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Abstract: Using the general theory of [10], quantum Poincaré groups (without
dilatations) are described and investigated. The description contains a set of
numerical parameters which satisfy certain polynomial equations. For most cases
we solve them and give the classification of quantum Poincaré groups. Each of
them corresponds to exactly one quantum Minkowski space. The Poincaré series
of these objects are the same as in the classical case. We also classify possible
R-matrices for the fundamental representation of the group.

0. Introduction

The Minkowski space with the Poincaré group acting on it is the area of the quan-
tum field theory. However, it is not known yet what is the area of a deeper theory,
which would involve also the gravitational effects. It was suggested by many authors
that it would be a quantum space. It means that instead of functions on spacetime
we would have elements of some noncommutative algebra, called “the algebra of
functions on the quantum space.” On the other hand, such a quantum space should
be in some sense similar to the ordinary Minkowski space. The simplest models
of such a situation can be obtained by choosing some properties of Minkowski
space endowed with the action of the Poincaré group and classifying all quan-
tum groups and spaces which satisfy those properties. There are many examples
of quantum Poincaré groups, the corresponding Minkowski spaces and R-matrices
(cf.eg [4,2,11,6,5,1,15] and remarks in [10] concerning these papers) but such
classification still doesn’t exist. Qur aim is to provide it. In Sect. 1 we define a quan-
tum Poincaré group as a quantum group which is built from any quantum Lorentz
group [14] and translations and satisfies some natural properties. The corresponding
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commutation relations are inhomogeneous and contain a set of parameters Hypcp,
Tygcp. Our scheme contains the examples provided in [4, 1], but doesn’t contain
the examples of [2,11,5] (see however Remark 3.9 of [10]) because we consider
quantum Poincaré groups without dilatations. Also the example [6] (formulated in
the language of universal enveloping algebras) has no corresponding object in our
scheme (for g+ +1).

It turns out that there are many quantum Lorentz groups which can be used
in our construction. However all of them correspond to ¢ = +1. For each such
quantum Lorentz group (except the classical one and one more for ¢ = —1 which
are considered in Remark 1.8) we classify all quantum Poincaré groups. We
also provide the corresponding quantum Minkowski spaces and R-matrices for the
fundamental representation of the quantum Poincaré group (for one family of con-
sidered quantum Poincaré groups there is no nontrivial R-matrix). The Poincaré
series of the corresponding objects are the same as in the classical case. The proofs
of our results (using [10]) are contained in Sect.2. In particular, the question of
finding all quantum Poincaré groups is reduced to a set of polynomial equations for
H,pcp, Tapcp which we solve (in the indicated cases) using the computer MATHE-
MATICA program. Some results of the present paper were presented in [9]. In [16]
a similar classification is provided in the case of Poisson manifolds and Poisson-Lie
groups.

We use the terminology and results of [10]. The letter S means that we make a
reference to [10], e.g. Theorem S3.1 denotes Theorem 3.1 of [10], (S1.2) denotes
Eq. (1.2) of [10]. The small Latin indices a,b,c,d,..., belong to $ = {0,1,2,3}
and the capital Latin indices 4,8,C,D,..., belong to {1,2}. We sum over repeated
indices which are not taken in brackets (Einstein’s convention). The number of
elements in a set B is #B or |B|. The unit matrix with dimension N is denoted by
15,1 = 1. The Pauli matrices are given by

0 1 (0 i 10
0-0:125 0] = 1 0/ 0y = i 0 ) 03 = 0 —1/-

If V,W are vector spaces then Tty : VO W — W ®V is given by tyw(x® y)
=y®x, x €V,y € W. We often write 7 instead of 1y5. We denote C, = C\{0},
R. = R\{0}.

1. Quantum Poincaré Groups

In this section we define and (in almost all cases) classify quantum Poincaré groups
as objects having the properties of the usual (spinorial) Poincaré group. The proofs
of the results are shifted to Sect. 2.

The (connected component of) vectorial Poincaré group

P =8504(1,3)><R* = {(M,a) : M € S0y(1,3),a € R*}
has the multiplication (M,a) - (M',a') = (MM’,a + Ma'). By the Poincaré group
we mean the spinorial Poincaré group (which is more important in quantum field

theory than P)

P =SL2,C)<R* = {(g,a) : g € SL(2,C),a € R*}
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with multiplication (g,a) - (¢,a’) = (g¢',a + A4(a’)), where the double covering
SL(2,C) > g — 45 € SOx(1,3) is given by A(x)0; = g(x;0,)g",g € SL(2,C),
x € R*. The group homomorphism 7 : P 3 (g,a) — (Ag,a) € P is also a double
covering. In particular, (—15,0) € P can be treated as rotation about 27 which is
trivial in P but nontrivial in P (it changes the sign of wave functions for fermions).
Both P and P act on Minkowski space M =R* as follows (g,a)x = (Ag.a)x =
Jgx +a,g € SL(2,C), a,x € R*, and give affine maps preserving the scalar prod-
uct in M (in a more abstract setting we would treat M as an affine space without
distinguished 0). Let us consider continuous functions wyg, p; on P defined by

waz(g,a) = guz, pi(g.a) =a; .

We introduce the Hopf x-algebra Poly(P) = (%, 4) of polynomials on the
Poincaré group P as the x-algebra # with identity / generated by wgp and
pis 4,B=1,2,i ¢ # (according to the Introduction, .# = {0, 1,2,3} in this section)
endowed with the comultiplication 4 given by (4f)(x,y) = f(x - y),f € &, x,
¥ € P(f*(x) = f(x)). In particular,

Awep = wep ® Wrp, Api=pi®I+4;® pj, (LD
pi = pi, where
1 0 0 1
o o1 —i o
A=V"(wow)V, V= 01 i o0 (1.2)
1 0 0 -1

In order to prove (1.1) we notice that

(Awep)((9,a),(g",a") = wep(gg',a + Ag(@')) = (99 )ep = gergip
= wer(g, a)wrp(g',a') = (wer @ wip)((g,a), (9, a'))
(4p:)(9,a),(9',a")) = pi(gg’,a + Ag(d)) = a; + 4g(a' ) = a; + (%)
= pi(g,a) + Ay(g.a)pi(g’.d') = (7 ® I + Ay ® py)((g,a).(d,d)),
where we used the formulae (6;)cp = Vep,; and
Ven,ilAg)y = (Ag)ii(01)ep = (9059 )ep = gee(0,)er(9™ )
= wce(g, a)Ver, jwor™(9,a) = (WeeWpr Ver, j X9, @) = Vep, i Ai(g, a) -

Since TCD,EF = 5CF6DE> we get _
V=1V (13)

and 4 = A. We put p = (pi)ics. One can treat wep as continuous functions on the
Lorentz group L = SL(2,C) (wep(g) = gep, g € L). We define the Hopf *-algebra
Poly (L) = (o7, 4) of polynomials on L as x-algebra with / generated by all wcp
endowed with A obtained by restriction of 4 for # to . Clearly w and A are
representations of L. It is easy to check that

1. # is generated as an algebra by «/ and the elements p;, i € £,
2. o is a Hopf *-subalgebra of 4.

