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A STABILITY ESTIMATE IN THE PROBLEM
OF DETERMINING THE DISPERSION INDEX AND

RELAXATION FOR THE TRANSPORT EQUATION?Y
V. G. Romanov UDC 517.7

We consider the inverse problem for the transport equation which consists in finding the relax-
ation o(z), z € R?, and the dispersion index K(z,v(6)-v(8')) in the transport equation (see formulas
(1.1) and (1.2) below). Their determination is based on some information on a one-parameter family
of solutions of the direct problems for the transport equation. A specific feature of the direct problems
in question is presetting some incident radiation acute-directed with respect to the angle variable 8
and having the form described by the Dirac delta-function §(6 — o), where a is a parameter of the
problem. Presetting incident radiation in such a way is convenient for studying the inverse problem
and, apparently, is acceptable from the applied viewpoint. It enables us to split the original problem
into two inverse problems to be solved successively. The first problem is to find the relaxation o(z)
given the singular part of the information on solutions to the direct problems, and the second is to find
the dispersion index given the coefficient o(z). This approach makes it possible to obtain a conditional
stability estimate for a solution and to prove a uniqueness theorem for the inverse problem.

Observe that the idea of using singularities of incident radiation for studying inverse problems
connected with determining the relaxation and the dispersion index in the transport equation was
proposed for the first time in the article [1] by D. S. Anikonov and was further developed in the
articles [2,3]. In the article [4], some approach was proposed which is a logical extension of this
idea and is based on use of the singular part of the fundamental solution to the Cauchy problem
for the transport equation. Moreover, in the above-mentioned articles, the problem of finding the
coefficient o(z) (and in the last article also the problem of finding the dispersion index) was reduced
to the classical tomography problem of determining a function given its integrals along all straight
lines. This reduction yields some uniqueness and stability theorems for a solution to the original
problem. The statement of the problem in the present article is new. It uses minimal information on
solutions to the direct problems and in this aspect is more attractive than that of [4]. The main result
of the article is a stability estimate for the dispersion index.

§1. Statement of the Problem and the Main Results

Let D C R? be an open unit disk, D = {z € R?||z| <1}, and let S be its boundary, S =

{z € R? | |z| =1}. Consider the transport equation in a function u = u(z,6) = u(z,d + 27) 2n-
periodic in 6:

Lie,K)v=Vu-v(0) +ou+Su=0, (z,0)eG=D x]0,2n], (1.1)

where 0 = o(z), V = (%’ 3'2—2), v(0) = (cos@,sinf), Vu - v is the inner product of the vectors Vu

and v(#), and Su is the operator
27
Su= /K(:c, v(8) - v(0'))u(z,8") do (1.2)
0

describing scattering.
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Denote by n(z) the outward unit normal to S at a point z € S. Also,let D=D|JS, G =D x
[0,27], 0-G = {(z,0) € S x{0,27] | v(0)-n(z) <0}, and 04+G = {(z,0) € S x[0,2x] | v(6)-n(z) > 0}.
Consider the following boundary value problem for equation (1.1) with data on 4-G:

u(z,0) = 6,(0 — @), (z,0)€0-G. (1.3)

Here 65(8 — ) is a 2m-periodic function whose restriction to an arbitrary interval [ —e,a + €],€ €
(0,27), coincides with the Dirac delta-function supported at the point § = «. Henceforth, a is
a parameter of the problem. In this connection, a (distributional) solution to problem (1.1), (1.3) is
denoted by u(z, 0, a) to emphasize the dependence on the parameter a. It is obvious that u(z,8,a +
27) = u(z,0, ). Therefore, we consider the domain @ = {(z,8,a) | (z,0) € G,a € [0,2r]} as the
main domain of variation of the variables z, 0, and «a.

The following lemma is valid for problem (1.1), (1.3) (see § 2 for proof):

Lemma 1.1. Suppose that the coefficient o(z) belongs to C(D), o(x) > 0, the dispersion

index K(z,cosvy) belongs to C(G), and

K' = (7sup K?(z, cos 1) d¢>1/2 < L (1.4)
0 zeD \/8_7r

Then there is a weak solution to problem (1.1), (1.3) which is representable as
u(z,0,0) = 6,(0 — a) exp(~w(z, a)) + v(z, b, ). (1.5)

Here w(z,a) € C(G), v(z,0,a) € C(Q), @ = G x [0,27], and

s(z,a)
w(z,a) = / o(€)ds = / o(z — sv(a))ds, (1.6)
L(z,a) 0

where L(z,c) is the segment of the ray emanating from the point € D in the direction —v(c)
between the point = and the intersection point of the ray with S; s(z, ) is the length of the segment;
and ds is the line element.

