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ON M E A N  Q U A S I C O N F O R M A L  M A P P I N G S  t) 
V. I. Ryazanov UDC 517.54 

Various classes of mean quasiconformal mappings on the plane were studied in the articles by L. AhIfors, 
I. N. Pesin, S. L. Krushkal', R. Kfihnau, V. M. Miklyukov, G. D. Suvorov, and many other authors 
(see, for instance, [1-8]). One of the major recent achievements in this field is the new (1988) existence 
and uniqueness theorem for the Beltrami equation which was proven by G. R. David [9]. Study of 
compactness properties for David homeomorphisms was initiated by P. Tukia [10]. 

In the present article, we study the compactness problem for homeomorphisms of a Sobolev class 
with general integral constraints on the dilatation when the integrand is of exponential growth at 
infinity. In this direction, we have obtained final results. The main among them are Theorem 1 on 
necessary and sufficient compactness conditions and Theorem 2 on compactification of noncompact 
classes. 

Similar theorems were earlier obtained in the articles [11-13] for quasiconformal mappings with 
uniformly bounded dilatations and integrands. Further progress became possible due to a new fun- 
damental theorem on convergence which was proven in [14]. The theorem is based on the well-known 
differentiability lemma by Gehring and Lehto [15, 16]. 

The most important consequence of the compactness criterion is convexity of the set of complex 
characteristics for such classes, which makes the approach universal that  was first used by Professor 
V. YR. GutlyanskiY [17] in constructing variations. 

1. N o t a t i o n  a nd  p re l imina r i e s .  A concise exposition and comparative analysis of results by 
I. N. Pesin and G. R. David, together with the general definitions and properties of homeomorphisms 
of the Sobolev class Wll, loc on the plane, can be found in the article [14]. 

We denote by H (I' the collection of all orientation preserving homemorphisms f : C ---* C of 
the Sobolev class Wl, loc with the normalization f(0) = 0, f(1) = 1, and f(cx)) = cr and the integral 
constraint on the dilatation p(z) of the form 

/ r  < 1. (1) 

C 

Here r : I --~ R+ is an arbitrary function; I = [1,~1; and p(z) = (1 + Ig(z)l)/(1 - I~ ( z ) l ) ,  where 
#(z) = f e / f z  is the complex characteristic of a mapping f .  

P r o p o s i t i o n  1. Let ~ : I ~ R + be an arbitrary function with ~ ( ~ )  = c~. Then the class H r 
is nonempty  i f  and only i f  

inf@(t) = 0. (2) 
tel  

PROOF. Necessity of condition (2) is obvious. Sufficiency is immediate. Namely, let tn _> 1 be 
an arbitrary sequence of numbers such that (I)(tn) _< 2-n/~ ", n = 1, 2, . . . .  Consider the mappings 

f ( z )  = c.zl l ' - -1 ,  1 < Izl < 

where cl - 1 and the subsequent cn are found by induction from the agreement condition 

cnntn] 2 = Cn+lntn+l[ 2. 
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The complex characteristic of the mapping f ( z )  is easily calculable: 

]~n--1 Z - 
t n + l  z 

v / n  - 1 < Izl < X/~; 

i.e., the dilatation of the mapping f equals p(z) = tn, x/~-- 1 < Izl < v/-~, and satisfies (1) by 
construction. It is easy to see that f(0) = 0 and f(1) = 1. Moreover, the mapping f takes the circles 
with center zero into circles with the same center but other radii. Obviously, 

f(x/n + i) f nx/'~-]-+ 1'~ "+ '  /+i 
f(vfff) = \  ~ ] -> n 

Inducting, we therefore obtain f(v/-ff) > v/if; i.e., f ( z )  ~ oo as z ~ oo, or f(oo) = cx). 
Since analytic arcs are removable [18, p. 47], the mapping f is locally quasiconformal, yielding 

f E ACL.  Hence, f E W~,lo c [19, p. 42], and therefore f E H r 

Denote by fib r the class of all measurable functions #(z) : C ~ C, I (z)l < 1, wi th  p(z) = 
(1 + lu(z)l)/(1 - I~ (z ) l )  satisfying inequality (1). Owing to the result of [9, pp. 27 and 55], we obtain 

P r o p o s i t i o n  2. Let C : I ---, R + be of exponential growth at infinity. Then, given a mapping 
# E 9Y~ r there is a unique mapping f E H r with complex characteristic #. 