3.2 = < 61 7 ) is a representation where A is given by (1.2).
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4. There exists [ € # such that p; ¢ .

5./ C I, where I’ = oA/ X + o/, X =span{p;:i € F}.

6. The left .o7/-module «/ - span { p; p;, pi,I 1 i,j € #} has a free basis consisting
of 10+ 4+ 1 elements.

(5. and 6. follow from the relations p;a = ap;, pip; = p;pi, a € &, and elementary
computations, a free basis is given by {p;p;, pi,d 1i < ji,jC F 1). According to
[14], Poly (L) satisfies:

i. (o7, 4) is a Hopf *-algebra such that ./ is generated (as a x-algebra) by
matrix elements of a two-dimensional representation w;
ii. w@®w =I1@®w!, where w! is a representation;
iii. the representation w @w ~ w @w is irreducible;
iv. if o', A',w' satisfy i—iii. and there exists a Hopf *-algebra epimorphism p :
o — of such that p(w') = w then p is an isomorphism (the universality condition).

We say [14] that H is a quantum Lorentz group if Poly (H) = (.o, A4) satisfics
1.—iv.
Definition 1.1. We say that G is a quantum Poincaré group if the Hopf +-algebra

Poly (G) = (4, A) satisfies the conditions 1.-6. for some quantum Lorentz group
H with Poly (H) = (o7, A) and a representation w of H.

Remark. 1.2. The condition 5. follows from Z pw>=w P, P ow=w %,
while 6. is suggested by the requirement W(# © 2) =(Z @ P)W for a “t-like”
matrix W (cf. Theorem 1.13). Moreover, the condition 4. is superfluous (it follows
from the condition 6. and Proposition S0.1).

Remark. 1.3. Different choices of (H,w) can give a x-isomorphic 4.

Theorem 1.4. Let G be a quantum Poincaré group, Poly (G) = (%, A4). Then o is
linearly generated by matrix elements of irreducible representations of G, so s
is uniquely determined. Moreover, we can choose w in such a way that o is the
universal x-algebra generated by wyp, A,B = 1,2, satisfying

wow)tk =E, (1.4)
E'(wow)=E, (1.5)
Xwow)=Wow)X, (1.6)

where X = 1Q’ and
DE=e Qe —e;Rey, E=—-el@e+e®e,

1 0 0 0
;|0 ¢ 0 0 <
QO = 0o 0/ o1 0<t <1, or
0 0 0 ¢!
2)
1 0 0 1
; ;|0 1 0 0
E,E'" as above, Q' = 001 ol ©°
0 0 0 1
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NE=e1®e;—er@e+e e, E'=—-2' Qe+ +2 6,

0
0

/o
Q= 1
0

0
1
0
0

OO O~

4)

1

0 -1
1 —~1|°
0 1

!
E,E" as above, Q' = or

1
1
0
0

oo o

SYE=e;Qet+e,Re, El=¢'Q@ +e2 Qe

v 0 0 0
;o 0O —¢t 0 © <
O =i 0 0 -t 0 , 0<t<1, or
0 0 0 ¢
6)
1 0 0 1
! /. 0 —1 O 0
E,E" as above, Q' =i 0 0 -1 ol ©°
0 0 0 1
7)
r 0 s -
' ;{0 = s 0
E.E" as above, Q' =i 0 s —r 0l°
s 0 0 r

F=+Y2, s=@—-1YY02 0<i<l1,

e = ((1]), 2= 1), e'=(1 0), e=(0 1). Moreover, all the above triples
(E,E', Q") give nonisomorphic (o, A). We can (and will) choose p; in such a way
that p! = p;.

In the following we assume that G is a quantum Paincaré group, Poly(G) =
(%,4) and w, p are as in Theorem 1.4. We set g = ¢'/2 =1 in the cases 1)-4),
g=—1, ¢"* =i in the cases 5)-7), s = +1, L = sq"*(1%% + g~ EE"), L = g1Lr,
G=(1eDAX)Le)(AeV),G=F"eDAe D)X o)A V),
R= eV HagxeHLel)(AeX ')V aV).

Theorem 1.5. # is the universal x-algebra with I generated by wsp and p; satis-
Sring (1.4), (1.5), (1.6) and

pia=(ax fij)p; +axn — Ajj(n; xa), ac o, (1.7)
(R = 1) 5(pipj — 0:( A ps + Ty — Aim Ay Tn) = 0, (1.8)

pi = Di, (1.9)
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where f = (fi)ijes. = i)ics and T = (Ty)ijes are uniquely determined by
s = &1, Hgrep, Tercp € C and the following properties:

a) & >a— pla)= (f%a) Z&'g) e Ms(C) is a unital homomorphism,

b) p(a”) = p(S(a)), a € o,
¢) fij(wep) = Gic,pj» Mi{wep) = Vi,_E}FHEFCDa Ty = (V' ® VY erep Tercp.
The *-Hopf structure in Poly(G) is determined by:
Aw=wo w, AW =wo w, Ap=pol+40 p,
ew) =1, ew) =1, &p)=0,
Swy=wTl, S =w, S(p)=-4""p.
Quantum Poincaré groups corresponding to different s are nonisomorphic.