Representation (1.5), (1.6) gives grounds for stating the following inverse problem:

PROBLEM. Given the trace of a solution to problem (1.1), (1.3) on 0+Q = {(z,0,¢) | (z,0) €
04+G,a € [0,2n]}:

u(z,0,a) = f(z,a)bp(d — a) + F(z,0,0), (z,0,0a) € 0+Q,

find o(z) > 0 and K(z,cos¥), (z,9) € G.
Specifying the trace on d4Q for a solution to problem (1.1), (1.3) is equivalent to specifying the
functions f(z,a) and F(z,0,a). Moreover, the following equality holds by Lemma 1.1:

o(f)ds = —In f(z,a) = g(z,a), (z,c) € 04+G. (1.7
L(z,e)
The problem of constructing the function o inside D given the function g(z,a) is referred to
as the tomography problem (the inversion problem for the Radon transform) and was studied by

many authors. There are various well-known inversion formulas for equality (1.7) as well as stability
estimates for a solution. We will return to this question below.
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The function v(z, 8, a) involved in representation (1.5) is a solution to the problem

L(o,K)v + K(z,v(0) - v(a)) exp(—w(z,a)) =0, (z,0,a)€ Q, (1.8)
v(z,0,a) =0, (z,0,a)€ d-Q=0-G x[0,2n], (1.9)

and is connected with the function F(z, 6, a) by the relation
v(z,0,a) = F(z,0,a), (z,0,a)€ 0+Q =0+G x [0,2x]. (1.10)

Hence, we arrive at the nonlinear tomography problem that consists in finding the function K(z, cos¢),
¥ = 0 — a, from relations (1.8)-(1.10). Moreover, the function w(z, a) is calculated by formula (1.6),
once the coeflicient o is determined from integral equation (1.7). The question of solvability of the
problem remains open. We discuss the question of stability and uniqueness for a solution to the
problem.

Let (oj, K;) be a solution to the inverse problem with data fj(z,a) and Fj(z,0,a), j = 1,2.
Denote by w;j(z, ) and v;(z,6,a) the functions w and v that correspond to o = o; and K = Kj.
Moreover, let

6=01-03, K=K~ Ky, W=w1—wy, 9=v1—v2, §=Info—Infy, F=F — F>.

Then the functions w(z,a) and o(z,d, a) are connected with the functions &(z) and I?(a:,cos ¥) by
the relations

w(z,a) = / &(€) ds, (1.11)

L(z,a)

5(6)ds = §(z,a), (z,0) € 84G, (1.12)
L(z,a)

L(o1, K1)% + 6(z)v(z, 0, c) + /I?(:c, cos 0 \va(z,0' 4 0, ) df’

+K (z,cos(0 — @)) exp(—wy (z, @) + Ka(z, cos(8 — a))R(z, a)i(z, a) = 0, (1.13)
ﬁ'a_Q =0, ﬁ|3+Q = F(z,(),a), (114)
where .
R(z,a) = — /exp{—[wl(z,a)t + wy(z, @)(1 — t)]} dt. (1.15)
0

We will make use of the stability estimate for a solution to equation (1.12) which ensues from the
results of the article [5].

Lemma 1.2. If o; € CY(D), j = 1,2, then

/ z)dz < _—/ / 69 z,0) ag (2 "‘) dide = Jo(§), (1.16)

0 S4(a)

where Sy(a) = {z € S | z - v(a) > 0}, 0§(z,)/dl is the derivative in the direction | tangent
to S+(a), and dl is the line element on Sy(a).
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The estimate for the function K(z,cost) relies upon a priori estimates for the functions w, v,
and ¥ that hold on condition that the functions o and K belong to some fixed function class. We now

describe this class. Suppose that o(z) € C'(D), K(z,cosy) € C!(G), and the following inequalities

hold:
27

1/2
1
0<o(z)<L o9, |Vo|<Lon, (/supKzz,cosz/Jd) <Ky < —,
(z) |Vo| < on /5 ( ) dyp 0< =

. (1.17)
1/2
( / sup [V K (z, cos )| d¢) < Ko,

z€D
0

where a9, o001, Ko, and Kj; are fixed constants. Denote the set of functions (o, K) satisfying these
conditions by M.

The following theorem is valid:

Theorem 1.1. Suppose that o;,K; € M j = 1,2. Then there exists § > 0 such that if
0‘0 + 001 + Ko + K01 < 62 then the function K = Ki — K, satisfles the estimate

/ R2(w, cos ) dadip < CLI(F) + Jold)], (1.18)
where or 2
an a o) [ 0F(z,0,0) OF(z,0,0)
- [ [ [ e (P M) g, g
00 5.(6)

and the constant C' depends only on oy, 091, Ko, and Ko;.

The proof of the theorem is given in §4. It is based on a priori estimates for the functions w, v,
and o in the class (o, K') € M which are established in § 3.
The following uniqueness theorem for the original problem is a simple consequence of Theorem 1.1.

