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Abstract" We give general formulae for explicit Cech cocycles representing char- 
acteristic classes of real and complex vector bundles, as well as for cocycles repre- 
senting Chern-Simons classes of bundles with arbitrary connections. Our formulae 
involve integrating differential forms over moving simplices inside homogeneous 
spaces. An important feature of our cocycles is that they take integer values (as 
opposed to real or rational values). We find in particular a formula for the instanton 
number of a connection over a closed four-manifold with arbitrary structure group. 
For flat connections, our formulae recover and generalize those of Cheeger and 
Simons. The methods of this paper apply also to the purely geometric construction 
of the Quillen line bundle with its metric. 

A vector bundle E---+ M has characteristic classes (Chern, Pontryagin and Euler 
classes) in integral cohomology groups HP(M,•). The Chern-Weil theory gives 
differential forms which represent the corresponding classes in the real cohomology 
groups HP(M, IR). Gelfand posed the problem of finding a combinatorial formula 
for integer-valued singular cocycles representing the Pontryagin classes. This is 
considerably more difficult than finding a real-valued cocycle, which can easily be 
done using a partition of unity [5]. 

An explicit formula for a singular cocycle representing 24 times the first 
Pontryagin class Pl (M) of a smooth manifold M was found by I. Gelfand, Gabrielov 
and Losik [16] and by MacPherson [20]. This formula, which involves the diloga- 
rithm function, has had considerable influence in algebraic topology and in algebraic 
K-theory. More recently, Gelfand and MacPherson [17] gave a formula for a ra- 
tional simplicial cocycle representing any Pontryagin class of a smooth polyhedral 
manifold. 

In this paper we work with Cech cohomology instead of singular cohomology. 
We give a direct and explicit construction of all the integer-valued Cech cocycles 
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which represent a given characteristic class. We adopt the following point of view. 
A vector bundle may be completely described by a set {gij} of transition cocycles, 
relative to some suitable open covering of M. We construct the integer-valued 
Cech cocycles representing a characteristic class directly from the data 9ij. We 
obtain Cech cocycles representing the Pontryagin classes Pk E H4k(M, TZ) and 
the Euler class e EHn(M, 7Z) of a real vector bundle of rank n, and the 
Chern classes ck ~ H2k(M,~) of a complex vector bundle (see Theorems 2, 3 
and 4). The only denominators which are needed are some powers of 2 in 
the case of pk for k > 1. These formulae generalize the formula for Pl announced 
in [6]. 

Our formula may also be viewed as the completion of a project of Chem and 
Simons, who explain in the introduction to [12] that their secondary characteristic 
classes "grew out of an attempt to derive a purely combinatorial formula for the 
first Pontryagin number of a 4-manifold." The "boundary term" which Chem and 
Simons say "did not yield to simple combinatorial analysis" is incorporated in the 
formulae given in this paper. 

All t h e  characteristic classes above may be defined by transgression in an 
associated bundle, with fiber a Stiefel manifold [4]. We realize this transgres- 
sion geometrically, by constructing "moving cycles," which are moving families of 
singular cycles on the Stiefel manifold, parametrized by various open subsets of 
M. This construction is contained in the first section, along with the statement of 
Theorems 2, 3 and 4. 

The proof of these theorems is given in Sects. 2 and 3. In fact, much more 
is shown. In Sect. 2, by choosing a connection on E--~ M, we exhibit lifts of 
pk, e and c~ to characteristic classes in Cheeger-Simons cohomology-or  in smooth 
Deligne cohomology (see Theorem 5). In Sect. 3, we show that these lifts agree 
with the classes of Chern-Cheeger-Simons [11, 12]. We also recover formulae of 
Cheeger-Simons [11] and of Dupont [13, 14] for flat bundles and we general- 
ize them to the case where the 9ij are not in general position. In Sect. 4, we 
look at some interesting special cases of our formulae. For the second Chem 
class of a principal SU(n)-bundle, the formula simplifies considerably and in- 
volves computing the integral of the Chern-Simons 3-form v over a tetrahe- 
dron in SU(n) whose vertices are the transition functions. The corresponding 
Chem-Cheeger-Simons class can then be written explicitly in terms of  v. For a 
four-dimensional manifold, this gives a formula for the topological charge or in- 
stanton number. In the case of SU(2), this was essentially known to Laursen, 
Schierholz and Wiese [19]. Thus we obtain an extension of their formulae for 
arbitrary classical compact groups. For the first Pontryagin class, we also obtain an 
explicit formula, but the tetrahedron has to be altered slightly due to the 2-torsion 
in ~aSO(n). 

