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A S T A B I L I T Y  E S T I M A T E  IN T H E  P R O B L E M  
OF D E T E R M I N I N G  T H E  D I S P E R S I O N  I N D E X  A N D  
R E L A X A T I O N  F O R  T H E  T R A N S P O R T  E Q U A T I O N  t) 

V. G. R o m a n o v  UDC 517.7 

We consider the inverse problem for the transport equation which consists in finding the relax- 
ation a(x), x �9 R 2, and the dispersion index g(x ,  v(O). v(0')) in the transport equation (see formulas 
(1.1) and (1.2) below). Their determination is based on some information on a one-parameter family 
of solutions of the direct problems for the transport equation. A specific feature of the direct problems 
in question is presetting some incident radiation acute-directed with respect to the angle variable 0 
and having the form described by the Dirac delta-function ~(0 - a) ,  where a is a parameter of the 
problem. Presetting incident radiation in such a way is convenient for studying the inverse problem 
and, apparently, is acceptable from the applied viewpoint. It enables us to split the original problem 
into two inverse problems to be solved successively. The first problem is to find the relaxation a(x) 
given the singular part of the information on solutions to the direct problems, and the second is to find 
the dispersion index given the coefficient a(x). This approach makes it possible to obtain a conditional 
stability estimate for a solution and to prove a uniqueness theorem for the inverse problem. 

Observe that the idea of using singularities of incident radiation for studying inverse problems 
connected with determining the relaxation and the dispersion index in the transport equation was 
proposed for the first time in the article [1] by D. S. Anikonov and was further developed in the 
articles [2,3]. In the article [4], some approach was proposed which is a logical extension of this 
idea and is based on use of the singular part of the fundamental solution to the Cauchy problem 
for the transport equation. Moreover, in the above-mentioned articles, the problem of finding the 
coefficient a(x) (and in the last article also the problem of finding the dispersion index) was reduced 
to the classical tomography problem of determining a function given its integrals along all straight 
lines. This reduction yields some uniqueness and stability theorems for a solution to the original 
problem. The statement of the problem in the present article is new. It uses minimal information on 
solutions to the direct problems and in this aspect is more attractive than that of [4]. The main result 
of the article is a stability estimate for the dispersion index. 

w 1. S t a t e m e n t  of the  P r o b l e m  and the  M a i n  R e s u l t s  

Let D C R 2 be an open unit disk, D = {x �9 R 2 I lxl < 1}, and let S be its boundary, S = 
{x �9 R2 I Ixl = 1}. Consider the transport equation in a function u = u(x,O) = u(x,O + 2rr) 27r- 
periodic in 0: 

L(a ,g )v  - V u .  ~,(O) + au + Su = O, (x,O) �9 G =  D x [O,2r], (1.1) 

where a = a(z), V = ( & ,  & ) ,  v(O) = (cos0, sin0), V u . v  is the inner product of the vectors Vu 
and v(0), and Su is the operator 

27r 

Su =_ f K(x,v(O). v(O'))u(x,O')dO' 
0 

(1.2) 

describing scattering. 
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Denote by n(x) the outward unit normal to S at a point x E 5'. Also, let D = D U s, G = D • 
[0,2r], O_G - {(x,O) E Sx[O, 2~r]lv(O)'n(x) <_ 0}, and O+G - {(x,0) E Sx[O,2 ]lv(O).n(z) > 0}. 

Consider the following boundary value problem for equation (1.1) with data on O_G: 

u(x,O)=gp(O-a), (x,O) e 0 _ G .  (1.3) 

Here 6v(O - a) is a 2~--periodic function whose restriction to an arbitrary interval [a - e ,  a + e], e E 
(0,2~r), coincides with the Dirac delta-function supported at the point 0 = a. Henceforth, a is 
a parameter of the problem. In this connection, a (distributional) solution to problem (1.1), (1.3) is 
denoted by u(x, O, a) to emphasize the dependence on the parameter a. It is obvious that u(x, O, a + 
2~') = u(x,O, oL). Therefore, we consider the domain Q = {(z,0, a) ] (x,O) E G , a  E [0,2r]} as the 
main domain of variation of the variables x, 0, and a. 

The following lemma is valid for problem (1.1), (1.3) (see w 2 for proof): 

L e m m a  1.1. Suppose that the coet~cient a(z) belongs to C(D),  a(x) > O, the dispersion 
index K(x,  cosr belongs to C(G), and 

(2/ )i/2 1 
K ' =  ,eDsup K2(x, cosr162 < x/~" (1.4) 

Then there is a weak solution to problem (1.1), (1.3) which is representable as 

u(x,O,a) = 6p(O-a)exp(-w(x,a)) + v(x,O,a). (1.5) 
- -  m 

Here w(z,a) E C(G), v(x,O,a) E C(Q), Q = G x [0,27r], and 

s(z,~) 
w(z,a) = f a(,)ds ==_ / a ( x -  su(a))ds, (1.6) 

L(~,~.) o 

where L(z, a) is the segment of the ray emanating from the point x E D in the direction -•(a)  
between the point z and the intersection point of the ray with S; s(z, a) is the length of the segment; 
and ds is the line element. 

