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A S Y M P T O T I C  D E C O M P O S I T I O N  O F  S L O W  I N T E G R A L  
M A N I F O L D S  

L. I. K o n o n e n k o  a n d  V. A. Sobolev UDC 517.928 

I n t r o d u c t i o n  

We consider the system of differential equations 

~ = Z(z ,  t, ~), z e R ''+', t e R, (1) 

where 0 < s << 1 and the vector-function Z is sufficiently smooth in all variables. Our fundamental 
hypothesis is as follows: the limit system of equations Z(z, t, 0) = 0 (e = 0) admits an m-parametric 
family of solutions 

z = r  v e R  ~, ~ e R ,  (2) 

where r is a sufficiently smooth vector-function. We pose the question of existence of an integral 
manifold of slow motions (a slow integral manifold) 

z = P(v, t ,s)  (3) 

on which the motion is governed by the equation 

~,=Q(v,t,~) (4) 

Recall that by an integral manifold of system (1) one usually means some set in R m+n x R that 
consists of integral curves of the system. We confine ourselves to study of smooth integral surfaces in 
the e-neighborhood of the surface z = r t), i.e., P(v, t, 0) = r t), on which the motion is governed 
by differential equations of the form (4) with the right-hand sides dependent on e in a sufficiently 
smooth fashion. 

Equation (1) describes motions with velocities of order O(e -1); and equation (4) describes those 
with velocities of order O(1), i.e., slow motions. Therefore, integral manifold (3) is conventionally 
called an integral manifold of slow motions, or a slow manifold. 

Foundations of the theory of integral manifolds were laid by N. N. Bogolyubov and Yu. A. Mitro- 
pol~skiL Principal results of the theory are exposed in.the monograph [1]. 

The method of integral manifolds for study of singularly-perturbed differential systems was used, 
for instance, in the articles [2-4]. 

From the standpoint of the theory of integral manifolds, the most thoroughly studied class of 
singularly-perturbed systems of differential equations is given by the systems of the form 

~ = X ( x , y , t , ~ ) ,  z e R ' ,  t e R ,  
~ = Y ( z ,  y, t, ~), y e R n. 

(5) 
(s) 

If the equation Y(x,  y, t, 0) = 0 has an isolated solution 

y = ~(~ , t )  (7) 
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and det B(x,  t) • 0, B(x,  t) = Yy(x, ~o, t, 0) then, under additional conditions on the eigenvalues of the 
matrix S(x , t ) ,  in the E-neighborhood of surface (7) system (5), (6) has a slow integral manifold 

y=h(x,t,e) (8) 

on which the motion is governed by the equation 

(9) 

For systems (5), (6), the role of the variable v is played by the vector x; the role of integral 
manifold (3), by integral manifold (8); and the role of equation (4), by equation (9). 

In the application of the method of integral manifolds to solving concrete problems, the central 
question is that  of calculating the functions that describe integral manifolds. Further we consider 
several methods for constructing integral manifolds in the form of asymptotic expansions in the powers 
of a small parameter�9 We precede this with discussing the question of existence of slow integral 
manifolds for systems of the form (1). 

We point out that  asymptotic expansions- of some solutions to such systems were studied, for 
instance, in the articles [5-7]. 

w 1. E x i s t e n c e  of a Slow Man i fo ld  

Assume the following conditions to be satisfied: the rank of the matrix r t) equals m; the 
rank of the matrix A(v,t) = Z,(r equals n; the matrix A(v,Q has the zero eigenvalue of 
multiplicity m and the other n eigenvalues ~i(v, t) of A(v, t) meet the condition 

R e , ~ i ( v , t ) < - 2 c ~ < 0 ,  t e N ,  v E R  m. (1.1) 

Differentiating the identity Z(r  t), t, 0) = 0 with respect to v, we obtain Z~(r t), t, 0)r t ) =  
0, or A(v,t)r  = 0. The preceding equality together with the first condition means that the 
(m + n) x (m + n)-matr ix A(v, t) has m linearly independent eigenvectors (the columns of the matrix 
Cv(v, t)) corresponding to the multiple zero eigenvalue. 