Finally, A. Goncharov [18] has constructed Chern classes in 9rassmannian 
cohomology and he has also constructed explicitly e2 and c3 in motivic cohomology. 
This in particular implies formulae for these classes in Deligne cohomology and in 
ordinary cohomology. 

We would like to thank Sasha Beilinson, Pierre Deligne, Israel Gelfand, Sasha 
Goncharov, David Kazhdan and Bob MacPherson for useful discussions. 
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1. The Formulae 

In this section, we will write down an explicit Z-valued Cech cocycle representing 
each of  the following characteristic classes: 

- the Euler class e and the Pontrvagin classes Pk of  a principal SO(n)-bundle; 
- the Chern classes ck of  a principal U(n)-bundle 

Let G be a Lie group, let M be a compact manifold and let p : P ---+ M be a 
principal bundle with structure group G. By convention, we write the G-action on 
P as a fight action, and use the notation x �9 9 for the action o f  g E G on x E P. We 
choose a 9ood open covering c / /=  (U~) o f  M,  i.e. we assume that all intersections 
Uil...ik := Uil ( ] . - .  N Lrik are contractible or empty (see [22]). Let si : U i ~ P be 
a family of  smooth local sections o f  p. Then the transition cocycles gij are the 
smooth functions g~j : Ugj ~ G defined by the formula sj = si �9 gij. 

Cycle associated to Pk. We start from the data o f  a principal SO(n)-bundle p : 
P ---+ M, where n is odd. We introduce the real Stiefel manifold V~,q = SO(n)/SO(q); 
for 9 ESO(n) ,  we denote by ~ the image of  9 in the coset space SO(n)/SO(q).  The 
image 1 o f  1 in V,,q is the base point o f  Vn, q. The reduced homology Hi(Vn,2k_i,7Z) 
is well known [3]. We have: 

[7]i(Vn,2k_l,~ ) = { 

;g/2 f o r i o d d ,  2 k - 1  _< i_< 4 k - 2  

2~ | (2 - primary group) for i = 4k - 1 

0 i f i  < 4 k - 3 ,  i e v e n o r i  < 2 k - 2 .  

We will work with the groups Cj(io . . . .  , ira) of  smooth singular j-chains for 
the manifold o f  smooth maps from U/0...i m to Vn,2k-1. Note that such a chain 
may be viewed as a linear combination of  smooth mappings a : Uio...i,, • A j --+ 
Vn,2k-1, where AY is the standard j-simplex. We have the usual boundary map 

: Cj ( io , . . . , im)  ---+ Cj- l ( io  . . . . .  ira). 

Lemma 1. There exists a family  o f  elements a/  �9 o f  Cj(io,.. .  ij), where j ranges ZO ".tj 
over {0, 1 . . . .  ,4k - 1}, and io,... ,ij ranoe over j + 1-tuples o f  elements o f  I, which 
satisfies 

a~  1 f o r i E l ,  y c U f ,  ( l )  

and 

I ~a/o...ij = a j - i  �9 9ioi 1 " a - ,j + j I j-1 for  j > 1 . (2) 
/ = 1  

We explain in more detail the meaning of  (2). In the right-hand side o f  (2), 
we let Qioi 1 operate on smooth maps from ~0...ij • A j  --+ Vn, z k - 1  via the action 
o f  SO(n) on Vn,2k-1, and this is extended linearly to j-chains. We denote by the 

same letter a chain like a/~-! i and its restriction to Map(U/0..@, Vn 2k-1). Finally, 
j 

the number aj is the cardinality of  the reduced homology group Dj(Vn, zk-l, Z).  