Theorem 1.2. The inverse problem has at most one solution in the set of functions (o, K) € M
provided that o, 091, Ko, and Koy are sufficiently small.

The results of the present article can be generalized to the case of spaces of higher dimension.

§ 2. Proof of Lemma 1.1

Represent a solution to problem (1.1)-(1.3) in the form (1.5), with the function w(z,a) defined
by equality (1.6), and substitute the function u(z,d, ) into equalities (1.1) and (1.3). As a result
of this, we infer that the function v(z,#, a) is a solution to problem (1.8), (1.9). Taking the inverse
of the differential operator Vv - v + o(z)v by using boundary condition (1.9), we obtain an integral
equation in the function v(z, 6, ) as follows:

(2,0, a) / {/K £,0(8) - v(6))v(&,6, o) 6’

L(z8) O
K(€,1(0) - v(a)) exp(—uw(é, a»} explw(é, 8) — w(z,0)] ds, (2.1)

where ¢ = (z — sv(6)) € L(z,8) and L(z,8) is the segment of the ray which was defined in §1.
Every continuous solution to integral equation (2.1) is a weak solution to problem (1.8), (1.9).
The expression Vv - v(#) is understood to be the derivative of the function v in the direction v(#8).
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Lemma 2.1. If v(z,0,a) € C(Q) and condition (1.4) is satisfied then
2%

2 (2K")?
sup v*(z,0,a)df < —————,
O/‘zerl; ( ) (1 - K’\/87r)2

where the number K' is defined by formula (1.4).

PROOF. Since the function o is nonnegative, we have the inequalities w(¢, @) > 0 and w(¢,0) —
w(z,0) < 0. Therefore, the exponential factors in formula (2.1) do not exceed unity. Taking this fact
into account, we square both sides of equality (2.1) and use the inequality (a + 5)? < (1 + A)a® + (1 +
A71b%, A > 0, and the Cauchy-Bunyakovskii inequality to obtain

(2.2)

2x 2r
v3(z,0,0) < (14 X) K2(&,v(0) - v(6')) d'ds v2(€,6',a) db'ds
Al Ll
+(1 4+ A7 Ys(z, 8) / K2(&,v(0) - v(a))ds
L{z,8)
27
< 4(1 4 M) (K')? / sup v2(z,0, ) df + 4(1 + A71) sup K?(z, cos(f — a)).
zeD zeD

0
Integrating the inequality with respect to the variable 6 from 0 to 27, we find
27 27 2r
/ sup v2(z,0,a)df < 8m(K')*(1+ 1)) / sup v’(z,0,a)df + 4(1 + A 71) / sup K%(z, costp) dip.
zeD zeD zeD
0 0 0
Hence, if the condition 1 — 27 (2K')(1 4+ A) > 0 is satisfied then

7 (1+ A1) (2K')?

2 <
/52%” (2,6,0)dd < 1-2r(2KN2(1 + A)°
0

Putting A = —1 + 1/K'+/8m, we obtain an optimal estimate which coincides with (2.2).
Now, we demonstrate that, under condition (1.4), equation (2.1) has a unique solution in the class

C(Q). Rewrite (2.1) as the operator equation
v = Av, (2.3)

where the operator A is defined by the right-hand side of (2.1). Consider equation (2.3) in the space
C(G,L2[0,27]) comprising the functions continuous in the variables z and « and square summable
in 8. Endow this space with the norm

27

1/2
lv]| = sup (/vz(z,H,a)dﬁ) .
(z,0)€G

]

The operator A carries the space C(G,L[0,27]) onto C(Q) which is embedded in C(G, L2[0, 27])
and is a contraction. Indeed, as follows from the estimates obtained in the proof of Lemma 2.1, the
inequality

4 — A" < 202K P! — o
holds for every (v',v") € C(G,L2[0,2x]). Since K'v/8r < 1; therefore, A is a contraction on
C(G,L2[0,2x]). Then, by the Banach principle, there exists a unique element v € C(G, L[0, 2x])
satisfying (2.3). Recalling that A : C(G,L;[0,27]) — C(Q), we have v € C(Q). Lemma 1.1 is proven.
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§3. A Priori Estimates

This section is preparatory to proving Theorem 1.1. It contains estimates for the functions w,
v, and ¥ which are necessary for obtaining a stability estimate in the problem of determining the
dispersion index. Moreover, we suppose that (¢, K) and (o;, Kj), j = 1,2, belong to the set M. The
method for obtaining a priori estimates uses the approaches of the articles [5-7].

