the space W~,a(R n ), moreover, the following estimate is valid: 

r + II"h(:'), Wj,<.(R:)II _< c(lls(~), S-.,,(n+)II + I1(~ + (x))~176 S-., (R.+) II) 

with a constant c > 0 independent of h E (0, 1) and f (x) ,  and 

]luh,(~)--=h,(X) W' (n+~ll-+0 , p , t r  k n / IJ 

as ha,h2 ~ 0. Thus, the operator family Rj, h is fundamental in the pair of spaces {/Zp,a, N(R+), 
r + W~,~ (Rn) } as h -+ 0. Theorem 4 is proven. 

w B o u n d a r y  Value P r o b l e m s  for Quasie l l ip t ic  E q u a t i o n s  

in the  Half-Space 

We outline the scheme of the proof of Theorems 7 and 8. 
The proof of solvability of the boundary value problem (1) is based on the use of the properties 

of the family of integral operators Rh, h E (0, 1). 
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From the definition of the operators R +, Rh, and Rj,t, it follows (see [2, 3]) that, for the function 
uk(x) = Rhkf(x),  hk > 0, the equalities 

h; l 

1 
L(Dz)uk(x) (2~r) "-1 / 1 - v , , , , , + , / / e x p  

hk R n -  1 R n -  1 

Bj(D,)uk(x)], ,=o = O, 

. x t _ yt "~ ,--~-~--s) G(s)f(y' ,  zn) dsdy' dv, 

j = l , . . . , # ,  

hold. Consequently, taking (3) into account, we can consider the function uk(x) as an approximate 
solution to the boundary value problem (1), and the problem of existence of a solution is reduced to 
the proof of convergence of the sequence {uk(z)} as hk --* 0 in the space W[,,,,(R+). 

From Theorems 5 and 6 it follows that the sequence of functions {uk(z)} is fundamental in the 
space W~,~(R +) for all ]a[ > 0. Therefore, by virtue of completeness of W~,~(R +), there exists a 

r + function u(x) �9 W[~,~(Rn) such that 

Moreover, if > 1 then u(x) meets estimate (7), and if I~1 t then estimate (8) holds. It is clear 
that u(z) is a solution to the boundary value problem (1). Uniqueness of the solution can be easily 
established (see [2, 3]). 

In the case la[ / f  > 1 Theorems 7 and 9 can be easily transferred to the case of boundary values 
problems for quasielliptic equations with slowly-varying continuous coefficients 

L(x,D~)u = ~ a~(x)D~u = f(x) ,  z E R +, 
~=1 

Bj(D~)ul~,= o=O, j =  l , . . . , # .  
(as) 

At this juncture we assume the LopatinskiY condition to be satisfied by the operator 

{L(x ~ D~), S. o B, (Dz) , . . . ,S , ,  o B,(Dz)} 

at any fixed point x ~ E R +. 
For simplicity we shall assume that the coefficients a~(x) are constant outside some ball {Ix[ < r}. 

T h e o r e m  11. Let [(~1 > 1, ic~[/p > a > 1-[a[/p' ,  and f ( z )  �9 Lp(R+)NL1,-~(R+).  Then there 
exists an e > 0 such that if the coefficients of the operator L(x, Dz) satisfy inequality 

maxia~(x) -a~(x~  <_ e, I ~ ~, (39) 
2; 

then problem (38) has a unique solution u(x) E I~V~,a(R +) which enjoys estimate (7). 

T h e o r e m  12. Let [ai/p' > 1 and f (x)  E Lp(R +) N L1(R+). Then there exists an e > 0 
such that if the coefficients a~(x) satisfy inequality (39), then the boundary value problem (38) is 
well-posed i. w;  ( ). 

These theorems can be proven by the perturbation method. 
We turn to the proof of Theorem 10. We wish to demonstrate that if 

/ Bi(is,iA) 
el (s)  = L(is,iA) dA r O, s E R,,-, \ {0}, (40) 
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then, even in the case of compactly-supported infinitely differentiable functions f(x) ,  for the solvability 
of the boundary value problem (1) in W; (R +) with 

I~llp' + ~m~= > I > I~I/P', 1 < p < 2, (41) 

it is necessary that 

I f(x) 
R~ 

dx=O. (42) 

We carry out the proof by way of contradiction. Assume that, for f(x) E C~~ +) not satisfying 
r + conditions (42), problem (1) has a solution u(x) E W~(Rn), 1 < p _< 2. Then, by virtue of the 

Hausdorff-Young inequality, the following estimate is valid: 

Hll~(s,~.), Lp,(n.-1)l[, L~(R~+)H ~ cllu(=), L.(R~+)]I, (43) 

where fi(s, xn) is the partial Fourier transform of u(x', zn) with respect to x'. 
For s E Rn-1 \ {0}, the function fi(s, xn) is a solution to the boundary value problem 