Proof  The chains a j . ,0.-.lj are constructed by induction on j .  For j = 0, we define 

a/O(y) = 1 so that (1) is verified. Given j > 1 and i0 . . . . .  ij, we may assume 
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that U~o...g j is not empty, hence contractible. The singular chain 9ioi  1 �9 6/i.--lzj-~- 

~{=1(-1)%r j - l ,  is seen to be a smooth singular cycle in the manifold 
tO" q I ' " i j  

Map(Uio...ij, V,,,2k-1), which is homotopy equivalent to Vn,2k-1. This cycle, when 

multiplied by a j, becomes the boundary of some chain ~0 .~j [] 

We now define the smooth singular 4k - 1 cycle Xio. . . i4  k in Map (Uio . . . i4k ,  V n , 2 k -  1 ) 
by the equality 

4k 
�9 0 "4k--1 -}- 2 ( - - 1 ) 1 0 - 4 k - ~  ( 3 )  

XiO"' i4k  ~ ~iOil Zl"q4k zO..ql...i4k 
./=1 

We may think of Xi0...i4k as a smooth family of cycles ~0...i4~(Y) on Vn,2k-1, 
parametrized by y E Uio...i4k. 

Let *2 be the closed SO(n)-invariant form generating H 4k- 1 (V,,2k_ 1; Z)  modulo 
torsion. The Pontryagin class Pk of the bundle p : P -~ M is defined to be the 
transgression of 2 �9 O in the associated bundle rc : P • Vn,zk-1 -+ M [4]. For 
y C Uio...i4~, we let fx0...,4k(y ) O be the number obtained by integration of O on the 

cycle Xio...i4~ (Y ). 

Theorem 2. (I) For each io,...,i4k E I, the function y ~ fX~o...i,(y ) 0 is a constant 

function from Uio...i4k to 77, denoted by fX~o..i4k O. 

(II) The Cech 4k-eochain fxi0...~4k ~ is a 71-valued cocycle, whose cohomology 

class is equal to - 2  k-1 �9 Pk. 
(III) Any 7Z-valued Cech cocycle which represents - 2  ~-1 �9 pk is obtained by 

this procedure, for a suitable choice of  as i .  O ' " j  

We will now give the similar constructions which are appropriate for the Euler 
class and for the Chem classes. 

Cycle associated to e. Again let p : P - +  M be an SO(n)-bundle, but we now 
assume n even. As in Lemma 1, we can consmaet a family 7. j . of smooth singular zO...tj 

j-chains in Map(Ui0...ij,Sn-1), defined for j < n -  1, satisfying the analog of (1) 
as well as 

J 
j - -  1 1 ,}l .j-- 1 

0]~/0.--/j = ~ioi,  " ~)i l . . . i j  -{- ~ (-- -" YiO"41"'ij " ( 4 )  
l=1 

Then we define Y/0...i, to be the smooth singular n-cycle of  Map(Uio...in,S n-1 ) given 
by 

n--1 ~ : 1 . l  n--1 
Yio" ' in  = gioil  " Vi l . . . i  n 47 ( 5 )  .I=1 ~ ' -  ) ~io '"~l '" in  " 

Let A be the SO(n)-invariant form generating H n-l(Sn-1; 7Z). The Euler class e 
may be defined as the transgression of A in the sphere bundle associated to P -+ M. 