Lemma 3.1. The function w(z, «) satisfies the inequalities

0 < w(z,a) <200, |we(z,a)l < 2(00+ 001),

(3.1)
\/1 lz|2 + (z - v(e ) |Vw(z,a)| < go + 2001, (z,0) €G,
/ 2(z,0)dzda < 4rJo(g / (z,a)dzda < 47Jo(g). (3.2)
G G
Here
Jolg) = __/ / ‘9—" 2,2) 99(:@) y14a > 0, (3.3)
Oa
0 Si(a)
where g(z,a) = —In f(z,a), dg(z,a)/0! is the derivative of the function g(z,a) at a point z €

Si(a) = {z € S | n(z) - v(z) > 0} in the direction | tangent to S, and dl is the line element
on Si(a).

PROOF. The first inequality in (3.1) is an obvious consequence of the inequalities 0 < o(z) < a9
and s(z,a) < 2. Differentiating (1.6) with respect to a, we find -

s(z,a)
wo(z, ) = o(z — s(:z:,oz)u(o:))gi;(-xﬂ - / sVo(z — sv(a)) - v'(a)ds,
0 o) (3.4)

Vu(z,a) = o(z — s(z, a)v(e))Vs(z,a) + / Vo(z — sv(a))ds,
0

where V'(a) = dv(a)/da = (—sina,cosa). Since the length of the segment L(z,0) is calculated by
the formula s(z, @) = (z - v(e)) + /1 — |z]? + (z - v(@))?, we have

(z - V(e ))IS(z,a)
T VIRt (o))

lz—v- s(z a)l _ 1

VIl + (@ v(@)?  1-[zP+(z v(@)?

The above inequalities and formulas (3.4) 1mply the second and third inequalities of (3.1).
To obtain inequalities (3.2), we make use of the differential relation

Os(z,a)|
Oa

[Vs(z,e)| =

Vw - v(a) = o(z) (3.5)

between the functions w(z, @) and o(z) together with the following identity of the article [5]:

9 (T v(a))(Vu- V()] + natvey) — o (waws,) + [Vl

2(Vw 1! (0)) 5 -(Vw- v(a)) = -
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The left-hand side of the identity vanishes on solutions to equation (3.5). Integrating the resultant
equality over the domain G and using periodicity of w(z, ) in & and the Green formula, we find that

2x
/|Vw|2(:v,a) dzda < — //wt,,(:r:,oz)—ai(;:—l’El dlda = 27 Jo(g). (3.6)
G 0 S5

Whence we infer that Jo(g) is nonnegative, which fact is a necessary condition for solvability of integral
equation (1.7).
On the other hand,

w(z,a) = / Vw - v(a)ds.
L(z,a)
Hence,
w?(z,a) < 5(z, a) / (V- v(a))? ds. (3.7)
L(z.a)
Integrating inequality (3.7) over G, we find

/ w?(z,a) drda < / s(z, Q) / (Vw - v(a))? dsdzdo

G G L(z,a)
= /(Vw - v(a))? / sdsdzda < 2/(Vw - v(a))? deda < 4rdo(g). (3.8)
G Lt (z,a) G

In these intermediate calculations, L*(z, o) denotes the segment of the ray emanating from the point
r € D in the direction v(a) between the point z and the point of intersection of the ray with S.
Since formula (3.5) implies that

Vuwy - v(e) = =V - V'(a),
we have
wa(z, ) = / Vwe - v(a)ds = — / Vw -V (a)ds.
L(z,a) L(z,a)
Therefore, arguments analogous to those in the previous case lead to the inequality

/wi(z,a) drda < 2/(Vw V' (@))? dzda < 4nJy(g).
G G
The lemma is proven.
Lemma 3.2. Under the condition Kov273 < 1, a solution v(z,8,a) to problem (1.8), (1.9)
satisfies the inequalities
27 2%

8w K?
sup v*(z, 0, a) dfda < 0 = (o,
/ / eyt (1-KovBr?

2= 21r

//sup[ (1= |22 + (2 - ¥())?)[Vo(z, 6, 0[] dbde < Coy, (3.9)
z€D

2r
/ / sup

z€D
0 0

2

B%v(z,a +¢,a)| dyda < Copg,
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where the constants Co1 and Co2 depend only on oy, 001, Ko, and Ko1; moreover, (Cp1,Co2) — 0 as

(Ko, Ko1) — 0.

PROOF. The first inequality in (3.9) follows from inequality (2.2) and the hypothesis K' < Ky <

1//8m.

We now prove the second inequality in (3.9). First of all, observe that the presence of the factor 1—
|z|2 + (z - v())? under the integral sign is due to the fact that the function |Vu(z,#, o)| increases
unboundedly as the variable z approaches the endpoints of the half-circle S4(0) = {z € § | z -
v(8) > 0}, whereas the product (1 — |z|? + (z - v(a))?)|Vv(z, 8, @)| remains a continuous function (see

Lemma 2.3 of [6]).