Theorem 1.6. For each case in Theorem 1.4 and each s (except the case 1),

s=1, t =1 and the case 5), s = £1, t = 1) we list H and T giving (via formulae

in Theorem 1.5) all nonisomorphic quantum Poincaré groups G:
Ds=-11t=1

H =0,
EFCD }’ (110)

Tercp = Ver,iVep, i Tij »
where

a) Tos = —Tyg =ia, Typ = —Ty1 =ib, other Ty; equal 0, a=cos¢, b=
sin ¢(one parameter family for 0 < ¢ < n/2) or
b) Too = Tia =1, Too = To1 = —i, other T;; equal 0, or

c) all Ty; equal 0.
DNs=+£1,0<t < It
T = ia, Ty =b,
T2 = —b, Ty = —ia, (1.11)

all Hgrep and other Tgrep equal 0 and

a) a =cos¢, b =sin¢ (one parameter family for 0 < ¢ < ) or
b)a=5b=40.
2)s=1

the first case:

Hin = —(a+ bi), Hi2p = a+bi, Hyypp = —2bi,
T =c—di, Tion =—c—di, (1.12)
Ti21 = —c + di, Ty =c+di,

other Hgrcp and Trpep equal 0 and

a) a=1, ¢ =d =0 (one parameter family for b € R) or
b) a=0, b=1, d = 0 (one parameter family for ¢ = 0);
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the second case;

Hizip = a + bi, Toii = (@° + 5*)/2, Iy =c—di,
T = —(a® +b)/2, Tion = —c—di, Ty = —c+di, (113)

Thi =c+di, Tin = —(a® + b)/2,

other Hgrcp and Tgrep equal 0 and

a)a=1,b=0, c=rcos¢, d=rsing (two parameter family for r > 0,
0<¢p<n2orr=¢=0)or

b)a=b=0,¢c=1,d=0, or

c)a=b=c=d=0.

2) s =—1, (1.12) and
a)a=b=0,c=1,d=0, or
b)a=b=c=d=0.

3) s==1, r 2 0, all Hgpep and Tgrep equal 0.
4)ys=1,

Hyp = —2bi, Hypp = —bi, Hyp=a-bi,
1 = b, Hiopo = bi, Hip = a, Hy = —bi,
Hiiz1 = —2bi, Hing = 3bi/4, Hymn = —4bi,

T1112 = 9b2/8+3abz/2, T1121 = “9b2/8+3(2bi/2, (114)
T1211 = —9b2/8 — 3abi/2, T1221 = 3b2/2 ,
Do = 9b%/8 — 3abi/2, Top = —3b%/2,
other Hgpcp and Tgpcp equal 0 and
a) a = cos¢, b=sin¢ (one parameter family for 0 < ¢ < n) or
b) a=b=0.
4) 5= —1, all Hgrep and TEFCD equal 0.
Ns==xl, 0<t <1,
T =ia, Ty = b, Ty = —b, Tor = —ia ,} (L15)
all HEFCD and other TEFCD equal 0 and '
a) a = cos¢,b =sin¢ (one parameter family for 0 £ ¢ < =) or
b)a=b=0.
6) s =1, all Hgrep and Tgrep equal 0.
6) s =—1:
the first case:
Hing = —(a + bi), Hym =a+bi, Hyp = —2bi} (L16
other Hgpep and all Tgrcp equal 0 and 16)
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a) a = cos ¢, b=sin¢ (one parameter family for 0 < ¢ < w) or
by a=b=0;
the second case:
Hypp = a+ bi, Tin = —(@® +b%)/2,
Tig1 = —(a% + b)/2, Do = (@ +5%)/2, (1.17)
other Hgpcp and Tgpep equal 0 and

a=1, b=0.
Ns==x1, 0 <<, all Hepep and Tgpcp equal 0.

Remark. 1.7. The classical Poincaré group is obtained in the case 1), s=1,
t=1, H=0, T =0. The quantum Poincaré group of [4] corresponds (in spinorial
setting) to 1), s=1, t =1,

1 1
Him =-Huxn = §H1221 = §H2112 = —Hyy1 = Hyyp = ih/2, heR,

other Herep and all Terep equal 0. The quantum Poincaré group of [1] corresponds
to 1), s=1,¢t>0, H=0, T =0 (¢ is denoted by g there). The so called soft
deformations correspond to 1), s =+1, t =1, H=0, Ty = —Tp, € iR.

Remark. 1.8. In the remaining cases 1), s=1, t=1 and 5), s =21, £ =1, one
can consider T, defined as in Theorem 1.5 and

Zigk = 0 Ae) = Vs V; cp(Hascedpr — Haprdce )WV er

(then Hypce = 1Vu,iVep,jZyxVipp)- In the case 1), s = 1,2 =1 a pair (Z,T') cor-
responds to a quantum Poincaré group if and only if

Tom = —Tum € iR, Zij,sgsk = _Zik,sgsj €iR » (118)
{[c-1*) @ (1 © 2)Z ~ (Z @ DZ]}ijmn
- _%t()(éingjm — jngim)y h e R ) (119)
AZoDT =0

where goo = 1,911 = g2 = g33 = —1, other g;; = 0,

A4=12181-181-101+ (@ 1)A®1)
+190)Ee1)-(re1)(A1)(t®1)

is the classical (not normalized) antisymmetrizer. In the case 5), s = %1, t =1 in
addition to these conditions we assume

Ty, =0 for #{k i € {1,2}} =1,

%2
Ziii, =0 for (—1)yHERe{L2} —

and get in that way all quantum Poincaré groups (up to an isomorphism but not
necessarily nonisomorphic).

Let us set n =g, a= —ilpem Nen, b=—iZ;gqe; NQ;; and ¢ =0 (see
[16]). Then (1.19) (using (1.18)) is equivalent to (3)—(4) of [16] where 7o is
identified with ¢ of (3)—(4) of [16]. Thus the table in [16] gives many examples of
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quantum Poincaré groups (cf. also the remarks at the end of [16]). The proofs of
these statements involve the above formulae and the results obtained in the proof
of Theorem 1.6 (with A = —%to inthe case 1), s=1, t=1and 1= —%ito in the
case 5), s ==+1, t=1).

We denote by d, the number of monomials of n™ degree in 4 variables,
dy=#{(a,b,c,d) eN®* :a+b+c+d=n}.

Theorem 1.9. Let # correspond to a quantum Poincaré group G and of ,w, p be
as in Theorem 1.4. We set

BN = of - span{pi « -+ - pi iy, in €5, n=0,1,...,N}.

Then B" is a free left s/-module and dim #" = YN 4, .

We denote by / : P x M — M the action of Poincaré group on Minkowski space,
% = Poly(M) denotes the unital algebra generated by coordinates x;(i € .#) of the
Minkowski space M = R®. The only relations in % are x;x; = x;x;. The coaction
Y.%— o4 ®@F and « in € are given by (¥f)(x,») = f(I(x,y), f*(¥) = (),
xePyeM.

Let x =(g,a) € P,y € M, f € €. One has

(Px)((g,a), y) = xi(Agy + a) = (Agp)i + a; = (Ag)ijy; + a;
= A;(g,a)x;(y) + pig,a) = (A @ x; + pi ® I)((g,a), y), hence
Vx; = A @x;+ p; @1 . (1.20)

One gets

6) % is a unital *-algebra generated by x;,i€ 4, and ¥ : 4 - B RF is a
unital *-homomorphism such that (¢ ® id)¥ = id, (id ® ¥)¥ = (4 Q id)¥, x} = x;
and (1.20) holds.