Theorem 3. (I) For each io . . . . .  in ~ L the function y ~ fYio...fn(y) A is a constant 

function from Uio...i~ to ~,  denoted by fyio...i" A. 
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(II) The Cech n-cochain f~o'"~, A is a ;g-valued cocycle, whose cohomology 

class is equal to ( -1)~ +1 �9 e. 
0II) Any Z-valued Cech cocycle which represents (-1)~ +1 �9 e is obtained by 

J this procedure, for a suitable choice of  7io...i/ 

Cycle associated to ck. Now let p'P---+ M be a principal U(n)-bundle. We in- 
troduce the complex Stiefel manifold Wn,q = U(n)/U(q).  The homology of Wn, q is 
zero in degrees =< 2q and is equal to 2g in degree 2q + 1 [4]. We construct a family 
r.J of smooth j-chains in Map(Uio...ij, Wnk-1) which satisfy the analog of (1) z0...l) 
as well as 

J 
= + 

J io..q~ ...~) . (6) 
/=1 

We let Zio . . . i 2  k be the smooth 2 k -  1-cycle in Map(Uio...i2k, Wn, k-l) defined by 

2k 
�9 "C 2k--1 q- ~ ( - - I ) / 'C  2k-1 (7) 

Zio . . . i 2  k = g io i l  z 1.,.12k io. . . t~. . . i2 k �9 
I=1 

Let O be the SU(n)-invariant form generating H2k-l(Wn,k_l; 7Z). The Chem 
class ck may be defined as the transgression of O in the associated bundle P • 
Wn, k-1 --+ M [3]. 

Theorem 4. (I) For each io . . . .  ,i2k c [, the function y ~ fZ~o...i2k(y ) 0 is a constant 

function from Uio...i2k to 2g, denoted by fzio...i2k O. 

(II) The Cech 2k-cochain fzi0...i2k(y)O is a g-valued cocycle, whose cohomology 

class is equal to (-1)~-1 . c~. 
(III) Any ;g-valued Cech cocycle which represents (-1)k-1 . ck is obtained by 

this procedure, for a suitable choice o f  the z j. 
lO. . q j"  

Remarks 
1. Volumes of simplices also appear in [11]. These are geodesic simplices de- 

fined on the sphere bundle associated to a fiat bundle. 
2. There is a combinatorial formula for the integral first Pontryagin class of a 

simplicial manifold [17, 20], but we do not know whether our approach sheds any 
new light on this. We note the combinatorial formula of [10] for the signature of a 
closed oriented manifold. 

3. A geometric proof of the formula for Pl was given in [8]. This proof involved 
the notion of a 2-gerbe. It is expected that the general result can be proved using 
n-gerbes, although this has not yet been formulated precisely. 

2. The Proof 

We need only give the proof of Theorem 2, the other proofs being similar (and 
in fact slightly simpler). Let flio...i4~ = fx, o...i4 ~ denote the Cech cocycle which is 
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our candidate for - 2  k-1Pk. Choose a connection on p : P -+ M, and let e be the 
4k-form which is the Chern-Weil representative of  Pk- Let S = P X so(n) Vn,zk-1, ~z " 
S --4 M the projection. The pullback of ~ to S is exact, so there is a (4k - 1)-form 

g) on S with d ~  ~*~ In fact, for a given connection, there is a natural choice of  z - - - ~ .  

a form ~ with this property [10, 11]. The restriction of ~) to the fiber is ~2. 
We denote by si the trivialization si" Ui • Vn,2k-1 &rc- l (Ui )  induced by the 

section si of P over Ui. Define 

fzo...i4~_1(Y) = exp(27zi �9 f f 2 ) , f o r y E U i o . . . i 4 k l .  (8) 
G 4k-1 (y) 

zO'" q4k-- 1 

This is a degree (4k - 1) cocycle with values in the sheaf ~ of  smooth circle- 
valued functions. Its image under the boundary map in the exponential exact se- 
quence is 27~i �9 flio...i4 k .  Using the trivialization sS, we associate to any smooth map 

(7 " Uio.,.il  X A l --+ Vn , 2k_  1 a smooth map 6 " Uio...il  x A I ~ S such that rc o ~ is the 
first projection Uio...ij • A 1 -+ M. We extend this linearly to smooth singular chains. 