Here, by definition, a function C is of exponential growth at infinity if 

c( t )  (3) 

for all t k T and some T k 1, /3 > 0, and ~ > 0. The following notion turns out to be useful 
in the description of closure for the classes H ~'. The lower envelope of a function C is defined as 
the function 

C0(t) = sup q0(t), t e I, 

where @ is the family of all continuous (downward) convex functions ~ : I ---, R + such that ~(t) < C(t). 
The general properties of convex functions [20, pp. 56-66] imply that the lower envelope of a func- 

tion C is the greatest nondecreasing convex function C0 which is left continuous with respect to R + 
at the point 

Q =  sup t (4) 
r 

and whose graph is situated lower than the graph of C. Furthermore, C0(t) -- oo for t > Q and 
C0(t) < c~ for t < Q. A more constructive description for the lower envelope is given in [13, 
Lemma 1]. 

P r o p o s i t i o n  3. Let a function C : I ---, R + he of exponential growth at infinity. Then its lower 
envelope Co : I ---* R+ too is of exponential growth at infinity. Moreover, inequality (3) holds for C0 
with the same fl > 0 and 7 > 0 as for C, provided t >_ T* = T + 1/7. 

Indeed, for t = T* -- T + 1/7 the tangent to the graph of ~0(t) = fie ~t passesthrough the point 
(%t)  = (0, T), which amounts to the equality ~0(T*) = ~o(T*)(T* - T). Hence, the function 

0, 

~o(t) = r T), 

vo(t), 

t 6  [1, T], 
t 6 IT, T*], 

e IT*, oo], 

belongs to the class ~ determining the lower envelope C0. 
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2. S t a t e m e n t  of  the  m a i n  results .  We begin with a compactness criterion for classes H 'I'. 

T h e o r e m  1. Let ~ : I ---* R+, I = [1, oo], be an arbitrary function of exponential growth at 
infinity and let inf �9 = 0. Then the following assertions are equivalent: 

(1) H e is dosed; 
(2) H • is compact (bicompact); 
(3) H 0 is countably compact; 
(4) H 0 is sequentially compact; 
(5) @ is nondecreasing, convex, and left continuous with respect to R + at the point Q in (4). 

The equivalence of assertions (1)-(4) ensues from the general topological arguments presented in 
Section 3 below. 

We point out that  any polynomial growth of @ at infinity is insufficient for the sequential compact- 
ness of H ~ even though all conditions on ~ listed in item (5) of the theorem are satisfied (cf. [7, 9]). 

When r is of exponential growth at infinity, sufficiency of condition (5) is a straightforward 
corollary to Theorem 1, Proposition 1, and Remark i of the article [14], wherein under these conditions 
the semicontinuity of the dilatation in the mean was established: 

J r < lirn f /  @(p,,(z))dxdy; 

David's result on equicontinuity and openness [9, p. 27]; and the well-known ArzelL-Ascoli theorem 
[21, p. 2891. 

Necessity of condition (5) for the sequential compactness of the class H ~ will be proven in Section 5 
on the grounds of the following closure theorem which is of interest in its own right. 

T h e o r e m  2. Let r : I --+ R+ be of exponential growth at infinity. Then in the topology of 
locally uniform convergence 

H ~ = H O~ (5) 

where dgo : I ~ IR+ is the lower envelope of the function •. Moreover, the class H ~ is sequentially 
compact. 

We point out at once that the sequential compactness of the class H ~176 follows from Proposition 3, 
the properties of r and the above arguments. A proof of relation (5) is given in Section 7. This is 
the most laborious part of the proof. 

Denote by P6,M, 6 > 0 and M > 0, the Pesin class of all orientation preserving ACL homeomor- 
phisms g of the unit disk A = {z E C :  [z[ < 1} onto itself with the normalization g ( 0 ) =  0, g ( 1 ) =  1 
and the following condition on the dilatation: 

/ e[P(z)]l+Sdxdy < M. 
A 

Observe that  if M > rre then the class P6,M is certainly nonempty, and if M > ~re then it is nontrivial. 

C o r o l l a r y  1 [7]. The class P6,M is sequentially compact for arbitrary 6 > 0 and M > O. 