Let YW C o @W for a linear subspace W C ¥,/ € W,y,ac R*. Then
Jy+a)=fU(ea). y)=(¥f)(ea), y)=(¥)N(e,0), y)=f(I((e,0), ¥))=f(¥)
(k(e,a) = k(e,0) for k € ), f = f(0) € CI (in fact we have used the translation
homogeneity of M). Therefore

7)if YW C o/ ® W for a linear gubspace W C € then W C CI.

Let us consider (%', ¥’) which also satisfies 6)~7) for some x/ € 4’. Then

1t ’t 1ot WA
Y(xpx) —xpx;) = Ayplim @ (Xj%,, — Xp%;) -

Setting W = span{x;x; —xjx/ 1 i,/ € #} and using 7), one gets x/x| — xjx! = ay,
ay € C. Thus a = (ai1);,1e4 13 an invariant vector of AD A, i.e. a =c¢ - g, where ¢ €
Cgoo=191=9gn=9g3=-19;=0 for i*j But ay;=—a; hence
¢ = 0,x/x; = xjx; and we fix the proper choice of (¢, ¥) by means of

8) if (¢, V') also satisfies 6)—7) for some x/ € €', then there exists a unital -
homomorphism p : € — 4’ such that p(x;) = x! and (id ® p)¥ = ¥'p (universality
of (%,P)).

Definition 1.10. We say that (4, V) describes a quantum Minkowski space associ-
ated with a quantum Poincaré group G, Poly(G) = (%, 4), if 6)-8) are satisfied.

Remark. 1.11. This definition doesn’t depend on the choice of A (see Proposi-
tion S5.7).
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Theorem 1.12. Let G be a quantum Poincaré group with w, p as in Theorem
1.4. Then there exists a unique (up to a *-isomorphism) pair (4,V) describing
associated Minkowski space:

€ is the unmiversal unital +-algebra generated by x;,i =0,1,2,3, satisfving
x; =x; and

(R — 1%3%)y ja(xaxs — mielAm Yo + Tit) = 0, (121)
and W is given by (1.20). Moreover,
N
dm%" =3 d,, (1.22)
=0
where 6" = span{x;; + -+ + Xy, tip,...,i,€F, n=0,1,...,N}.

Weset m=(V '@V H1®X®INE®E),Zjr = ni(Ap),

R Z —-R-Z (R—1®HT 00 0 m

_{0 0 1 0 10 0 0 0
Rr=1o 1 o 0 > m=1g 0 0 o0 (123)

0 0 0 1 0 00 0
Theorem 1.13, Let G be a quantum Poincaré group with w, p as in Theorem 14.

Then

1) Mor(Z20 2,20 2)=Cid ® CRp & Cm,,.
2) Let us consider the cases listed in Theorem 1.6. Then W € Mor(# D 2,
POP) and

WDARIWYW ) =1 WYWI1ARW), (1.24)
if and only if
Ay W=x-idxeC,)or
DW=y -Rp+z-mp(p,z€C,for4d), s=1, b+0 one must have y = 0).
Those W are invertible if and only if we have the case a) or b) with y+0.

2. Proof of the Classification

In this section we prove the theorems of Sect. 1.

Let H be a quantum Lorentz group, i.e. Poly(H) = (s, A) satisfies the condi-
tions i.~iv. of Sect. 1. According to [14], we can choose w in such a way that .« is
the univeral *-algebra generated by wyp,4,B = 1,2, satisfying (1.4)—(1.6), where
X =10,0 = a0 and

1) E=e;®ey—qerQe,E' =—q el @ +e?®e', O is given by
(13)—(19) of [14], ¢ € C\{0,i,—i}, or

D E=eQe—e®e +e®@e, E'=—c'@+e2@e +e2®e?, Q is
given by (20)—(21) of [14], we set g = 1 in that case,

e = ((1)), e =()),e!' =(1,0),e? =(0,1) (due to the remarks before formula (1)
in [14], E’E+0, which means g= £i). In all these cases X is invertible, 4 is
given by Aw;; = wy ® wy; and (o7, 4) corresponds to a quantum Lorentz group.
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The numbers a+0 are not essential now and are chosen in such a way that
XOIDNARANER)=1QRE 2.1
{see (5) of [14]). Then (we use (6) of [14] and direct computations)
Xr=p"'X (2.2)
for some Be€{l,—1,i,—i}. We set E =<E € Mor(I,w®w),E' = E't € Mor

(Ww@W,I), where ¢; ® ¢j,e/ ® €,1,j = 1,2, are treated as reals. Using (2.1), (2.2)
and

E'@DA®E)=1, (AQEYE®1)=1

(see (3) of [14]; matrices of E’ and E are inverse one to another), one obtains
(using e.g. diagram notation)

AX HX '9DHARE)=E®1, (2.3)
FRPAX) X DAQE) =Ex1, (2.4)
PX o1 Xx DERD=1RE, (2.5)
AEHYXeoDH1RX)=E o1, (2.6)
E'DAX HX'e)=1QF, (2.7)
FHE o DAQX) X 1) =1QF, (2.8)
PARENX ' @)(1eXx Y=F£ ®1. (2.9)

Proposition 2.1 (cf. Theorem 6.3 of [8], Remark 2 on page 229 of [14]). Let
g € C\{0, roots of unity} (we treat q = £1 as not a root of unity). Then

1) there exist representations w'(s € Nj2) of H such that w® =1, w'? = w,
dimw* =2s + 1 and

Wow ~ w5l g g st (5,5 € N/2).

2y weo v_v?(s, s" € N/2) are all unequivalent irreducible representations of H.
3) wow' ~w'ewl(ss €N/2)
4) Each representation of H is completely reducible.

