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Abstract: Let Ei(H) denote the negative eigenvalues of  the one-dimensional Schr6- 
dinger operator Hu : - u "  - Vu, g >= O, on Lz(IR). We prove the inequality 

IEi(H)I ~ <= Le, a f VT+l/2(x)dx , (1) 
i IR 

for the "limit" case 7 = 1/2. This will imply improved estimates for the best con- 
stants L~,I in (1) as 1/2 < 7 < 3/2. 

Let H = - A  - V denote the Schr6dinger operator in L2(IRd). I f  the potential V > 0 
decreases sufficiently fast at infinity, the negative part of  the spectrum of H is dis- 
crete. Let {Ei(H)}  be the corresponding increasing sequence of negative eigenvalues, 
each eigenvalue occurs with its multiplicity. This sequence is either finite or tends 
to zero. 

Estimates on the behavior of the sequence of eigenvalues in terms of the potential 
have been in the focus of  research for many years. In the earlier papers the main 
attention was paid to bounds on the number of negative eigenvalues ([2, 4, 18, 16, 
7, 14, 12, 6]). In [15] Lieb and Thirring proved inequalities of  the type 

~ ]E i (H) I  7 < L~,a f V~+'~(x)dx, ~c = d /2 .  (2) 
i 1R e 

Since then these estimates and the corresponding cons tan t s  L~,,d have been studied 
intensively (e.g. [13, 9, 10]). Up to now it was known that (2) holds for all ~ > 0 
if d > 3, for 7 > 0 if d = 2, and for 7 > 1/2 if d = 1. On the contrary (2) fails for 
7 = 0,d = 2 and for 7 < 1/2,d = 1. In this paper we prove (2) for the remaining 
case d = 1,7 = 1/2, which does not seem to have been settled so far. This result 
will imply an essential improvement for the estimates on the constants L7,1 , 1/2 < 
?, < 3/2. Moreover we deduce a new integral bound on the transmission coefficient 
of  the corresponding scattering problem. 
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In conclusion the author expresses his gratefulness to M.Sh. Birman, who intro- 
duced him to the topic of  negative bound states of  Schr6dinger operators. Moreover 
I am grateful to A. Laptev, under whose intensive supervision this paper was written. 

In this subsection we provide some auxiliary results on the negative spectrum of 
the Neumann problem for the Sturm-Liouville-operator 

(Uu)(x) = - u " ( x ) -  V(x)u(x), 

x E I = [ 0 ,  l ] ,  u ' ( 0 ) = u ' ( l ) = 0 ,  0 < V(x) ELI( I ) .  

Let NI(V,E) be the number of eigenvalues Ei(L N) of L/N below E < 0. According 
to the Birman-Schwinger principle ([4, 18]), the value of Nx(V,E) does not exceed 
the square of  the Hilbert-Schmidt norm of the integral operator 

l 
(Qeu)(x) = ~ f  G(x, y , E ) ~ u ( y ) ,  

0 
x E I .  

Here 

co~h(;~)cosh(,~(y-O) ]X/~  
2sinh(2/) X =< y 

G(x,y,E) = cosh(~y)cosh(~(x-0) , 2 = , E < 0, x,y C I ,  
~ sinh(~0 Y < X 

denotes the Green function of the p r o b l e m - u " - E u ,  u ' ( 0 )=  u ' ( l ) =  0 on L In 
view of 

eoth(2l) 
[G(x, y,E)[ < - -  

one obtains the inequality 

NI(V,E) < 22 V(x)dx , 2 = ]X/~, E < 0 .  (3) 

We apply (3) to the lowest eigenvalue EI(LN), and find 

Lg(,~ll) ~_~ l f V ( x ) d x ,  ,~1 = ~ E ~ I ( L N ) [  > 0 ,  
I 

O(x) := x t anhx .  (4) 

The function O(x) = xtanhx is strongly increasing in x > 0. Let g(y) be the inverse 
function of O(x) = y, x, y > 0. From (4) we immediately conclude 

Lemma 1. Let E~(LNI ) be the lowest eigenvalue of the Neumann problem L u on 
I = [0, l]. Assume 0 <= V E LI(I). Then the estimate 

~1 < ~( l fV(x)dx) / l ,  ,~l = lU~/~I(LN)I >_-- 0 ,  (5) 
I 

holds. 
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Next we recall a criteria, providing the existence of not more than one negative 
eigenvalue of  the operator L/N. 