Thus to a[o...il we associate a smooth singular/-chain 6(,0...~l. in Map(Uio...#,S). We 
have the following expression for the boundary of these chains: 

0g/a0...i; = a] e/1._!ij + E ( - 1 ) ' 5 j - 1  for j > 1. (9) 
/ = 1  " io'"[l"'iJ J ~- 

Using the invariance of O, the cocycle ~0...i4~ 1 can be rewritten as 

fio...i4k_l(Y)=exp(27~i f ~ .  (10) 
\ - 4 k - - 1  . . / 

aiO'"i4k-- i lY) 

We now lift J ~ 0 " ' i 4 k - - 1  t o  a Cech cocycle with values in the complex of sheaves 

~d l?~ i �9 A 1 --* . . .  --+ i ~4k-1 (11) 
- -  " ~-~-~M 

where A~ is the sheaf of smooth real j-forms on M. Note that there is the ex- 

ponential exact sequence 0 ~ 27ci �9 2g ~ i �9 A ~ ~ ~ --+ 0, hence the complex of 
sheaves (10) is quasi-isomorphic to the complex of sheaves 

a4k-I (12) 27ci . ~ - +  i . d ~  i . ~M , 

shifted by one degree to the left. The complex of sheaves (12) is called the smooth 
Deligne complex and is denoted by 7/(4k)D; it is the smooth analog of the holo- 
morphic Deligne complex [1]. 

Recall that the Cech hypercohomology of a complex of sheaves K ~ with respect 
to ~' = (Ui) is the total eohomology of the double complex CP(~II, K q) of Cech p- 
eochains with coefficients in K q, with total differential equal to ~ + ( - 1  )Pd, where 
d is the differential of K ~ and c~ is the Cech differential (see [5]). 

The next result gives an explicit Cech cocycle with coefficients in the complex 
of sheaves ;g(4k)/> We will use the following notations. I f  we have a product 
fibration A q • U --+ U and a smooth mapping a : Aq x U --+ G, then for c~ a k- 
form on U x G we will denote by fo c~ the ( k -  q)-form on U obtained by fiber 
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integration of the pull-back of e by the mapping (P2, o') : A q • U ---+ U • G. We 
extend this construction linearly to any smooth q-chain in Map(U, G). 

Theorem 5. (I) For l > 1, define an l-form (Oio.. . i4k_(l+l) o v e r  Uio.. . i4k_(l+l) by 

co( - = (--1)[~]2r(02~i f ~ (13) lO...14k_(l+l ) ,4k-(l+1) 
o-. , 

z 0 " q 4 k - - ( l + l )  

where [m] is the 9reatest integer < m, and r( l )  is {~], i f  l < 2k, and k i f  l > 2k. 

Then ( f ,  o31,..., co 4k-1 ) is a Cech 4k-cocycle o f  the covering (Ui), with values 
in the complex o f  sheaves 7/(4k)D. Moreover, do) 4k-1 = - 2  k-1 �9 2~i~. 

(II) The cohomology class o f  ( f ,  co 1 . . . .  ,co 4k-l) in H4k(M, 2~(4k)D) depends 
only on the principal bundle and the connection over it. 

We note that Theorem 5 implies the fact that the Cech cohomology class of 
6 f  = 2~i �9 fl corresponds to the de Rham cohomology class of - 2  k-1 �9 2~zi �9 c~, 
which yields statements (I) and (II) in Theorem 2. Then statement (III) of Theo- 
rem 2 will follow because at the last stage of our construction, we have the freedom 
of adding to each a4k-. ~ a smooth singular (4k - 1)-cycle in V,,z~-l, say flil...i4k. t L -..14k 

The effect of this operation on the Cech cocycle Xi0-.-i4k is to add to it the cobound- 

ary of the Cech cochain f/~il.-.igk f2; this follows from the definition (3) of Xi0.-.i4k_x 

and from the fact that ~2 is an invariant form. Therefore Theorem 2 is a consequence 
of Theorem 5. 

