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Abstract: Using the general theory of  [10], quantum Poincar6 groups (without 
dilatations) are described and investigated. The description contains a set o f  
numerical parameters which satisfy certain polynomial equations. For most cases 
we solve them and give the classification of  quantum Poincar6 groups. Each of  
them corresponds to exactly one quantum Minkowski space. The Poincar6 series 
of  these objects are the same as in the classical case. We also classify possible 
R-matrices for the fundamental representation of  the group. 

O. Introduction 

The Minkowski space with the Poincar6 group acting on it is the area of  the quan- 
tum field theory. However, it is not known yet what is the area of  a deeper theory, 
which would involve also the gravitational effects. It was suggested by many authors 
that it would be a quantum space. It means that instead of  functions on spacetime 
we would have elements of  some noncommutative algebra, called "the algebra of  
functions on the quantum space." On the other hand, such a quantum space should 
be in some sense similar to the ordinary Minkowski space. The simplest models 
of  such a situation can be obtained by choosing some properties of  Minkowski 
space endowed with the action of  the Poincar6 group and classifying all quan- 
tum groups and spaces which satisfy those properties. There are many examples 
of  quantum Poincar6 groups, the corresponding Minkowski spaces and R-matrices 
(cf. e.g. [4, 2, 11, 6, 5, 1, 15] and remarks in [10] concerning these papers) but such 
classification still doesn' t  exist. Our aim is to provide it. In Sect. 1 we define a quan- 
tum Poincar6 group as a quantum group which is built from any quantum Lorentz 
group [14] and translations and satisfies some natural properties. The corresponding 
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commutation relations are inhomogeneous and contain a set of parameters HABCD, 
TABc~. Our scheme contains the examples provided in [4, 1], but doesn't contain 
the examples of [2, 11,5] (see however Remark 3.9 of [10]) because we consider 
quantum Poincar6 groups without dilatations. Also the example [6] (formulated in 
the language of universal enveloping algebras) has no corresponding object in our 
scheme (for q :# + 1). 

It rams out that there are many quantum Lorentz groups which can be used 
in our construction. However all of them correspond to q = 4-1. For each such 
quantum Lorentz group (except the classical one and one more for q = -1  which 
are considered in Remark 1.8) we classify all quantum Poincar6 groups. We 
also provide the corresponding quantum Minkowski spaces and R-matrices for the 
fundamental representation of the quantum Poincar6 group (for one family of con- 
sidered quantum Poincar6 groups there is no nontrivial R-matrix). The Poincar6 
series of the corresponding objects are the same as in the classical case. The proofs 
of our results (using [10]) are contained in Sect. 2. In particular, the question of 
finding all quantum Poincar6 groups is reduced to a set of polynomial equations for 
HABCD, TABCD which we solve (in the indicated cases) using the computer MATHE- 
MATICA program. Some results of the present paper were presented in [9]. In [16] 
a similar classification is provided in the case of Poisson manifolds and Poisson-Lie 
groups. 

We use the terminology and results of [10]. The letter S means that we make a 
reference to [10], e.g. Theorem $3.1 denotes Theorem 3.1 of [10], (S1.2) denotes 
Eq. (1.2) of [10]. The small Latin indices a,b,c,d,..., belong to J = {0,1,2,3} 
and the capital Latin indices A,B, C,D,..., belong to {1,2}. We sum over repeated 
indices which are not taken in brackets (Einstein's convention). The number of 
elements in a set B is #B or IBI. The unit matrix with dimension N is denoted by 
IN, 1 = 12. The Pauli matrices are given by 

o-0=12, a l = (  0 ~ )  ( 0  ; i )  (10 ? ) 1 , 0"2 = , o'3 = 1 " 

If V, W are vector spaces then vwv " V | W --+ W | V is given by vtae(x | y) 
= y | x, x E V, y c W. We often write ~ instead of zvw. We denote C. = C\{0}, 
R ,  - -  R \ { O } .  

1.  Q u a n t u m  P o i n c a r 6  G r o u p s  

In this section we define and (in almost all cases) classify quantum Poincar6 groups 
as objects having the properties of the usual (spinorial) Poincar6 group. The proofs 
of the results are shifted to Sect. 2. 

The (connected component of) vectorial Poincar6 group 

/3 = SO0(1,3) ~< R 4 = {(M,a) :M E SOo(1,3),a E R 4} 

has the multiplication (M,a).  (MI, d ) =  (MMI, a +Mal). By the Poincar~ group 
we mean the spinorial Poincar6 group (which is more important in quantum field 
theory than/3) 

P = SL(2, C) ~<R 4 = {(g,a) : g c SL(2, C),a E R 4} 
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with multiplication ( g , a ) .  ( g ' , a ' ) =  (gg' ,a + 29(a')), where the double covering 
SL(2,C) 9 g --+ 29 E SO0(1,3) is given by 2g(x)iai = g(xjaj )g+,g E SL(2,C), 
x E R 4. The group homomorphism n : P 3 (g, a) --+ (2g, a) E/3 is also a double 
covering. In particular, (-12,  0) E P can be treated as rotation about 2re which is 
trivial in/3 but nontrivial in P (it changes the sign of wave functions for fermions). 
Both P and /5 act on Minkowski space M = R 4 as follows (g ,a)x  = (2g, a)x = 

2 g x + a , g  E SL(2, C), a,x E R 4, and give affine maps preserving the scalar prod- 
uct in M (in a more abstract setting we would treat M as an affine space without 
distinguished 0). Let us consider continuous functions WAB, Pi on P defined by 

WAB(9, a)  = gAB, p i ( 9 , a )  = a i  . 

We introduce the Hopf ,-algebra P o l y ( P ) =  (~ ,A)  of polynomials on the 
Poincar6 group P as the ,-algebra ~ with identity I generated by WAB and 
Pi, A ,B  = 1,2, i C or (according to the Introduction, J = {0, 1,2,3) in this section) 
endowed with the comultiplication A given by ( A f ) ( x , y ) =  f ( x .  y ) , f  E ~ ,  x, 
y E P ( f * ( x )  = f ( x ) ) .  In particular, 

AwCD : WCF @ WFD~ 

P~ = Pi, where 

Api  = p i |  + Aij | py , (1.1) 

In order to prove (1.1) we notice that 

(AWcD) ( (g ,a ) , (g ' , d ) )  = WCD(ggt,a q- ).g(at)) (ggt)CD t = : OCFgFD 

: WCF(g, a)WFD(g t, a I) = (WcF @ WFD)((g, a), (gt, a I ) ) ,  

(Api)( (g ,  a), (g', d ) )  = Pi(gg', a + 2a(a')) = ai + 2g(a')i = ai + (29)ija j 

= pi(g ,a)  + A i j (g ,a )p j (g ' , a ' )  = (Pi | I + Aij | p j ) ( (g ,a) ,  ( g ' , a ' ) ) ,  

where we used the formulae (ai)cD = VCD, i mad 

VCD, i( •g )ij = (2 9 )~]( ai )CD = (gGjg + )CD = gCE((Tj )EF(g + )FD 

V * = WcE(O, a) EF, jWDF (g, a)  : (WCE'V~DF VEF, j ) ( g  , a)  ~- VcD, iAij(g , a ) .  

Since ZCD.EF = 6CFODE, we get 
P = z v  (1.3) 

and A ----- A. We put p = (Pi)iEJ. One can treat WCD as continuous functions on the 
Lorentz group L = SL(2, C) (wcD(g) = gcD, g E L). We define the Hopf *-algebra 
Poly(L) = (~4, A) of polynomials on L as ,-algebra with I generated by all Wco 
endowed with A obtained by restriction of A for ~ to d .  Clearly w and A are 
representations of L. It is easy to check that 

t. ~ is generated as an algebra by d and the elements Pi, i E J .  
2. d is a Hopf ,-subalgebra of  ~ .  

