ON CERTAIN CLASSES OF METRIC SPACES P. V. Chernikov

The spaces analogous to absolute retracts were studied in the series of articles [1-5]. In particular, the notion of absolute *t*-retract was defined in [5] which helped to generalize the classical Luzin theorem on approximation of measurable functions by continuous functions and prove the corresponding converse assertion. The notion of absolute *t*-retract was introduced in [4]. In the present article we establish some properties of absolute (neighborhood) *t*-retracts.

UDC 513.83

We now present the relevant definitions.

A closed subset A in a compact metric space X is called a *t*-retract of X if for every Radon measure $\mu \ge 0$ on A and every $\varepsilon > 0$ there exists a compact subset $A^{\mu}_{\varepsilon} \subset A$ such that $\mu(A \setminus A^{\mu}_{\varepsilon}) \le \varepsilon$ and a continuous map $r^{\mu}_{\varepsilon} : X \to A$ such that $r^{\mu}_{\varepsilon}(x) = x$ for all $x \in A\varepsilon^{\mu}$.

A compact metric space Y is called an *absolute t-retract* (see [5]) if, given an arbitrary compact metric space X, each closed subset A of X homeomorphic to Y is a t-retract. We denote by AR_t the totality of all absolute t-retracts.

A closed subset A in a compact metric space X is called a *neighborhood t-retract* of X if there exists a neighborhood U of A in X satisfying the following condition: for every Radon measure $\mu \ge 0$ on A and every number $\varepsilon > 0$ there exists a compact subset $A_{\varepsilon}^{\mu} \subset A$ such that $\mu(A \setminus A_{\varepsilon}^{\mu}) \le \varepsilon$ and a continuous map $r_{\varepsilon}^{\mu}: U \to A$ such that $r_{\varepsilon}^{\mu}(x) = x$ for all $x \in A_{\varepsilon}^{\mu}$.

A compact metric space Y is called an *absolute neighborhood t-retract* (see [4]) if, given an arbitrary compact metric space X, each closed subset A of X homeomorphic to Y is a t-retract.

The notion of absolute σ -retract is introduced in [5]. Following [5], we denote the totality of all absolute σ -retracts by AR_{σ} .

The following assertions [4] hold:

Lemma 1. If Y is a connected compact metric space and $Y \in ANR$ then $Y \in AR_{\sigma}$.

Lemma 2. If a compact set Y belongs to AR_t then Y is arcwise connected.

Lemma 3. A compact metric space Y belongs to AR_t if and only if $Y \in ANR_t$ and Y is connected.

Theorem 1. If $Y \in ANR_i$ then $Y = \bigcup_{i=1}^n Y_i$ with $Y_i \cap Y_j = \emptyset$ for $i \neq j$, where $Y_i \in AR_i$, i = 1, ..., n, and $n \in \{1, 2...\}$.

PROOF. We may assume that $Y \subset Q$. There exists a neighborhood U of Y in Q satisfying the following condition: for every Radon measure $\mu \geq 0$ on Y and every $\varepsilon > 0$ there exists a compact set A^{μ}_{ε} such that $\mu(Y \setminus A^{\mu}_{\varepsilon}) \leq \varepsilon$ and a continuous map $r^{\mu}_{\varepsilon} : U \to Y$ such that $r^{\mu}_{\varepsilon}(x) = x$ for all $x \in A^{\mu}_{\varepsilon}$.

Let $\{Y_i\}_{i\in S}$ stand for the set of all connected components of Y. Suppose that S is infinite. Choose $x_i \in Y_i, i \in S$. There exists a sequence $\{z_k\}_{k=1}^{\infty} \subset \{x_i\}_{i\in S}$ convergent to some point $z \in Z \in \{Y_i\}_{i\in S}$ and a ball $B(z,\rho) = \{x \in Q : ||x-z|| < \rho\}, \rho > 0$, such that $B(z,\rho) \subset U$. There exists a number N such that $z_k \in B(z,\rho)$ for all $k \ge N$. Look at the points z and z_N . We can suppose that $z_N \notin Z$. We define the Radon measure $\delta \ge 0$ on Y as follows: $\delta(\{z\}) = \delta(\{z_N\}) = 1$ and $\delta(Y \setminus \{z, z_N\}) = 0$. There exists a continuous map $r : U \to Y$ such that r(z) = z and $r(z_N) = z_N$. Consider the interval $I = \{sz + (1-s)z_N : 0 \le s \le 1\}, I \subset B(z,\rho)$. The set r(I) is included in Y; it is connected, and $r(I) \cap Z \neq \emptyset$. Consequently, the compact set Z is not a maximal connected subset in Y. A contradiction.

