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ON CERTAIN CLASSES OF METRIC SPACES
P. V. Chernikov UDC 513.83

The spaces analogous to absolute retracts were studied in the series of articles [1-5]. In particular, the
notion of absolute ¢-retract was defined in [5] which helped to generalize the classical Luzin theorem on
approximation of measurable functions by continuous functions and prove the corresponding converse
assertion. The notion of absolute ¢-retract was introduced in [4]. In the present article we establish
some properties of absolute (neighborhood) t-retracts.

We now present the relevant definitions.

A closed subset A in a compact metric space X is called a t-retract of X if for every Radon measure
# > 0on A and every € > 0 there exists a compact subset Af C A such that p(A\ Af) < e and a
continuous map ¢ : X — A such that rf(z) = z for all z € Ae”.

A compact metric space Y is called an absolute t-retract (see [5]) if, given an arbitrary compact
metric space X, each closed subset A of X homeomorphic to Y is a t-retract. We denote by AR; the
totality of all absolute ¢-retracts.

A closed subset A in a compact metric space X is called a neighborhood t-retract of X if there
exists a neighborhood U of A in X satisfying the following condition: for every Radon measure p > 0
on A and every number € > 0 there exists a compact subset AY C A such that p(A \ Aé‘) <eanda
continuous map rt : U — A such that r£(z) = z for all z € Af.

A compact metric space Y is called an absolute neighborhood t-retract (see [4]) if, given an arbitrary
compact metric space X, each closed subset A of X homeomorphic to Y is a t-retract.

The notion of absolute o-retract is introduced in (5]. Following [5], we denote the totality of all
absolute o-retracts by AR,.

The following assertions [4] hold:

Lemma 1. IfY is a connected compact metric space and Y € ANR then Y € AR,.
Lemma 2. If a compact set Y belongs to ARy then Y is arcwise connected.

Lemma 3. A compact metric space Y belongs to ARy if and only if Y € ANR; and Y is
connected.

n
Theorem 1. If Y € ANR; then Y = |JY; with Y;NY; = @ for i # j, where Y; € ARy,
=1
t=1,...,n,and n € {1,2...}.

PROOF. We may assume that ¥ C @). There exists a neighborhood U of Y in @ satisfying the
following condition: for every Radon measure g > 0 on Y and every € > 0 there exists a compact set
A¥F such that ,u(Y \ Aé‘) < ¢ and a continuous map r¥ : U — Y such that rf(z) = z for all z € AL.

Let {Y;}ics stand for the set of all connected components of Y. Suppose that S is infinite. Choose
z; €Y, 1 € S. There exists a sequence {z;}§2, C {z;}ies convergent to some point z € Z € {Y;}ies
and a ball B(z,p) = {z € Q : ||z — z|| < p}, p > 0, such that B(z,p) C U. There exists a number N
such that zp € B(z,p) for all K > N. Look at the points z and zy. We can suppose that zy ¢ Z.
We define the Radon measure 6 > 0 on Y as follows: 6({z}) = 6({zn}) =1 and é(Y \ {z,2n}) = 0.
There exists a continuous map r : U — Y such that r(z) = z and r(2y) = zy. Consider the interval
I'={sz+ (1 —8)zy : 0 < s <1}, I C B(z,p). The set r(I) is included in Y; it is connected,
and r(I) N Z # @. Consequently, the compact set Z is not a maximal connected subset in Y. A
contradiction.
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Thus, S is finite. Let § = {1,...,n}. Obviously, ¥; € ANR;, i = 1,... ,n. By Lemma 3 the
compact set Y; belongs to ARy, : =1,...,n. The theorem is proven. '

Theorem 1 was formulated in [4] without proof.

Now we consider Cartesian products of absolute neighborhood i-retracts.

oo
Theorem 2. The Cartesian product X = [| X, is an absolute neighborhood t-retract if and

=1
only if every X, belongs to ANR; and almost ;U Xy belong to AR;.
PROOF. Suppose that X,, € ANR; for all n > 1 and there exists a number N such that X, € AR;

N oo
for alln > N. From Theorem 6 of [6], we have [] X, € ANRy. By Theorem10of[7], ] X. € AR:.
n=1

n=N+1
Hence, by Theorem 6 of [6], X € ANR,.
Suppose now that X € AN R;. Each projection ¢; : X — X; given by the formula ¢;({za}3,) =

zj is an r-map. Therefore, from Lemma 4 of [6] and the condition X € ANR; it follows that
X; € ANR, for all j > 1.