Proof. Let ofno be the subalgebra of &/ generated by matrix elements of w. Then
Poly(Hyo1) = (Anots 4 Mhol) is a Hopf subalgebra of Poly(H) = (<, 4). According

to Proposition 4.1.1 of [14], &/} is the universal algebra generated by matrix el-
ements of w satisfying the relations (1.4) and (1.5). Due to Theorem 4.2 of [13]
and the facts given in cases I, Il of the Introduction to [13] (cf. (1.9),(1.30) and
Theorem 1.15 of [3]), 1) holds and matrix elements of w*(s € N/2) form a linear
basis of &/101. Using Proposition 4.1.2-3 of [14], matrix elements of w'g w* (s,
s’ € N/2) form a linear basis of . Now Proposition 4.1 of [13] (see also
Proposition A.2 of [7]) gives 2) and 4). The condition iii. of Sect. 1 implies
(Tr w)(Tr w) = (Tr w)(Tr w). That and 1) give that Tr v(v € Irr H) commute
among themselves. By virtue of Proposition B.4 of [3] (cf. also Proposition 5.11 of
[12]), one obtains 3). O
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Proof of Theorem 1.4. We have the Hopf x-algebra 4, its Hopf *-subalgebra .o/
and two-dimensional representation w of .o which satisfy the conditions i.—iv., (1.2)
and 1.—6. of Sect. 1. We shall use the results of Sect. 1 of [10] with A replaced
by & =weWw, £ .cp = wacwpp”. Hence we deal with pyp = Vyp; p; instead of
pi. By virtue of (S1.3), it suffices to check (S1.5) for the generators: a = wyp or
a = wyp”. Inserting such a into (S1.5), we get

Gy € Mor(we wa w, we we w), Gg € Mor(we we w, we we W),
where

(Ge)asc,per = fa,rrWep),  (Ge)asc,per = faper(wep™) - (2.10)

Thus G = (1 ® X)4, Gy = B(X~1 ®1), where Ai_san intertwiner of we W W
wlew @ W, B is an intertwiner of we wo w ~ wo w! @ w. But wlgw, w, we wl,w
are irreducible (we use Propositions 4.1 and 4.2 of [14]), hence

Mor(wa we w,wp we w) = CEE' @ 1@ C1%3
Mot(we wa w,wewe w) = C1 ® EE’ & C1%° .

Therefore A =L ®1,B =1® L, where
L=al®® +bEE, L[=a1%+BEE, aabbeC. (2.11)

According to (S1.3), f: .o/ — My(C) should be a unital homomorphism. It
means that f should preserve the relations (1.4),(1.4)*, (1.5),(1.5)*,(1.6) ((1.4)*
denotes the relation conjugated to (1.4) etc.), i.e.

(GeaDARGLNERI®H)=1®"Q E , (2.12)
(G110 G)ER1®H) =122 F, (2.13)
(122 QE )Gy 1) 1®Gy) =E ®1%2, (2.14)
(12 QEN Gy ®1)Y1® Gy)=E ©1%? (2.15)
(GeoDARG)X 1% =(1F X )G 2 1)1 R Gy). (2.16)

Using (2.3),(2.5),(2.6) and (2.8), Egs. (2.12)—(2.15) are equivalent to

LODAQLYER)=1QE, (2.17)
B2l DNAQLYE®R1)=1QF, (2.18)

AQENYL®DNIQL)=E ®1, (2.19)
BPAQENL1)Y1®L)=E®1. (2.20)

Using (2.11), computing , b,d, b, and inserting them into (2.11), one gets that the
solutions of (2.17)—(2.20) are

L=r, L=pua;, ij=123,4, (221)
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where
Ly = qi(1%* + ¢ *EE") (222)

gi,2 = j:q%,q“ = iq_%. Using these relations, (2.1),(2.4),(2.6) and (2.8), we get
that (2.16) is satisfied. Therefore, the solutions of (S1.3),(S1.5) are given by (2.10),
where

Ge=(1ARX)L®1l), Ge=(01DX '®1), (2.23)
L, I are given by (2.21)—(2.22) (in general 16 solutions). Moreover,
(Re)arcp,erer = fap,ca(Leper) = fapaw(Wee) faw,cr(Wpr™)
= (G )unc,mv(G 2 uwp,Fei »
Ry =(Ge@1)10Gx)=(10 X)L X T a1). (2.24)

We know that p,; ® pop form a basis of (I')my which transforms under A,
according to ¥ @ Z. It is casy to check that the decomposition into irreducible
unequivalent components

POl ~wowewew~woew ow ewl &1

corresponds to

I = Wi O W G W& W, (2.25)
where
Wi =span{(¢ YY1 X' @1Np® p): ¢, € (C* @ C?Y,
QE = 0,yE = 0},

Wi ={(¢®EN1eX ' e )(p®p): ¢ € (CoC,  ¢E=0},
Wi={Eey)1eX " o)(pep:yc(CaCy, yE=0},
Wo=CE QEY10X ' @1)(p® p)

(indices as in the matrix multiplication rule have been omitted). But R%, is the
matrix of p in the basis p,; ® pep (see the remark after (S1.13)). Using (2.24),
we get that (2.25) corresponds to

p=PBaq; ' ® —Pag © —Bg G @ Bg 3T

Comparing the condition 6. with Proposition $1.6, we get dim K = 6. Therefore
Kiww = W1 © W;. But Proposition S1.4 implies K C ker(p + id), hence Bq,q‘f =
Bg7°q; ! = 1. Remembering that f € {1, 1,i,—i}, g+ =+ i, we get ¢ = +1. Thus
we can (and will) omit L3,L4. We obtain f =gq, i=jor f = —q, i%j(g € {1,~1},
i,j€{1,2}). In all these cases p=1®~1®—-1@ 1, hence K = ker(p +id).
Moreover, p? = id,R> = 1¥*, By virtue of Proposition 2.1 the conditions a)c)
of Sect. 2 of [10] are satisfied and we can use the results of Sects. 1-4 of [10]. In
particular, Corollary S4.2 implies the first statement of the theorem.

Let us pass from Z to A=V ~'L¥V (see (1.2)). Since V =1V, A= A. We
replace pup, A,B=1,2, corresponding to £ by p, = VingpAB,fAECD by fi

=V, isfap,coVep,j (cf. (S1.2)), Ry, Go and G by R= (V'@ V"HR(V & V),
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G=U"191)Gs(1QV),G=(V"'R1)Gx(1® V). Then (2.10) gives

JSii(wep) = Gic,js fijwep™) = Gic,p; - (2.26)

Now we pass to a new p; such that p; = p; without change of QN, I3, ¢ p,K, Jijs
R,G and G (see Proposition $4.5.1. and (S1.2)). We redefine pyp accordingly. By
virtue of Proposition S$4.5.2, (84.10) holds. Setting a = wgr* and passing back to
% one has fzapc(Wgr) = fas,co(wer*). It means

(G esapcr = (G )asEFep » 2.27)

ie. (e DA®X ) = @A X ) (we used (2.23),(2.21),(2.2)). Thus
Li =Lj, i=j. Consequently, f =¢q ==+1 and i =j = 1,2. Conversely, this con-
dition gives (S4.10) for a = wgr* and (using So* = %o S Ha= wb?;, hence for
all @ € o/. The list of X such that § = ¢ = +1 is provided in the formulation of
Theorem 1.4 (they contain the factor a which is computed in such a way that (2.1)
is satisfied, we also restricted the range of parameters according to remarks on
p. 220 of [14]). For E,E’,X as in Theorem 1.4 and f;; computed above (S1.3),
(S1.5) and (S4.10) (for A) are satisfied.