3. ~a=  (~  P ) i s  a representation where A is given by (1.2). 

(!00 1) 
1 - i  0 

A = V- I (w~) ,2 )V ,  V = 1 i 0 " (1.2) 

0 0 - 1  
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4. There exists i E 5 ~ such that 
5. F s J  C F, where F = s~X + 
6. The left sr  s J  �9 span 

of  10 + 4 + 1 elements. 

pi r 
sr X = span (Pi : i E J } .  
{PiPj, p i , I  : i , j  E or has a free basis consisting 

(5. and 6. follow from the relations pia = api, pipj  = pjpi,  a E d ,  and elementary 
computations, a free basis is given by {PiPj, pi, I �9 i < j , i , j  ~ J } ) .  According to 
[14], Poly (L) satisfies: 

i. ( s~ ,A)  is a Hopf  , -algebra such that s~ is generated (as a , -algebra)  by 
matrix elements of  a two-dimensional representation w; 

ii. w (i) w =~ I | w 1, where w 1 is a representation; 
iii. the representation w | u3 _~ ~5 | w is irreducible; 
iv. i f  sr ~, A ~, w ~ satisfy i.-iii, and there exists a Hopf  , -algebra epimorphism p �9 

d t ---+ d such that p(w ~) = w then p is an isomorphism (the universality condition). 

We say [14] that H is a quantum Lorentz group if  P o l y ( H )  = (sJ ,  A) satisfies 
i.-iv. 

Definition 1.1. We say that G is a quantum Poincard group i f  the Hopf  ,-algebra 
P o l y (G)  = (~ ,  A) satisfies the conditions 1.-6. for  some quantum Lorentz group 
H with P o l y ( H ) =  ( ~ , A )  and a representation w o f  H. 

Remark. 1.2. The condition 5. follows from ~ | w -~ w | ~ ,  ~ (i)# --- # | ~ ,  
while 6. is suggested by the requirement W ( ~  ~ ) =  ( ~  |  for a "z-like" 
matrix W (cf. Theorem 1.13). Moreover, the condition 4. is superfluous (it follows 
from the condition 6. and Proposition S0.1). 

Remark. 1.3. Different choices of  (H,w)  can give a , - isomorphic ~ .  

Theorem 1.4. Let G be a quantum PoincarO group, Po ly (G)  = ( ~ ,  A). Then d is 
linearly generated by matrix elements o f  irreducible representations o f  G, so ~4 
is uniquely determined. Moreover, we can choose w in such a way that ~ is the 
universal ,-algebra generated by w•8, A,B = 1,2, satisfying 

(w |  = E ,  (1.4) 

E'(w e w )  = E ' ,  (1.s) 

X(w ~ ~) = (~ o w ) x ,  

where X = zQ' and 

1) E = el | e2 - e2 @ el, E ~ = - e  1 | e 2 + e 2 | e l, 

(1.6) 

Q! 
t ;  0 0 

t 0 

0 0 

0 
0 
0 ' 

t - 1  

0 < t ~ l ,  o r  

2) 

E,E t as above, Q' = [i ~ 
1 
0 
0 

0 
1 
0 

o r  
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3) E = e ~ | 1 7 4 1 7 4  E ~ = - e  l |  2 + e  2 |  l + e  2 |  2, 
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Q, 1 0 
= 0 1 , r > O ,  or 

0 0 

4) 

E,E  ~ as above, Q~= 1 0 
0 1 
0 0 

5) E = e t | 1 7 4  E r = e  ~ | 1 7 4  I, 

[ t -~ 0 0 0 

Q ~ = i  0 - t  0 0 0 < t < 1, 
0 0 - t  0 ' = 
0 0 0 t -~ 

or  

or  

6) 

7) 

Ii ~176  
- 1  0 

E, E ~ as above, Q' = i 0 - 1  

0 0 

1 
0 
0 ' 
1 

or 

! 0 0 s 

E , U  as above, Q~ = i - r  s 0 
S --F 0 ' 

0 0 r 

r = ( t + t - 1 ) / 2 ,  s = ( t - t - 1 ) / 2 ,  0 < t < 1,  

ei = (~), e2 = (~), e 1 = ( 1 0 ),  e 2 = (0  1 ). Moreover, all the above triples 
(E ,U ,  QI) give nonisomorphic ( d ,  A). We can (and will) choose pi in such a way 
that p[ = pi. 

In the following we assume that G is a quantum Poincar~ group, P o l y ( G ) - -  
( ~ , / ! )  and w , p  are as in Theorem 1.4. We set q = ql/2 = 1 in the cases 1 ) -4 ) ,  
q = - 1 ,  ql/Z __ i in the cases 5 ) - 7 ) ,  s = •  L = sql/2(1| + q - I E U ) ,  L = qzLz, 
G ~- (//--1 @ 1)(1 @ X ) ( L  @ 1)(1 @ V), d = (V -1 @ 1)(1 @L) (X  -1 @ 1)(1 | V), 
R = (V -1 | V - I ) ( 1  |  | 1)(L |  |  -1 | 1)(V | V). 

Theorem 1.5. ~ is the universal *-algebra with [ generated by WAB and Pi satis- 
fy ing (1.4), (1.5), (1.6) and 

p i a = ( a *  f i j ) p j + a * r  h - A i j ( t l j * a ) ,  a E  d ,  (1.7) 

(R  - l |  -- t h ( A j ~ ) p  s + Tij - A imAjnTmn)  = 0,  (1.8) 

P2 = Pi , ( 1.9) 
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where f = (fij)i, j c J , ~  = (tli)i6y and T = (Tij) idcJ are uniquely determined by 
s =-t-1, HEFCD, TEFCD E C and the foltowin 9 properties: 

a) ~ ~ a -+ p(a) = ( f(a)o tl(a) J E M s ( C )  is a unital homomorphism, 

b)  p(a*) = p(S(a)) ,  a E d ,  

C) fij(WCD) ~--- GiC, Dj, 1]i(WCD) = ViE1FHEFcD, Tij = ( V  -1  @ V-1)ij,  EFCDTEFcD �9 

The * -Hopf  structure in P o l y ( G )  is determined by: 

A w = w @ w ,  A #  = v~@ ~ ,  A p = p • I + A � 9  

e(w) = 1, e(ff 0 = 1, e (p)  = O, 

S (w)  = w -1,  S ( ~ )  = ff~-l, S ( p )  = - A  -1 p . 

Quantum PoincarO groups corresponding to different s are nonisomorphic. 

T h e o r e m  1.6. For each case in Theorem 1.4 and each s (except the case 1), 
s = 1, t = 1 and the case 5), s = -4-1, t = 1) we list H and T giving (via formulae  
in Theorem 1.5) all nonisomorphic quantum Poincark groups G: 

1 ) s = - l ,  t = l :  
HEFCD = 0 , ~ 

(1.10) 
TEFCD = VEF, iVcD, jTij , f ' 

where 

a)  To3 = -T30  = ia, T~2 = -T21 = ib, other Tij equal 0, a = cosq~, b = 
sin c~(one parameter fami ly  f o r  0 < 4) < ~/2)  or 

b)  To2 = T12 = i, T20 = T21 = - i ,  other Ti) equal O, or 

c)  all Tij equal O. 

1) s = : k l , 0  < t <  1: 

Tl122 = ia, T1221 = b ,  ] 

T2112 = - b ,  T2211 --  - i a ,  i (1.11) 

al l  HEFCD and other TEFCD equal 0 and 

a)  a = cos  q~, b = sin ~b (one parameter  fami ly  f o r  0 < (a < re) or 
b)  a = b = 0 .  