Demonstrate that there exists a number Ny such that the compact sets X;’s are connected for
j > Ni. Suppose the contrary. Then there exists a sequence of positive integers {jx}5>,, j1 <
j2 < ... < jk < ..., such that the compact sets X;,’s are not connected (k = 1,2,...). We have
X;, =YFuY), YEnY) =@, Yf and Y} are closed subsets in Xj,, and Y, Y # @ (k=1,2,...).
Choose points af € Y]k and a'z‘ € Y2k arbitrarily. Put Dy = {a'l‘,ag}. The set D is a retract of

oo o0
the space X,,. Consequently, the product D“ = [] Dy is a retract of the product [ Xj,. Since
k=1 k=1

[o o]
II X;. € ANRy; therefore, by Lemma 4 of [6], the compact set D* is an AN Ry-space. But the
k=1

compact set D is homeomorphic to some perfect Cantor set which obviously is not an AN R;-space.
Thus, there exists a number N; such that X is a connected AN Ri-compact set for all j > Nj.
Hence, by Lemma 3, X; € AR, for j > N;. The theorem is proven.
As is known, the union of two AN R{90)-spaces closed in the union is an AN R(91)-space if their

intersection is an AN R(9N)-space too. As far as the union of two AR;-compact sets is concerned, we
have the next

Theorem 3. Let a metric space Z be the union of two compact subsets X and Y that belong
to AR; and intersect at a finite number of points. Then Z € AR;.

PROOF. Let ay,...,an € X, b1,...,bp €Y, and XNY = {a; = by,... ,an = bn}. Let @1 and

Q2 be two copies of the Hilbert cube @ intersecting at a finite number of points ¢1,...,cn. Embed
the compact set X into the Hilbert cube Q. By Theorem 11.1 of [8], we can assume that a; = ¢;,
i=1,...,n. Embed the compact set Y into Q2. We can assume that b; =¢;,2=1,... ,n.

Let 4 > 0 be a Radon measure on Z. We define some Radon measure § > 0 on Z as follows:
§({c:}) = 1,3 =1,...,n,and 6(Z\ {c1,... ,ea}) = 0. Put vy = p|X + §|X and vy = p|Y +6]Y.
Given ¢ > 0, there exist a compact subset A} C X and a continuous map r} : @1 — X such that
n (X \ Al) <¢€/2 and rl(z) = z for all z € A]. Also, there exist a compact subset A2C Y and a
continuous map 72 : Qy — Y such that vo(Y \ A%) < ¢/2 and r(z) = z for all z € A2 Ife > 0is
sufficiently small then Al N A2 = {c1,... ,cn}. Put A¥ = Al U Ae?. Then p(X UY \ Af) <e We
define a continuous map r¥ : Q) U Q2 — Z as follows:

1
u — Te (2)3 T € Qla
e () { ri(z), z € Q2.
If z € A¥ then r#(z) = z. By Theorem 9.1 of [9, p. 132], @1 U Q2 € ANR; hence, @1 U Q2 € AR,.
The compact set Z is a t-retract of the compact set @ U Q2. Therefore, Z € AR;. The theorem is

proven.

417



Corollary 1. Every AN Ry-compact set can be transformed into an absolute t-retract by ad-
Jjoining a finite number of one-dimensional simplices.

Corollary 2. Let a metric space Z be the union of two compact subsets X and Y such that
X,Y € ANR,; with intersection either empty or consisting of finitely many points. Then Z € AN R;.
Corollaries 1 and 2 follow from Theorems 1 and 3.

REMARK. Asis known [8], every AN R-compact space can be transformed into an absolute retract
by adjoining a finite number of cells. By adjoining a finite number of one-dimensional cells to X, we
can obtain a connected compact AN R-space X;. By Lemma 1, X, is an absolute o-retract.

Now we state one assertion that concerns extension of maps.

Theorem 4. Let X be a compact Hausdorff space such that, given a closed subset A C X, a
continuous map f : A — K from A into a CW-complex K, and any finite open covering w of K,
there exists a continuous map g : X — K such that the maps f and g|A are w-close. Then there
exists a continuous extension fo: X — K of f: A— K.

PROOF. There exists a locally finite CW-complex L homotopically equivalent to K. Let ¢ : K —
L and ¢ : L — K be continuous maps such that ¥y ~ id . Then there exists a finite CW-complex
Lo € L such that

wf(A) Cint Lo.

The compact set Ly is metrizable and belongs to AN R. There is a 6 > 0 such that any two continuous
maps g1 and g from a topological space X into Lg satisfying the condition

p(g91(z),92(z)) < 6

for all z € X are homotopic on X.
Demonstrate that there exists a continuous map f5 : X — K such that ¢ f5(A) C Ly and

plef(z),pfs(z)) < 6

for all z € A. Given any point y € ¢f(A), choose neighborhoods Uy, V,; C int Ly so as to have
Vy C Uy and diamUy < §. There exist a finite number of points y1,...,ym € wf(A) such that
m

wf(A) C L_Jl Vy,- Put
1= -
w=1L\{JV,
j=1

The finite family of the sets {Uy,, ... ,Uy,; W} forms an open covering of the space L. Consequently,
the family wo = {¢"}(Uy,),--- , 1 (Uym); ¢~ (W)} forms an open covering of the complex K. By
assumption, for the map f : A — K and covering wy there exists a continuous map f5 : X — K
such that the maps f and f5|A are wy-close. If z € A then, for a suitable number s € {1,... ,m},
we have ¢ f(z) € Uy, and ¢fs(z) € Uy,. Therefore, p(pof(z),pfs(z)) < 6. Hence of ~ v f5|A and

consequently Yo f ~ Yo fs|A; ie., f ~ f5|A.