We thus turn to the proof of Theorem 5. To prove (I), we must show that 
d logs = &o 1 and that de ) l=  ( - 1 ) l & J  +1. Both equations are straightforward ap- 
plications of the boundary relation (2), and of Stokes' theorem. 

We now prove that the cohomology class of ( f ,  col,...,co 4k-l) is independent 
of the choice of the chains a j and also of the given covering. For the first point, 
we begin by showing that two homotopic families of j-chains aJ give the same 
cohomology class. So, for a given open covering, consider another choice of sections 
over Ui and another choice z j �9 of smooth chains, satisfying the same assumptions ~0.'-~j 
as a/,o...,/, and such that there are smooth homotopies P~,0...9 between a)io...is and 

z~,0...9,, which are compatible with the face relations among these chains. Each PJ0...is 

is then a smooth singular cycle in Map(Uio...ij • [0, 1], Vn,zk-1). As before, /5~0...ij 

will denote the singular cycle in Map(Ui0... 9 • [0, 1],S) obtained from P~ by 
t 0 . .  q j  

means of the trivialization s-i0. We then define a degree Cech ( 4 k -  1)-cochain 
(9, c~1, "" ", ~4k-1 ) with values in 7Z(4k)D as follows: 

~.; . = (-1)[~]u(J)2xi.  f ~) ~O'"t4k 2--j 
f i io. . . i4k_2_ j 

It is then easy to show, using the boundary relations (2) and Stokes' theorem, 
that the boundary of this Cech ( 4 k -  1)-cochain is the difference between the two 
eocycles corresponding to the two choices of smooth chains. 
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To finish the proof of independence of the choice of the ~rJ, we still have to 
study the effect of modifying each a4k-. 1 by an integral ( 4 k -  1)-cycle; this 

O ' " t 4 k  - -  1 

however has no influence on J~0...i4k_l, as g2 has integral periods. It is also clear 
that the construction is invariant under a refinement of the open covering, which 
finishes the proof of (II). 

This concludes the proof of Theorem 5. [] 

3. Relation with Differential Characters 

Let/5 k be the lift of the Pontryagin class constructed in Theorem 5, and denote by 
and Yk the similar lifts for the Euler and Chern classes. They are classes in the 

Cech hypercohomology of a smooth Deligne complex of sheaves g(m)D (where m 
is the degree of the characteristic class). Then each of these classes depends on 
the connection chosen in the construction, so it is natural to compare them to the 
Chern-Cheeger-Simons Characteristic classes ~k,d and ~k, which take values in 
the ring of differential characters [11, 12]. We show in this section that all these 
classes agree. 

To make the comparison, we follow [15, 23] and consider the complex 

Cone{A>=m(M ) ~ Ss'm(M ; IR/7/)}. (14) 

The notation A>m(M) means truncation from below in the de Rham complex 
A~ denotes the complex of smooth singular cochains, and T is 
integration, followed by reduction rood 7Z. The degree m - 1 cohomology of this 

complex is exactly /~rm-l(M), the group of degree m -  1 differential characters, 
introduced by Cheeger and Simons. The complex (14) is quasi-isomorphic to 

Cone{A>=m(M) --+ Cone{Ssm(M; 7Z) ~ Ssm(M; ]R)}}. 

From a purely algebraic fact about cones, the latter complex identifies with 

Cone{A>=m(M) | S~,,(M; 7Z) --~ Ssm(M; IR)}. (15) 

to 
On the other hand, the Deligne complex of sheaves 2g(m)D is quasi-isomorphic 

Cone{7/@A~I m --+ A__b}[-1], (16) 

where [-1] denotes translation of a complex by one step to the right. The quasi- 
isomorphism in question is given by dividing by 2~ri. The global hypercohomology 
of the Deligne complex (16) may be computed from a good open covering q/ of 
M. If C'(q/, - )  denotes the complex of Ceeh cochains of this covering with values 
in a complex of sheaves, we realize the Deligne cohomology H*(M, 7Z(m)D) as the 
cohomology of the complex 