2)  s = l :  

the f i rs t  case: 

//1111 = - ( a + b i ) ,  
\ 

H1~22 = a + bi, 92112 = - 2 b i  , ] 

T2m = e - di, T1211 = - c  -- di , 

Tl121 = - c  + di, Tl112 = c + di , 

other HEFCD and TEFCD equal 0 and 

(1.12) 

a)  a = 1, c = d = 0 (one parameter fami ly  for  b E R )  or 
b)  a = O, b = t, d ~ 0 (one parameter  fami ly  f o r  c > 0); 
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the second case: 
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Ht212 = a + hi, 

TI221 = - ( a  2 q- b2)/2, 

T2112 = (a  2 + b2)/2,  T2111 = c - d i ,  I 

Tlzal = - c  - di, Tl121 = - c  + di , 

Tll12 = c q- di, Tll l l  = - ( a  2 -k b 2 ) / 2 ,  

other HEFCn and TEFCD equal 0 and 

(1.13) 

a)  a = 1, b = 0, c = r cos q~, d = r sin 0 (two parameter fami ly  f o r  r > O, 
0 < ~a < r~/2 o r r = ( ~ = O )  or 

b)  a = b = 0 ,  c =  1, d = 0 ,  or 
c)  a = b = e = d = O .  

2) 

3) 

4) 

s = - 1 ,  (1.12)  and 
a) a = b = 0 ,  c =  1, d = 0 ,  or 
b)  a = b = c = d = O .  

s = -+-1, r > O, all HEFCD and TEFCD equal O. 

H2212 = -2b i ,  92122 = -b i ,  H2112 = a - b i ,  

92111 = bi, H1222 = bi, H1212 = a, H12n = - b i ,  

Hn21 = -2bi ,  111112 = 3bi/4, H n n  = - 4 b i ,  

Tl1~2 = 962/8 + 3abi/2, Tl121 = -962 /8  + 3abi /2 ,  

T1211 : -9b2 /8  - 3abi/2, T1221 = 3 b 2 / 2 ,  

T2111 : 9b2/8 - 3abi/2, T2112 = - 3 b 2 / 2 ,  

other HEFCD and TEFCD equal 0 and 

(1.14) 

a) a = cos qS, b = sin 4) (one parameter  fami ly  f o r  0 < 0 < ~z) or 
b)  a = b = 0 .  

4)  s = --1, all HEFCD and TEFCD equal O. 
5) s = + l ,  0 < t <  1, 

Tl122 = ia, T1221 = b, T21~2 = - b ,  T2211 = - i a ,  ] 
g 

all HEFCD and other TEFCD equal 0 and J 
(1.15) 

a)  a = cos O, b = sin ~b (one parameter  fami ly  f o r  0 < 0 < ~z) or 
b)  a = b = 0 .  

6) S : 1, all HEFCD and TEFCD equal O. 
6) s = - 1 :  

the f i rs t  case: 

H n n  = - ( a  + bi), Hl122 = a + bi, //2112 = - 2 b i  ] 
r 

other HEFCD and al l  TEFCD equal 0 and ) 
(1.16) 
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the second case: 

H1212 = a + bi, Tl~n = - - ( a  2 -}- b2) /2 ,  ) 

T1221 = - ( a  2 • b2)/2, T2112 = (a2  -}- b2)/2'  I (1.17) 

other HEFCD and TEFCD equal 0 and 

a = l ,  b = 0 .  
7) s = -4-1, 0 < t < 1, all HEFCD a n d  TEFCD equal O. 

Remark. 1.7. The classical Poincar~ group is obtained in the case 1), s = 1, 
t = 1, H = 0, T = 0. The quantum Poincar6 group of  [4] corresponds (in spinorial 
setting) to 1), s = 1, t = 1, 

1 H  1 
H1111 = - 9 1 1 2 2  • ~ 1221 = ~H2112 = - 0 2 2 1 1  = 92222 = ih/2, h E R ,  

other HEFCD and all TEFCD equal 0. The quantum Poincar6 group of  [1] corresponds 
to 1), s = l ,  t > 0 ,  H = 0 ,  T = 0  (t is denoted by q there). The so called soft 
deformations correspond to 1), s = -4-1, t = 1, H = 0, Tab = --Tba E iR. 

Remark. 1.8. In the remaining cases 1), s = 1, t = 1 and 5), s = •  t = 1, one 
can consider Tmn defined as in Theorem 1.5 and 

V-1 -1 6 = VLcD(HABcE DF -- HBADFOCE)VEF, k Zij, k ~i (Aj~)= i,AB 

- 1  1VAB, iVcD,jZij, kVs In the case 1), s = 1,t = 1 a pair (Z,T)  cor- (then HABCE = 
responds to a quantum Poincar~ group if and only if 

Tm. = -T.m E iR, Z~j,,g,k = --Zik,~g~j E iR ,  (1.18) 

{[(z - 1 ~ | 11[(1 | Z)Z  - (Z | 1)Z]}ijm,~ I 

=- --lto((~ingym -- ~jngim), to E R ,  / (1.19) 

A3(Z @ 1)T = 0 

where 900 = 1,911 = g22 = g33 = - -1 ,  other 9ij = O, 

A3 = 1 | 1 7 4  l | 1 7 4  |  

+ (1 | z)(z | 1) - (z | 1)(1 | z)(z | 1) 

is the classical (not normalized) antisymmetrizer. In the case 5), s = •  t = 1 in 
addition to these conditions we assume 

rq i2=O for # { k : i k E { 1 , 2 } } = l ,  

Z/li2,i 3 = 0 for ( - 1 )  #{k:#~C{l'2}} = S , 

and get in that way all quantum Poincar6 groups (up to an isomorphism but not 
necessarily nonisomorphic). 

Let us set t / = g ,  a = - - i T m n e m A e n ,  b = - i Z i j ,  sgskeiAOj, k and e = 0  (see 
[16]). Then (1.19) (using (1.18)) is equivalent to ( 3 ) - ( 4 )  o f  [16] where to is 
identified with t of  ( 3 ) - ( 4 )  of  [16]. Thus the table in [16] gives many examples of  

a) a = cos qb, b = sin 0 (one parameter family for 0 < 0 < ~) or 
b) a = b = 0 ;  
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quantum Poincar6 groups (cf. also the remarks at the end of  [16]). The proofs of  
these statements involve the above formulae and the results obtained in the proof  
of  Theorem 1.6 (with 2 = - { t o  in the case 1), s = 1, t = 1 and 2 = -�89 in the 
case 5 ) , s = ~ l ,  t = l ) .  

We denote by d ,  the number of  monomials of  n th degree in 4 variables, 

d n =  #{(a ,  b, c, d )  E N | : a q- b q- c -k d = n} .  

Theorem 1.9. Let  ~ correspond to a quantum PoincarO 9roup G and J ,  w, p be 
as in Theorem 1.4. We set 

~ N  = ag �9 span{pq . . . . .  Pi, : i l , . . . , in  E J ,  n = 0, 1 , . . . , N } .  

N d Then ~X is a f ree  left d - m o d u l e  and d i m d ~  x = ~n=0 , �9 

We denote by l : P x M --+ M the action of  Poincar6 group on Minkowski space, 
cg = Poly(M) denotes the unital algebra generated by coordinates xi(i c 3c) of  the 
Minkowski space M = 114. The only relations in cg are xixj = XjXg. The coaction 

~p:cg _+ ag | cg and * in cg are given by ( 7 * f ) ( x , y )  = f ( l ( x , y ) ) , f * ( y )  = f ( y ) ,  
x C P ,  y E M .  

Let x = (9, a)  E P, y ~ M, f E cg. One has 

(~Pxi)((y,a), y )  = xi(2gy + a) = (2gy)i + ai = (2g)ijyj + ai 

= A i j (q ,a )x j (y )  + pi (g ,a)  = (Aij |  + Pi |  hence 

7*xi = Aij |  + Pi |  (1.20) 

One gets 
6) cg is a unital *-algebra generated by xi, i E ~ ,  and q' : cg ~ M | cg is a 

unital . -homomorphism such that (e | id)7* = id, (id | 7*)7* = (A | id )~ ,  x* = xi 
and (1.20) holds. 