Representation (1.5), (1.6) gives grounds for stating the following inverse problem: 

PROBLEM. Given the trace of a solution to problem (1.1), (1.3) on O+Q = {(z,O,a) I (z,0) E 
o+c,  e 

= (x,O,.) O+Q, 

m 

And > o and K(x, cosr  e a .  
Specifying the trace on O+Q for a solution to problem (1.1), (1.3) is equivalent to specifying the 

functions f (z ,  a) and F(x, 0, a). Moreover, the following equality holds by Lemma 1.1: 

/ 
L(z,a) 

a(~) d s -  - I n  f ( x , a ) -  g(x,a), (x,a) E O+G. (1.7) 

The problem of constructing the function a inside D given the function g(z, a) is referred to 
as the tomography problem (the inversion problem for the Radon transform) and was studied by 
many authors. There are various well-known inversion formulas for equality (1.7) as well as stability 
estimates for a solution. We will return to this question below. 
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The function v(x, 0, a) involved in representation (1.5) is a solution to the problem 

L(a,K)v  + K(x,v(O) . v (a))exp(-w(z ,a) )  = O, (z,O,a) C Q, (1.8) 

, ,(~,o,,~) = o, ( x ,o , , o  e O_Q =_ o _ a  • [0,2~1, 

and is connected with the function F(x, 0, a) by the relation 

(1.9) 

v(x,O, ce) = F(x,O,a), (x,O, oe) C c3+Q = c3+a x [0,2r]. (1.10) 

Hence, we arrive at the nonlinear tomography problem that consists in finding the function K(x,  cos r 
r = 0 - a ,  from relations (1.8)-(1.10). Moreover, the function w(x,a) is calculated by formula (1.6), 
once the coefficient 0" is determined from integral equation (1.7). The question of solvability of the 
problem remains open. We discuss the question of stability and uniqueness for a solution to the 
problem. 

Let (0"j, Kj) be a solution to the inverse problem with data f j (x ,a)  and Fj(x,O,a), j = 1,2. 
Denote by wj(x,a)  and vj(x,O,a) the functions w and v that correspond to a = 0.j and g = Kj. 
Moreover, let 

O" - -  0.1 - -  0"2, K = K 1  - K 2 ,  @ = Wl - w2,  v - -  v :  - v2,  g = In f2 - In f l ,  F = F1 - F2 .  

Then the functions ~ ( x , a )  and 9(x,0, a) are connected with the functions (Y(x) and K(x ,  cosr  by 
the relations 

/ 
L(z,a) 

~(~,a)= f ~(~)d~, 
L(~,a) 

(i.11) 

~(r  = ~(~ ,~) ,  (~ ,~)  c O+G, (1.12) 

2~ 

L(al,K1)v + 8(x)v2(x,O, ot) + f K,(x, cosO')v2(x,O' + O, oL) dOt 
0 

+K(x, c o s ( O -  a ) )  e x p ( - w l ( x ,  a ) )  + K2(x, cos(O - a))n(x,a)~(x,a)  = O, (1.13) 

where 

r = O, ~Io+Q = _~(x,O,a), (1.14) 

1 

/ exp{-[Wl(X,a)t + w2(x,a)(1 --  t ) ] }  dt. ( 1 . 15 )  R(z ,a)  I 

. 1  
o 

We will make use of the stability estimate for a solution to equation (1.12) which ensues from the 
results of the article [5]. 

L e m m a  1.2. / f a j  E CI(D) ,  j = 1,2, then 

2"1c 

1 

D 0 S+(a) 

0~(~,,~)0~(~,,~) 
Ol Oa dlda - Jo([t), (1.16) 

where S+(a)  -- {x E 5' I x - V ( a )  > 0), O~(x,a)/Ol is the derivative in the direction I tangent 
to S+(a), and dl is the line element on S+(a).  
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The estimate for the function K(x, cosr relies upon a priori estimates for the functions w, v, 
and ~) that  hold on condition that the functions a and K belong to some fixed function class. We now 
describe this class. Suppose that a(x) E CI(D) ,  g ( z ,  cosr E CI(G),  and the following inequalities 
hold: 

( y ) I / 2  1 
0 < ~(x) < ~0, IVol _~ a01, =EDsup K2(x, cosr162 <_ Ko < " - ~ ,  

0 (1.17) 
21r (/ )1" 

sup IrK(x, cosr 2 dr < K01, 
zED 

0 

where a0, a01, K0, and K01 are fixed constants. Denote the set of functions (a,K) satisfying these 
conditions by .h4. 

The following theorem is valid: 

T h e o r e m  1.1. Suppose that ai,  K j E .M, j = 1,2. Then there exists 6 > 0 such that if 
~r g + cr201 + K2o + K2ol < (5 2 then the function K = K 1 -  K 2  satisfies the estimate 

/ .K2(x, cosr162 < C[J(F) + J0(g)], (1.18) 
G 

where 
2r  21r 

= -  - -  + --~(~ ] dldOda, (1.19) 
o 0 s+(o) 

and the constant C depends only on ao, or01, KO, and Kol. 
The proof of the theorem is given in w 4. It is based on a priori estimates for the functions w, v, 

and ~3 in the class (a, K) E A4 which are established in w 3. 
The following uniqueness theorem for the original problem is a simple consequence of Theorem 1.1. 