First notice that for functions u E C~(I ) ,  satisfying the orthogonality condition 
f1 udx = 0, the inequality 

IR(X)]2  - -  < ~f tu l l2dx ,  x E I ,  (6) 

holds. Indeed, we have 

xo l 

lu(xo) = fu ' (x)xdx - f u'(x)(l - x )dx .  
0 Xo 

This gives 
(.3/2 

[u(x0)12 < t~0 + (I ~.~]3/2~2 l 
- . ~ ,  , f lu'(x)[2dx. 

= 312 0 

Passing to the upper bound in x0 E I we find (6). The constant l/3 in (6) is sharp. 

Lemma 2. Assume that for the non-trivial potential 0 < V the estimate 

tfV(x)dx =< 3 (7) 
I 

holds. Then the Neumann problem L x on I = [0, l] has exactly one negative eigen- 
l)alue. 

Proof The existence of the eigenvalue is obvious, By (6) we find 

flu'12dx- f V(x)lu?dx O, u f udx = O. (8) 
I I I 

The inequality (8) holds on a set of functions of codimension one with respect to 
the domain of the quadratic form of the Neumann problem L N. Thus L~ itself has 
not more than one negative eigenvalue. 

We turn now our attention to the one-dimensional Schr6dinger operator 

H u = - u " -  V(x)u, x E IR, 0 < V CLI( IR) ,  

realized as a self-adjoint operator on L2(IR) in the form sum sense. Let H+ and 
H_ denote the self-adjoint operators on L2(1R=~), corresponding to the Neumann 
problem on the positive and negative semi-axes respectively. 

Assume V ~ 0 on IR+. Fix the point l0 = 0, and by iteration construct the 
sequence lk, k C IK C N, 

lk+l 
l (k) f V ( x ) d x = 3 ,  l ( k ) : = l k + l - l ~ .  (9) 



138 T. Weidl 

I f  it occurs that fl~ V(x)dx = 0, we formally choose ln+ 1 = +0(3. For the elements 

of the sequence ilk) we have the bound l (k) > 3 / f  V(x)dx > 0. Hence the intervals 
[k := [lk,/k+l], k > 0, cover IR+. 

On each interval we consider the Neumann problem L~u = u" -  V(x)u, u~(Ik) = 
u'(lk+l ) O. Let HN+ L N = = | i, denote the orthogonal sum of these operators. We 

have H+ N < H+. For the ordered sequence of the respective negative eigenvalues 
this implies 

Ei(H N) < Ei(H+). (10) 

In case of a semi-infinite interval the potential is identically zero on this interval, 
the respective Neumann problem has no negative spectrum. Therefore it will not 
play any role in our considerations. 

By Lemma 2 the Neumarm problem LINk on the finite intervals Ik has exactly one 

negative eigenvalue. Because of (9) the bound (5) for )-l(Ik) := v/]EI(L~)] turns 

into 21(Ik) < q(3)/l (k), or equivalently 1 

~l(]k) <= ~(-~fV(x)dx. (11) 

Since V c LI(IR+), the sequence fikV(x)dx tends to zero as k ~ cx~. Thus both 

operators H N and H+ are semibounded and their negative spectra are discrete. The 
negative spectrum of H N coincides (as set and in its multiplicity) with the sequence 
of eigenvalues {EI(L~)} = {-2~(Ik)}. By (10) we have [E;(H+)[ _-< [Ei(HN+)]. To- 
gether with 0 _-< V E LI(IR+) this implies 

i " k 

< 3 2-"JV(x)dx= 
kIk 

and we find the claimed result for the negative eigenvalues of  the Neumann operator 
on the semi-axes 

y ' ~ ~  < L + f V(x)dx L+ < q(3) i = ,ln~ + ' ,1 = 3 < 1.005. (12) 

Naturally the analogous bound with the same constant holds for the operator H_.  
Because of H_ | H+ < H we obtain the analog estimate on the negative eigen- 
values of  the Schr6dinger operator H on IR, 

~v / IEz(H) I  __< Z�89 fV(x)dx Z�89 < q(3) , < 1.005 (13) 
i 2N = 3 " 

We recall the reverse estimate for the operator H (see and [15, 9]). The first 
sum rule of  Faddeev-Zakharov [8] states 

f V(x)dx = 4 ~  ~ + zc-l f In(1 - IR(k)12)dk ,  (14) 
i 

1 - -1  1 On the other hand for u(x) = 1-1/2 one has Ei(L~) < -- flk V(x)dx, and 21(Ik) > V / ~  

fl g(x)dx. 
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for (not necessary sign-defined) potentials V E C~(IR). In this R(k) E [0, 1] is the 
reflection coefficient of the operator H. The integrand on the right hand side is 
negative, hence 