Let 7*W C ~ r 1 7 4  W for a linear subspace W Ccg, f E W,y ,a  E R 4. Then 
f ( y  + a) = f ( l ( ( e ,  a), y ) )  = ( 7* f ) ( ( e ,  a), y )  = (7*f)( (e ,  0), y )  = f ( l ( ( e ,  0), y ) )  = f ( y )  
(k(e, a) = k(e, 0) for k E d ) ,  f = f ( O ) I  C CI  (in fact we have used the translation 
homogeneity of  M) .  Therefore 

7) if  g"W C sr  | W for a linear ~ubspace W c c g  then W c C1. 
Let us consider (cgl, 7*,) which also satisfies 6 ) - 7 )  for some x; ccg, .  Then 

7*(x;x ' ,  - x ' , x ; )  = | ( x j x "  -  'xj) . 

Setting W = span{x~x~ - xSx,-' : g I E J }  and using 7), one gets x~x~ - x~x~ = ai,I, 
agt E C. Thus a = (a~l)i,l~j is an invariant vector o f  A | A, i.e. a = c �9 9, where c E 
C, g00 = 1,glI  = g22 = g33 =- - - 1 , g i j  =- 0 for i :#j .  But a i l =  - -a l i ,  hence 
c = O,x~x 5 = xSx ~ and we fix the proper choice of  (cg, 7*) by means of  

8) if  (cg,, ~ , )  also satisfies 6 ) - 7 )  for some x~ E g ' ,  then there exists a unital *- 
homomorphism p : cg _+ cg, such that p(xg) = x[ and (id | p ) g  = ~g'p (universality 
of  (~ ,  ~ ) ) .  

Definition 1.10. We say that (cg, ~g) describes a quantum Minkowsk i  space associ- 
ated with a quantum Poincark group G, Poly(G)  = ( ~ ,  A), / f  6 ) - 8 )  are satisfied. 

Remark.  1.11. This definition doesn ' t  depend on the choice o f  A (see Proposi- 
tion $5.7). 
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Theorem 1.12. Let  G be a quantum Poincard group with w, p as in Theorem 
1.4. Then there exists a unique (up to a .- isomorphism) pair (cg, 7J) describing 
associated Minkowski  space: 

cg is the universal unital ,-algebra generated by xi, i = 0 ,  1,2,3, satisfying 
x7 = xi and 

(R - l |  k l (XkXl  --  r l k ( A t m ) X  m + Tk l )  = 0 ,  (1.21) 

and ~ is given by (1.20). Moreover, 

N 
dirnCg N = ~ dn, (1.22) 

n=0  

where cgN = span{xq . . . . .  xi, : il . . . .  ,in E J ,  n = O, 1 . . . .  ,N} .  

We set m = (V -1 | V-1)(I  |  | 1)(E | zE),Zij, x = qi(Ajk), 

( R  Z - R . Z  ( R - I |  0 0 0 m 

R P =  ( 0 0 1 i ) 0 0 0 0 (1"23) 
0 1 0 , m p =  0 0 0 0 
0 0 0 0 0 0 0 

Theorem 1.13. Let  G be a quantum Poineard group with w, p as in Theorem 1.4. 
Then 

1) M o r ( N | 1 7 4  = Cid | CRp | Cmp. 
2) Let  us consider the cases listed in Theorem 1.6. Then W c Mor(~  |  

# | ~ ) and 

(W | 1)(1 | W ) ( W  | 1) = (1 | W ) ( W  | 1)(1 | W),  (1.24) 

i f  and only i f  

a) W = x . i d ( x E C . )  or 
b) W = y �9 Rp + z . mp (y , z  E C, f o r  4), s = 1, b:4:0 one must  have y = 0). 

Those W are invertible i f  and only i f  we have the case a) or b) with y4:0. 

2. Proof of the Classification 

In this section we prove the theorems of Sect. 1. 
Let H be a quantum Lorentz group, i.e. P o l y ( H ) =  (~r A) satisfies the condi- 

tions i.-iv, of Sect. 1. According to [14], we can choose w in such a way that d is 
the univeral ,-algebra generated by WAB,A,B = 1,2, satisfying (1.4)-(1.6), where 
X = zQ', Q' = ~Q and 

1) E = el | e2 - qe2 | ea,E ~ = - q - l e l  | e 2 + e 2 | e l, Q is given by 
(13)-(19)  of [14], q E C\{0, i , - i} ,  or 

2) E = el |  - e 2  |  + e l  |  E ~ = - e  1 |  2 + e  2 |  1 + e  2 |  2, Q is 
given by (20)-(21)  of [14], we set q = 1 in that case, 

1 0 1 el = (0), e2 = (1),e = ( 1 , 0 ) , e  2 = (0, 1) (due to the remarks before formula ( I )  
in [14], EIE~:O, which means q4: 4-i). In all these cases X is invertible, A is 
given by Awij = Wik | wkj and ( d ,  A) corresponds to a quantum Lorentz group. 
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The numbers cr 4= 0 are not essential now and are chosen in such a way that 

(X |  1)(1 | 1 7 4  1) = 1 |  (2.1) 

(see (5) of [14]). Then (we use (6) of  [14] and direct computations) 

r2~ = / 3 -1X  (2.2) 

for some / 3 E { 1 , - 1 ,  i , - i } .  We set R = , / ~ E M o r ( I , ~ O # ) , / ~ ' = E - 7 ,  EMor  
(~ O # , I ) ,  where ei | ej, eJ | e i, i , j  = 1,2, are treated as reals. Using (2.1), (2.2) 
and 

(E'  @ 1)(1 |  = 1, (1 |  | l )  = 1 

(see (3) of [14]; matrices of E t and E are inverse one to another), one obtains 
(using e.g. diagram notation) 

(1 |  - I  |  |  = E |  

/3-2(1 |  | 1)(1 | = /~  | 1 ,  

/32(x-~ | 1)(1 |  < ) ( ~  | 1) = 1 | ~ ,  

(1 | E ')(x | 1)(1 |  = E' | 1, 

(E ' |  1)(1 |  -1 | 1) = 1 |  

/3-2(F5' | 1)(1 |  | 1) = 1 OF) ,  

/32(1 | ~(')(x -1 | 1)(1 |  -1) - - g ' |  1. 

Proposition 2.1 (cf. Theorem 6.3 of [8], Remark 2 
q C C\{0, roots o f  unity} (we treat q = ~1 as not a 

1) there exist representations wS(s E N/2) o f  H 
dimw s = 2 s + l  and 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 
(2.8) 

(2.9) 

on page 229 of [14]). Let 
root o f  unity), Then 

such that w ~ = I, w 1/2 = w, 

w~o w y ~ w Is-yl 0 w Is-sq+l �9 " "  �9 w ~+y (s,s' C N/2) .  

2) we| wS'(s,s ' 6 N/2) are all unequivalent irreducible representations o f  H. 

3) wSo w s' ~ wS'o w~(s,s ' 6 N/2). 

4) Each representation o f  H is completely reducible. 