According to Proposition 2.1, the only 2-dimensional irreducible representations
of H are UwU Y, UwU~!,U € GL(2,C). Thus if ¢: o/; — =/ is an isomorphism
of Hopf x-algebras <71, .o/ included in our list, then

(1) p(w)=UwU™! or (2) p(w)=UwU!.

Let us consider the case (1). We denote E,E’.X for 4;, i =1,2, by E;,E|X.
Applying ¢ to (1.4)—(1.6) for o/, one gets

(UT'@ U DNE =k'E;, (2.28)
ENU®U)=KE], (2.29)
O o U XU T) = L (2.30)

for some k,k',1 € C,. Considering (2.28)—(2.29), one gets £} = E; = E and

UcGLR2,CLk=k=det U for E=e1®e;—e,R¢,

Ue{('g x):meC*, xGC}, k=k =m?
m

for E=e1 Qe —ey Qe +e Re,

0 0 x
UG{(E y)’(y 0):x,y€C*}, k=K =xy

for E=e ®e; +erRe.
Inserting such U in (2.30), one gets (for £ =e; ® e; — ey ® ) see Sect. 5.1 of
[dD) X=X =X]=1, s0

1

(U U HXWUU)=X (2.31)
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and in particular cases:

1)t=1:U € GL(2,C)

. x 0 0 x\.
O<t<1.UE{<0 y)’(y 0).x,y€C*},

2) U:m<€0 efi¢),meC*,xeC,¢eR,

3)U:m((1) T),mec*,xEC,
4)U:m<(1) if),mec*,xeR,

g):(?} g)zxsyec*}a

x
0
&t 0
m(o =it :meC,,peR,

10 1 0 0 1 0 1\ o
" o 1) o <1 -1 o) o1 o) ES

Next, let us consider the case (2). Then

UTQUNE =i 'E, (2.32)
E(0®U)=FkE), (2.33)
O oUW el)=1"x;" (234)

for some k,k’,1 € C,. Considering (2.32)—(2.33), one gets E| = E, = E,
UeGLR,C), k=k =—detU forE=eQe;—e1Qe;,

Ue{(’g * ):mEC*, xGC}, k= =m?,
—m

for E=e¢ Q@ey—e2Qe1 +e1 Qey,

x 0 0 x
UE{(O y)’(y O):x,yec*}, k=K =xy,

forE=e ®e) +e; Qe.
Inserting such U in (2.34), it is possible only for X; = X, = X in the following
cases:

) t=1:U€eGL2,C)l=1,

1 x
0 1

1 1 1 ix
— 2 . _
4)U——m(0 1) (0 1>,m€C*,x€R,l_1,

3)r:O:U:m( ),mEC*,xéC,Z:I,
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5)::1:Ue{<g g)(g 3):)6,)/6(3*},1:—1,

(I is computed for normalization of X as in Theroem 1.4, which includes o).
In particular, all considered (o, A) are nonisomorphic. [

Remark. 2.2. Using (2.17)~(221) fori=j = 1,2, i = ¢ = &1, one also gets

AQLLOIRE)=E®]1, (235)
Ao HIRE)=E®1, (2.36)
(EaDN1ILULR)=10F, (2.37)
EoDARLIL®1) =10F . (2.38)

Let us repeat that K = ker(p +1id), p*> = id, the conditions a)—c) of Sect. 2 of

[10] are_satisfied and we can use the results of Sect. 1-4 of [10]. We notice that
L,L,G, G and R given before Theorem 1.5 and in the proof of Theorem 1.4 coincide
(i=j=1 corresponds to s =1, while i = j =2 to s = —1). They correspond to
Aasin (1.2), A = A.
Proof of Theorem 1.5. Using Theorem 1.4 and Corollary S3.8.a, 4 is the universal
x-algebra with I generated by wyz and p; satisfying (1.4)—(1.9). Next, (52.6)
coincides with a), (S4.10)—(S4.11) imply b), (2.26) gives the first formula of c).
The next two formulae in ¢) can be treated as definitions of Hgrcp and Tgrep. Since
w,w and & are representations, formulae concerning the Hopf structure follow.
Uniqueness of f,#, T and the +-Hopf structure is obvious,

Let ,%",ﬂ? describe two quantum Poincaré groups and &, 4.4, p, f,n T,
o, A, A, P, 7.0, T, be the corresponding objects as in Theorems 1.4 and 1.5.
Assume that ¢: # — 4 is an isomorphism of Hopf *-algebras. According to Propo-
sition S4.4, one has ¢(s#) =.of and we put ¢y = Dl A — 4. Due to the proof
of Theorem 1.5, one has

(1) ¢p(w)=UwWU™" or (2) p(w)=UwU".
Using (1.2), one gets ¢(A) = MAM ™", where

M=V U®U) inthe case (1),
(2.39)

M =q2V-Y(U® U)XV in the case (2).

Using (1.3) and (2.2), one gets M = M(q'? = fq'/* since f = g = £1).
By virtue of {S4.2), one has

fzi/‘(WCD) = Uz (MYt fim(Wap)MyjUgp i the case (1),
fiiGbep) = Uy (MY fim(was™ YMy;Usp i the case (2) .

Using (2.28)—(2.30) or (2.32)—(2.34), we get L =L in all cases. Thus there are
no isomorphisms between quantum Poincaré groups with different s. [
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Using the computer MATHEMATICA program, we made several computations
performed in

Proof of Theorem 1.6. Let B, o, A, A, p, f,n, T describe a quantum Poincaré group.
According to Propositions S4.4 and S4.5.3, it is always possible to replace # by
fi=n+ fh— ch, where h; € R. We put f =o/,w =W,c = 1,M =14, ¢, = id, and
f doesn’t change. Thus we substitute Hgrcp by

Hgrep = Verdl,(Wep) = Hyrep + fer,48(Wep Yhap — dcphir

where frrap(Wep) are given by (2.10) and (2.23), hgr = Vep, ik (e b, hn €R,
his = hy1 € C). In each equivalence class obtained by such substitutions we restrict
ourselves to exactly one H singled out by the following constraints:

no constraints for 1), s =1, ¢t =1,

Hiyn €iR, Hyp € iR Hippp =0 for 1), s=1, 151,
Hinz =0, Hyp € iR for 2), s =1,

Hy1 =0, Hinp €iR, Hypzpp € iR for 3), s =1,
i €iR, Hypp € R, Hyjpp € 1R for 4), s =1,
Hyn €iR, Hyjip =0,Hyp € iR for 5), s =1, t=+1,
Hiun €iR, Hyppy € iR for 5), s=1, t =1,