Differentiating equality (2.1) with respect to the variable z;, j = 1,2, and introducing the notation

vj(a:,ﬂ,a) = —v(z,a,a), 'LUJ'(Z,CY) = —w(x,a),

"~ Oz, oz;
0 .
Kj(z,cos(ﬂ - a)) = aTK(za V(a) ) u(a)), J= 1a2a
J

we obtain the following integral equation in the functions v;, j = 1,2:

05(2,0,0) = | K(€" cos(0 — o)) exp(—w(€", )

2
+ / K(¢*, cos8')u(¢",6 + 0, ) d"'] (explw (7, 6) — “’(“”B)D%x;a)
0

+ / {[K,-(f,cos(o ~ ) + K (£ cos(8 — ))(w;(£,0) — w;(z, 0) — wi(¢, )]

L(z,0)
27

x exp(—w(é, @) + /[Kj({,cos 0')v(€,0+0',a)+ K(¢,cos 0’)1},‘({, 0+6,0)
0

+(w;(&,8) — w;(z,0))K (€, cos #')v(€,0+ 6, a)] } df' exp[w(¢,0) — w(z,0)] ds

where £* = [z — v(6)s(z,0)] € S. This equation implies the inequality

sup [\/1 — |z + (= - u(a))zlvj(:v,ﬂ,a)l] < sup |K(z, cos(d — a))|

z€eD zeD
+(Ko + 2Ko1 + 27Ky sup [\/1 — |22 + (z - v(@))?|lwj(z, a)|])
(z,2)€G
27 1/2
x (/ sup |v(z, 0, a)|? d0) + 2 sup |Kj(z,cos(6 — a))|
4 zeD zeD

+37 sup |K (@, cos(8 — a))| sup [/1—[af? + (& - v(e)lwj(z, )]
z€D (z,2)€G

2r
+7rKo(/:1€1g[\/l — |z|? + (z - u(a))Z[uj(a:,H,a)|]2d0) 1/2.
0
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Here we have used the relations

sup (1— € + (& v(8+0)D)72 =(1-|¢)72,

8'e[0,27)

s(z,0)
[y (P
1— 1- |z —
oL 7= | i

Squaring both sides of the preceding inequality and integrating the result with respect to § and ¢,
we find that

27 27
I; = //sup \/l |z|2 + (z - v(a ))2|vj(m,0,a)|]2do9da <2 KE(1 4+ NI,
z€D

+127(1 + A"l){KO +4KZ 4+ 97°KE sup (y/1—|z|2+ (z- v(a ))2|wj(:z:,oz)|)2
(z,0)€CG
27 27
[Ko +4K32 +4n2KE sup \/1 — |z|? + (z - v(a))?|wj(z, ) //supv z,0,a) dﬂda}
(z,0)eG zeD

for every A > 0. Putting A = —1 + 1/K¢Vv2r? and using inequality (3.1) and the first inequality
n (3.9), we obtain the following estimate for I;:

—

< =Cun, j=1,2

[S]

Here the constant Cp; is defined by the formula

(14 Co) [KE + 4K3 + 9n° K (00 + 2001)?].

Hence, the second inequality of (3.9) ensues.

To prove the third inequality in (3.9), put § = a + ¥ in equation (1.8), denote v(z,a + ¢¥,a) =
9(z, v, ), and differentiate the so-obtained equality with respect to a. Write down the result of
differentiation as follows:

Via(z,¥,a) via+¢) + o(z)le(z, 9, a)
2T

-~ Vﬁ(:é,gb,a) V(a+9)+ / K(z,co8 0 )ia(z,0 + 1, c)dd

— K(z,cos {)wq(z, a) exp(—w(z,a))] = h(z, ¥, a).

Here 14(z,%,a) = 0i(z,¥,a)/8a,v'(a¢) = (—sina,cosa). Formula (1.9) implies that the func-
tion ¥4(z, 9, a) satisfies the condition

va(z,¥,@) =0, (z,0,a)€ 0_Q.
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Consequently, the following representation holds:

Sa(c, %, a) = / hE, ¥, o) explw(€, & + 1) — w(z, a + )] ds,

L(z,a+v)

where £ = z — sv(a + ¢). Since

V1= €12 4 (€ v(8))? lgmssnio) = /1~ Ial? + (- 1(6))2,

s(2,0) S2/1- o' + (2 w(O)) < 2,

the representation for the function 94(z, %, &) implies the estimate

) < s(wa+¢)
T VI-laP 4 (- v(a +9))

<2sup[y/1 - [af? + (= - v(a + $))Ih(z, b, Q).

z€D

[ba(z, %, 5 5up (/1= Jal? + (= - v(cx + ¥)2IA(z, )]

Therefore,

sup [ia(2,, )| < 2 3up| (V1= |22+ (2 v(a+ )} [Vi(z, b, )]

z€D
2T

1/2
+2K0( / sup Iﬁa(:c,z/),a)|2d¢) +2sup [K(z,cos9)| sup |wa(z,a)|-
5 z€D z€D (z,2)eG

Hence, we find that

2% 27
J= //sup [ba(z,, a)|? dpda < 8KZ(1 4+ N)J +8(1+2171)

2%

X {SWKg(Uo +o01)? + 0/:161%{ [\/1 —|z|? + (z - v(6))?|Vv(z, 0,a)|]2 df da}.