Proof  Let dhol be the subalgebra of ~r generated by matrix elements of w. Then 
Poly(Hhol) = (dhol, Aldho I ) is a Hopf subalgebra of Poly(H) = ( ~ ,  A). According 
to Proposition 4.1.1 of [14], dhol is the universal algebra generated by matrix el- 
ements of w satisfying the relations (1.4) and (1.5). Due to Theorem 4.2 of [13] 
and the facts given in cases I, III of the Introduction to [13] (el. (1.9),(1.30) and 
Theorem 1.15 of [3]), 1) holds and matrix elements of w~(s E N/2) form a linear 
basis of dhol. Using Proposition 4.1.2-3 of [14], matrix elements of wSo wS'(s, 
s 'C  N/2) form a linear basis of ~r Now Proposition 4.1 of [13] (see also 
Proposition A.2 of [7]) gives 2) and 4). The condition iii. of Sect. 1 implies 
(Tr w)(Tr # )  = (Tr #)(Tr w). That and 1) give that Tr v(v E Irr H )  commute 
among themselves. By virtue of  Proposition B.4 of  [3] (cf. also Proposition 5.11 of  
[12]), one obtains 3). [] 
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Proof  o f  Theorem 1.4. We have the Hopf *-algebra ~ ,  its Hopf *-subalgebra ~r 
and two-dimensional representation w of sur which satisfy the conditions i.-iv., (1.2) 
and 1.-6. of Sect. 1. We shall use the results of Sect. 1 of [10] with A replaced 
by A ~ = w�9 ~, 2'AB, CD ~-WAcW~D*. Hence we deal with PAB = VAB, iPi instead of 
pi. By virtue of ($1.3), it suffices to check (S1.5) for the generators: a = WAe or 
a = WAB*. Inserting such a into (S1.5), we get 

G~e E Mor(w�9 w| ~, w| ~@ w), Gzo E Mor(#�9 w| ~, w�9 ~@ v~), 

where 

z ~ z ]42  * (G~-w,)ABCDEF fAB, EF(WCD), (G~)ABCDEF UAB, EF( CD ). (2.10) 

Thus G~ = (1 @X)A,  Gze = B ( X  -1 @ 1), where A is an intertwiner of w@w@v9 ~_ 
w 1 �9 v? | ~, B is an intertwiner of w@ # |  ~ "~ w| w 1 | w. But w 1| ~, v?, w�9 w 1, w 
are irreducible (we use Propositions 4.1 and 4.2 of [14]), hence 

Mot(w| w�9 v?,w| w�9 u?) = CEE ~ | 1 | C1 | , 

Mor(w�9 v~| ~ ,w �9174  v?) = C1 @EE > | C1 | . 

Therefore A = L | 1, B = 1 | [ ,  where 

L = al| + bEE ', /~=~l| ', a, ft, b, b E C . (2.11) 

According to ($1.3), f :  s/---~M4(C) should be a unital homomorphism. It 
means that f should preserve the relations (1.4), (1.4)*, (1.5),(1.5)*, (1.6) ((1.4)* 
denotes the relation conjugated to (1.4) etc.), i.e. 

(G~o | 1)(1 @ G ~ ) ( E  | 1 | = l | | E ,  (2.12) 

(GAo | 1)(1 | G ~o)(/~ @ 1 | = l @2 @ E ,  (2.13) 

(1 | @ Et)(Gze | 1)(1 | Gze) = E t @ 1 | , (2.14) 

(1 | | ~q ' ) (d~  | 1)(1 | 0 ~ )  = Jq' | 1 | , (2.1s) 

( G o ~ @ l ) ( 1 @ G ~ ) ( X | 1 7 4 1 7 4 1 7 4  (2.16) 

Using (2.3),(2.5), (2.6) and (2.8), Eqs. (2.12)-(2.15) are equivalent to 

(L | 1)(1 @L)(E | 1) = 1 |  (2.17) 

//-2(/~ | 1)(1 @ s | 1) = 1 @ E ,  (2.18) 

(1 | EI)(L | 1)(1 | L) = E ' | 1 ,  (2.19) 

//-2(1 | | 1)(1 | [ )  = / ~ / |  1 .  (2.20) 

Using (2.11 ), computing a, b, & b, and inserting them into (2.11 ), one gets that the 
solutions of (2.17)-(2.20) are 

L =Li,  L =/ / 'cLf lz ,  i , j  = 1,2,3,4,  (2.21) 
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where 
Li = qi(1 | + qTZEE') , (2.22) 

1 
ql,2 = •  = •  Using these relations, (2.1), (2.4), (2.6) and (2.8), we get 
that (2.16) is satisfied. Therefore, the solutions of (S1.3), (S1.5) are given by (2.10), 
where 

G~e = (1 |  | 1), G~ = (1 | -1 | 1),  (2.23) 

L,/~ are given by (2.21)-(2.22) (in general 16 solutions). Moreover, 

( R s )ABCD, EFGH = f AB, GH( SO CD, EF ) = f AB,MN( W CE ) f MN, GH( WDF* ) 

= (Ge)A~C, eMJV (G~)MNZ),FC~, 

R ~  = ( G ~ | 1 7 4 1 7 4 1 7 4 1 7 4 1 7 4  -~ |  (2.24) 

We know that /SAB | /5CO form a basis of (/~2)inv which transforms under A2L 
according to 5O �9 5O. It is easy to check that the decomposition into irreducible 
unequivalent components 

~ Q  5O ~ W| W(~ W@ W ~'~ WI @ ~ G W 1 | -~f | I 

corresponds to 

where 

(/q2)inv = Gi-  @ W1 @ Wf @ W0, (2.25) 

W l [ = span{(~b | 0)(1 |  -1 | 1)(/5 | qS, o C (C 2 | C2) ', 

~ = 0 , 0 ~  = 0 } ,  

~V 1 

W i = 

~ =  

{(~ | ~')(1 |  -~ | 1)@ | p): ~ c (c  2 | c2) ', 

{(~' | ~)(1 |  -1 | 1)(/5 | ~ c ( C  o C) ' ,  

C(E' | E')(1 |  -~ | 1)(/5 | 

4,E = 0 } ,  

~=0},  

(indices as 
matrix of p 
we get that 

in the matrix multiplication rule have been omitted). But R~e is the 
in the basis PAB | PCZ) (see the remark after (S1.13)). Using (2.24), 

(2.25) corresponds to 

,0 = flqi~] -1 @ - - f lq i~  3 @ _flq[-3~-] 1 @ fiq73~-3 . 

Comparing the condition 6. with Proposition S1.6, we get dimK = 6. Therefore 
Kinv = Wl ~)W T. But Proposition S1.4 implies K c ker(p + id) ,  hence f i q i~9=  
fiq~-3~-i = 1. Remembering that fl c { 1, 1, i , - i} ,  q 4= • i, we get q = • Thus 
we can (and will) omit L3,L4. We obtain fl = q, i = j  or fl = - q ,  i@j(q  ~ {1,-1}, 
i, j c{1,2}) .  In all these cases p =  1 | 1 7 4 1 7 4  hence K = k e r ( p + i d ) .  
Moreover, p 2 =  id, R2 = 1| By virtue of Proposition 2.1 the conditions a)-c) 
of Sect. 2 of [10] are satisfied and we can use the results of Sects. 1-4 of [10]. In 
particular, Corollary $4.2 implies the first statement of the theorem. 

Let us pass from 5 ~ to A = V-15OV (see (1.2)). Since 12 = zV, 71 = A. We 
--1 replace PAB, A , B =  1,2, corresponding to 5O by Pi = Vi,AsPAB, fAB, CD by J'}j 

--1 = Vi, ABfAB, cDVcD,j (cf. (S1.2)), R ~ , G ~  and (~e byR = (V  -1 | V -1 )Rs174  V), 
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G = (V -1 | 1)G~e(1 | V) ,G  = (V -1 @ 1)Gao(1 @ V). Then (2.10) gives 

fiy(wCD) = GiC, Dj, f ij(WCD*) = GiC, Dj . (2.26) 

~N �9 
Now we pass to a new Pi such that p* = pi without change of  .~ ,/"2, ~, P, K, ~y, 

R, G and G (see Proposition $4.5.1. and (S1.2)). We redefine PAe accordingly. By 
virtue of  Proposition $4.5.2, ($4.10) holds. Setting a = WEF* and passing back to 
5~ one has -1 . fBA,DC(WeF ) = fA~,cD(WeF ). It means 

G-1 ( ~, )EBA,DCF = (G,Lf)ABE, FCD, (2.27) 

i.e. (Li -1 | 1)(1 |  -1 )  = (L~ 1 @ 1)(1 @ X  -1)  (we used (2.23), (2.21), (2.2)). Thus 
Li = L j, i = j .  Consequently, fl = q = -4-1 and i = j = 1, 2. Conversely, this con- 

dition gives ($4.10) for a = wet* and (using S o ,  = , o S  -1 ) a = W~-F 1, hence for 
all a E ~r The list o f  X such that /3 = q = 4-1 is provided in the formulation of  
Theorem 1.4 (they contain the factor c~ which is computed in such a way that (2.1) 
is satisfied, we also restricted the range of  parameters according to remarks on 
p. 220 of  [14]). For E , U , X  as in Theorem 1.4 and ~ j  computed above (S1.3), 
($1.5) and ($4.10) (for A) are satisfied. 

