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O N  C E R T A I N  C L A S S E S  OF M E T R I C  S P A C E S  
P. V.  C h e r n i k o v  UDC 513.83 

The spaces analogous to absolute retracts were studied in the series of articles [1-5]. In particular,  the 
notion of absolute t-retract  was defined in [5] which helped to generalize the classical Luzin theorem on 
approximation of measurable functions by continuous functions and prove the corresponding converse 
assertion. The notion of absolute ~-retract was introduced in [4]. In the present article we establish 
some properties of absolute (neighborhood) t-retracts. 

We now present the relevant definitions. 
A closed subset A in a compact  metric space X is called a t-retract of X if for every Radon measure 

# > 0 on A and every e > 0 there exists a compact subset A~ C A such that  # (A \ A~) < e and a 
continuous map r~ : X  --, A such that  r~(x) = z for all x e Ae u. 

A compact  metr ic  space Y is called an absolute t-retract (see [5]) if, given an arbi t rary compact  
metric space X; each closed subset A of X homeomorphic to Y is a t-retract.  We denote by ARl  the 
totali ty of all absolute t-retracts.  

A closed subset A in a compact metric space X is called a neighborhood t-retract of X if there 
exists a neighborhood U of A in X satisfying the following condition: for every Radon measure # > 0 
on A and every number  e > 0 there exists a compact subset A~ C A such that  # (A \ A~") < e and a 
continuous map r~ : V --, A such that  r~(x) = z for all x E m~. 

A compact  metr ic  space Y is called an absolute neighborhood t-retract (see [4]) if, given an arbitrary 
compact  metr ic  space X, each closed subset A of X homeomorphic to Y is a t-retract .  

The notion of absolute a- re t rac t  is introduced in [5]. Following [5], we denote the total i ty of all 
absolute a- re t rac ts  by ARa.  

The following assertions [4] hold: 

L e m m a  1. If  Y is a connected compact metric space and Y E A N  R then Y E ARa .  

L e m m a  2. If  a compact set Y belongs to ARi  then Y is arcwise connected. 

L e m m a  3. A compact metric space Y belongs to ARt  if  and only i f  Y E A N R t  and Y is 
connected. 

n 

T h e o r e m  1. If  Y E A N R t  then Y = U Yi with Yi N Yj = ~ for i ~ j ,  where Yi E ARt ,  
i=1 

i = l , . . .  ,n ,  and n E { 1 , 2 . . . } .  

PROOF. We may assume that  Y C Q. There  exists a neighborhood U of Y in Q satisfying the 
following condition: for every Radon measure # _> 0 on Y and every e > 0 there exists a compact  set 
A~ such that  # ( Y  \ A~) < e and a continuous map r ~ :  U ----, Y such that  r~(x)  = x for all x E A~. 

Let { ~ } i e s  stand for the set of all connected components of Y. Suppose that  S is infinite. Choose 
xi e ~ ,  i e S.  There  exists a sequence {zk}~=l C {z i } ieS  convergent to some point z E Z E { ~ } i e s  
and a ball B ( z , p )  = {z  e Q :  I l z -  z[I < p}, p > 0, such that  B(z ,p )  c U. There  exists a number  g 
such tha t  zk e B ( z , p )  for all k > N. Look at the points z and ZN. We can suppose that  zN ~ Z. 
We define the Radon measure 6 _> 0 on Y as follows: 6({z}) = 6({ZN} ) - - - -  1 and 6 ( Y  \ {Z, ZN}) = O. 
There  exists a continuous map r : U -* Y such that  r(z)  = z and r(zN)  = ZN. Consider the interval 
I = {sz  + (1 - S)ZN : 0 <_ s <_ 1}, I C B(z ,p ) .  The set r ( l )  is included in Y; it is connected,  
and r ( l )  A Z ~ ~ .  Consequently, the compact  set Z is not a maximal  connected subset in Y. A 
contradiction. 
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Thus,  S is finite. Let S = {1 , . . .  ,n}.  Obviously, ~ �9 ANRt,  i = 1 , . . .  ,n .  By L e m m a  3 the 
compact  set ~ belongs to ARt, i = 1,. . .  ,n. The  theorem is proven. 

Theorem 1 was formulated  in [4] wi thout  proof. 
Now we consider Cartesian products  of absolute neighborhood t-retracts.  

o o  

T h e o r e m  2. The Cartesian product X = 11 X,, is an absolute neighborhood t - re t ract  if and 
n = l  

only if every Xn belongs to ANRt  and almost all Xn belong to ARt. 