Hp €0R, Hinp =0, Hypp €0R for 6), s =1,
Hijp € IR, Hyyo € iR, Hygpp =0 for 7), s =1,
Him €iR, Higp =0, Hypp €iR for 1), s = —1,
Hyp; € iR, Hypyy =0, Hypy €iR for 2), s = —1,
Hyjp =0, Hiip €iR, Hyyy €iR for 3), s=—1,
Hyyy € iR, Hixnpy =0, Hyppp € iR for 4), s = —1,
Hizp =0, Hiin €iR, Hypy € iR for 5), s = —1,t+1,
Hyzpp=0for 5), s=-1, t=1,

Hiz =0, Haiz € R for 6), s = —1,

Hiyipm €iR, Hippp =0, Hypm € iR for 7), s = —1.

We also may and will assume (S3.50).

By virtue of the theory presented in Sect. 1-4 of [10] (see e.g. Theorem S3.1
and Proposition S4.5) Hgrcp and Tgpep give a quantum Poincaré group if and
only if (81.5),(52.6),(52.14),(83.1),(S3.2),(54.10),(84.11) and (S4.12) are satis-
fied (cf. the proof of Theorem 1.4). We shall investigate subsequent conditions
and dealing with the next ones we assume that previously investigated condi-
tions are satisfied. We already know that f is a unital homomorphism satisfying
(2.26),(S1.5) and (S4.10). Thus (S2.6) means that applying 5; to the relations
(1.4),(1.4)%,(1.5),(1.5)* and (1.6) (* means that we conjugate the relation) and

using (S2.5), one gets relations on H}j = n(waz) and HL{Z’B = ni(wyp™), which
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should be satisfied. They read as follows:

{(GeHAH")+H"Q1}E=0, (2.40)
{(GoDARH)Y+H"®1}E =0, (2.41)
AQENH"D)+(GODAQH")} =0, (2.42)

AENYH oD +(GDAQH)) =0, (2.43)

(1% @ X){(H” ® 12 + (G 1)1 ®H")} } )

={H" 1)+ (G 1)1 ®H")}X .
Setting @ = wgr* in (S4.11), one gets

(H"Vier = miwig ) = = fyvgd ) - i) = =G gijr - Hfpp - (245)

(we used (S2.5),(S1.4) and (2.26)). Conversely, (2.45) gives (S4.11) for a = wgg™
and (using SoxoSox*x =id)a= ngl, hence for all ¢ € o7 (it suffices to check the
conditions (S4.10)—(S4.11) on generators of .o/ as an algebra: they are equivalent
to Theorem 1.5.b for a*).

Using the 16 relations (2.1),(2.3)-(2.9),(2.17)—(2.20) and (2.35)~(2.38), one
gets that (2.40) is equivalent to (2.42),(2.41) is equivalent to (2.43). Moreover,
(2.40) is equivalent to (2.41) (one conjugates (2.41) and uses (2.27), (2.45)).
Thus (2.41)—(2.43) are superfluous. The remaining equations: (2.44) (with inserted
(2.45)) and (2.40) give a set of R-linear equations on Hgpcp = Ver,i H p-

Next, (S3.50) gives a set of linear equations on Tgrcp = Ver,iVep ;1. By
virtue of (83.50) and (S4.14), one obtains (7 was defined after (S4.12)) RT = T,
RD = —D, where D =T — T. Therefore D corresponds to a subrepresentation of
A® A equivalent to w' @ w!..But (S4.12) means that D is an invariant vector of
A@A, hence D=0, T = T (conversely, this implies (S4.12)). This gives a set of
R-linear conditions on Trpcp.

According to Proposition S3.13 and Corollary S4.9, we may replace (52.14)
by (S3.55) for & = wyp. But this is equivalent to M € Mor(w, A® Agw), where
Mijc.3 = t(weg). Using [(R 4+ 1$7)®11M =0 (see (S3.54)), one gets M =[(V ™' ®
VH(1®X ®1)®1]N, where N € Mor(w,wowewewew), (L1 ® L @ N =
—N(L® L doesn’t depend on s, one can put s = 1). Thus Nypcpre = Pasr.cEcp
with P € Mor(w,we waw), (L1 ® 1)P =¢"/?P. It means P= 1 ®E + uE®1,
(EE'® 1)P = 0. Hence p = %q/l, P=JAQE+ %qE ®1). On the other hand,

Wweg) = R — 1) u(miwe)ns(was) — m(Aiss(wes) + Tudcs
— filwea) fimWap ) Tn) -

Using (1.2),(S2.5),(2.45) and (2.26), one gets a set of equations containing terms
bilinear in Re Hypcp, Im Hypcp, terms linear in Re Typcp, Im Typcp and terms
linear in Re A, Im A.

We shall prove that (S3.1) is equivalent to A € ¢"’R. One has (see (1.2))
F=W'ovteV-"wy whee F = (R—1$*) @ 1)F and

Jorrvanco = Vor,iViv, 77/ (Wacwep™) .
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Using Proposition S3.13,
™ (wacwep™) = ™ (Wac)sp + Gja s Gircm™™ (Wap*) ©

But by virtue of Proposition S4.8,
TS (wap®) = T (wpp) -

Using once again Proposition S3.13 for a = wyg, b= WEDI, multiplying both sides
by GES}Z.PG;,,L ;1 and conjugating both sides, one gets

g T et
T (Wap ) = ~Gp, piGmp,1;77 (Wrp)

(see (2.27)). Inserting all these data, after some calculations (using the 16 relations),
one obtains

- 1 -
J = g4 + 1B+ 3 (A+ Ag)C,

where 4 = (13X QX QINERX QE),
B=19(1 X '®INEQE)®1,
C=(1XNEQER1I®1.

We shall also use D=121® (18X Q@ 1)(E£ ® £). Using (2.24) and the 16 rela-
tions, one has

Re@1)4=—-4—4C, Ry ®1)B=-B—qC,
(Re®1)C =C, Reg@1)D=D+qg4A+4¢9B+C,
(1®Ry)A=—A4—gD, (1®Ry)B=—-B—gD,
(1®Rg)C=C+gd+gB+ D, (1®Rg)D=D.