> l f v ( x ) d x .  (15) 
i 

This bound can be closed to all potentials V E LI(IR). 
The estimate from below on the constant L1/2,~ can be improved. For a potential 

0 < V E LI(IR) the number N(V,E) of eigenvalues El(H) < E < 0 is bounded by 

1 
N(V,E) = < 2X/,~ f Vdx , 

(see (3.7) in [5]). For the lowest eigenvalue this gives 

<  fVdx. (16) 

The constant in this estimate is sharp. Indeed, if the non-trivial potential 0 < V C 
C~(IR) is supplied with a sufficiently small coupling constant ~ > 0, the opera- 
tor Hau = -u"  - aVu has exactly one negative eigenvalue El(Ha). This eigenvalue 
obeys the asymptotics (see [17]) 

~ = ( ~ / 2 ) f V d x + o ( ~ ) ,  ~--+0. 

We conclude L1/2,1 => 1/2. 
The previous arguments can be adapted to the problem on the semi-axes. As- 

sume that 0 < V is continuous on IR+ up to the point zero, and has compact 
support. We supply this potential with a small coupling constant c~ > 0, and con- 
sider the lowest eigenvalue El(H+#) of the respective Neumann problem on IR+. Let 
ua(x) denote the corresponding eigenfunction. The even extension ua(x)= ua(-x) 
is an eigenfunction of the operator Ha with the extended potential V(x) = V(-x)  
on IR. The corresponding eigenvalue is El(Ha)=EI(H+,a). Since the operators 
Ha and H+,a have only one negative eigenvalue for sufficiently small c~ > 0, we 
find 

O o  

= vdx + + o .  
o 

We obtain 1 < Ll~2, l < 1.005, our bound on the constant for the Neumann problem 
on the semi-axes is almost sharp! 

Finally we remark the analog of (15) for the operator H+. For a summable 
potential V(x) = V(-x)  it holds 

o o  

f V(x)dx <= 2 ~ ~  <= 2~v/]Ei(H_ | = 4 ~ ~ .  
0 i i i 

(17) 
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The results of this subsection we summarize in 

Theorem 1. 1. The inclusion 0 < V E LI(IR+ ) implies the inequality 
oo 

< 5V(x)dx (is) 
i = ,1 0 

For the best constant LT, 1 in (18) we have the estimate 1 < L+,I  ~ ~(3)/3 < 1.005. 

Reversely, a priori assuming 0 < V E L~~ the discreteness of  the negative 
spectrum together with the convergence of  the sum in (18) imply V E L1 and (17). 

2. The inclusion 0 < V E LI(IR) implies the inequality 

~ ~  <= L�89 (19) 
i 

For the best constant L�89 in (19) we have the estimate 1/2 < L�89 < q(3)/3 < 

1.005. Reversely, a priori assuming 0 < V E L~~ the discreteness of  the neg- 
ative spectrum together with the convergence of  the sum in (19) imply V c L1 and 
(15). 

Remark. As usual one can drop the assumption V >_ 0. One has to ensure that the 
corresponding operators H, H+ are defined in the form sum sense, and the integrand 
in (18) and (19) has to be replaced by V+(x) := max{0, V(x)}. 

Notice that (19) and (14) together with 1/2 _< L1/2,1 < c~ imply 

Theorem 2. Assume V E C~(IR),  2V+ = IV[-4- V, and let R(k) be the reflec- 
tion coefficient for the corresponding one-dimensional Sehr6dinger operator Hu = 
- u  n - Vu on L2(IR). Then the integral estimate 

1 flln(1 IR(k)12)ldk <__ fV_dx+(4L�89 1)fV+dx <__ (4L�89 1)I[V[tL~( m 

holds. 