T h e o r e m  1.2. The inverse problem has at most one solution in the set of functions ((r, K)  E A4 
provided that a, a01, K0, and K01 are suftlciently small. 

The results of the present article can be generalized to the case of spaces of higher dimension. 

w 2. P r o o f  of L e m m a  1.1 

Represent a solution to problem (1.1)-(1.3) in the form (1.5), with the function w(x, a) defined 
by equality (1.6), and substitute the function u(x,O,a) into equalities (1.1) and (1.3). As a result 
of this, we infer that the function v(z, 0, a)  is a solution to problem (1.8), (1.9). Taking the inverse 
of the differential operator Vv .  v + a(x)v by using boundary condition (1.9), we obtain an integral 
equation in the function v(z, 0, a) as follows: 

271" 

L(~,0) o 

+K(~,v(O) . v (a) )exp( -w(~ ,a) )}  exp[w(~, 0 ) -  w(x,O)]ds, (2.i) 

where ~ = ( x -  sv(O)) E L(x,O) and L(x,0) is the segment of the ray which was defined in w 
Every continuous solution to integral equation (2.1) is a weak solution to problem (1.8), (1.9). 

The expression Vv .  v(0) is understood to be the derivative of the function v in the direction v(0). 
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Lemma 2.1. If v(x,O,a) e C(Q) and condition (1.4) is satisfied then 
2~r 
i (2Kt)2 sup v2(x,O,a)dO < (2.2) 

�9 eD -- ( 1 -  K'V/8-~) 2' 
0 

where the number K' is det~ned by formula (1.4). 
PROOF. Since the function a is nonnegative, we have the inequalities w(~, a) >_ 0 and w(~, 0) - 

w(z, 0) < 0. Therefore, the exponential factors in formula (2.1) do not exceed unity. Taking this fact 
into account, we square both sides of equality (2.1) and use the inequality (a + b) 2 _< (1 + A)a 2 + (1 + 
A - 1 ) b  2, A > 0, and the Cauchy-BunyakovskiY inequality to obtain 

21r 2r 

v2(x'O'ot) <-- (l + A) i i K2(''u(O) " v(Ot))dO'ds i i v2(~'O''ce) dOtds 
L(z,O) 0 L(x,O) 0 

+(1 + A-1)s(x,0) / K2(~,v(O) �9 v(a))ds 

L(~,O) 
2~r 

_< 4(1 + A)(K') 2 [ sup v2(x,O, a)dO + 4(1 + A -1) sup K2(x, cos(O- a)). 
d zED zED 
0 

Integrating the inequality with respect to the variable 0 from 0 to 2r, we find 
2~r 2~r 2a" 

f sup v2(x,O,a)dO<_ 8,(K')2(1 + A ) f  sup v2(x,O,a)dO + 4 ( 1 +  )~-1)i sup K2(x, cosr162 
zED xED zGD 

0 0 0 

Hence, if the condition 1 - 2~r(2K')2(1 + A) > 0 is satisfied then 

21r 

isupv 2(x,O,a) d < (1 + A-1)(2K') 2 
xeD -- 1 - 2~r(2K')2(l + A)" 

o 

Putting A = -1  + 1/K~v/~,  we obtain an optimal estimate which coincides with (2.2). 
Now, we demonstrate that, under condition (1.4), equation (2.1) has a unique solution in the class 

C(Q). Rewrite (2.1) as the operator equation 

v = Av, (2.3) 

where the operator A is defined by the right-hand side of (2.1). Consider equation (2.3) in the space 
C(G, L2[0,2~']) comprising the functions continuous in the variables x and a and square summable 
in 0. Endow this space with the norm 

2r I /2 

'i"i'--sup 
(z,a)EG \ d 

0 

The operator A carries the space C(G, L2[0,2r]) onto C(Q) which is embedded in C(G, L2[0,2r]) 
and is a contraction. Indeed, as follows from the estimates obtained in the proof of Lemma 2.1, the 
inequality 

l iAr ' -  Av"ll 2 <_ 2 (2K')2ll v ' -  v"l[ 2 
holds for every (v',v") C C(G, L2[0,2~']). Since K ' x / ~  < 1; therefore, A is a contraction on 
C(G, L2[0,2a']). Then, by the Banach principle, there exists a unique element v E C(G, L2[0,2~r]) 
satisfying (2.3). Recalling that A: C(G, L2[0,27r]) --+ C(Q), we have v E C(Q). Lemma 1.1 is proven. 
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w 3. A Priori Estimates 
This section is preparatory to proving Theorem 1.1. It contains estimates for the functions w, 

v, and fi which are necessary for obtaining a stability estimate in the problem of determining the 
dispersion index. Moreover, we suppose that (0.,g) and (ai, Ki) , j = 1,2, belong to the set A4. The 
method for obtaining a priori estimates uses the approaches of the articles [5-7]. 