P R o o F .  Suppose tha t  Xn �9 ANRt  for all n > 1 and there exists a number  N such tha t  Xn �9 ARt 
N oo 

for all n > N.  From Theorem 6 of [6], we have 1] X,~ �9 ANRt .  By Theorem 1 of [7], I-I Xr, �9 ARt. 
n = l  n = N + l  

Hence, by Theorem 6 of [6], X �9 ANRt.  
�9 Suppose  now tha t  X �9 ANRt .  Each project ion qo i : X ~ Xj given by the formula  ~pj ({xn}r,=l) = 

xj  is an r -map.  Therefore,  from L e m m a  4 of [6] and the condit ion X �9 A N R t  it follows that  
Xj �9 ANRt  for all j > 1. 

Demons t r a t e  tha t  there exists a number  N1 such that  the compact  sets Xj ' s  are connected for 
j >_ N1. Suppose  the contrary. Then there exists a sequence of posit ive integers {jk}k~176 j l  < 
j2 < . . .  < Jk < . . . ,  such tha t  the compact  sets Xjk's are not connected (k = 1 , 2 , . . . ) .  We have 
Xjk = r l k u r ~ ,  Y? n r~ = ~,  rl k and r ~  are closed subsets in Xjk , and Ylk, r ~  :~ O (k = 1 , 2 , . . .  ). 
Choose points  a~ E Y~ and a~ �9 Y~ arbitrarily. Pu t  Dk -- {a~,a~}. The  set Dk is a retract  of 

oo oo 

the space Xj' k. Consequently,  the product  D ~ = I-I D/c is a retract  of the p roduc t  1-I Xjk. Since 
k = l  k = l  

oo 

I-I x jk  �9 ANRt;  therefore, by Lemma  4 of [6], the compact  set D w is an ANRt-space. But  the 
k = l  
compac t  set D ~ is homeomorph ic  to some perfect Cantor set which obviously is not an ANRt-space. 

Thus,  there exists a number  N1 such that  Xj is a connected ANRt-compact set for all j > N1. 
Hence, by L e m m a  3, X j  E AR~ for j > N1. The  theorem is proven. 

As is known,  the  union of two ANR(gYt)-spaces closed in the  union is an ANR(gYt)-space if their 
intersection is an ANR(~Jl)-space too. As far as the union of two ARt-compact sets is concerned,  we 
have the next  

T h e o r e m  3. Let a metric space Z be the union of two compact  subsets X and Y tha t  belong 
to ARt and intersect at a [inite number of points. Then Z �9 ARt. 

PROOF. Let a l , . . .  ,an �9 X ,  bl , . . .  ,bn �9 Y, and X M Y = {al = bl , . . .  ,an = bn}. Let Q1 and 
Q2 be two copies of the Hilbert  cube Q intersecting at a finite number  of points  c l , . . .  ,ca. Embed  
the compac t  set X into the  Hilbert  cube Q1. By Theorem 11.1 of [8], we can assume tha t  ai = ci, 
i = 1 , . . .  ,n .  Embed  the compact  set Y into Q2- We can assume tha t  bi = ci, i = 1 , . . .  ,n .  

Let # > 0 be a Radon measure on Z. We define some l~adon measure  ~ > 0 on Z as follows: 
~({ci}) = 1, i = 1 , . . .  , n ,  and ~(Z \ { c , , . . .  ,ca}) = 0. Pu t  u, = #l X + ~l X and y2 = ~lV + ~ilY. 
Given e > 0, there exist a compact  subset A~ C X and a continuous map  r~ : Q1 ~ X such tha t  
u l ( X \ A  1) _< e /2  and rl(x) = x for a l l x  �9 A~. Also, there exist a c o m p a c t  subset  A 2 C Y and a 
cont inuous m a p r  2 :Q2--- ,  Y such that  u 2 ( Y \ A  2) g e / 2 a n d  r~(x) = x f o r  a l l x  �9 AE 2. I f e  > 0 i s  

sufficiently small  then  A~ M A~ = { c l , . . .  ,ca}.  Pu t  A~ = m~ U me 2. Then  # ( X  U Y \ A~) < ~. We 
define a cont inuous map  r~ : Q1 o Q2 --' Z as follows: 

f �9 Q1, 
�9 �9 

If x �9 A~ then r~(x) = x. By Theorem 9.1 of [9, p. 132], Q1 u Q2 �9 ANR;  hence,  Q1 u Q2 �9 ARa. 
The  compac t  set Z is a t - retract  of the  compact  set Q1 u Q2. Therefore,  Z �9 ARt. T h e  theo rem is 
proven. 
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Corollary 1. Every ANRt-compact set can be transformed into an absolute t-retract by ad- 
joining a finite number  of one-dimensional simplices. 