Cone{C'(~U,~) ~ C'(~ ,A~ m) ~ C'(~,A_;~))[-1]. (17) 

We denote by S~m(A ) the sheaf of smooth singular chains with values in some 
abelian group A. There is a natural map of complexes of sheaves from A~, to 
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S~m(IR ), given again by integration. Then there is a natural map of complexes from 
(17) to the complex 

Cone{C'(~g, S sm(2g)) | C'(~ m) --~ C'(ql, S~m(IR))}[-l]. (18) 

This is a quasi-isomorphism from (17) to (18). 
There is a natural map of complexes from (15) to (18), obtained simply by 

mapping the global sections of the complex Cone{S~m(Z ) |  S~*m(IR)} to 
the corresponding Cech double complex. This is again a quasi-isomorphism. 

The upshot of this discussion is that both I2Im-l(M) and Hm(M; 7/(re)D) map 
isomorphieally to the degree m cohomology of (18). All the characteristic classes 
can then be compared in this complex, and it is enough to show that they agree 
universally. Narasimhan and Ramanan showed that there is a universal object for 
principal bundles with connection [21]. In the universal case, all three cohomology 
groups are isomorphic to the group of closed m-forms with integral periods, the 
isomorphism being induced by exterior differentiation. Since all classes are defined 
so that their exterior derivative is the appropriate Chem-Weil representative, they 
must therefore agree. Collecting these results, we have shown: 

Proposition 6. The classes Pk, e, ck constructed in Theorem 5 agree with the Chern- 
Cheeger-Simons classes Dk,6 and ck, respectively, in the cohomology of (18). 

4. Special Cases of the Formula 

We will specialize the formula of Theorem 4 to the second Chern class e2(P) of 
a principal SU(n)-bundle p : P --~ M. If dim(M) = 4, the number (c2(P),M) is 
called the topological charge or instanton number. There is a canonical choice for 
an invariant 3-form O on SU(n) generating H3(SU(n), 7Z), namely the bi-invariant 
form O = 1 �9 Tr(g-ldg A g-Idg A g-ldg). For a point y E Uijklm, the 3-cycle 
Zi#lm(y) is constructed as follows. For each pair of indices (i,j), we choose a 
path "c~j(y) from 1 to gij(Y) in SU(n); we assume that v]j(y) is a smooth func- 
tion of y. It follows from the cocycle condition gijgjk = gik that the composition 
~(Y)  * gij(Y)" rJk(Y)* z]k(Y) -I is a loop. Since SU(n) is simply-connected, this 
loop bounds some 2-simplex zz.k(y ), which we may take to depend smoothly on 
y E Ui#. Then we see that the linear combination 

is a 2-cycle. Since SU(n) is 2-connected this 2-cycle bounds some 3-simplex 
z3ijkl(y). This may be pictured as a tetrahedron in SU(n) whose vertices are 

1, gij(Y ), gik(Y ), ga(Y ). 
Finally Zijklm(y) is defined to be the formal linear combination -~kt(Y) + 

3 "C3km(Y ) -- "C3lm(Y ) -{- "C~klm(Y ) -- gi; " "Cjklm(Y ). 
This is a 3-cycle in SU(n) and our formula for an integral cocycle representing 

c2(P) becomes 

1 
247E 2 �9 f Tr (g-ldg A g-ldg A g-ldg) . 

Zijklm(y) 
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Remarks 
(i) If we set 

( l " T r ( g - l d g A g - l d g A g - l d g ) )  fijkl(y) = exp 2rci . f 24Tc---- 5 
1:3 ijkl(y) 

then f is a degree 3 (~ech cocycle with coefficients in the sheaf "IF. The coboundary 
of fijkl in the exponential exact sequence is equal to 2~zi times our Cech cocycle for 
c2. For n = 2, the integer associated by our formula to every fivefold intersection 
of open sets is exhibited as the "winding number" of f .  This is entirely analogous 
to the situation which arises with the first Cheru class. 