In particular, (Rg ® 1)J = —J (it also follows from (S3.54)). Thus we can compute

2V RVIVIAFV ' =(V RV QV)4:F V!
—[12181-10Ry — Ry @1+ (19 Re)Ry 1)
+Re@1)N1QRy) - Ry 1)1 R Re)Ry @ 1)
=2[J —(1®Rg) +(Ry @ 1)1 @ Ry)J]
=3(lg — A)4 - B).
But 4+B (im[(1X'@X'@1)4]=imE®C*®C*®imE while im[(1®
XX 1@1)B]=C* @ Wy C*, where dim imE = dimim £ = dim W, = 1),

hence 43F = 0 if and only if 1 = ¢4, i.e. 1 € ¢'/?R.
We notice that

ADADA ~ woWSWOWSWEOW =~ (WD w & w2 (W & w ® w3?),
hence
Mor(J, A@ AeA) = {0} . (2.46)
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Therefore (S3.2) is equivalent to A3(Z ®@ 14 — 14 ® Z)T = 0. This gives a set
of equations, which are R-linear in Re Hypcp « Re Tgroy, Im Hypep « Re Trrgr, Re
Hypep - Im Trrgy and Im Hypep » Im Tgrgy. Our strategy is as follows: we set con-
straints for Hypcp as before, solve R-linear equations, insert these data into R-
bilinear equations and finally use the condition for A and the last set of equations. In
the cases 1), =1, s=1 and 5), t = 1, s = %1, we haven’t solved the R-bilinear
equations (but see Remark 1.8). In other cases one gets the following solutions
(with the parameters being real numbers):

(1.10) with Ty = —Tp, € iR for 1), s=—1,t =1,
1.1y for 1), s=+1, 0 <t < 1,

(1.12) or (1.13) for 2), s =1,

(1.12) with a = b =0 for 2), s = —1,

(1.14) for 4), s =1,

(1.15) for 5), s==*1, 0 <t < 1,

(1.16) or (1.17) for 6), s = —1,

in the remaining cases all Hgpep and Tgpep must equal 0. Moreover, 4 = 857 in
the case 4), s = 1 and 1 = 0 in other solved cases.

Let us remark that for fixed wyp and p; : ¢i,4; and Hgrep are uniquely de-
termined (cf. (S1.6)). Moreover, Trrep satisfying (S3.50) are also uniquely deter-
mined: if 77 would also satisfy (S3.46) and (S3.50), then for L = ' — T’ we would
have

0=(R-18)L - (UML) =R - 1)L — (Ae )R — 1)L
= -2(L — (d®A)L),

L € Mor(I, A& A), but RL = —L gives that L corresponds to the subrepresentation
w @w! of ApA, L=0, T=T".

It remains to check which pairs (H,T) as above give isomorphic objecis. By
virtue of Propositions S4.4 and S4.5 and above remarks it would mean that (H,T )
is obtained from (H,T) via formulae (S4.3)—(S4.4) with ¢,; € R, ¢+0, M as in
(2.39). After some calculations one can choose one pair (H,T) in each equivalence
class (for each considered case). The results are presented in the formulation of the
theorem. O

Proof of Theorem 1.9. By virtue of Corollary $3.6 it suffices to prove dim §, = d,,.
Taking A= .9 =w @Ww, one has the projection §, = ,Znen Rn, where R, =
(R - : (Rg);, for a minimal decomposition @ = #; - -+ - #;,, Ry = AXe

HIL® i)(l ® X! ®1). Puiting
Ky =(1F"""@Xx 21 Ha® X o X 91%7%).
X XD ® - -QX),

and K, defined similarly with X replaced by t, one can define S, = KxS,Ky ! and
S = K”lS K,. Therefore dimS, =trS, = trS’ trS,/. One gets the formula for
S,;’ as for S, but with Ry replaced by R, = (1010 1)L L)1 @1 ' ®1) (we
use the 16 relations).
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Moreover, L@ L = Lo @ tLot, where Ly = 192 4 q’IEE’, E=e®e—ger®
el +hhe Qe E =—gel @ +e?@el + e @, g=+1,14 =0,1 (forg = —1
one has 75 = 0). Replacing e; by ce;, c¢#0, one has to replace ' by c~'e!, Ly by
Lo with £y replaced by ¢ « f,. Thus (for g = 1) trS) doesn’t depend on #, € C
(for #,==0 and also for #p = 0 in limit). So we may put # = 0. Then Lye, R e; =
e1®e, LpeyRey =ex ey, Loer Qe =ger ey, Loer ® e =ge; @ ep. Setting
Aap = ey ® ep, one has

Y Aup ® Ays = g P 5 @ Ay
It is easy to show that S)(R',)x = (RS, =S, S is a projection,
SHAF AL @ AS @457, at+btc+d=n,
form a basis of imS,’. We get

dim S, = trS) = dimim S,

=#{(a,bc,d)yeN® a4 b+c+d=n}=d,. O

Proof of Theorem 1.12. We know that A A ~1dw'ew! &w! ®w!, where
kcr(R+1§?7‘) corresponds to w! @ w!. Therefore (S5.2) holds. Moreover, (2.46)
coincides with (S5.4). Using Theorem S5.6, we get the first statement. The second
statement follows from Proposition S5.3, Proposition S5.5 and dim S, = d,, (see the
proof of Theorem 1.9). [

Proof of Theorem 1.13. We know that (S3.59) holds (see (S3.2) and (2.46)) and
R+ +£15? (see the proof of Theorem 1.4). Moreover, (A® A)m’ = m’ means that
m' is proportional to m. According to the proof of Theorem 1.6, F = 0 if and only if
4 = 0 (otherwise, using A = g4, A+ B+ qC =0, acting 1 ® Ry,C =D, V@ C* =
imC = imD = C* ® Vg, where ¥ = im[(1®X @ 1)E ® E)], dim ¥y = 1, contra-
diction), which means b = 0 in the case 4), s = 1 and no condition in other cases
listed in Theorem 1.6. Then we use Proposition S3.14. [

Remark. 2.3. According to Corollary S3.8.b, 4 is the universal unital algebra gen-
crated by «f and p,(i € ) satisfying Iy = I, (S3.48) and (S3.47) for w and w
(cf. Remark S3.10). '
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discussions.

Note added in proof. We take that opportunity to make corrections in our paper ref. 8:
1) At the beginning of Theorem 4.6 add in a separate paragraph:

Assume that the Haar measure on G, is faithful.

2) on page 417, line 6 up, replace u~ /2 by ut'/2

3) on page 390, line 3 up, replace w' o w? by wlg w?
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