Putting A = —1 4+ 1/Ko+/87 and using the second inequality of (3.9), we validate the last inequality
of (3.9), with the constant Co2 determined by the equality

8
(1 - KovBr)?

It is obvious that (Co;, Co2) — 0 as (Ko, Ko1) — 0. The lemma is proven.
The estimates of the forthcoming two lemmas are needed for the proof of Lemma 3.5 and are

based on the relation

Coz = [Co1 + 87K (a0 + a01)?].

\Y% (5%17(2?,01 + ¢,a)) V(e +¥)+ Vi(z,a+¢,a) - v'(a+ )

+01(z)§‘—6(z,a +¢,0)+ /Kl(z,cos 0')6%13(:1:,0' +a+v,a)dd' + N(z,9,a) =0, (3.10)
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where

N(z,¢,a) =é(z ) 9 1.12(.’1: a+1,a)— K(z,cos p)wia(z, ) exp(—wi(z,a))
+K2(:c cosz,b)[Ra(z a)(z, e) + R(z, a)wq(z, ), (3.11)

1

Ry(z,0) = /[wla(:v, a)t + waa(z,a)(l — t)] exp{—[wi(z, @)t + wa(z, a)(1 — t)]} dt. (3.12)
0

Relation (3.10) is obtained from equality (1.13) by substituting a + ¢ for § and differentiating the
equality with respect to .

Lemma 3.3. If the function K(z,cosy) satisfies the condition 2Ky\/m < 1 then the following

estimate holds for every p > 0:
5 2
/ (%6(1" a+ 1, a)) dzdida

< Cl[ (I+p) / (Vi(z,0,a) - v'(0)? dedfda + (1 +u_1)/N2(m,¢,a) dzdypdal|, (3.13)
Q Q

where Cy = 2/(1 — 2Ko+/7)*.
PROOF. Taking the inverse of the differential operator V - v + 4} in (3.10), we find that

%f)(z,aﬁ-d),a):— / {Vf;({,a+¢,a)-u'(a+¢)

L(z,a+y)
2n

+/K1(z,cos0')a—(1-ﬁ(§,0' +a+y,a)dd + N({,z/z,a)} explwi(é,a + ¢) — wi(z,a + ¢)] ds.
0

Hence,

2
(a%f)(z, a+ 1, a)>

2r 2
<smatw) [ {(1+A)K3 / (%6(e,a'+a+¢,a>) o
0

L(z,a+y)
FA 4+ AL+ W)(Va(E, @ +,0) - '+ 9)E + (1 + p)N(E 0, an} ds.  (3.14)
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Integrating inequality (3.14) over @ and changing the order of integration, we infer that

0 4 2ddd< 1 ,\21(2"3'~ :
[ (Zoma+wa) doisdas [{a+nerkd( Lot v,a)
Q Q

HL+ A+ u) (Vi a+9,0) -V (a+$))? + (1 + 7 )N (€, ¢, 0)] / sds} dé¢dvpdo
Lt(z,a+9)

2
< 2/{(1 + \)2n K2 ((,;iaﬁ(z,a + v, a))
Q

+(L+ A+ p)(Vi(z, 0+ $,0) - V(a+ ) + (1 + u")N2(z,¢,a)]} dzdipdar.

Putting A = —1 + 1/2Ko+/, we arrive at inequality (3.13).

Lemma 3.4. Under the conditions of Theorem 1.1, the following inequality holds for arbi-
trary A > 0 and p > 0:

/ (V5 1(8))? + (1 — A)(Vi - v(6))?] dedfde < A1(1 + p~Y) / N%(z,, o) dedipda
2 2

2
+2271(1 4 p) (ag + 27rK§) / (-é(?a—ﬁ(z, a+1, a)) dzdipda + J(F’), (3.15)

where the expression J(F) is defined by formula (1.19).