(ii) In the case of SU(2), things simplify further since SU(2) is diffeomorphic to 
S 3. Then Y~jkl(Y) can be taken to be the volume of a spherical tetrahedron r3~t(y ). 
This was found by Laursen, Schierholz and Wiese some years ago [19]. Recall 
that the formula for the volume of a spherical tetrahedron involves the dilogarithm 
function. 

Next we will describe explicitly the lift C2 to the smooth Deligne complex 
of sheaves 7Z(4)D. This class is represented by a cocycle (fijkl, O,)ij k,l (Dij ,2 (D i3 ). We 

have here the 0-cochain J~ju, the 1-cochain C@k, etc., considered in gauge theory. 
They are obtained here by specializing the formula in Theorem 5, and taking into 
account the simplifications which occur for d2. To make contact with the gauge 
theory literature, we denote by CS(A) the Chem-Simons 3-form on P associated to 

connection A. We introduce simplices Z/o...ij(Y) in P by setting some 

J "?iJo...ij(Y) = Sio(Y) " Zio...ij(Y). 

These are simplices in P whose vertices are the values si(y ) of the local sec- 
tions; they are fully symmetric with respect to permutations of indices. We define 
differential forms as follows: 

~o]jk(r = 2~i . f i( . CS(A), 

co2(41,~2)y = - 2 ~ i .  f i(1 .i(2 . CS(A), 
~j(y) 

a~(41, 42, 43)y = - 2 ~ i -  CS(A)(~I, ~2, ~3)~t(y) �9 

In these formulae, for a vector field 4 over an open set in M, ~ denotes some 
-2 "g! resp. the image of si. lift of ~ to ~ ijk, resp. ,j, 

Again, in the case of SU(2), these formulae were essentially known to Laursen, 
Schierholz and Wiese [19]. 
(iii) A similar formula for the first Pontryagin class of an SO(n)-bundle is given in 
[6]. The only essential difference lies in the construction of the 3-cycle Xijklm(Y). 
Again one chooses paths 1 aij(y ) from 1 to gij(y), but this time the loop a~.(y)* 
gij(y)a)k(y ) �9 a]k(y) -1 need not bound. However, since nl(SO(n)) = 292 for n > 3, 
twice that loop will bound some 2-simplex. The construction then proceeds as in 
the case of c2, but instead of  a 3-simplex one needs a singular 3-chain. 

(iv) The case of the first Pontryagin class is very important geometrically. The 
formulae in that case (and some holomorphic refinements) are used in [7] and in 
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[9] to give a geometric construction o f  a Quillen metric on some determinant line 
bundles. 

(v) Finally, in the case of  fiat bundles, we recover the formulae o f  [11, Sect. 8]. 
The transition functions are then constant and if  one chooses the fiat connection, 
the lifts to the smooth Deligne complexes o f  Proposition 6 reduce to just one 
component, namely J~0...ij which is a Cech cocycle with values in the constant sheaf 
qF. This component is the exponential of  2hi times the volume of  some simplex in 
a Stiefel manifold, and this simplex may be chosen to be totally geodesic. In the 
case o f  ~2 we' obtain 

(i ) exp 127z f Tr(g- ldgAg-Xdg/~g- ldg)  , 

where 3 zijkt(y ) is in fact independent o f  y C Uijk~. 
In the case o f  the Euler class of  a flat real vector bundle, the (n - 1)-simplex 

n--I Yio,...,i,_l(Y), may be chosen to be a geodesic simplex in S n- l ,  independent o f  y. 

The formula for the ql'-valued cocycle becomes 

exp(2~zi �9 Vol  (~)~,~l, in_ 1 ) ) ,  

which is precisely the formula in [11]. The formula of  the present paper is more 
general since it does not require the cocycles gij t ~ be in general position. 
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