Let D T be an (m + n) x n-matrix whose columns form a basis for the kernel of the operator A 
and let D T be an (m + n) • m-matr ix such that the matrix (DT, D T) is nondegenerate. Then 

AT(D T D T) = (0 B r) 

o r  (o) 
DA = , D = D2 

Thus, the premultiplication of A by the nondegenerate matrix D distinguishes a zero block of order 
m • (m + n) and a nonzero n • (m + n)-block B. 

The rank of the matr ix B equals n. Consequently, without loss of generality, we may assume that 
under the above-made assumptions system (1) is representable as 

e~= fl(x,  y2,t,e), x E R m, 
e~t2 = f2(x, y2,t,e), Y2 E Rn; 

(1.2) 

(1.3) 

moreover, the following conditions hold: 

I. The equation f2(z,  y2, t, 0) = 0 has a smooth isolated solution y2 = ~o(x,t) for z E R "  and 
t E R, and f l (x ,  tp(x,t),t,O) = O. 

II. The 3acobian matr ix 
A(z, t )  = ( fl~ f ive)  

f2z f2y2 y2=~(z,t),,=0 
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has m zero eigenvalues and an m-dimensional kernel on the surface y2 = ~(z ,  t); and the matrix 
B ( z , t )  = f2y2(z,~(z,t),t,o) has n eigenvalues satisfying inequality (1.1) for v = x. 

III. In the domain 

a = { (~ ,u2, t ,~)  I �9 �9 R m, I ly2-  v(~,t) l l  < p, t �9 R, o < ~ < ~o} 

the functions f l ,  f2, and A are continuously differentiable and bounded together with their partial 
derivatives with respect to all variables up to the order (k + 2) (k > 0). 

Executing the change of variables Y2 = Yl +~o(z, t) in equations (1.2), (1.3), we obtain the following 
equations in the variables x and Yl: 

6;~ = C(~,  t)yl  -4- F l (x ,  yl ,  t) -4- 6X(x,  yl,  t, 6), 
eita = B(z,  t)y, + F2(z, yl, t) + ~Y(z, yl, t, ~); 

(1.4) 
(1.5) 

here 

e f t ,  t) = f l~(~ ,~(~, t ) , t ,o ) ,  B ( ~ , t ) =  f2.~(~,~o(~,t),t,o), 
Fx(x, yl , t)  = f l (z ,  ya + r - C(z, t) ,  
F2(z, yl , t)  = f2(z, yl +~o(z , t ) , t ,O)-  B(x, t) ,  

r  y l , t ,e)  = f l ( z , y i  + ~o(z , t ) , t ,e)-  f l (z ,  yx + ~o(z,t),t,O), 
eY(x,  yx,t,e) = f2(z, yl + ~o(z , t ) , t ,e)-  f2(Z,yl + ~o(z,t),t,O). 

Observe that the vector-functions Fi (i = 1,2) meet the relations ]lF,(x, yl,t)[ I = (~(![yl[12). 
Therefore, the functions c2Fi (x ,  r t) are continuous. 

The following theorem holds: 

T h e o r e m  1. Under conditions I-III there exists an el, 0 < el < eo, such that, for every 
6 (0,~1), system (1.4), (1.5) has a unique integral manifold yl = ~p(x,t,~) on which the motion is 

governed by the equation 
= X l ( z , t , ~ ) ,  

where Xi(z ,  t, e) = C(z, t)p(z, t, ~) + X(z ,  Ep, t, ~) + CXFl(z,  r t) and the function p(z, t, r and the 
corresponding series are continuously differentiable with respect to z and t. 

PROOF. The claim is provable following a standard scheme [1, 2]. Observe that the change of 
variable Yx = r reduces system (1.4), (1.5) to the form (5), (6). Also, observe that in this case the 
role of the parameter v is played by the variable z. 

w 2. E x p l i c i t  and  I m p l i c i t  Desc r ip t i ons  for Slow M a n i f o l d s  

In describing integral manifolds of slow motions for systems of the form (5), (6), one usually uses 
their explicit form (8) [2]. For approximate calculation, one applies the asymptotic expansion of the 
function h(x, t, ~) in the powers of the small parameter e: 

h(~,t,~) = ho(~,t) + ~hx(~,t) + . . .  + ?hk(~, t )  + . . . ,  ho = ~(~,t). (2.1) 