L e m m a  3.1. The function w(x; or) satisfies the inequalities 

0 _< w(x,a)  < 20.0, Iw,,(x,o,)l _< 2(0"0 + 0"01), 

V/I -1~:12 + (~-v(a))21Vw(z,a)l < 0.0 + 2o'01, (x, or) �9 G, 
(3.1) 

Here 

/ w2(x,~)dxdo~ <_ 47rJ0(g), f w~(=,~)d=d~ <_ 4~J0(g). 

G G 

(3.2) 

2~ ,//0g/xo/0 /x o, 
Jo(g) = -2---~ Ol Oc~ dlda > O, (3.3) 

o s+(~) 

where g(x,a)  = - l n f ( x , a ) ,  Og(x,a)/Ol is the derivative of the function 9(x,a)  at a point x E 
s+(~) = {= �9 s I -(=)" .(=) > 0} in the direction I tangent to S, and dl is the line dement 
on S+(~). 

PROOF. The first inequality in (3.1) is an obvious consequence of the inequalities 0 < 0.(x) < 0.0 
and s(x, a) < 2. Differentiating (1.6) with respect to a, we find 

o~(~,~) 
w ~ (~ , ~ )  = 0.(~ - ~ ( ~ , ~ ) . ( ~ ) )  oa  

w o ( x ,  ~) = 0.(~ - s(~, ~ ) ~ ( ~ ) ) v . ( z ,  ~) + 

8(x,~) 

f sV0.(~- ~(~11 �9 ~'(~1 d~, 
0 

s(x,~) 

f v0.(x- ~v(~)) d~, 
0 

(3.4) 

where v '(a) = Ov(~)/Oa = ( -  s ina,  cosa). Since the length of the segment L(x,O) is calculated by 
the formula s(z ,a)  = (x.  v(a)) + V/1 - I x l  2 + (x.  v(a)) 2, w e  have 

o s ( ~ , ~ )  I(~ - , / ( ~ ) ) l d z ,  ~) 
,9 , ,  - -< 2 ,  

I x - v ' s ( x , a ) l  1 
IVs(z,  ~)1 = = 

V/1 - Iz l  2 + ( z .  v(~))2 X/1 -I~12 + (~ .  v(~))2 

The above inequalities and formulas (3.4) imply the second and third inequalities of (3.1). 
To obtain inequalities (3.2), we make use of the differential relation 

Vw.  v(c~)=a(z)  (3.5) 

between the functions w(x, a) and a(x) together with the following identity of the article [5]: 

2(Vw. v'(~)) ~---~(Vw. v((~)) ---- ~--~[(Vw. v((~))(Vw, vl(a))] + a~l(WaWx~) - s + IVml 2. 
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The left-hand side of the identity vanishes on solutions to equation (3.5). Integrating the resultant 
equality over the domain G and using periodicity of w(x, a) in (~ and the Green formula, we find that 

27r 

f lVwl2(x,a)dzda <- f f w.(x,~) Ow(x'~) - Ol dlda = 2rJo(g). (3.6) 

G 0 S 

Whence we infer that  Jo(g) is nonnegative, which fact is a necessary condition for solvability of integral 
equation (1.71. 

On the other hand, 

~(~,~) = / Vw.~(~)ds. 
, 2  

L(~,~) 

Hence, 

w2(z,a)  < s(x,a) / (Vw. u(a)) 2 ds. (3.7) 

L(z,a) 

Integrating inequality (3.7) over G, we find 

f w2(x'a)dxda < / s(x'a) f (Vw" u(a))2 dsdxda 
G G L(z,a) 

= / (Vw"  u(a))2 / sdsdxda < 2 / ( V w  . u(a))2 dxda < 4~Jo(g). (3.8) 

G L+(z,a) G 

In these intermediate calculations, L+(x, a) denotes the segment of the ray emanating from the point 
x 6 D in the direction u(a) between the point x and the point of intersection of the ray with S. 

Since formula (3.5) implies that 

Vw,  �9 ~(a) = - W  �9 v'(~), 

we have  

w=(x,a)= / V w = . v ( a ) d s = - /  ~ w . u l ( a )  ds. 

L(z,a) L(z,a) 

Therefore, arguments analogous to those in the previous case lead to the inequality 

/ w~(x,a)dzda < 2 / ( V w .  v'(a)) 2 dzda < 4~'Jo(g). 

G G 

The lemma is proven. 

L e m m a  3.2. Under the condition Ko 2v/~ 3 < 1, a solution v(x,O,a) to problem (1.8), (1.91 
satisfies the inequalities 

2~ 2r 

sup v2(z, O, a) dOda < = Co, 
�9 eD - (I - g o v ~ )  2 - 

0 0 

23- 2r 

f f sup[(1 -ixl 2 + (x. v(~))2)lVv(x,O,~)12ldOd~ <_ C01, (3.91 
z6D 

0 0 

2~- 27r 

zED 
0 0 
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where the constants C01 and Co2 depend only on ao, O'01, Ko, and Kol; moreover, (Col, Co2) -* 0 as 
(K0, K01) --~ 0. 