C o r o l l a r y  2. Let a metric space Z be the union of two compact subsets X and Y such that 
X,  Y E A N R t  with intersection either empty or consisting of finitely many points. Then Z E ANRt .  

Corollaries 1 and 2 follow from Theorems 1 and 3. 

REMARK. As is known [8], every ANR-compact space can be transformed into an absolute retract  
by adjoining a finite number  of cells. By adjoining a finite number of one-dimensional cells to X,  we 
can obtain a connected compact  ANR-space X1. By Lemma 1, X1 is an absolute a-re t ract .  

Now we state one assertion that  concerns extension of maps. 

T h e o r e m  4. Let X be a compact Hausdorff space such that, given a closed subset A C X ,  a 
continuous map f : A --~ K from A into a CW-complex K, and any finite open covering w of K,  
there exists a continuous map g : X ~ K such that the maps f and g[A are w-close. Then there 
exists a continuous extension fo : X --+ K of f : A ~ K.  

PROOF. There  exists a locally finite CW-complex L homotopically equivalent to K. Let ~o : K 
L and r : L ~ K be continuous maps such that r _ id K. Then there exists a finite CW-complex 
L0 C L such that  

~vf(A) C int L0. 

The compact  set L0 is metrizable and belongs to A N R .  There is a g > 0 such that  any two continuous 
maps gl and g2 from a topological space X into L0 satisfying the condition 

for all x E )~ are homotopic on )( .  
Demonstra te  that  there exists a continuous map ]'6 : X ---* K such that  cpf,(A) C Lo and 

p@f(x), _< 6 

for all x E A. 

Vy C U v  and diamUy < 6. 
m 

qof(A) C U v,j. Put  
j=l  

Given any point y E ~vf(A), choose neighborhoods Uy, Vy C int L0 so as to have 
There exist a finite number  of points y l , . . . , y m  6 ~ f ( A )  such that  

r / l  

w=L\Uvyi. 
j=l 

The finite family of the sets {Uyl , . . .  , Uym; W} forms an open covering of the space L. Consequently, 
the family w0 = {~-1 (Uy 1) , . . .  , ~o-1 (Uy,,,); ~v - I  (W)} forms an open covering of the complex K. By 
assumption,  for the  map f : A ~ K and covering w0 there exists a continuous map f6 : X ~ K 
such that  the maps f and f~[A are w0-close. If z E A then, for a suitable number  s E {1 , . . .  ,m},  
we have ~vf(z) E try, and ~pf6(z) E Uy,. Therefore, p(cpf(z),~vft(z)) < 6. Hence ~vf ~_ ~vfs[A and 
consequently r  ~_ r i.e., f ~_ fs[A. 

There  exists a homotopy F :  A x I ~ K such that  F(z,O) = f ( z )  and F ( z ,  1) = f~(z) for all 
z 6 A. It is possible to find a finite subcomplex K0 C K such that  F ( A  x I) C Ko and f6 (X)  C Ko. 
By the Borsuk theorem on extension of a homotopy, there exists a continuous map f0 : X --* K0 for 
which fo[A = f .  The  theorem is proven. 

C o r o l l a r y  1. If, under  the assumptions of Theorem 4, K is a CW-complex  K(G, n) then 
c - d i m c X  _< n (here K(G,n )  is an Eilenberg-MacLane space [10]). 

C o r o l l a r y  2. If, under  the assumptions of Corollary 1, G = Z,  X is a compact  metric space, 
and F d X  < oo then F d X  < n. 
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The  proof of Corollary 2 results from applying a lemma of [11]. 
We point  out tha t  the condit ion FdX  < oo in Corollary 2 is essential. This  follows from The- 

orem 2 of [11] and the fact tha t  there exists a compact  metric space Y with c - d i m z Y  = 3 and 
dim Y = cx~ [12]. 