The defining equation for the coefficients in the expansion appears after the substitution of h for y 
in equation (6) and differentiation by force of equation (5): 

Oh Oh 
e-O-i + e-ff~z X ( z ' h ' t ' e )  = Y(z ,h , t , e ) .  (2.2) 

Inserting formal expansion (2.1) into equation (2.2), we obtain the equality 

Oh 
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For the functions involved in the preceding equality, we can write down the formal asymptotic 
expansions 

k>0 k_>0 

k~o k~l k_>~ 

In the asymptotic expansion of the function Y we have used the relation Y(x,  ~(x, t), t, 0) - 0. As 
above, B(z , t )  denotes the matrix Yy(x, ~v(x,t),t, 0). Inserting these formal expansions into (2.3) and 
successively equating the coefficients of the same powers of the small parameter,  we can obtain a chain 
of equalities of the form 

k - 1  
Ohk-1 Ohi X 

a----75-~ + ~ ~ k- i - ,  = 8hk + Yk 
i=0 

Basing on nondegeneracy of the matrix B, for hk we obtain 

\ O-t + i = 0 - ~ x X k - i - l - Y k ,  k = l , 2  . . . .  (2.4) 

Expansion (2.1) is of asymptotic character. More precisely, the function h is representable as 

h(x,t ,e)  = ho(x,t) + Ehl(x,t) + . . .  + ekhk(z,t) + ek+lpk+l(z,t,E), 

where p(z, t, ~) is a bounded continuous function. 
It is clear that  in analysis of many problems a solution to the equation 

Y(x,y, t ,O) = 0 

is obtainable in neither explicit nor parametric form. In this event, to describe a slow surface and the 
behavior of solutions on it, one can use an implicit equation of the surface. 

In the zero approximation, the behavior of solutions on the slow manifold is described by the 
following system of differential equations: 

= x ( x , y , t , o ) ,  (2.5) 
0 = Y(x,y , t ,o) .  (2.6) 

To obtain the first approximation, we differentiate the function Y(x,  y, t, ~) with respect to the 
time. In virtue of system (5), (6), we obtain 

d 
e-~ Y = Yy Y + e Yt + ~ Yx X. 

The behavior of solutions on the slow manifold is described in the first approximation by the algebraic- 
differential system of equations of the form 

~ = x ( x ,  y, t, e), 
YyY + ~Yt + eY~X = o, 

(2.7) 
(2.s) 

where all terms of order o(~) should be discarded. 
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To obtain the equations of the second approximation, we differentiate the function Y ( x , y ,  t,e) 
twice with respect to the time by using system (5), (6). Even for the second approximation, we obtain 
a rather bulky expression for the implicitly-defined slow integral manifold. By this reason, we confine 
ourselves to the case of an autonomous system. Then the equation of the second approximation takes 
the form (2.7) and 

Y + g ( Y y ) - l y z x  .-1- g2y~-2{yzx~. + Y z z X  - Y z y ( Y y ) - l y z x  

- Y z X y ( Y y ) - l Y x  - Y y z X ( Y y ) - l Y z  -1- Y y y ( Y y ) - l y z x ( Y y ) - l y z x }  = O. ( 2 . 9 )  

In equalities (2.7), (2.8), we should discard the terms that involve the powers of the small parameter 
which are greater than two. To obtain the kth approximation, we should differentiate the function 
Y ( z ,  y, t, ~) k times with respect to t by force of system (5), (6). 

To validate the above formulas, it suffices to observe that, when we seek the function h ( z , t , e )  
in the form of asymptotic expansions 

h = h 0 + O ( e ) ,  h = h 0 + e h l + O ( e 2 ) ,  h = h 0 + e h l + e 2 h 2 + O ( e 3 ) ,  

the application of equations (2.5)-(2.9) gives the same result as the application of equation (2.3). 

EXAMPLE. Consider the system of equations 

= y ,  ~ = x 2 T y 2 _ a ,  a >  0. 

The first approximation to the integral manifold looks like 

y2 -l- z2 -- a-l- ~z -- O. 