Indeed, suppose that M > ,re and consider the class H ~ with (I)(t) = (exp t TM - e) / (M - 7re). 
By the uniqueness theorem of David [9, p. 55], the mapping g E PS, M with complex characteristic 
v : A ~ A has the representation g = A I o f ,  where f is a single mapping in the class H 'I' with 
complex characteristic # : C ~ A, 

{ z E A ,  
= 0, z E C \ A, 

and AI :  f ( A )  ~ A is a single conformal mapping with normalization AI(0) = 0 and AI(1 ) = 1. 
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By using Carath~odory's theorem and Rado's theorem [22, pp. 56 and 60], we can easily show 
that Af ,  ~ AI  as fn ---* f .  Therefore, Pesin's result follows from Theorem 1. 

Denoting by H~ the class of all orientation preserving ACL automorphisms g : A ---, A with 
g(0) = 0 and d(1) = 1 which are distinguished by the inequality 

/ r  < i, 

A 

we by analogy obtain the following generalization: 

C o r o l l a r y  2. Let a function ~ : I ---* R + be of exponential growth at infinity, nondecreasing, 
convex, and continuous with respect to R+. Then the class H~ is sequentially compact. 

C o r o l l a r y  3. The classes H '~ with r = fl(e 7(t-1) - 1) are sequentially compact for arbitrary 
fl > O and 3, > O. 

C o r o l l a r y  4. The classes of all normMized Q-quasiconformal mappings distinguished by the in- 
tegral constraints on the dilatation of the form 

/ [ p ( z )  - 1] ~ dxdy <_ M, 

C 

M > 0 ,  

are sequentially compact only if  a > 1. 

In the last case we deal with the classes H r where 

f ( t - l )  1 < t < Q ,  
~ ( t ) =  

oo, t > 0 .  

In general, if Q < cr then (4) automatically implies validity of the condition of exponential growth 
at infinity. Hence, we have 

C o r o l l a r y  5. Let �9 : I ---* R+ be an arbitrary function with inf ~9 = 0 and let Q < oo. Then 
the class H ~ is sequentially compact if and only if the function �9 is nondecreasing, convex, and 
continuous on the interval [1, Q]. 

In particular, this yields the most interesting example of a noncompact class: 

C o r o l l a r y  6. The class of all Q-quasiconformal mappings f : C ~ C, 1 < Q < oo, with 
the normalization f(0) = 0, f (1)  = 1, and f(oo) = co which is distinguished by the condition 

/ ll~(z)[ dxdy <_ 1 

c 

on the complex characteristic is not sequentially compact. 

Indeed, in accordance with our notation, the above class is the class H r with 

r = { oo,(t- 1)/(t + 1), t>Q.1 < t < Q, 

It is easy to see that  the function ~v(t) = ( t -  1)/(t + 1) is not convex, for r = - 4 / ( t  + 1) 3 < 0. 
Thus, one of the compactness conditions of classes H ~ is violated. 

Finally, we indicate one consequence most interesting from the standpoint of the theory of the 
variational method. 
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C o r o l l a r y  7. Let �9 : I ~ R + be an arbitrary function of exponential growth at infinity. I f  the 
class H ~ is sequentially compact then the class of gJt r of complex characteristics is a convex set. 

Indeed, by straightforward calculation of the first and second derivatives we check that  the function 

l + r  2 
- -  - -  1 x ( r ) -  1 - r  1 - r  

is increasing and convex. Considering that r is increasing and convex and applying the triangle 
inequality, for arbitrary A E [0, 1] we obtain 

r  ) + (1 - A)v(z)])) _< Ar + (1 - A)r 

3. Topologica l  r e m a r k s .  Observe that the space H of all homeomorphisms of the plane, en- 
dowed with the topology of locally uniform convergence, is metrizable. One of the metrics compatible 
with this convergence is [23, p. 243] 

o o  1 Pi(f,g) X-" 
P(f,g) (6) 

Z_. 2J 1 + PAl, g)' j=l 

where Pi, J = 1 , 2 , . . . ,  are the pseudometrics Pi(f,g) = maxizl_<j [f(z) - 9(z)[. 
Thus, the following holds in H: 

P r o p o s i t i o n  4 [24, pp. 7-9]. Let H'  C_ H be an arbitrary subspace of homeomorphisms of 
the plane, endowed with the topology of locally uniform convergence. Then the following statements 
are equivalent: 

(1) H' is compact (bicompact); 
(2) H' is countably compact; 
(3) H' is sequentially compact. 