PROOF. The first inequality in (3.9) follows from inequality (2.2) and the hypothesis K ~ _< K0 < 
X/v . 

We now prove the second inequality in (3.9). First of all, observe that the presence of the factor 1 - 
Ix[ 2 + (x.  v(oO) 2 under the integral sign is due to the fact that the function IVy(x, 0, a)] increases 
unboundedly as the variable x approaches the endpoints of the half-circle S+(O) = {x E S [ x .  
u(O) > 0}, whereas the product (1 - [x[  2 + (x. v(oO)2)lVv(x,O,a)[ remains a continuous function (see 
Lemma 2.3 of [6]). 

Differentiating equality (2.1) with respect to the variable x i , j = 1, 2, and introducing the notation 

vj(x,O, oO= O-~jv(x,O,a), w i ( z ,a )=  ~-~jw(z,a), 

Kj(x, cos(O-a)) = o~iK(x,v(O).v(a)) ,  j =  1,2, 

we obtain the following integral equation in the functions vj, j = 1,2: 

vj(x,O,a) = [K((*,cos(0 - a)) exp(-w((*,  a)) 

+ f K(C, 
o 

Os(z,a) 
cosO')v(~*,O + if, cO)dO' (exp[w(~*,O)- w(x,O)]) Oxj 

+ f 
/d=,o) 

2~r 
x exp(-w(( ,  a)) + r + + K((,  cosO')vj((,O + O',a) 

0 

+(wj(~, O) - wj(x, O) )K (~, cos O')v(~, 0 + 0', o~)] } dO' exp[w(~, O) - w(x, 0)1 ds 

where ~* = [x - u(O)s(x, 0)1 E S. This equation implies the inequality 

sup rJ1 Ix[ 2 + (z v(oL))2Ivi(z,O, oL)[] < sup Ig(z, cos(O a))[ 
zED L -  -- " zED 

+(Ko + 2Kol + 2~'Ko sup [~/1 - Ix l  2 + (x. v(a))2lwj(x,a)l]) 
(=,~)ec 

2w I[2 

x ( / sup 'v(x' O' a)'2 dO ) z~O + 2 sup [Kj(x, cos(O -- a) 
o 

+3~'sup IK(=,cos(O-o,))l sup [~/1 - I=F  + (=. 
xED (z,a)Ea 

2r 1/2 

o 
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Here we have used the relations 

sup (1 -I~12 + ( ( . . ( 8  + 8'))2) -' /2 = (1 - I f f f )  - ' /2,  
o'~[o,2,~1 

,(~:,o) 
i ds = i ds <it. 

%/1 -I~1 = %/1 - I x  - sv(d)l 2 - 
L(~,O) o 

Squaring both sides of the preceding inequality and integrating the result with respect to/7 and (~, 
we find that 

2,r 2a- 

I,=--j f sui.[i,-,..,' 
J x6D 

0 0 

+ (x. ~,(<~))21vj(~, o, <~)1] 2 dOdo~ <_ 2~r3Kg(1 + A)/j 

+127r(1 + A-1){Ko 2 +4Ko21 + 91r2Ko 2 sup ( q l -  Ix12+ (x. ,,(<~))'l~j(x,<~)l) 2 
(x,~)ea 

+[Ko 2 + 4Ko21 + 4r2Ko 2 

2~r 21r 

sup ( q l - i x i 2 + ( x  �9 u(.))2iwj(:r.,.)i) 2] i i supv2(x'o'')dOdc~} 
(x,a)EG 0 0 zED 

for every A > 0. Putting A = - 1  + 1/Ko2~-~ a and using inequality (3.1) and the first inequality 
in (3.9), we obtain the following estimate for Ij: 

1 
/ j  _< ~Col, j = 1,2. 

Here the constant Col is defined by the formula 

C o l  - -  
24~- 

(1 - Ko 2x~-~r3) 2 
(1 + Co) [Ko ~ + 4K21 + 91r2K2(ao + 2col)2]. 

Hence, the second inequality of (3.9) ensues. 
To prove the third inequality in (3.9), put 0 = a + r in equation (1.8), denote v(x, a + r a) = 

~(x,r and differentiate the so-obtained equality with respect to a. Write down the result of 
differentiation as follows: 

w.(x,  r  ~(. + r + .(x)6.(x, r  
2~" 

= -[v~,(X, +, ~). ,,'(<,, + ,/,)+ i /+ (~ ,  ~os o'),~~ o' + ~, <~) eo' 
o 

- K(x,cosr - h(x,r 

Here fia(x,r = O~(x,r v'(a) = ( -  sin c~, cos a). Formula (1.9) implies that the func- 
tion 6,,(x, r a) satisfies the condition 

6~,(x,r = o, (x ,o ,q)  e O_Q. 
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Consequently, the following representation holds: 