According to Proposition 2.1, the only 2-dimensional irreducible representations 
of  H are UwU -1, Uff~U -1, U E GL(2, C). Thus if  qS: ~r ~ ~ 2  is an isomorphism 
of  Hopf  .-algebras ~r ~ 2  included in our list, then 

(1) qS(w)= UwU -1 or (2) ~b(w)= Uff~U -1 . 

Let us consider the case (1). We denote E , U , X  for Ai, i =  1,2, by Ei, E[,Xi. 
Applying ~b to (1 .4 ) - (1 .6 )  for sr one gets 

(U  -1 | U-1)E1 = k - l E 2  , (2.28) 

e ' l ( U O U )  ' ' = k E~,  (2.29) 

(L~ -1 @ U - 1 ) X I ( U  | U )  = l Y  2 (2.30) 

for some k,U,  l c C. .  Considering (2 .28)-(2 .29) ,  one gets E1 = E2 = E and 

U c G L ( 2 ,  C ) , k = k  ~ = d e t  U f o r E = e l | 1 7 4  

for E = el | e2 - e2 | el + el | eb  

k = k ~ = m 2 

((o 0)(0 , ,  
U C  , Y 

for E = e/ | e2 + e2 @ ea. 
Inserting such U in (2.30), one gets (for E = el | e2 - -  e2 @ el see Sect. 5.1 o f  

[14]) X1 = X 2  = X ~ l  = 1, so 

(r2-' | u -1 )x (u  | O) = x  (2.31) 
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and in particular cases: 

1) t =  1' U E G L ( 2 , C )  

0 < t <  1 . u E { (  o 

2) U = m ( e o  

3) U = m ( ;  

4) U = m ( ~  

6) U e  m 0 

o) (o ;) 
Y , x,y C , 

e_i~ , m E C . , x E C ,  qSER, 

x) 1 , m c C . , x E C ,  

i l ) , m E C . , x E R ,  

eO-i~) " mCC,,f~E'}, 
1 

~ ) ,  m ( ~  ? 1 ) ,  m(01 0 ) ,  m ( ? l  ~ ) : m ~ C . } .  

75 

Next, let us consider the case (2), Then 

(U -1 | U-' )E1 =/~-~E2, (2.32) 

E~(gQ | U) = kT'E~, (2.33) 

(U -1 | U-1)XI(U | (7) = l-aX2 1 (2.34) 

for some k,k', l E C.. Considering (2.32)-(2.33), one gets E1 = E2 = E, 

UEGL(2,C), k = k ' = - d e t U  f o r E = e i | 1 7 4  

{ ( m L )  ) k ' m 2  U E  0 " m ~ C . ,  x E C  , k =  = , 

for E = el | e2 - e2 @ el + el | el, 

for E = el | +e2  |  
Inserting such U in (2.34), it is possible only for X1 = X2 = X in the following 

cases: 

1) t = 1: U E GL(2, C),I = 1, 

3) r = O ' U = m ( :  1 ) , m c C . , x E C ,  l = l ,  

(1 2 ) I l l  ) 4) U = m 0 ~-1 " 0 ,m E C.,x ~ R,l = l, 
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(l is computed for normalization of X as in Theroem 1.4, which includes ~). 
In particular, all considered ( d ,  A) are nonisomorphic. [] 

Remark. 2.2. Using (2.17)-(2.2t) for i = j  = 1,2, fi = q = :kl, one also gets 

(1 | L)(L | 1)(1 | E) = ~ | l ,  (2.35) 

(1 | | 1)(1 | E) = /~  | 1, (2.36) 

(E' | 1)(1 |  | 1) = 1 |  (2.37) 

(/~' | 1)(1 | | 1) = 1 |  (2.38) 

Let us repeat that K = ker(p + id), p2 = id, the conditions a ) -c )  of Sect. 2 of 
[10] are satisfied and we can use the results of Sect. 1-4 of [10]. We notice that 
L,[,  G, G and R given before Theorem 1.5 and in the proof of Theorem 1.4 coincide 
(i = j = i corresponds to s = 1, while i = j = 2 to s = -1) .  They correspond to 
A as in (1.2), A = A. 

Proof o f  Theorem 1.5. Using Theorem 1.4 and Corollary $3.8.a, ~ is the universal 
,-algebra with I generated by WA~ and Pi satisfying (1.4)-(1.9). Next, ($2.6) 
coincides with a), ($4.10)-($4.11) imply b), (2.26) gives the first formula of c). 
The next two formulae in c) can be treated as definitions of HEFCD and TE~cD. Since 
w, v? and ~ are representations, formulae concerning the Hopf structure follow. 
Uniqueness of f ,  t/, T and the *-Hopf structure is obvious. 

Let ~ , ~  describe two quantum Poincar6 groups and sC, A,A, P,f,~l, T, 
sr z], /], /3, )~, 0, i?, be the corresponding objects as in Theorems 1.4 and 1.5. 
Assume that q5 : N -§ ~ is an isomorphism of Hopf *-algebras. According to Propo- 
sition $4.4, one has q~(sr = ~ and we put ~bd = qbl~4 : ~r --+ J .  Due to the proof 
of Theorem 1.5, one has 

(1) ~b(w)= U@U -1 or (2) qb(w)= U~U -1 . 

Using (1.2), one gets qS(A)= M]IM -1, where 

M =  V - ~ ( U |  in the c a s e ( l ) ,  / 

f M = ql /2V-I (U | (7)XV in the case (2). 
(2.39) 

Using (1.3) and (2.2), one gets _M = M(ql/2 = flql/2 since fi = q = • 
By virtue of ($4.2), one has 

fru(@CD ) = UE)(M-1)iJlm(WAB)MmjUBD in the case (1),  

~S(~,CD) ---1 --1 , - ---- UCA( M )ilflm(WAB )MmjUBD in the case (2).  