PROOF. We use equality (3.10). We leave the first two summands of the equality on the left-hand
side, transpose the others to the right-hand side, and afterwards multiply both sides of the equality
by 2Vi(z,a + ¥,a) - v'(a + ). We write down the result as follows:

T(a,,0) = 2Vo(z,a+ ,a) - V(@ + Y) o= (Vile, @+ ,a) - vl + )

= —2(Vi(z,a+¥,a) - V(a+ 1)) al(z)(,;iaﬁ(:c, a+,a)

27
+ / Ki(z,cos 0’)5%17(:1:, 0 +a+,a)dd + N(z,, a)] . (3.16)
0

Transform the left-hand side of (3.16) to the form

T(a,$,0) = 5ol(Vilz,a-+ ,0) V(o + )(V(a,a-+ ,0) vl + )]

(Lot i)t

0 [(%ﬁ(z, a+ Y, Ol)) Uz, (T, + P, a)] + [Vi(z,a + 9, a)|2'

" 9z,

319



Whence, by periodicity of the function #(z,a + ¥, @) in a, we find that

/T(z, Y,a)dzdypda = / |Vi(z,a + ¢, a)|? dzdypda
Q Q

+ / <%ﬁ(m, a+ 1y, a)) <-a%f}($, a+ v, a)) dldyda
;@ Jo-Q
- / (Vi(z,8,0) - v(8))? + (Vii(, 6, 0) - (6))?) dzdbda — J(F). (3.17)
Q

On the other hand, for arbitrary A > 0 and g > 0 we have
T(z,%,a) < AM(Vi(z,a+¥,a) - V'(a+¥))?

P 2 5 P 2
+A71 {2(1 + 1) [ag (b—aﬁ(z, a+ 1, a)) + K? / (%f)(x, 0+ a, a)) da]
0

4N a0
Hence,

/T(z,¢, a)dzdipda < A /(sz(z, a+,a)-V(a+ ) dedpda
Q Q

2
+A_1{2(1 + p) [(ag + 27rKg) /(B%f;(x,a + ¢,a)) d0] dzdyda
Q

+(1 +p_1)/N2(z,¢,a)dmd¢da}. (3.18)
Q

Relations (3.17) and (3.18) imply the assertion of the lemma.

Lemma 3.5. Suppose that oo and Ky satisfy the inequality 8C1(o% + 2rKZ) < 1 and the
hypothesis of Lemma 3.3. Then the following estimate is valid:

o~

/ (Vi(z, 8, ) v(8))? dzddda < C, / N%(z,, ) dzdpda + J(F), (3.19)
Q Q

where Cy = [4 + \/gCI(ag +2rKE)]/2[1 - \/801(03 +2rK3)].

PROOF. Substituting estimate (3.13) for the integral of the derivative of ¥(z, a+, o) with respect
to a in the right-hand side of (3.15), we find that

/ (Vi(z,0,a) - v(8))? dzdfda
Q
<A1+ p 1 + 201 (0 + 20K (1 + p)] / N¥(z,4,a) dzdpda + J(F), (3.20)
Q
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provided that 1 — A — 2A71Cy (02 + 27 K2)(1 + p)? > 0. The last inequality may hold only if (1 +
p)? < 1/8C1 (08 + 2rKE). Under the conditions of the lemma, we have 8C; (62 + 27KE) < 1;
therefore, it is possible to choose appropriate positive parameters A and p. We take A = 1/2 and

p=-1+ 1/\/801 (0% + 2rK?). Then formula (3.20) implies inequality (3.19).

Lemma 3.8. Under the condition of Lemma 3.2, the following inequality holds for every A > 0:

/N2(z,’¢*, @) dzdipda < 8m(og + 001)2(1 + /\)/1?2(:1:, cosyp) dzdyp + (1 4+ A1) CoaJo(§),  (3.21)
G

where Coz = 3[Co1 + 4w KZ(1 + 4(00 + 001))?] and the expression Jo(§) is defined by formula (1.16).
PROOF. Inequalities (3.1) and formula (3.12) imply that

0 < R(z,a) <1, |Ra(z,a)| <2(g0+ 001). (3.22)

Squaring both sides of (3.11) and integrating the result over @), we arrive at the inequality

/Nz(:z:,gb,a) drdipda < 8n(o9 + o01)2(1 + A) / I?Z(z,cos ¥) dzdy
2x 2%

e [ [ [l

+K§[ sup Ri(z,a)/ifzz(z,a)dzda-i- sup R%(z,c) ﬁg(z,a)dzda]}.
(z,0)EG (z,a)€G

2
dipda

_UZ(E a+'¢'a )

Using inequalities (3.9) and (3.22) and estimates for w and W, similar to (3.2), we obtain inequal-
ity (3.21).
The last two lemmas yield the next lemma which closes the section:

Lemma 3.7. Under the conditions of Lemmas 3.2 and 3.5, the following estimate holds for every
A>0:

/ (Vi(z,6, ) - v(8))? dzdfda
Q
< J(F) + (1 4+ A™HCosJo(§) + (1 + A)Cos / K*(z, cos ) dzdy, (3.23)

where Cos4 = C2Co3 and Cos = 87C2(0og + 0'01)2.