There exists a homotopy F' : A x I — K such that F(z,0) = f(z) and F(z,1) = f5(z) for all
z € A. It is possible to find a finite subcomplex Ky C K such that F(A x I) C Ko and f§(X) C Ko.
By the Borsuk theorem on extension of a homotopy, there exists a continuous map fy : X — Kj for

which fo|A = f. The theorem is proven.

Corollary 1. If, under the assumptions of Theorem 4, K is a CW-complex K(G,n) then
c-dimg X < n (here K(G,n) is an Eilenberg-MacLane space [10]).

Corollary 2. If, under the assumptions of Corollary 1, G = Z, X is a compact metric space,
and FdX < oo then FdX < n.
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The proof of Corollary 2 results from applying a lemma of [11].

We point out that the condition FdX < oo in Corollary 2 is essential. This follows from The-
orem 2 of [11] and the fact that there exists a compact metric space Y with ¢-dimzY = 3 and
dimY = oo [12].

In [13] there was defined the notion of absolute A-retract in the class of compact Hausdorff spaces.
We rephrase the definition as follows:

A closed subset A of a compact space X is called an h-retract of X if there exists a continuous
map 7 : X — A such that r|A ~ id 4.

A compact space Y is called an absolute h-retract if, given an arbitrary compact metric space X,
each closed subset A of X homeomorphic to Y is an h-retract of X. We denote the class of all absolute
h-retracts by AHR.

A closed subset A of a compact space X is called a neighborhood h-retract (see [14]) of X if there
exist a neighborhood U of A in X and a continuous map r : U — A such that r|A ~id 4.

A compact space Y is called an absolute neighborhood h-retract if, given an arbitrary compact
space X, each closed subset of X homeomorphic to Y is a neighborhood h-retract of X. We denote
the totality of all absolute neighborhood h-retracts by ANHR.

[o. ¢}
Theorem 5. Let X,, n > 1, be compact metric spaces such that the product X = [] Xa
n=1

belongs to ANHR and has a trivial shape. Then X, € AHR, n > 1.

PRroOF. We can assume that X C @. There exist a neighborhood U of X in @ and a continuous
map r : U — X such that r|X ~ id x. By Theorem 27.1 of [15] there exists a continuous map
fu : @ = U such that fy(z) =z for all z € X. Put p(z) = r(fu(z)), z € Q. Themap p: Q — X
is continuous and p|X ~ id x; i.e., X € AHR. Since any retract of an AHR-space is an AHR-space;
therefore, X, € AHR, n > 1. The theorem is proven.

Theorem 6. If X is an ANR-compact space then X is an AR-space if and only if the funda-
mental group m1(X) and all the homology groups Hi(X;Z), ¢ > 0, are trivial.

PROOF. By use made of embedding the compact space X into the Tychonoff cube I”, we easily
see that X is homotopically dominated by a suitable compact polyhedron. Then, by [10], there exists
a CW-complex K homotopically equivalent to X. Consequently, 71(K) =0 and Hi(K;Z) =0,17>0.
By the Whitehead theorem, the CW-complex K is contractible. Hence, the AN R-compact space X
is contractible and, therefore, X € AR. The theorem is proven.

Theorem 6 generalizes Theorem 10.8 of [9)].

In a way analogous to the one used in the proof of Theorem 6, we can prove

Theorem 7. If X is an ANHR-compact set then X is contractible if and only if the fundamental
group m1(X) and all the homology groups Hi(X;Z), i > 0, are trivial.
We now exhibit some extra examples. It is known [4] that if X is a connected metrizable ANR-

compact space then X € AR;. The homology groups Hn(X;Z), n > 0, are finitely generated. We
will demonstrate that, in general, this is not true for AR;-compact spaces.

o0
EXAMPLE 1. Assign X; = 52,1 =1,2,...; S = [] Xi. Since 52 € ANR, we have 52 € AR,
1=1
and hence S? € AR;. From Theorem 1 of 7] we obtain S € AR;. Obviously, the homology group
H3(S; Z) is not finitely generated.

Generally speaking, the homotopy groups m;(S), i > 0, are not finitely generated either. Since
71(S) = 0; therefore, by the Hurewicz theorem the groups Hz(S; Z) and m2(S) are isomorphic and
hence the group m(S) is not finitely generated.

In [6]) the Cartesian products are considered of absolute e-retracts (e-AR-spaces). We will show
that the homology groups of an absolute e-retract can fail to be finitely generated.

EXAMPLE 2. Denote by C the closure in the plane R? of the graph of the function y = sin(1/z),
where 0 < z < 1. We have C € e-AR. Put X; =C,i=1,2,...,and X = [] X;. By Theorem 1 of [6]

i=1
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the compact space X is an absolute e-retract. The homology group Ho(X; Z) is not finitely generated.

-

12.

13.

14.

15.
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