L(is, D~.)fi = ](s ,z . ) ,  z .  > O, 
Bj(is, D~.)r j =  l , . . . , # ,  

fi ~ 0 as xn --~ +cx), 

and, since the Lopatinskil ~ condition is satisfied, g(s, xn) has the representation 

Z n  

~,(~,~.) = / j+(~,x. - v.)/(~,v.) dun 
o 

U 

"= 0 Xn  

Using the function U(s, x. ,  yn) of w for x .  > d = diam (supp f(x)) we obtain 

oo 

fi(s, xn) = / J+(s, xn - yn).[(s, yn)dyn 
0 

la oo  oo  

j---1 0 0 

With the help of the preceding representation, from inequality (43) we obtain 

(s,x.,U.)](s,v.)dv.,Lr < 1}) , L.({~.  > 2d}) _<cllu(x), L,(R+)II. 
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Consequently, by virtue of Minkowski's inequality, we have 

II1., 7 tl U(s, xn,O)f(o, yn)dyn, Lf({<s) an < 1 Lp({x. > 2d}) 

0 

< (U(s, zn,yn)-U(s,xn,O))f(s, yn)dy., Lf({<s) a" < 1}) , Lp({Zn > 2d}) 

o 

+ U(s,x.,O)(f(s, yn) -  f(O,y,~))dyn, Lf({<s) a" < 1}) , Lp(lXn > 
o 

+cllu(x), L, (R+)II = r, + P~ + clluC x), L, (R+)II. 

Prove the estimate 
f l  + F2 < c(f) < cx~. 

First, we consider the norm F1. From Lemma 1 of w for 0 < y~ < d and 2d < xn we have 

IJ I Ig(s,~.,y=)-g(~,~.,O)l= y~ OzU(s, xn,Z)[z=,~u dA <--Cl<S)2c~n--'exp(--gXn<S)c~"/2) �9 
0 

Consequently, 

El _< c,(f)ll II<s) 2~"- '  exp(-axn<s)~"/2), Lf({<s) a" < 1})[1, Lp({xn > 2d})ll. 

Similarly, 

n--1 

f2<_c2(f)~--~ 1{ II(s) ~ exp(-Szn<s)~"/2), Lp'({<s) ~'~ < 1}){I, Lp({z,, > 2d})[{. 
k=l 

(44) 

(45) 

Define the domains 

wi = {s E Rn-I : 2 - i - I  < (s) a" < 2-i}, 

Then, in view of the estimates obtained, we have 

i = O, 1,2, . . . .  

n 

F1 -F F2 <_ (cl(f) q- c.?.(f)) ~ y~ Illl<s> ~''r~'k-1 exp(-~x,,<.s)~"/2), Lp,(~,:)ll, Lp((x. > 2d})ll 
i_>O k = l  

n 

<___ (ca (f)  + c2(f)) ~ ~ II<s) ="+~- ' ,  Lp,(,o~)ll II exp(--6xn2-!-2), Ln({xn > 2d))[[ 
i>0  k = l  

1l n 

---- c3(f) ~ 2 i/p ~ II<s) ~ " + ~ - ' ,  Lp,(~i)ll _< c4(f) ~ ~ 2 i(1-~k-lc~l/p')/~". 
i>O k = l  i>_O k = l  

But, by (41), (1 - o~k -Ic~l/p')  < O, and we obtain estimate (45). 
From inequalities (44) and (45) we have 

Ill~ II II U(s,x.,o)f(O, yn)dyn, Lf({(s)  a" < 1}) , Lp({xn > 2d)) < c(f)+cllu(z ), Ln(R+)}I < ~ ,  

59 



OO 

and since we supposed that the orthogonality condition is not satisfied, i.e., f ](o, yn)dy, r O, we 
0 

obtain the estimate 

II IIU(~, = . ,  0), Lp,({(s) ~n < 1})11, Lp({xn > 2d})ll _< b < ~ .  (46) 

Introduce the notation 

V(d,e)=IIIIU(~,=.,O),Lp,(((~) ~" < e})ll, Lp( (= .  > 2d})ll, ~ < 1. 

By virtue of Lemma 6 in w for every c > 0 we have 

c(~-Io./,')V(d,~) = V(c~.d,c-~~ 

Observe that condition (40) implies, via Lemma 8, 

U(s,x,,O)~O, sEwi, i=0,1 ,2 , . . . ;  

therefore, the preceding relation can be written down as 

e (1-1"l/p') = V(c~'"d, c -~"r  ~). 

Now, taking (41) into account, for every c > 1 we obtain the estimate 

V(c~ >_ 1. 

Since inequality (46) holds, we on the other hand have 

lim V(c'~"d, c-'~"r = O. 
C---* (:X) 

A contradiction. 
Thus, under the hypotheses of Theorem 10, the orthogonality condition (42) is necessary for 

solvability of the boundary value problem (1) in the space W~(R +). The theorem is proven. 
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