The second approximation of the form 

y2 + (x +~/2)  2 = a -  e2/4 

coincides with all subsequent ones and yields an exact equation for the slow integral manifold. 

w 3. P a r a m e t r i c  Descr ip t ion for In tegral  Manifo lds  

First, we study the question of constructing slow integral manifolds for systems of the form (5), (6). 
As was already observed, in many problems it is impossible to find a root of the equation Y(z, y, t, 0) = 
0 in the form y = ~o(x, t), since the equation turns out to be either transcendental or a polynomial of 
high degree in y. The implicit description has obvious, imperfections in comparison with the explicit 
description. One frequently manages to write down a solution to the equation Y ( x , y , t , O )  -- 0 
in parametric form 

x = y = ( 3 . 1 )  

where v E R m and the identity 

Y ( x o ( v , t ) , ~ o ( v , t ) , t , O ) = O ,  t E R ,  v E R  "~, (3.2) 

holds. In this case it is reasonable to seek slow manifolds in parametric form too: 

x = xCv, t ,e ) ,  y = ~(v,t,e),  (3.3) 

where t E R, v E R m, X(V, t, 0) = X0, and ~o(v, t, 0) = ~0. The motion on a slow manifold is governed 
by the equation 

= ( 3 . 4 )  
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where the function F(v , t ,  e) will be defined below. We shall seek the functions X, ~o, and F in the 
form of asymptotic expansions 

x(v, t ,~) = xo(, , t )  + ex~(v,t) +. . .  + ~kXk(,,t) + . . . ,  
~(~,t,~) = ~off, t) + ~ l ( ~ , t )  +. . .  + ~%k(~,t) + . . . ,  
F(v, t ,e)  = Fo(v,t) + eF,(v,t) +. . .  + ekFk(v,t) + . . .  

(3.5) 

in accordance with (3.4) from the equations 

cot + F = X(x,~p, t ,e) ,  
0~ O~ 

e-ff[ + e~vF= Y(x,~v, t ,e) .  

(3.6) 

(3.7) 

Equating the coefficients of the same powers of the small parameter, we acquire 

cox~ OX~ = X(xo,~po,t,O), Y(xo,~vo,t,O) = O, 
o-T + 

OXlo--"~- + '~__~ Fo + "-ff~ vOx~ F, = X~(Xo, ~Vo,t, O)x1 + Xy(xo, ~o,t, O )~pl + Xl 

O~oo ~ v  o O---t- + Fo = Yx(xo,~oo,t,O)x1 + Yy(xo,cpo,t,O)cp, + Y1, 

X1 = X~(xo, ~vo, t, 0), I/1 = Y~(Xo, ~vo, t, 0). 

Equations (3.6), (3.7) involve the unknown functions X, ~, and F. Therefore, in dependence on 
the concrete problem, we may assume one of the functions or several m components of the functions X, 
~, and F to be known and find the remaining ones from equations (3.6), (3.7). Moreover, at different 
stages of determining the coefficients in expansion (3.5) we can assume the coefficients to be known 
of expansions of different functions or different m components of the coefficients. If the right-hand 
side has a fixed structure, and F may consequently be considered as known, then we can find the 
coefficients in the expansions of X and ~ from equations (3.5), (3.6). For instance, if X is given in 
advance, then from these equations we can find the coefficients in the expansions of F and ~o. In the 
case of a slow manifold y = h(x, t, e) we obtain the relations 

v = x, X = v, (p = h(v,t ,E), F = X ( v , h ( v , t , e ) , t , e ) ,  

and (3.5) takes the form 

Oh Oh 
~-5-i + ~ x ( ~ , h , t , ~ )  = y ( . , ~ , t , e ) ,  h = ~(~,t,~). 

If d imx = d imy and the vector y is taken as the parameter v, we obtain the relations ~v = v and 

c3t + F = X(X,  v, t, e), eF = Y(X, v, t, e). (3.8) 

Whence we in turn infer the equation for X: 

oqx OX 
e - ~  + ~ v Y ( X ,  v , t , e )  = eX(x ,  v , t , e ) ,  (3.9) 

from which we uniquely determine the coefficients in the asymptotic expansion of X in case det(~176 ) # 
0. Observe that  Y(Xo, ~o0, t, 0) = 0. Consequently, equation (3.4) is always regularly-perturbed. 
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Consider the question of constructing a slow integral manifold for equation (1). We seek the 
manifold and the equation of motion on it in parametric form 