Novosibirsk. Translated from Sibirskii Matematicheskii Zhurnal, Vol. 35, No. 2, pp. 459-464, March-April, 1994. Original article submitted February 10, 1993.

Thus, S is finite. Let $S = \{1, ..., n\}$. Obviously, $Y_i \in ANR_t$, i = 1, ..., n. By Lemma 3 the compact set Y_i belongs to AR_t , i = 1, ..., n. The theorem is proven.

Theorem 1 was formulated in [4] without proof.

Now we consider Cartesian products of absolute neighborhood t-retracts.

Theorem 2. The Cartesian product $X = \prod_{n=1}^{\infty} X_n$ is an absolute neighborhood t-retract if and only if every X_n belongs to ANR_t and almost all X_n belong to AR_t .

PROOF. Suppose that $X_n \in ANR_t$ for all $n \ge 1$ and there exists a number N such that $X_n \in AR_t$ for all n > N. From Theorem 6 of [6], we have $\prod_{n=1}^{N} X_n \in ANR_t$. By Theorem 1 of [7], $\prod_{n=N+1}^{\infty} X_n \in AR_t$.

Hence, by Theorem 6 of [6], $X \in ANR_t$.

Suppose now that $X \in ANR_t$. Each projection $\varphi_j : X \to X_j$ given by the formula $\varphi_j(\{x_n\}_{n=1}^{\infty}) = x_j$ is an r-map. Therefore, from Lemma 4 of [6] and the condition $X \in ANR_t$ it follows that $X_j \in ANR_t$ for all $j \ge 1$.

Demonstrate that there exists a number N_1 such that the compact sets X_j 's are connected for $j \geq N_1$. Suppose the contrary. Then there exists a sequence of positive integers $\{j_k\}_{k=1}^{\infty}, j_1 < j_2 < \ldots < j_k < \ldots$, such that the compact sets X_{j_k} 's are not connected $(k = 1, 2, \ldots)$. We have $X_{j_k} = Y_1^k \cup Y_2^k, Y_1^k \cap Y_2^k = \emptyset$, Y_1^k and Y_2^k are closed subsets in X_{j_k} , and $Y_1^k, Y_2^k \neq \emptyset$ $(k = 1, 2, \ldots)$. Choose points $a_1^k \in Y_1^k$ and $a_2^k \in Y_2^k$ arbitrarily. Put $D_k = \{a_1^k, a_2^k\}$. The set D_k is a retract of the space X_{j_k} . Consequently, the product $D^{\omega} = \prod_{k=1}^{\infty} D_k$ is a retract of the product $\prod_{k=1}^{\infty} X_{j_k}$. Since

 $\prod_{k=1}^{m} X_{j_k} \in ANR_t$; therefore, by Lemma 4 of [6], the compact set D^{ω} is an ANR_t -space. But the compact set D^{ω} is homeomorphic to some perfect Cantor set which obviously is not an ANR_t -space.

Thus, there exists a number N_1 such that X_j is a connected ANR_t -compact set for all $j \ge N_1$. Hence, by Lemma 3, $X_j \in AR_t$ for $j \ge N_1$. The theorem is proven.

As is known, the union of two $ANR(\mathfrak{M})$ -spaces closed in the union is an $ANR(\mathfrak{M})$ -space if their intersection is an $ANR(\mathfrak{M})$ -space too. As far as the union of two AR_t -compact sets is concerned, we have the next

Theorem 3. Let a metric space Z be the union of two compact subsets X and Y that belong to AR_t and intersect at a finite number of points. Then $Z \in AR_t$.

PROOF. Let $a_1, \ldots, a_n \in X$, $b_1, \ldots, b_n \in Y$, and $X \cap Y = \{a_1 = b_1, \ldots, a_n = b_n\}$. Let Q_1 and Q_2 be two copies of the Hilbert cube Q intersecting at a finite number of points c_1, \ldots, c_n . Embed the compact set X into the Hilbert cube Q_1 . By Theorem 11.1 of [8], we can assume that $a_i = c_i$, $i = 1, \ldots, n$. Embed the compact set Y into Q_2 . We can assume that $b_i = c_i$, $i = 1, \ldots, n$.