3 

We turn now to the case ? > 1/2. We restrict our considerations to the operator H 
on L2(IR). Here the inequalities 

~lEi(H)l ~ _< LT, i fve+l/2(x)dx,  (20) 
i N_ 

are well established, but we will give an essential improvement of the estimates 
for the corresponding constants L7,1. For 7 > 3/2 in [1] it has been proven that 

e l  L7,1 = L7,1. The last notation stands for the classical constant 

LC ~ _ r (y  + 1) 
7,1 2v/~r(  7 + 3)"  

Hence we will stress the case 1/2 < 7 < 3/2. We shall compare our results with 
the bounds of Lieb and Thirring, 

77+ 1 
(21) 

L7'1 =< LTL'~ := V/2(7 -- 1/2)7+I/2(7 + 1 /2 ) '  
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and their improvements by Glaser, Grosse and Martin ([9]) LT,1 < IGGM with 

1 -- /T/)  
r e a m  , _  inf (m -- 1)m-lF(2m)7~+lF(7 + ~ (22) 
~7,1 "-- 1 I<m<3/2 22m-lmm-l F(m)F(?  + 3)( m - 1)m-�89 q- ~ - m)?+�89 -m 

Our proof  of  Theorem 1 can be generalized to the case 7 > 1/2. However,  this 
direct approach gives the bound LT,1 =< (~(3))27/3 ~+V2, which is not very sharp. A 
better bound can be found using the fact that the ratio L~,I/LCTfl is non-increasing in 
7, see [1]. We find 

L~,j < L~* 1 := 4q(3)L~Zl/3 = 2~(3)F(7 + 1) 
= ' 3x /~ r (7  + ~) " 

This bound is sharper than (21) and (22) for all 1/2 < 7 < 3/2. In particular, 
L* , 4/3 and L 6GM 1.269. 2 1,1 < 0.853 while L~, r = 1,1 = 

I f  we consider only potentials /7- proportional to a characteristic function of  a 
set M C IR of  finite measure, 

1 x C M  
17"(x) = v)~M(x), ZM(X) = 0 x C M ' v > O, 

we can find a better constant by "interpolating" between the cases 7 = 1/2 and 
y = 3/2. Indeed, the ratio 

f ~,~+I/2dx 

is analytic and continuous up to the boundary for complex V in the strip 1/2 < )R 7 < 
3/2. On the boundary we have the estimates 

1Ob, v)l < L�89 < 1 3 3 a s h y = -  [0(v,V)[ < L 3 , 1 = 1 6 ,  as N 7 = - -  
= = 3 ' 2 '  -- 2 

By the Hadamard Lemma we obtain 

~. ( ( 3 )  ( ~ 
0 ( 7 ,  I?) < LT, 1 : =  q - ~ )  3_~ 3 ~-�89 1 3 (23) 

= ' 

In particular, [~,1 < 0.4341. We notice, that (23) is sharper than the results for 
characteristic functions by A. Laptev in [11] for the case of  dimension one . 

For completeness we recall the estimate from below on the constants L~,I, ob- 
tained in [15]. To do so we consider the best constants L 1 in the inequalities y,1 

1 
IEa(H)I ~ < Lr vT+llZdx, y > ~ .  (24) 

Obviously LT,1 > L 1 For 7 > 1/2 the corresponding variational equation can be = 7,1" 
solved analytically and one obtains 3 

L1 /.c_l/2 1 F (~ - I - l )  r = 2LCl (,-1/2"~ 7-1/2 
(25) 

7,1 = 7 - 1/2 F(7 + 1/2) ~,]) ~ / /  7'1 t ~  -]- 1/2/] ' 

rsPh for 2 One can apply an argument of  Glaser, Grosse and Martin [9], to deduce a bound on ~0,3 
spherical symmetric potentials from LIA �9 Although one considers only a special class of  potentials, 
even the new bound on L1j is not sharp enough to reach Lieb's result for L0,3 by this method. 

3 In particular this gives 0.2451 < L M < 0.853. 



142 T. Weidl 

(see [15]). Moreover in the previous subsection we showed that (25) remains true 
for ? = 1/2 and L]/23 = 1/2. For ? => 3/2 it holds L 1~, z <= L~,ctl. For ? < 3/2 we have 

L~r,1 > L~(~, this implies L~,I > L ct~,l as 1/2 =< 7 < 3/2 (see [15] and also [10]). 
We proved 

Theorem 3. For the numerical values of  the best possible constants LT, b l/2 
< ? < 3/2 m (20) the estimate 

2LCl (? - �89189 . 4~(3)L d _ 2 ~ ( 3 ) F ( 7  + 1) 1 < 7 < 3 
~,~ \ - - -~-~j  < L~,, < L,, 1 = 3 ,,1 3V~F(7 + ~ )  ' 2 - -  = 2 '  

holds. For potentials P proportional to characteristic fimctions, the constant L~,I 

in the Lieb-Thirring inequality can be replaced by L~, 1 from (23). 