It is seen from Proposition 4 that the equivalence of assertions (2)-(4) of Theorem 1 is a direct 
consequence of metrizability of H. 

If H '  is embedded in a compact subspace H0 C_ H then we can say more. 

P r o p o s i t i o n  5 [25, p. 129]. Suppose that H' C_ H0, where Ho is a compact (bicompact) subset 
of H. Then the following statements are equivalent: 

(1) H' is dosed; 
(2) H' is compact (bicompact). 

Thus, the equivalence of assertions (1)-(4) of Theorem 1 ensues from metrizability of H and 
compactness of H0 = H O~ 

Recall that  the compactness (bicompactness) of H'  means that the Borel-Lebesgue condition is 
satisfied: every open covering of H'  has a finite subcovering. 

The countable compactness of H'  reduces to the Borel condition: every countable open covering 
of H '  has a finite subcovering. 

The sequential compactness of H'  reduces to the Bolzano-Weierstrass condition: a convergent 
subsequence fnk ~ f E H' can be extracted from an arbitrary sequence fn E H'. 

Henceforth we denote by H(K),  1 < K < cx~, the subclass of H constituted by all orientation 
preserving ACL homeomorphisms of the plane with the dilatation p(z) < K almost everywhere 
[16, p. 28], i.e. the set of all K-quasiconformal mappings f : C ~ C normalized by the conditions 
f (0)  = 0, f (1)  = 1, and f(oo) = c~. The class H(K) is well known to be sequentially compact under 
locally uniform convergence [18, p. 76]. 
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4. A l e m m a  on equal i ty .  With the notation of Section 1, the following holds: 

L e m m a  1. Let r and r : I ---* R+ be arbitrary functions with i n f r  = inf r  = 0 and 
01(oo) - r -- 00. Then the equality 

= (7) 

holds if and only if 
r  - t I .  (8) 

This lemma enables us to reduce the proof of Theorem 1 to Theorem 2 straightforwardly. 

PROOF. Sufficiency of condition (8) for equality (7) is tautological. 
Assume that (8) fails. For definiteness, assume that ~1 = r > r -- ~o2 at some point 

t0 E I \  {00}. Then there are positive numbers e, r, and c such that e < V/~/~o2 - 1, (1 + e)/rx/-~- ~ < 

Since infr  - 0 and r = 00, there is a sequence tn E I \ {00} such that r <_ c2 -n. 
Further, putting #(z) = (tn - 1) / ( t ,  + l) for r v ~  < [z[ < rx/~ + 1 and n -- 0 , 1 , 2 , . . . ,  we arrive 

at the inequalities 

f r  >_ > (1 + > i; dxdy 7rr2~ol ~)2 

c 

i.e., # 6 ff)101. On the other hand, 

/ r dxdy < rr2~o2 + rr2c < 1; 

C 

i.e., # E OY/r 
Thus, equality (7) fails certainly, and necessity of condition (8) is proven. 

5. P r o o f  of  T h e o r e m  1. In view of remarks made in Sections 2 and 3, it suffices to prove 
the implication (1) =~ (5). 

The closure of H r means that  H r = H r while by Theorem 2 H r = H r176 By virtue of Propo- 
sitions 2 and 3, whence we infer the equality ~7/r = ~r)lr Lemma 1 yields r  - G0(t). Thus, r 
satisfies all conditions listed in item (5) of Theorem 1. 

6. A d e n s i t y  l e m m a .  The following lemma holds: 

L e m m a  2. Let r : I  ~ R § I = [1, 00], be of exponential growth at infinity and let K E 1\{00}. 
Then the class H(K) N H r176 endowed with the topology of locally uniform convergence, contains 
an everywhere dense subset of homeomorphisms whose complex characteristics take at most finitely 
many values. 

PROOF. Let f E H(K)  n H ~o be a mapping with complex characteristic #(z) - q(z)e iu(z). 
Put #n(z) - qn(z)e iu"(z), with qn(z) -- m2 -n and un(z) = 12 -n on each of the sets 

E,~ t = {z E C :  m2 -n  < q(z) < (m + 1)2 -n ,  12 -n _< u(z) < (l + 1)2-n}, 

m , l = 0 , + l , = l = 2 , . . . ;  n = l , 2 ,  . . . .  