~)~(x, r a) = i h(~,r162162 
L(~,~+r 

where ~ = x - sv(a + r Since 

X/1 -I~12 + (~" v(O)) 2 Ir = q l  -Izl 2 + (z. v(O)) 2, 

s(z,O) <_ 2ql -I~12 + (~. ~(0))2 _< 2, 
the representation for the function fia(x, r a) implies the estimate 

s ( z , a +  r sup[ql_lz l2+(z .v(a+r162 
I~:(x,r < v / l _  txl2 + (z. v(a +r xED 

_< 2 sup [ q l  -I~12 + (~. ~(= + r r =)1 ] 
xED 

Therefore, 

sup I~:(~,r < 2 sup [ q l  -I~12 + (~. ~(. + r IW(~,r ~)1] 
xED zED 

2it 1/2 

+2suplK(:~,cosr sup Iwo,(-,,~)l. 
zED xED (z,a)EG 

0 

Hence, we find that 

X 

2~r 2r 

J - i / sup I~,o,(:~, r  ~112 dCd,~ <_ 8~-Ko2(1 + A)J + 8(1 + ,X -x) 
xED 

0 0 

2a- 

+ .o,,. + i su.  .,o .~ 
0 

Putting A = - 1  + 1/Kov/~ and using the second inequality of (3.9), we validate the last inequality 
of (3.9), with the constant C02 determined by the equality 

C02 = 8 [C01 + 8rK2(a0 + o'01)2]. 
(1 - g 0 v r ~ )  2 

It is obvious that (C01, C02) --+ 0 as (Ko,Kol) --+ O. The lemma is proven. 
The estimates of the forthcoming two lemmas are needed for the proof of Lemma 3.5 and are 

based on the relation 

v (~  + r ~(~ + r + w(x,,, + r �9 d(~ + r 
2~r 

+0-1(X)~V(X, ~ + r ~) + i Kl(x, cosO')~---~fi(x,O' +a+ r N(x,r 
0 

(3.1o) 
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where 

N 

N(x , r  = ~(x) v2(x,a + r  K(x, cosr 
+g2(x, cos r a)ff,(x, a) + n(x, a)~a(x, a)], (3.11) 

1 

n~(~, o,) = S[,.,,1,~(x, o,)t + ~2o,(x,,~)(1 - t)iexp{-[Wl(X, Ot)t + W2(X, 00(1 -- t)]} dr. 

0 

(3.12) 

Relation (3.10) is obtained from equality (1.13) by substituting a + r for 0 and differentiating the 
equality with respect to a. 

L e m m a  3.3. If the function K(x, cosr satisfies the condition 2K0v/-~ < 1 then the following 
estimate holds for every # > 0: 

f (~---~(x,a + r 2 dxdCd a 
Q 

< C ,  [(1 +# ) i (v~ (z ,O ,a ) . u ' (O) )2dxdOda+( l  +tz -1) JN2(x, r 
Q Q 

(3.13) 

where C, = 21(1 - 2K0v/-~) 2. 
PROOF. Taking the inverse of the differential operator V �9 u + al in (3.10), we find that 

:oo(.,o++,ol-- i 
/_,(z,o<+r 

2it 

+ iKl(z, cosO')~-~9(f,O' +a+r +N(f, r  %b)] ds. 
o 

Hence, 

_< s(x,~+r f 
L(z,a+r 

(b-~a 9(z, a + r 2 

2it 
O. {(1+ >).<o. I 

o 

2 
+ a + r a) dO' 

+(1 + A-l)[(1 + #)(V~(~, a + r  vt(a + r + (1 + #-1)N2(~,r a)]} ds. (3.14) 
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Integrating inequality (3.14) over Q and changing the order of integration, we infer that 

/ 
Q Q 

-4-(1 -4- A-')[(1 A- #)(V~(~,a-t-r162 2 § -4- ,-1)N2(~,r  o0] / 

/;+(z,a+r 

/{ ( s  dzdCda <_ (1 + A)27rK02 fi(~,a + r  

s ds ~ d~dCda 
) 

/{ ( s  ___ e (1 + ~)e~g0 2 ~(~,~ + r 
Q 

+(1 + .,~--1)[(1 + #)(VV(X, Ot -3r ~,  ~) �9 yt(~ -3t- ~))  2 +(1 + #-l)N2(x,r 

Putting A = -1  -t- 1/2K0v~, we arrive at inequality (3.13). 