Notice that the bound L~, 1 on L~,I does not tend to L3,1 = L  d = 3/16 as 7 
_ ~ ,1  

3/2 - 0. For y near 3/2 the estimate on L~,I can be improved. To do so we shall 
recall some auxiliary material from real interpolation theory. 

Let #p denote the ideal of  p-summable sequences {u,}ncN, equipped by the standard 
quasi-norm 

U P I p . I1{ .}11~/:= ~ l u .  , p > 0 
n 

For a sequence {u,}~cN E alp0 + dp~ one can define the (P0, Pl ) - K-function 

K({un},t, po, pl):= inf Ilu~ Ll~o+tl]u~ P~ , t 0.  
u -r  (0)+u(I) 1 
n--~t~ n 

u (i) Efpi 

For a function f E Lpo + Lpi one may use the analogous definition 

K ( f , t ,  po, P l ) : =  inf (Ikf011 p~ +t ] l f l l l  p~ )L., , t > 0 .  
f = f o + f l  

fiELpi 

On functions h : (0, oc) --+ [0, oc) we define the functionals 

�9 n,q[h] = ( t -nh( t ) )qdt )  '1 C (0,1) 0 < q < cx) 
" 0  t /  ' ' ' 

4~n,~[h] = supt -"h( t ) ,  ~ c (0 ,1 ) .  
t > 0  

Notice that hi(t)  <_ h2(t) implies qb~,q[hm] =< qb~,q[h2]. According to the "power the- 
orem" o f  real interpolation theory, see [3], it holds 

*~,qEK({un}, . ,  po, p l ) ]  • II {u,}  lift,,, (26) 
P q~n,q[K(f, " , Po, Pl ) ]  ~- IlfllL,,r, (27) 

p = ( 1 - - r / ) p o + r / p a ,  r = p q ,  r / E ( 0 , 1 ) ,  

0 < q  < oo ,  0 < Po ,  Pl < e~ ,  P o # - P l .  
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The quasi-norms on the right hand side denote the Lorentz scale of sequence 
ideals E p'r or function spaces L p,r, respectively. For the definition of these ideals 
see, e.g., [3] or [19]. We just point out, that ~p = {P,P and Lp = L p,p. 

In general it is difficult to trace the constants in the two-side estimates in (26), 
(27) . However for the special case q = 1 one has the equalities (see [3], p. 111, 
proof of Theorem 5.2.2). 

'~n,l[K({u~}, �9 , Po, Pl)] = 007, Po, Pl)II (u~} I[ff , (28) 

~,1 [ K ( f , . ,  Po, Pl )] = O0l, P0, Pl )[[f][r p , (29) 

p = ( 1 - ~ / ) p 0 + r / p l ,  qC(0 ,1 ) ,  0 < P0,  pl < ~ ,  P 0 r  

where 
O ~  

O(q, po, Pl)  = f t  -~-1 inf ([yo[ p~ +t[yl[P~)dt. 
0 Y~ 

Below we shall use these identities for improving the bounds on L~,I for certain 
7 E (1/2,3/2). 

5 

In this subsection we consider the Schr6dinger operator 

H = - A  - V(x) ,  V > O, x E IR d,  

in arbitrary dimensions d > 1. We assume that this operator is semibounded from 
below and that its negative spectrum is discrete. Let {En(H)} be the non-decreasing 
sequence of negative eigenvalues of the operator H, each eigenvalue appears with 
its multiplicity. 

Let us start from the Ky-Fan inequality for the discrete negative spectrum. If  
V = V0 + V1, and the operators 

Ho = -OA - V0, H1 = - (1  - 0)A - / / 1 ,  0 c (0, 1),  

have discrete negative spectrum, then the inequality 

IEm+,,-I(H)I < IE~ + IEm(HI)I 

holds for all m,n = 1,2,...  We construct the sequences 

ak := Es(Ho), s : l + [ N ~ ] ,  

l = N [ N - - ~ ] + ( k m o d N + l ) ,  N,k,I, s E N ,  bk := El(H1), 

and obtain 
Ek(H) < a~ + bk , k E N .  (30) 
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Assume now Vi E Lpi+tc(lRd), ~c = d/2,0 < pi < oc for d > 2 and 1/2 < 
Pi < oc if d = 1. From (30) and (2) it follows, that 

K({EI~(H)}, t, Po, Pl )  _-< II{ak}llff20 + tll{bk}llP21 
_<_ (1 + N)~]G(Ho)IP~ + t(1 + N-1)~IEm(H1)I p~ 

m 
--~ p0+~c p~+~c 

< (1 +N)O Lpo,dlIVollLpo+,,(ad)+t(1 + N - l ) ( 1  - O)-'%p~,dlIV1 L~+~(ed)" 