Observe that all the sets E~, t are measurable [26, p. 28]. Therefore, the functions #n(z), r 
and pn(z) = (1 +qn(z))/(1-qn(z)),  n = 1 ,2 , . . .  , a re  measurable too [26, p. 29]. Moreover, 0 _< qn(z) <_ 
q(z). Consequently, Propositions 2 and 3 imply existence of a unique homeomorphism fn E H r176 with 
complex characteristic #n E 9~: r176 
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Furthermore, by construction Iq(z) - qn(z)l < 2 -n and Iv(z) - < 2-n; i.e., the sequence 
#,,(z) converges pointwise to #(z) as n ~ c~. Since f,, E H(K) ,  the Bers-Bojarsky theorem [18,27] 
implies that f,, converges locally uniformly to f as n --* oo. 

7. P r o o f  of T h e o r e m  2. 1. The inclusion 

H -'-~- C_ H v0 (9) 

is easily provable. Indeed, by the definition of a lower envelope, we have ~0(t) < r t E I. Moreover, 
~0 (t) is monotone and continuous on the interval [1, Q], with Q given by (4). Therefore, the function 
~0 is Borel measurable, i.e. the inverse image of every Borel set is a Borel set. Consequently, ~0 is 
superposition measurable. 

Thus, if p(z) is the dilatation of a mapping f E H r then the superposition ~0(p(z)) is a mea- 
surable function and ~0(p(z)) < r i.e., f E H `I'~ In other words, H ~ C H 'I'o, and hence 
H 'I' C He0. Finally, from sequential compactness we have H v~ = He0, and inclusion (9) follows. 

2. To prove the reverse inclusion, we first prove that H ~ = H ( K )  n H `I'~ c H �9 for ever K < Q, 
where Q is taken from (4). Moreover, we shall assume that inf r -- 0, i.e., r = 0, for Proposition 1 
would otherwise imply that the classes are empty and we would have nothing to prove. 

By Lemma 2, there is a subset H0 C H ~ of homeomorphisms with step-like characteristics, such 
that H ~ C Ha. Since [23, p. 44] 

g r = H ~', (10) 

it suffices to demonstrate that H0 C H 'I~. 
Thus, let a mapping f belong to H0 which makes its complex characteristic take the form #(z) = vt, 

z E Et, l = 1 ,2 , . . . ,  where Us = C, ~q = r~r/t, rt E [0, k], k = (K - 1) / (K + 1) < 1, and ~t E C, 
lY/] = 1. Denote ~o~ = ~o(tt), tt = (1 + rt)/(1 - rt). Without loss of generality we may assume that 

/@o(p(z))dxdy < 1. (11) 
C 

Indeed, let !YYl:0 denote the class of the characteristics # of the mappings f E H0 and let Ho stand 
for the class of normalized homeomorphisms fo  of the plane with the characteristics #o(z) = O#(z), 
# E ff)I0, 0 E (0, 1). Since r is nondecreasing, we have Ho C H'. As 0 ---+ 1, we have #o(z) --+ #(z), 
and by the Bers-Bojarsky theorem [18, 27] fo  ---* f locally uniformly. Thus, 

H~ U He 
e~(0,1) 

and consequently 

OE(0,1) OE(0,1) 

This allows us, if need be, to replace H0 by UHo, @ E (0, 1). However, in the classes He,  O E (0, 1), 
we certainly have strict inequality (11), because ~0(1) = 0 and @0 is convex and nondecreasing. 