L e m m a  3.4. Under the conditions of Theorem 1.1, 
trary A > O and # > O: 

the [ollowing inequality holds for arbi- 

/ [(V~3. v(0)) 2 + (1 - A)(V~3. v(0)) 2] dxdOd~ < A-l(1 -4- #-l) / N2(x, r a) dxdCdcr 
Q Q 

+2A-l(1 + #)(a02 + 2rK02) / ~(x,a + r  dzdCda + J(F), 
q 

(3.15) 

where the expression J(F) is defined by formula (1.19). 
PROOF. We use equality (3.10). We leave the first two summands of the equality on the left-hand 

side, transpose the others to the right-hand side, and afterwards multiply both sides of the equality 
by 2Vfi(x,a + r162 u'(a + r We write down the result as follows: 

T(z, r -- 2(V~(x, a + r  u'(a + r 1 6 3  a + r  u(a + r 

= -2(w(~,. + ~,~)..'(~ + ~))[~1(~) o~(~, ~ + ~,~) 

2~ 

+/KI/. 
0 

a + r + N(z,r (3.16) 

Transform the left-hand side of (3.16) to the form 

T(x,r  ~---a[(V~(x,a+r162162162 

0 [(s + r ~,(~,~ + r 
+~-;~1 

~qx2 
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Whence, by periodicity of the function 9(x, a + r a) in a, we find that 

T(x,r = / I r e ( x ,  ~ + dxdCda 
O O 

(9. 
+ f ( -~v(x ,a+r162 

o+QUO-Q 
= f[(VO(x,O,a), u(0)) 2 + (V~(x,0, a ) .  u'(O))2ldxdOda - J(F). 

O 

On the other hand, for arbitrary A > 0 and # > 0 we have 

T(x , r  < A(W(x, a + r  u'(a + r 
2~r 

+A-1(2(1-b /Z) [a02 (~)(X,a + r 2 +Ko 2 / (~)(x,0 + a,a)) 2 dO] 
o 

(3.17) 

q- (1 q- #-l)N2(x,r 

Hence, 

T(z, r <_ A / (Vg( z ,a  + r  + r dzdCda 

O O 

+A -1{2(1+#) [(ao2+ 2~rKo 2)/(O-~(x,a+ r 2 dO] dxdCda 
q 

+(1 + , - 1 ) f N 2 ( x , r  

O 

Relations (3.17) and (3.18)imply the assertion of the lemma. 

L e m m a  3.5. Suppose that ao and Ko satisfy the inequality 8C1(a 2 + 27rg~) 
hypothesis of Lemma 3.3. Then the following estimate is valid: 

/(V~)(x, O, a). g(0))~ dxdOda < C2 / N2(x, r a)dxdCda + J(J~), 
Q O 

(3.18) 

< 1 and the 

(3.19) 

where C2 = [4 + r 2 Av 27rKo2)]/211 - r 2 -~- 27~Ko2)]. 
PROOF. Substituting estimate (3.13) for the integral of the derivative of 73(z, a + r  a) with respect 

to a in the right-hand side of (3.15), we find that 

f ( w ( x ,  , , , ( o ) )  2 dxdOd  

O 

< A-l(1 + #- ' ) [1  + 2C1(a02 + 2rK2)(1 + # ) ] / N 2 ( x , r 1 6 2  + J(F), 
O 

(3.20) 
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provided that 1 - A - 2A-1C1 (a02 4- 21rK2)(1 4- #)2 > 0. The last inequality may hold only if (1 4- 
#)2 < 1/8C1 (0.2 + 21rK02). Under the conditions of the lemma, we have 8C1(a2o + 2rrK02) < 1; 
therefore, it is possible to choose appropriate positive parameters A and #. We take A = 1/2 and 

# = -1  + 1/v/8C1 (a 2 + 21rK2). Then formula (3.20) implies inequality (3.19). 

L e m m a  3.6. Under the condition of Lemma 3.2, the following inequality holds for every A > 0: 

N (x, r a) dxdCda 
q 

_< 8~r(0"o + ao,)2(1 + A)/~[2(z, cosr162 + (1 + )~-l)Co3Jo(0) , 

G 

(3.21) 

where 6'o3 = 3[Co] 4- 4rrKo2(1 4- 4(ao 4- O'01)) 2] and the expression Jo(g) is defined by formula (1.16). 

PROOF. Inequalities (3.1) and formula (3.12) imply that 

0 < n(z,a) < i, In~(x,~)l < 2(0.0 4- 0.Ol). (3.22) 

Squaring both sides of (3.11) and integrating the result over Q, we arrive at the inequality 

N2(x,r < 87r(ao 4- aol)2(1 4- A) / ~[2(x, cosr162 

O a 
2x 2x {/ / /  I o i 4-3(1 + ,,~-I) 52(x)dx sup v2(x,a 4- r dd2da 

=ED 
D 0 0 

+.o,r su, } 
L(x,,-,)eG (=,a)ea 

G G 

Using inequalities (3.9) and (3.22) and estimates for ~ and ~ similar to (3.2), we obtain inequal- 
ity (3.21). 

The last two lemmas yield the next lemma which closes the section: 

L e m m a  3.7. Under the conditions of Lemmas 3.2 and 3.5, the following estimate holds for every 
A > 0 :  

f ( w ( = ,  0, ~ ) .  ~(o)) 2 d=dOd~ 

Q 

< J ( F )  4- (1 4- A-1)Co4Jo(O) 4- (1 4- A)Co5 / K2(x, cosr162 
G 

(3.23) 

where G'04 = C2Co3 and G'0s = 87rC2(a0 4- a01) 2. 