= PC., t ,~),  ~ = Q( . , t ,~ ) .  (3.10) 

We seek the functions P and Q in the form of asymptotic expansions 

P(v, t ,e)  = Po(v,t) + ePl(v,t) + . . .  + ekPk(v,t) + . . . ,  

Q(v, t , t )  = Qo(v,t) + eQl(v,t) + . . .  + ekQk(v,t) + . . . .  
(3.11) 

Differentiating P with respect to the time, in virtue of (1), (4) we obtain 

cgP OP Z(P,t ,e).  ~-g/- + ~-~-Q = (3.12) 

Expanding the function Z(P, t, ~) in a formal series in the powers of the small parameter 

Z(P,t ,e)  = Z(Po, t,O) + HZl(Po, Pl , t )  -J- . . .  + ~kZk(Po,Pl , . . .  , P k , t ) . . . ,  

we represent the functions Zk (k _> 1) as 

Zk(Po , . . . ,Pk , t )  = Z2(Po,t,O)Pk + nk(Po, P ~ , . . . , P k - l , t ) .  

In particular, Zl(Po,Pl, t)  = Z2(Po,t,O)P1 + Ze(Po,t,O). Using these formulas, equate the coefficients 
of the same powers of the small parameter in (3.12). At ~ = 0 we obtain 

Z(Po,t,o) =0.  

In correspondence with formula (2), we assign Po(v,t) = r With the notation A(v,t)  = 
Zz(r introduced in w 1, at the first power of r we obtain 

0r 0r 
O---t + -~v Q~ = AP1 + ~1. (3.13) 

Equation (3.13) contains two unknown functions P1 and Q0. With respect to P1, relation (3.13) repre- 
sents an inhomogeneous linear system of algebraic equations which has determinant zero, det A(v, t) = 
0, v E R m, t E R. Thus, the choice of the function Q0 is conditioned by the requirement that the 
system be compatible. It is clear that we have some freedom of choice while defining the functions 
Q0 and P1. One of the ways to define the functions in a one-to-one fashion is as follows: Apply the 
matrix D that is introduced in w 1 to equation (3.13) so as to obtain 

0r 0r 
DI~- + Dl-~v Q0 -- D1R1, (3.14) 
0r 0r 

D2-~- -4- D2~v Q0 - BP1 -t- D2R1. (3.15) 

If we additionally assume the matrix D1 = Or invertible, then from equation (3.14) we can find 
= (DICu)- D1 (R1 -Ct ) ,  which enables us to determine P1 uniquely from equation (3.15); namely, 

B-ID2(r  + CvQo - R1). Determination of the next pairs Pk and Qk-1 for the coefficients in 
the asymptotic expansions is carried out analogously. Equating the coefficients of ek, we arrive at the 
equation 

k-1  
OPk-1 O~ OPi - 

o----i- + ~ Q k - 1  + ~_, - g ; ~ - i - 1  - APk + Rk 
i=1 
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which, being premultiplied by the matrix D, splits into two equations 

( 0 ~ )  :OPk_l k-l opi _ 
n l -~v O k - l -~- n l ~ -~ "[- Z ~ (~ k - i-1) = n l R k l 

k-1 ] 
OPk-1 0r  OPi _ 

D2 [ -~ + -~v Qk-1 + Zi=l "-~-v ('2k-i-1 = BPk + D2Rk 

from which we find 

Qk_I = (DICv)_ID1 [Rk ~-~ OPi OPk_l] 
�9 --i=I -~-vQk-i-1- -~ "J; 

Pk = B -1D2 [ -~ + ~vOk-1 - [ -  i - - 1  - -  " 

The estimate for the remainder in the asymptotic expansion of the slow integral manifold is carried 
out by the same scheme as the proof of existence of an integral manifold [2]. 

w 4. S t a b i l i t y  of  In t eg ra l  M a n i f o l d s  

In majori ty of problems, of most interest are attracting (stable) integral manifolds. Stability is 
guaranteed by validity of conditions (1.1). Each trajectory, of the differential system under consider- 
ation, with the beginning near the integral manifold unboundedly approaches some trajectory on the 
manifold with the increase of t. The reduction principle is valid [2] for a stable integral manifold. We 
formulate it in the case when the initial system admits the zero solution; i.e., Z(0, t, r = 0. 