Interchanging the definitions of  the sequences {ak} and {bk} one can see that in 
the previous expression the role of  N and 1IN can be interchanged. Thus we can 
assume that N is of  the form k or 1/k, k E N.  Passing to the lower bound over all 
suitable decompositions V = V0 + V1 one finds 

K({Ek(H)} ,  t, P0, P l )  

< (l+N)Lpo,d.1 ( + N - l ) ( 1  - - ) 
= ~ ~ V't(1 ( l + N ) 0 - f L ) p 0 ,  ~Lpl 'd 'p~ , (31) 

1 1 d 
�9 2 , 1 ,  �9 . . . .  N = �9 -, 3 '  2,3, ~c 2 ' 

with 0 < Pi < oo for d > 2 and 1/2 < Pi < (x) for d = 1. This relation allows 
one to apply interpolation methods directly to the sequences of  negative bound 
states, although the mapping V ~-+ {En(H)} is strongly non-linear. 

6 

Let us return to the one-dimensional case and choose P0 = 1/2 and Pl = 3/2. Ap- 
plying the functional ~b~,l to both sides of  this inequality, by (28) and (29) we 
obtain 

1 3 
~]Ek(H)I~  < L;,lf  VT+�89 ~ < y < 
k 

where 

L~ 1 < O(t/,O(t/' �89 , = + N)l-"o-(l-q)/2f(1-tl)gl-l/2,1 ~-" + u - 1  f / (1  - -  0 )  q/2t; , ,1  , ( 3 2 )  

(1 
+ N =  3 , 2 , 1 , 2 , 3 ,  7 -  2 . . . . .  " " "  

Let M(t/)  be the minimum of  the sequence 

1 1 
( I + N ) I - " ( I + N - t )  n,  N . . . . .  3 , 2 , 1 , 2 , 3 , . . . .  

It occurs that M(t/)  ---+ 1 as 17 ~ 0, 1. I f  we minimize (32) in 0 C (0, 1), we find 
0(q) = 1 - r / ,  and 

1 
L~,I _-< L~*~ := C(~ , ~ = ~ + ~ ,  (33) 

O(t/, 1,2) M(t/)  
(34) 

c(~)  = o(~,  �89 ~) , / ~ ( 1  - ~),-~ 
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The involved functions O can be evaluated as 

O(t/, 1, 2) = 
2~1 

q(1 - q ) ( l + q ) '  

and 

O 
1 ~ ) =  ( 2 V / ~ + 2 / x / 3 )  '- ' I  1 3 7 

r/, 2 '  1 r/ 
- + ~ ( ~ )  (I0(") +2I , 

- g 

1 

Io(rl) fu(1  u)'~@(1 ~-1 = - + u) 2 d u ,  
uo 

1 

/1(1/) = fu (1  - u)~(1 + u ) ~ - d u  , 
uo 

2 
U 0 

2 + x/-3 

Notice, that C(t/) ---+ 1 as t/---+ 1, thus Ly*,~ ---+ 3/16 as 7 --~ 3/2 and Ly*~ < LT, 1 as 
7 + 3/2. 

Theorem 4. For the constant L,~,1 in (19) the bound 

L~,t < min{L~*,i,L~,l}, 1/2 < 7 < 3/2, 

holds. 

Let {qSi} be some L2(lRd)-orthonormal system, Oi c W~(IRd). Then (2) implies 
([15, 13]) 

n / \ 2 ( p - 1 ) / d  

i=1 \ - / 

R 

pq~(X) : =  Z I @ i ( X ) I  2, 
i=1 

max{d/2,1} < p < l + d / 2 ,  excluding p =  1 f o r d = 2 ,  

with suitable constants Kp, d. In case of  d = 1 and p -- 3/2 this turns into 

n / 2  ~b ~ f [ O i l  dx > K3/z, l f p  dx .  (36) 
i=1 

The constant K3/2,1 is related to L13 via the formula 

L , , ,  = 

Our improved estimate on L1,1 implies Ks > 0.203, compare with Ks > 1/12 in 
[13]. 
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We also point out the case p = d = 1. Then 

n 

~fl ,~12dx >= 2 KI,1 (37) 
i--1 

with a constant 1 > KI,1 > 1/(2L1/2,1), see (3.27) in [15]. Thus we find (37) with 
1 >= Kl,1 > 0.497. 
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