Using (2.28)-(2.30) or (2.32)-(2.34), we get s = L in all cases. Thus there are 
no isomorphisms between quantum PoincarO groups with different s. [] 
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Using the computer M A T H E M A T I C A  program, we made several computations 
performed in 

P r o o f  o f  Theorem 1.6. Let ~ ,  ~4, A, A, p, f ,  r/, T describe a quantum Poincar6 group. 
According to Propositions $4.4 and $4.5.3, it is always possible to replace t/ by 

= q + f h  - eh, where hi E R. We put ~4 ----4~, w = "~, c = 1, M = 14, ~b~ = id, and 
f doesn' t  change. Thus we substitute HEFCD by 

I~EFCD = VEF, iOi(WCD ) ~" HEFCD ~- f EF, AB(Wco )hAB -- 6cDhEF , 

where fEF, AB(WCD) are given by (2.10) and (2.23), hEF = VEF, ihi (i.e. h11,h22 E R, 
hi2 = h21 E C). In each equivalence class obtained by such substitutions we restrict 
ourselves to exactly one H singled out by the following constraints: 

no constraints for 1), s = 1, t = 1, 

Hl l l l  E iR, 92222 E iR, 91222 = 0  for 1), s =  1, t + l ,  

Hl112 = 0, H2112 E iR for 2), s = 1, 

91111 = 0, HLI12 E iR, 91211 E iR for 3), s = 1, 

H2Ht C JR, 91122 C R, Hl112 C iR for 4), s = 1, 

Hlll l  C JR, H 2 m  = 0,H2222 C iR for 5), s = 1, t=t= 1, 

Hl111 c iR, //2222 C iR for 5), s = 1, t = 1, 

91122 E iR, //1112 = 0, 92211 E iR for 6), s = 1, 

HI122 E iR, /-/2222 E iR, 91222 ~-- 0 for 7), S = 1, 

Hl111 E iR, 91222 = 0, 92222 E iR for 1), s = - 1 ,  

H~z2 E iR, H121I = 0, H22tl c iR for 2), s = - 1 ,  

92111 = 0, Hl111 E iR, H2211 E iR for 3), s = - 1 ,  

92211 C iR, H1222 = 0, H n l i  C iR for 4), s = - 1 ,  

H1222 = 0, H11H E i R ,  H2222 E iR for 5), s = -1, t=t=l ,  

H1222 = 0 for 5), s = - 1 ,  t = 1, 

H1211 = 0, //2112 E iR for 6), s = - 1 ,  

Hl122 E iR, 91222 = 0, 92222 E iR for 7), s = - 1 .  

We also may and will assume ($3.50). 
By virtue of  the theory presented in Sect. 1 -4  of  [10] (see e.g. Theorem $3.1 

and Proposition $4.5) 9EFCD and TEFCD give a quantum Poincar6 group if and 
only if ($1.5), ($2.6), ($2.14), ($3.1), ($3.2), ($4.10), ($4.11) and ($4.12) are satis- 
fied (cf. the proof  of  Theorem 1.4). We shall investigate subsequent conditions 
and dealing with the next ones we assume that previously investigated condi- 
tions are satisfied. We already know that f is a unital homomorphism satisfying 
(2.26),(S1.5) and ($4.10). Thus ($2.6) means that applying t/i to the relations 
(1.4) ,(1.4)*,(1.5) ,(1.5)* and (1.6) (* means that we conju_gate the relation) and 
using ($2.5), one gets relations on H w =tli(WAB ) and H w = tli(WAB*), which iA,B iA,B 
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should be satisfied. They read as follows: 

{(G | 1)(1 |  w) + (H  w | 1)}E = 0 ,  (2.40) 

( ( G |  1)(1 |  ~) + (H ~ | 1)}/~ = 0 ,  (2.41) 

(1 | E ' ) { ( H  w | 1) + (G | 1)(1 | HW)} = O, (2.42) 

(1 | E ' ){ (H ~ | 1) § ( 4  | 1)(1 | H'~)} = 0 ,  (2.43) 

(1 | |  w | 1) + (G | 1)(1 | H#)) ] 
/ = {(H ~ | 1) + (5  | 1)(1 | H.)}X. 

W * Setting a = EF in ($4.11), one gets 

(2.44) 

H ~ - 1 H w ( )iE, F tli(W~ 1 ) (2.45) = = - - f i j ( W E L  ) "  I ' I j(WLF) = - - G - 1 E i , j L  " j L , F  

(we used ($2.5), ($1.4) and (2.26)). Conversely, (2.45) gives ($4.11) for a = WEF* 

and (using S o .  o S o .  = id) a = w -1 hence for all a E ~4 (it suffices to check the EF ~ 
conditions ($4.10)-($4.11) on generators of d as an algebra: they are equivalent 
to Theorem 1.5.b for a*). 

Using the 16 relations (2.1), (2.3)-(2.9),(2.17)-(2.20) and (2.35)-(2.38), one 
gets that (2.40) is equivalent to (2.42),(2.41) is equivalent to (2.43). Moreover, 
(2.40) is equivalent to (2.41) (one conjugates (2.41) and uses (2.27), (2.45)). 
Thus (2.41)-(2.43) are superfluous. The remaining equations: (2.44) (with inserted 
(2.45)) and (2.40) give a set of R-linear equations on HEFCD = VEF, iH~G D. 

Next, ($3.50) gives a set of linear equations o n  TEFCD = VEF, iVcD,jTij. By 
virtue of ($3.50) and ($4.14), one obtains (/~ was defined after ($4.12)) Rir = - i t ,  
RD = - D ,  where D = T -  T. Therefore D corresponds to a subrepresentation of 
A |  equivalent to w 1 | wl.~But ($4.12) means that D is an invariant vector of 
A |  hence D = 0, i? = T (conversely, this implies ($4.12)). This gives a set of 
R-linear conditions on TEFCD. 

According to PropositionS3.13 and Corollary S4.9, we may replace ($2.14) 
by ($3.55) for b = WAB. But this is equivalent to M E M o r ( w , A | 1 7 4  where 
Mqc, B = riJ(WCB). Using [(R + 14~174 1]M = 0 (see ($3.54)), one gets M = [(V -I  | 
V-l)(1 |  | 1) | 1]N, where N E M o r ( w , w | 1 7 4 1 7 4 1 7 4  (L1 | | 1)N = 
- N ( L  |  doesn't depend on s, one can put s = 1). Thus NaBCDF, O = PABF, cEcD 
with P E Mor(w,w| w| w), (L1 | 1)P = ql/2p. It means P = 21 | E + #E | 1, 

1 2 = ( E E l |  1 ) P = 0 .  Hence # =  gq , P 2 ( I | 1 8 9 1 7 4  On the otherhand, 

~q(wcB) (R 1 ~ w = - )q, kl(tll( CA)~(WAe) -- tMAls)rls(wcB) + Tk15cB 

- fln(WCA)fkm(WAB)Tmn). 

Using (1.2), ($2.5), (2.45) and (2.26), one gets a set of equations containing terms 
bilinear in Re HABCD, Im HABCD, terms linear in Re TABCD, Im TABCD and terms 
linear in Re 2, Im 2. 

We shall prove that ($3.1) is equivalent to 2 E ql/2R. One has (see (1.2)) 
P = (V  -1 | V - 1 N  V-1)JV,  where P = ( ( R -  14~ | 1)F and 

JQRTVAB,CD = VQR, i VTV, j'~IJ ( wAC WBD * ) .  
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Using Proposition $3.13, 

~iJ(wACwB~* ) = ~iJ(WAc )6B~ + GjA,EsGi~,cm~mS(wB~*). 

But by virtue of  Proposition $4.8, 

"CmS(WBD*) = TSm(WB1D ) .  

Using once again Proposition $3.13 for a = wLs, b = Ws~, multiplying both sides 

by G~slipG~lm,jf and conjugating both sides, one gets 

TSm( WB; ) - - =  --GsB, piGmP, LjTjiJ ( WLD ) 

(see (2.27)). Inserting all these data, after some calculations (using the 16 relations), 
one obtains 

= 2qA + 2B + 2 ( i  + 2q)C, J 

where A = (1 | 1 7 4  | 1 ) ( E Q X  |  

B = 1 @ (1 |  -1 @ 1)(E |  | 1, 

C = (1 |  | 1)(E | E )  | 1 | 1 .  