In [13] there was defined the notion of absolute h-retract in the class of compact  Hausdorff spaces. 
We rephrase the definition as follows: 

A closed subset A of a compact  space X is called an h-retract of X if there exists a continuous 
map  r : X ---* A such tha t  rlA "" id A. 

A compact  space Y is called an absolute h-retract if, given an arbitrary compact  metr ic  space X, 
each closed subset A of X homeomorphic  to Y is an h-retract  of X.  We denote  the class of all absolute 
h-retracts by A HR. 

A closed subset A of a compact  space X is called a neighborhood h-retract (see [14]) of X if there 
exist a neighborhood U of A in X and a continuous map  r : U ---* A such tha t  r lA ~_ id A. 

A compact  space Y is called an absolute neighborhood h-retract  if, given an arbi t rary compact  
space X,  each closed subset of X homeomorphic  to Y is a neighborhood h-retract  of X.  We denote 
the total i ty of all absolute neighborhood h-retracts by ANHR. 

OO 

T h e o r e m  5. Let X , ,  n >_ 1, be compact metric spaces such that the product X = 1-I Xn 
n~--I 

belongs to ANHR and has a trivial shape. Then Xn E AHR,  n >_ 1. 
PROOF. We can assume that  X C Q. There exist a neighborhood U of X in Q and a continuous 

map  r : U --* X such tha t  r iX ~_ i d x .  By Theorem 27.1 of [15] there exists a continuous map 
f v  : Q --* U such tha t  f v ( x )  = x for all x E X. Put  ~(x)  = r( fv(x)) ,  x E Q. The  map  ~ :  Q ---* X 
is cont inuous and T]X __ id x;  i.e., X E AHR. Since any retract of an AHR-space is an AHR-space; 
therefore, Xn E AHR, n > 1. The  theorem is proven. 

T h e o r e m  6. If X is an ANR-compact space then X is an AR-space if and only if the funda- 
mental group rl (X) and all the homology groups Hi(X; Z), i >_ O, are trivial. 

PROOF. By use made  of embedding  the compact  space X into the Tychonoff  cube I r, we easily 
see tha t  X is homotopical ly  domina ted  by a suitable compact  polyhedron.  Then ,  by [10], there exists 
a CW-complex  K homotopical ly  equivalent to X. Consequently, ~rl (K) -- 0 and Hi (K;  Z) -- 0, i _> 0. 
By the Whi tehead  theorem,  the CW-complex  K is contractible. Hence, the  ANR-compact space X 
is contract ible  and,  therefore, X E AR. The theorem is proven. 

Theorem 6 generalizes Theorem 10.8 of [9]. 
In a way analogous to the one used in the proof of Theorem 6, we can prove 

T h e o r e m  7. l f  X is an ANHR-compact set then X is contractible if and only if the fundamental 
group r1(X) and all the homology groups ~li(X; Z), i >_ O, are trivial. 

We now exhibit  some extra  examples. It is known [4] that  if X is a connected metr izable ANR- 
compact  space then X E ARt. The  homology groups H,(X;  Z), n _> 0, are finitely generated.  We 
will demons t r a t e  that ,  in general, this is not t rue for ARt-compact  spaces. 

OO 

EXAMPLE 1. Assign Xi = S 2, i = 1 , 2 , . . . ;  S = 11 Xi. Since S 2 E ANR, we have S 2 E AR~ 
i= l  

and hence S 2 E ARt. From Theorem 1 of [7] we obtain S E AR,. Obviously, the homology group 
H2(S; Z) is not  finitely generated.  

Generally speaking,  the homotopy groups ri(S), i > O, are not finitely generated either.  Since 
~rl(S) = 0; therefore, by the  Hurewicz theorem the groups H~.(S; Z) and 7r2(S) are isomorphic  and 
hence the group ~r2(S) is not finitely generated. 

In [6] the  Cartesian products  are considered of absolute e-retracts (e-AR-spaces).  We will show 
that  the  homology groups of an absolute e-retract  can fail to be finitely generated.  

EXAMPLE 2. Denote by C the closure in the plane R 2 of the graph of the  funct ion y = s i n ( l / z ) ,  
OO 

where 0 < x < 1. We have C E e-AR. Put  Xi = C, i = 1 , 2 , . . . ,  and X = 1-I Xi.  By Theorem 1 of [6] 
i----1 
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the compact space X is an absolute e-retract. The homology group H0(X; Z) is not finitely generated. 
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