Let $\mu \geq 0$ be a Radon measure on Z. We define some Radon measure $\delta \geq 0$ on Z as follows: $\delta(\{c_i\}) = 1, i = 1, ..., n, \text{ and } \delta(Z \setminus \{c_1, ..., c_n\}) = 0$. Put $\nu_1 = \mu | X + \delta | X$ and $\nu_2 = \mu | Y + \delta | Y$. Given $\varepsilon > 0$, there exist a compact subset $A_{\varepsilon}^1 \subset X$ and a continuous map $r_{\varepsilon}^1 : Q_1 \to X$ such that $\nu_1(X \setminus A_{\varepsilon}^1) \leq \varepsilon/2$ and $r_{\varepsilon}^1(x) = x$ for all $x \in A_{\varepsilon}^1$. Also, there exist a compact subset $A_{\varepsilon}^2 \subset Y$ and a continuous map $r_{\varepsilon}^2 : Q_2 \to Y$ such that $\nu_2(Y \setminus A_{\varepsilon}^2) \leq \varepsilon/2$ and $r_{\varepsilon}^2(x) = x$ for all $x \in A_{\varepsilon}^2$. If $\varepsilon > 0$ is sufficiently small then $A_{\varepsilon}^1 \cap A_{\varepsilon}^2 = \{c_1, \ldots, c_n\}$. Put $A_{\varepsilon}^{\mu} = A_{\varepsilon}^1 \cup A_{\varepsilon}^2$. Then $\mu(X \cup Y \setminus A_{\varepsilon}^{\mu}) \leq \varepsilon$. We define a continuous map $r_{\varepsilon}^{\mu} : Q_1 \cup Q_2 \to Z$ as follows:

$$r^{\mu}_{\varepsilon}(x) = \begin{cases} r^{1}_{\varepsilon}(x), & x \in Q_{1}, \\ r^{2}_{\varepsilon}(x), & x \in Q_{2}. \end{cases}$$

If $x \in A_{\epsilon}^{\mu}$ then $r_{\epsilon}^{\mu}(x) = x$. By Theorem 9.1 of [9, p. 132], $Q_1 \cup Q_2 \in ANR$; hence, $Q_1 \cup Q_2 \in AR_{\sigma}$. The compact set Z is a *t*-retract of the compact set $Q_1 \cup Q_2$. Therefore, $Z \in AR_t$. The theorem is proven. **Corollary 1.** Every ANR_t -compact set can be transformed into an absolute t-retract by adjoining a finite number of one-dimensional simplices.

Corollary 2. Let a metric space Z be the union of two compact subsets X and Y such that $X, Y \in ANR_t$ with intersection either empty or consisting of finitely many points. Then $Z \in ANR_t$.

Corollaries 1 and 2 follow from Theorems 1 and 3.

REMARK. As is known [8], every ANR-compact space can be transformed into an absolute retract by adjoining a finite number of cells. By adjoining a finite number of one-dimensional cells to X, we can obtain a connected compact ANR-space X_1 . By Lemma 1, X_1 is an absolute σ -retract.

Now we state one assertion that concerns extension of maps.

Theorem 4. Let X be a compact Hausdorff space such that, given a closed subset $A \subset X$, a continuous map $f: A \to K$ from A into a CW-complex K, and any finite open covering ω of K, there exists a continuous map $g: X \to K$ such that the maps f and g|A are ω -close. Then there exists a continuous extension $f_0: X \to K$ of $f: A \to K$.

PROOF. There exists a locally finite CW-complex L homotopically equivalent to K. Let $\varphi: K \to L$ and $\psi: L \to K$ be continuous maps such that $\psi \varphi \simeq \operatorname{id}_K$. Then there exists a finite CW-complex $L_0 \subset L$ such that

$$\varphi f(A) \subset \operatorname{int} L_0.$$

The compact set L_0 is metrizable and belongs to ANR. There is a $\delta > 0$ such that any two continuous maps g_1 and g_2 from a topological space \widetilde{X} into L_0 satisfying the condition

$$\rho(g_1(x),g_2(x))\leq \delta$$

for all $x \in \widetilde{X}$ are homotopic on \widetilde{X} .