Observe that while proving Lemmas 3.3-3.5 we estimated the integrals without substantiating
their existence. Under the conditions of Theorem 1.1, the derivatives of the function ¥(z, 8, a) with
respect to z;, ¢ = 1,2, behave like the corresponding derivatives of the function v(z,, @), i.e., have
singularities of the type (1 — |z|2 + (z - v(a))?)~'/? in a neighborhood of each endpoint z of the
half-circle S4(0). These singularities are however weak, not destroying the existence of the integrals
in question.
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§ 4. Proof of Theorem 1.1

We make use of equality (1.13). Multiply the equality by exp(wi(z,a)), transpose the term

K (z,cos(6—a)) to the other side of the equality, and square the resultant equality. Using estimate (3.1)
and the Cauchy-Bunyakovskii inequality, we obtain the inequality

2%

2%
I?Z(m,cos(O —a)) < exp(4ao){(1 + /\)/I?z(z,cosz,b dy sup/v2 (z,0,a)dd’
zeD
0

+(1 4+ A7YHY[L(01, K1)D (:L' 0,0) + 6(z)vy(z, 0, )

+Ks(z,cos(d — a))R(z, a)w(z, a)]z}

which is valid for every A > 0. Integrate the inequality over () and use inequality (3.9) for estimating
the integral of v2(z, 0, a). After simple transformations, we obtain

2r/l?2(m,cos¢) dzdy < exp(4ao){(1 +/\)27rCo/I?2(z,cos¢)d:cd¢
+(14+ 271 /[L (01, K1)9(z,0, a) + 6(z)v2(z, 0, @)

+K(z,cos(0 — @))R(z, @)(z, a))? dzdl da}.

Suppose that g and Ky are so small that Cyexp(4o9) < 1. Putting A = —1 + 1/4/Co exp(20¢), we
then obtain the estimate

/I?Z(a:,cos ¥)dzdy < Ca/[L(Ul,KI)ﬁ(z,H,a)
G Q

+6(z)va(z, 0, @) + Ka(z, cos(8 — a))R(z, )@(z, a))? dzdfdo, (4.1)
with C3 = exp(409)/27[1 — +/Co exp(209))°.
Estimate the right-hand side of (4.1). Since R(z,a) < 1, the inequality

/[L(al, K1)o(z,0,a) + &(z)va(z, 0, @) + Ko(z,cos(d — a)R(z, @)@ (z, a))? dedfda

< [{a+wiTate0,0)- 507 +40 +57) oz, 0,0)

Q
2z

+ K2 / 9%(z,0',a) db’ + 5%(z)vi(z,0,a) + K2 (z, a)] } dzdfdo
0

is valid for every p > 0. Use estimates (1.16) and (3.9) and the inequalities

2
/ #2(z,0, a) dzdfda < 2 / (va(z,o,a) : u(o)) dzdfde,
Q Q
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/Gz(m,a) dzda < 47w Jo(§)
G
similar to inequalities (3.8) and (3.2). Then formula (4.1) implies that

/ R(, cos ) dadip < 4Cs(1 + u~)[Co + 872 K2] Jo(3)

+C3[(1 + p) + 8(1 + p~ 1) (0} + 27 KE)] / (Vi(z, 8, ) - v(6))? dzdbde. (4.2)
Q

Putting p = p* = \/ 8(oZ + 2w K?), we obtain the inequality

/ K%(z, cos ) dzdip < 4C3[1 + (u*)~Y[Co + 872K 2] Jo(3)
G

+C3(1 + p*)? j(Vﬁ(z,ﬂ,a) -v(0))? dzdlde. (4.3)

Suppose that the inequalities V273Kp < 1 and 8Ci (02 + 2rK?) < 1 are satisfied. In this case
Lemma 3.7 and inequality (3.23) are valid. Using the latter, we arrive at the inequality

/ K%(z,cos ) dzdyp < Cy(1 + ) / K*(z,cos ) dzdip + CsJ(F) + Ce(M)Jo(3), (4.4)

where Cy = (1 + p*)2C3Cos, Cs = (1 + p*)2C3, and Cs(A) = (1 + AN C3C04(1 + p*)? + 4C3[1 +
(£*)~1(Co + 87%K3).

The constants Cy, C1, C2, and C3 have finite limits as {oq, 0o1, Ko, Ko1) — 0. Moreover, Cy — 0
and Cy — 0. Therefore, there exists a number § > 0 such that, for arbitrary (oo, oo1, Ko, Ko1)
satisfying the inequality o3 + o, + K? + K, < 62, the inequalities

V2r3Ky <1, Coexp(dog) <1, 8Ci(of+27K3) <1, Ci<1
hold simultaneously. Putting A = A* = —1 + 1/4/C} in inequality (4.4) and denoting

C = max (Cs, Cs(A*)) /(1 = \/C4),

we now arrive at estimate (1.18).
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