Observe that while proving Lemmas 3.3-3.5 we estimated the integrals without substantiating 
their existence. Under the conditions of Theorem 1.1, the derivatives of the function ~(x, O, a) with 
respect to xi, i = 1, 2, behave like the corresponding derivatives of the function v(x, 8, a), i.e., have 
singularities of the type (1 - [x[ 2 + (z .  Y(a))2) -1/2 in a neighborhood of each endpoint x of the 
half-circle S+(O). These singularities are however weak, not destroying the existence of the integrals 
in question. 
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w 4. Proof  of  Theorem 1.1 

We make use of equality (1.13). Multiply the equality by exp(wl(x,a)), transpose the term 
K(z, cos(0-a)) to the other side of the equality, and square the resultant equality. Using estimate (3.1) 
and the Cauchy-BunyakovskiY inequality, we obtain the inequality 

27r 2~ 

K/(x, cos(O- a))< exp(4ao){(i +A)/K'(x, cos r162 sup.eD / v2(x'O' 
0 0 

-4-(1 + A-1)[L(al,K1)fi(x,O,a) -J- 5"(x)v2(x,O,a) 

, a) dot 

q-K2(x, cos(0 - a))R(x, a)~(x, a)] 2 } 

which is valid for every A > 0. Integrate the inequality over Q and use inequality (3.9) for estimating 
the integral of v2(z, 0, a). After simple transformations, we obtain 

2~r / ~:2(z, cosC)dzdr < exp(4ao){(l + A)2~rCo f ff:2(x,cosr162 
G G 

+(1 + ,,~-1) f [L(al,K1)9(x,O,a) + 5(z)v2(z,O,a) 
Q 

+K2(x, cos(O -- a))R(x,a)~(x,a)] 2 dxdO da}. 

Suppose that a0 and Ko are so small that Co exp(4a0) < 1. Putting A = -1 + 1/vf-C-oexp(2ao), we 
then obtain the estimate 

/ ff:2(x, cosr162 <_ C3/[L(al,K1)9(x,O,a) 
a Q 

+5"(x)v2(x,O,a) + K2(x, cos(O- a))R(x,a)~(x,a)] 2 dxdOda, 

with 6'3 = exp(4a0)/2r[1 - v/-C-oexp(2a0)] 2. 
Estimate the right-hand side of (4.1). Since R(z, a) < 1, the inequality 

/[L(al,K1)9(x,O,a) + &(x)v2(x,O,a) + K2(x, cos(O- or) ~l~(x, a)w(x,  a)] 2 dxdOda 
Q, 

(4.1) 

< / {  (1:4-#)(V'5(x, 0, a).v(O))2-t-4(1-1-#-l)[o'02,b2(x, 0, a) 

O 
2x 

0 

is valid for every # > 0. Use estimates (1.16) and (3.9) and the inequalities 

f fi2(x,O,a)dxdOda < 2 f (W(z,O,a)' (O))2dzdOda, 
Q Q 
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/ ~2(x,a)dxda < 47rJo(O) 

G 

similar to inequalities (3.8) and (3.2). Then formula (4.1) implies that 

/ ff[2(x, cosr162 < 4C3(1 + ~-1) [Co + 87r2K2] Jo(g) 
G 

+O3[(1 + #) + 8(1 + #-l)(a02 + 2rrKo2)]/(V~(x,0, a ) .  v(0)) 2 dxdOdot. 
Q 

(4.2) 

Putting/z = #*= V/8(ao2 + 27rKo2), we obtain the inequality 

/ K2(x, cosd2)dxdr < 4C3[1 + (/z*)-l] [Co + 87r2Ko2] Jo(~) 

G 

+C3(1 + p . )2 / (V~(x ,O,a ) ,  y(0)) 2 dxdOda. 
Q 

(4.3) 

Suppose that the inequalities 2x/~'gKo < 1 and 8C1 (a 2 + 2~rK 2) < 1 are satisfied. In this case 
Lemma 3.7 and inequality (3.23) are valid. Using the latter, we arrive at the inequality 

ff[2(x, cosr162 < 6'4(1 + A) / ff[2(z, cosr162 + CsJ(ff) + C6(A)Jo(O), 

G G 

(4.4) 

where 6'4 = (1 + #*)2C3C05, C5 = (1 + #*)2C3, and C6(A) = (1 + A-1)C3C04(1 + #.)2 + 4C3[1 + 
(#*)-'1 (Co + 8~r2K2). 

The constants Co, C1, 02, and 03 have finite limits as (ao,aOl, Ko, K01) ---* 0. Moreover, Co ---* 0 
and C4 --~ 0. Therefore, there exists a number 6 > 0 such that, for arbitrary (ao, a01, Ko, K01) 
satisfying the inequality %2 + a021 + g 2 + K~ 1 < 62, the inequalities 

2v/~3Ko < 1, Coexp(4ao) < 1, 8C,(a2o +27rK 2) < 1, 6'4 < 1 

hold simultaneously. Putting A = A* = -1  + 1/v/-C--~ in inequality (4.4) and denoting 

c = m a x  (c5 ,  c 6 ( . x * ) ) / ( 1  - V"b74), 

we now arrive at estimate (1.18). 
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