Demonstrate that there exists a continuous map $f_{\delta}: X \to K$ such that $\varphi f_{\delta}(A) \subset L_0$ and

$$ho(arphi f(x), arphi f_{\delta}(x)) \leq \delta$$

for all $x \in A$. Given any point $y \in \varphi f(A)$, choose neighborhoods $U_y, V_y \subset \text{int } L_0$ so as to have $\overline{V}_y \subset U_y$ and diam $U_y \leq \delta$. There exist a finite number of points $y_1, \ldots, y_m \in \varphi f(A)$ such that $\varphi f(A) \subset \bigcup_{i=1}^m V_{y_i}$. Put

$$W = L \setminus \bigcup_{j=1}^{m} \overline{V}_{y_j}$$

The finite family of the sets $\{U_{y_1}, \ldots, U_{y_m}; W\}$ forms an open covering of the space *L*. Consequently, the family $\omega_0 = \{\varphi^{-1}(U_{y_1}), \ldots, \varphi^{-1}(U_{y_m}); \varphi^{-1}(W)\}$ forms an open covering of the complex *K*. By assumption, for the map $f : A \to K$ and covering ω_0 there exists a continuous map $f_{\delta} : X \to K$ such that the maps f and $f_{\delta}|A$ are ω_0 -close. If $x \in A$ then, for a suitable number $s \in \{1, \ldots, m\}$, we have $\varphi f(x) \in U_{y_e}$ and $\varphi f_{\delta}(x) \in U_{y_e}$. Therefore, $\rho(\varphi f(x), \varphi f_{\delta}(x)) \leq \delta$. Hence $\varphi f \simeq \varphi f_{\delta}|A$ and consequently $\psi \varphi f \simeq \psi \varphi f_{\delta}|A$; i.e., $f \simeq f_{\delta}|A$.

There exists a homotopy $F : A \times I \to K$ such that F(x,0) = f(x) and $F(x,1) = f_{\delta}(x)$ for all $x \in A$. It is possible to find a finite subcomplex $K_0 \subset K$ such that $F(A \times I) \subset K_0$ and $f_{\delta}(X) \subset K_0$. By the Borsuk theorem on extension of a homotopy, there exists a continuous map $f_0 : X \to K_0$ for which $f_0|A = f$. The theorem is proven.

Corollary 1. If, under the assumptions of Theorem 4, K is a CW-complex K(G,n) then $c-\dim_G X \leq n$ (here K(G,n) is an Eilenberg-MacLane space [10]).

Corollary 2. If, under the assumptions of Corollary 1, G = Z, X is a compact metric space, and $FdX < \infty$ then $FdX \leq n$.

The proof of Corollary 2 results from applying a lemma of [11].

We point out that the condition $FdX < \infty$ in Corollary 2 is essential. This follows from Theorem 2 of [11] and the fact that there exists a compact metric space Y with $c-\dim_Z Y = 3$ and $\dim Y = \infty$ [12].

In [13] there was defined the notion of absolute h-retract in the class of compact Hausdorff spaces. We rephrase the definition as follows:

A closed subset A of a compact space X is called an *h*-retract of X if there exists a continuous map $r: X \to A$ such that $r|A \simeq id_A$.

A compact space Y is called an *absolute h-retract* if, given an arbitrary compact metric space X, each closed subset A of X homeomorphic to Y is an h-retract of X. We denote the class of all absolute h-retracts by AHR.

A closed subset A of a compact space X is called a *neighborhood h-retract* (see [14]) of X if there exist a neighborhood U of A in X and a continuous map $r: U \to A$ such that $r|A \simeq id_A$.

A compact space Y is called an absolute neighborhood h-retract if, given an arbitrary compact space X, each closed subset of X homeomorphic to Y is a neighborhood h-retract of X. We denote the totality of all absolute neighborhood h-retracts by ANHR.

Theorem 5. Let X_n , $n \ge 1$, be compact metric spaces such that the product $X = \prod_{n=1}^{\infty} X_n$ belongs to ANHR and has a trivial shape. Then $X_n \in AHR$, $n \ge 1$.

PROOF. We can assume that $X \subset Q$. There exist a neighborhood U of X in Q and a continuous map $r: U \to X$ such that $r|X \simeq id_X$. By Theorem 27.1 of [15] there exists a continuous map $f_U: Q \to U$ such that $f_U(x) = x$ for all $x \in X$. Put $\varphi(x) = r(f_U(x)), x \in Q$. The map $\varphi: Q \to X$ is continuous and $\varphi|X \simeq id_X$; i.e., $X \in AHR$. Since any retract of an AHR-space is an AHR-space; therefore, $X_n \in AHR, n \ge 1$. The theorem is proven.

Theorem 6. If X is an ANR-compact space then X is an AR-space if and only if the fundamental group $\pi_1(X)$ and all the homology groups $\widetilde{H}_i(X; Z)$, $i \ge 0$, are trivial.