We shall also use D = 1 | 1 | (1 |  | 1)(E |  Using (2.24) and the 16 rela- 
tions, one has 

(Rze | 1)A = - A  - qC, (R~e N 1)B = - B  - qC,  

(R~ | 1)C = C, (R~  | 1)D = D  +qA § 2 4 7  C ,  

(1 | R~e)A = - A - q D ,  (1 |  = - B - q D ,  

( I |  ( I |  

In particular, ( R z  | 1 ) J  = - J  (it also follows from ($3.54)). Thus we can compute 

- 2 ( V |  V| V)A3FV -1 = (V | V| V)A3fi'V -1 

= [1 | 1 | 1 - 1 |  | 1 + (1 | | 1) 

+ (R~ | 1)(1 | R ~ )  - (R~r | 1)(1 | R~)(R~ | 1)]J  

= 2[J  - (1 | R z ) J  + (R~e | 1)(1 | R~e)J] 

= 3(2q - 2)(A - B ) .  

But A + B  (ira[(1 |  -1 |  -1 | 1)A] = i m E  | C 2 | C 2 | im/~ while im [(1 | 
X -  a | X -  1 | 1)B] = C 2 | W0 | C 2, where dim im E = dim im/~ = dim W0 = 1 ), 
hence A3F = 0 if  and only if )~ = q2, i.e. 2 E ql/ZR. 

We notice that 

A | 1 7 4  ~ w|174174174174  ~_ (w | w 63 w3/2)| 63 ~ | w3/2) , 

hence 

Mor(/,  A|174  = {0}.  (2.46) 
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(1.10) 

(1.11) 

(1.12) 

(1.12) 

(1.14) 

(1.15) 

for 1), s = ~  

or (1.13) for 

with a = b = 

f o r 4 ) , s =  1, 

Therefore ($3.2) is equivalent to A3(Z | 1 4 -  14 |  = 0. This gives a set 
of  equations, which are R-linear in Re HABCD "Re TeFCH, Im HABCD" Re TEFGH, Re 
HABCD" lm TEFGH and ImHABcZ)" Im T~FGH. Our strategy is as follows: we set con- 
straints for HABCD as before, solve R-linear equations, insert these data into R- 
bilinear equations and finally use the condition for 2 and the last set of  equations. In 
the cases 1), t = 1, s = 1 and 5), t = 1, s = i l ,  we haven' t  solved the R-bilinear 
equations (but see Remark 1.8). In other cases one gets the following solutions 
(with the parameters being real numbers): 

w i t h  Tab = --Tb~ E iR for 1 ), s = - 1 ,  t = 1, 

1 , 0 < t < l ,  

2), s =  1, 

0 for 2), s = - 1 ,  

for 5), s = : ~ l ,  0 < t <  1, 

(1.16) or (1.17) for 6), s = - 1 ,  

in the remaining cases all HEFCD and TeFO) must equal 0. Moreover, 2 = 8b 2 in 
the case 4), s = 1 and 2 = 0 in other solved cases. 

Let us remark that for fixed WAB mad Pi : 4)i, th and HEFCD are uniquely de- 
termined (cf. (S1.6)). Moreover, reFc~ satisfying ($3.50) are also uniquely deter- 
mined: if  T ' would also satisfy ($3.46) and ($3.50), then for L = T - T ~ we would 
have 

0 = (R - 14G2)(L - (A|  = (R - 14~2)L - (A|  - 14~2)L 

= - 2 ( L  - (A �9  

L E Mor ( / ,A |  but RL = - L  gives that L corresponds to the subrepresentation 
W 1 @ W 1 of  A@A, L = O, T = T'. 

It remains to check which pairs (H, T) as above give isomorphic objects: By 
virtue o f  Propositions $4.4 and S4.5 and above remarks it would mean that (H, T) 
is obtained from (H, T) via formulae ($4 .3) - ($4 .4)  with c, hi E R, c4:0, M as in 
(2.39). After some calculations one can choose one pair (H, T) in each equivalence 
class (for each considered case). The results are presented in the formulation o f  the 
theorem. [~ 

Proof of  Theorem 1.9. By virtue o f  Corollary $3.6 it suffices to prove dimSn = d n .  
1 R Taking A = ~ = w � 9  one has the projection Sn = 7 , ~ e l I n  2, where R~ = 

(R.~)il . . . . .  (Rse)ik for a minimal decomposition rc = til . . . . .  tik, R~  = (1 @ X | 

1)(L @/~)(1 |  -~ @ 1). Putting 

Kx = (1 | @ X  @ l|  | |  @ X  @ 1 | . . . . .  

(1 | 1 7 4 1 7 4 1 7 4 1 7 4 1 7 4  

and K~ defined similarly with X replaced by r, one can define S~ = KxSnKx I and 
S J =  K(-1Ss Therefore d i m &  = tr S~ = tr S~ = t rSJ .  One gets the formula for 
S~ / as for & but with Rao replaced by R~  = (1 @ ~ @ 1)(L | @ T --1 @ l) (we 
use the 16 relations). 
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Moreover, L @/'S = Lo @ rLoz, where Lo = 1 | + q - ~ E U ,  E = el | e2 - qe2 | 
el + toel | el,  U = - q e  l | e 2 + e 2 @ e l + toe 2 @ e 2, q = 2 1 ,  t o = 0 , 1 ( f o r q = - i  
one has to = 0). Replacing el by  eeb  c=#O, one has to replace e 1 by  c - l e  1, Lo by 
Lo with to replaced by  e �9 to. Thus (for q = 1) trS~ ~ doesn ' t  depend on to E C 
(for to 4 = 0 and also for to = 0 in limit). So we may put to == 0. Then Loel | el = 
et @ e~, Loe2 @ e2 = e2 @ e2, Loel @ e2 = qe2 @ e~, Loe2 @ el = qe~ | e2. Setting 
A ~  ---- e~ @ e~, one has 

R ) A ~  B @ A~6 = q~+B+~+6A~6 @ A ~  . 

It is easy to show that Ss )k = t~.~r~'" )ko~ ~ oH = Ss tl i s a  projection, 

SnH [ A |  a V' , l  |  a + b + e + d = n ,  

form a basis o f  im S~ ~. We get 

dim S~ tr S~' " " " = = dim lm Ss 

= #{(a, b, c, d )  E N | " a + b + c + d = n} = d n .  [] 

P r o o f  o f  Theorem 1.12. We know that A |  A ~_ I | w~ | w 1 | w I | w 1, where 

kcr(R + 14 ~  corresponds to w l |  ~ .  Therefore ($5.2) holds. Moreover,  (2.46) 
coincides with ($5.4). Using Theorem $5.6, we get the first statement. The second 
statement follows from Proposition $5.3, Proposition $5.5 and dim S, = d n  (see the 
proof  o f  Theorem 1.9). [] 

P r o o f  o f  Theorem 1.13. We know that ($3.59) holds (see ($3.2) and (2.46)) and 

R #  ~ 14 ~ (see the proof  of  Theorem 1.4). Moreover,  ( A |  ~ = m I means that 

m ~ is proportional to m. According to the proof  o f  Theorem 1.6, F = 0 i f  and only i f  

2 = 0 (otherwise, using 2 = q,~, A + B + qC = 0, acting 1 | R~ ,  C = D, V0 | C 4 = 

im C = i m D  = C 4 @ V0, where V0 = im[(1 @ X  @ 1)(E @E)] ,  dim V0 = 1, contra- 
diction), which means b : 0 in the case 4), s = 1 and no condition in other cases 
listed in Theorem 1.6. Then we use Proposition $3.14. [] 

Remark .  2.3. According to Corollary $3.8.b, N is the universal unital algebra gen- 
erated by d and pi ( i  E J )  satisfying I~  = / ~ ,  ($3.48) and ($3.47) for w and 
(cf. Remark $3.10). 

Acknowledgements. The first author is grateful to Prof. W. Arveson and other faculty members for 
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discussions. 

Note added in proof. We take that opportunity to make corrections in our paper ref. 8: 
1 ) At the beginning of Theorem 4.6 add in a separate paragraph: 
Assume that the Haar measure on Gc is faithful. 
2) on page 417, line 6 up, replace #-i/2 by #+V2 
3) on page 390, line 3 up, replace w I o w 2 by w~@ w 2 
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