Extend the function @ and ~0 from the interval I0 = [1, Q] to the interval [Q-l ,  1] by means of 
the relations r  = r  -1) and ~0(t) = r In accordance to [13, Lemma 1], the points (tt,~o~), 

l = 1 , 2 , . . . ,  belong to segments of support lines to the graph of the function Let ')) 

and (t12),~o12)), l =  1 ,2 , . . . ,  denote the ends of these segments and let .~t E [0,1] be the numbers 

determined by the equalities ti = )qtl 1) + (1 - ~t)tl 2), l =  1,2, . . . .  Then ~o t = )q~olU + (1 - ~1)~oI 2), 
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l :  1 , 2 , . . . ,  and by [13, Lemma 1] there are sequences t}2 ~ t} 1) and l}~ ~ t] 2) such that  qo}2 : 

~( t}2)  ~ ~}') and ~}2 m) = ett}2m) ) --} ~}2) as m ~ oo. Thus, 

t}Om ) = A,tl2 + ( 1 -  At)tl2m ) t h (12) 
(13) 

In what follows, it is important  that  the indicated sequences can always be chosen so that  tlJm ) < Q' < 

oo and ~(J) < ~l ~'Zm - < cxD f~ all j = O, 1,2 and I, m = l , 2 , ' " ,  where f~ a fixed e the ch~ ~ Ql <- Q 
and ~o I depends only on K.  

Allowing for an addit ional  parti t ion of the plane, we can always achieve validity of the inequali ty 
mes~:z < cx~, l = 1, 2, . . . .  Moreover, by construction we may assume that  

Tl~ ) -qOl < 2- ( i+m)/mesEi  (14) 

for all l = 1,2, . . . .  

We put v (j) = r}Jm)rll, where rr ) = ,[t(J)lrn - 1)/(t}~ + 1) j = 0,1,2;  l ,m = 1 2 , . . . .  Then,  in l l rgl  ' ' 

accordance with [12, Lemma  1] (also see [11]), there is a sequence F~,~ ) E H(Q'), n = 1 , 2 , . . . ,  with 
characteristics 

{ v O) E} n), ira' z E 

which converges to a mapping  F~m E H(Q') with characteristic #tin(z) = u~ ~ z E C. Furthermore,  
for each measurable set ~: C C with mes ~r < co, the limit 

l i rnoo/ / r  (p}~)(z))dxdy = qO}~ ) m e s g  
g 

exists, where ,,(n) rz~ vtm t J are the dilatations of the mappings F~m n) 

By construction, as n ~ c~ we have p(F~,~ ), Fzm) ~ 0, where p is metric (6). Therefore, for 
arbitrary fixed I and m = 1, 2 , . . . ,  there is an index N = N(l, m) such that  p(F tin, Ftm) < 1/m. Here 

Fire(z) = Fi(N)(z), ] / / r  r mes~Cl < 2-(/+m), 

s 

with ptm standing for the dilatation of the mapping F tin. 
Let Ft C H(Q') be a mapping with characteristic/~i(z) = vt, z E C, and let pt(z) =- ti. 

the Sers-Bojarsky theorem and relations (12) and (13) yield 
Then 

lim p(Ftm, Ft) = O, 
Tn----~ r 

l i r n  ~l~ ) mesEi = f f  r 
c~ 

and consequently 

lim p( F ~m, Ft) = O, 

El s 

(15) 
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On putting 
#'n(z)  = #tin(z),  z E El, l =  1 , 2 , . . . ,  

for the corresponding dilatations, from here and (14) we deduce 

(16) 

] / / r 1 6 2  < 2 -m.  

C C 

Thus, 

lim / / r  =/ / r  
?-fg--'*O0 

c c 
Let F"  E H(Q') be a mapping with characteristic #m, m = 1, 2, . . . .  By virtue of (11), F "  E H ~ 

for m large enough. 
Since H(Q') is a sequentially compact class, from (15), (16), Urysohn's lemma, and Lemma 5 of 

[13, pp. 90-91] we conclude that F m converges locally uniformly to f as m --+ cr 
3. Finally, we prove the reverse inclusion H ~~ C__ H r Let a mapping f belong to the class H ~~ 

let #(z) be its complex characteristic and p(z), the dilatation. Put 

{ ,(z), zsE , 
= 0, c \ E m ,  

where S m =  {z e C : p(z) < m}, m = 1,2, . . . .  Denote by fm a mapping in the class H(m) f3 H r 
with characteristic #m. By construction, #re(z) converges pointwise to #(z) as m ---* oc. 

By Proposition 3, (I)0 is of exponential growth at infinity. Therefore, Tukia's theorem [10] implies 
that fm ~ f locally uniformly as m ~ cr However, by item 2 of the proof, we have fm C H '~. 
In view of (10), we then have f C H q~ as well, completing the proof of the theorem. 
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