PROOF. By use made of embedding the compact space X into the Tychonoff cube I^{τ} , we easily see that X is homotopically dominated by a suitable compact polyhedron. Then, by [10], there exists a CW-complex K homotopically equivalent to X. Consequently, $\pi_1(K) = 0$ and $\tilde{H}_i(K; Z) = 0$, $i \ge 0$. By the Whitehead theorem, the CW-complex K is contractible. Hence, the ANR-compact space X is contractible and, therefore, $X \in AR$. The theorem is proven.

Theorem 6 generalizes Theorem 10.8 of [9].

In a way analogous to the one used in the proof of Theorem 6, we can prove

Theorem 7. If X is an ANHR-compact set then X is contractible if and only if the fundamental group $\pi_1(X)$ and all the homology groups $\widetilde{H}_i(X; Z)$, $i \ge 0$, are trivial.

We now exhibit some extra examples. It is known [4] that if X is a connected metrizable ANRcompact space then $X \in AR_t$. The homology groups $H_n(X;Z)$, $n \ge 0$, are finitely generated. We will demonstrate that, in general, this is not true for AR_t -compact spaces.

EXAMPLE 1. Assign $X_i = S^2$, $i = 1, 2, ...; S = \prod_{i=1}^{\infty} X_i$. Since $S^2 \in ANR$, we have $S^2 \in AR_{\sigma}$ and hence $S^2 \in AR_t$. From Theorem 1 of [7] we obtain $S \in AR_t$. Obviously, the homology group

and hence $S \in AR_i$. From Theorem 1 of [7] we obtain $S \in AR_i$. Obviously, the homology $H_2(S; Z)$ is not finitely generated.

Generally speaking, the homotopy groups $\pi_i(S)$, $i \ge 0$, are not finitely generated either. Since $\pi_1(S) = 0$; therefore, by the Hurewicz theorem the groups $H_2(S; Z)$ and $\pi_2(S)$ are isomorphic and hence the group $\pi_2(S)$ is not finitely generated.

In [6] the Cartesian products are considered of absolute ε -retracts (ε -AR-spaces). We will show that the homology groups of an absolute ε -retract can fail to be finitely generated.

EXAMPLE 2. Denote by C the closure in the plane \mathbb{R}^2 of the graph of the function $y = \sin(1/x)$, where $0 < x \le 1$. We have $C \in \varepsilon$ -AR. Put $X_i = C$, $i = 1, 2, ..., \text{ and } X = \prod_{i=1}^{\infty} X_i$. By Theorem 1 of [6]

the compact space X is an absolute ε -retract. The homology group $H_0(X; Z)$ is not finitely generated.

References

- 1. H. Noguchi, "A generalization of absolute neighborhood retracts," Kodai Math. J., No. 1, 20-22 (1953).
- 2. K. Kuratowski, Topology. Vol. 2 [Russian translation], Mir, Moscow (1969).
- 3. P. V. Chernikov, "On N. N. Luzin's theorem," Sibirsk. Mat. Zh., 33, No. 1, 212-215 (1992).
- 4. P. V. Chernikov, "Approximation of measurable mappings and retracts," submitted to VINITI on March 10, 1989, No. 1585.
- 5. P. V. Chernikov, "Metric spaces and continuation of mappings," Sibirsk. Mat. Zh., 27, No. 6, 210-215 (1986).
- 6. M. A. Martinsone and P. V. Chernikov, "Cartesian products of some spaces that are close to absolute retracts. II," submitted to VINITI on October 26, 1992, No. 3071.
- 7. P. V. Chernikov, "Cartesian products of some spaces that are close to absolute retracts. I," submitted to VINITI, 1992, No. 688.
- 8. T. A. Chapman, Lectures on Hilbert Cube Manifolds [Russian translation], Mir, Moscow (1981).
- 9. K. Borsuk, Theory of Retracts [Russian translation], Mir, Moscow (1971).
- 10. E. N. Spanier, Algebraic Topology [Russian translation], Mir, Moscow (1971).
- 11. Yu. V. Lubenets, "Fundamental dimension of compact subsets," Uspekhi Mat. Nauk, 47, No. 3, 167-168 (1992).
- 12. A. N. Dranishnikov, "Homological dimension theory," Uspekhi Mat. Nauk, 43, No. 4, 11-55 (1988).
- C. W. Saalfrank, "A generalization of the concept of absolute retract," Proc. Amer. Math. Soc., 12, 374-378 (1961).
- 14. P. V. Chernikov, "Approximation of measurable mappings and retracts," submitted to VINITI on May 8, 1990, No. 2453.
- 15. K. Borsuk, Theory of Shape [Russian translation], Mir, Moscow (1976).

TRANSLATED BY A. Z. ANAN'IN