The zero solution to equation (1) is stable (asymptotically stable, unstable) if and only such is 
the zero solution to the equation 6 = Q(v, t, r on the integral manifold. 

In study of the behavior of solutions to the initial equation near an integral manifold, stability of 
the integral manifold allows us to restrict ourselves to analysis of the equation on the manifold. 

We now consider equation (1) for which condition (1.1) is replaced with the condition 

aeAi(v , t )  _> 2a > O. (4.1) 

If we pass in equation (1) to the "backward" time t --~ - t  then as a result we obtain an equation that 
meets the conditions guaranteeing existence for a stable slow integral manifold. Consequently, each 
equation of the form (1) has an unstable slow manifold for which the reduction principle holds for 
t ---, -oo .  Unstable integral manifolds play an important role in the theory of thermal explosion [3, 
8-10]. 

In the case when, for part of eigenvalues, some inequalities of the form (1.1) are valid and, for 
the other part, inequality (4.1) holds, equation (1) possesses a stable slow integral manifold. Such 
manifolds are typical of optimal control problems with singular perturbations [11, 12]. 

The formalism of constructing slow integral manifolds is in no Way connected with their stability; 
it is based exclusively on invertibility of the matrix B. At the same time, to justify the asymptotic 
behavior for the expansions of the functions describing the integral manifolds, it suffices to require va- 
lidity for the condition of separation of eigenvalues from the imaginary axis which guarantees existence 
of a stable, unstable, or conditionally stable manifold. 

Observe that in the example exhibited in w 2 the upper semicircle (y :> 0) of the one-dimensional 
slow integral manifold is unstable, whereas the lower one (y < 0) is stable. 

The cycles having as their parts unstable one-dimensional integral manifolds succeeding immedi- 
ately stable ones exhibit particular instances of duck-trajectories that possess the same property [13- 
15]; in literature they are referred to as duck-cycles. The duck-trajectories play an important role in 
various problems of the theory of thermal explosion [9, 10]. 
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The duck-solution found in the example of w 2 possesses one more remarkable property. For the 
system of two scalar equations of the form ~: = f(z ,  y), ey = g(z, y, a), under certain assumptions valid, 
for example, for the van der Pol equation, duck-trajectories exist for the values of the parameter a 
in an interval of length of order O(e-1/ce), c > 0. A routine theorem of the theory of ducks reads 
literally as follows: "The life of a duck is short." In the above-considered example, the duck "lives for 
ever": for all a > e2/4. 

w 5. Degenerate Systems 

In the literature on singular perturbations, systems of the form (1) are conventionally called 
singularly-perturbed (see, for instance, [71) in contradistinction to the systems of the form (5), (6) 
with a nondegenerate matrix B(z, t). In essence, the systems differ only by choice of variables. Some 
conditions like I-III are usually required. At the same time, in a number of problems the conditions 
can be violated. We consider several simple typical situations. 

The assumption can be violated that the multiplicity of the zero root of the characteristic equation 
for the matrix A(v, t) agrees with the number of the corresponding eigenvectors [3, 16]. For example, 
for the system of three vector equations 

~Xl = ~fl(Zl,Z2,x3,t,~), g : ~ 2  = ~f2(zl,z2, x3,t,~), (5.1) 
ex.3=D(zl , t)z2+ef3(zl ,z2,z3,t ,r  z i E R  "~, i = 1 , 2 , 3 ,  

the matrix A = A(Zl, t) has the structure 

A =  0 
D 

and, for D # 0, possesses the zero eigenvalue of multiplicity nl ~t-n2 -~-n3 = n to which there correspond 
n - k eigenvectors and k > 0 adjoint vectors. Introducing the new variable ~2 = ~-1/2z2, we arrive 
at a system of the form 

Xl = / l (Xl ,  %/r~:~2, ~3, t, g), V/~X2 -- f2(Zl,  X/'~:~2, ~3, t, ~), (5.2) 
x/~s  = D(zl,t)i2 + V~f3(Zl, V~i2,zs, t,s). 

Let zs = ~(Zl, t) be an isolated root of the equation f2(zl, 0, z3, t, 0) = 0. System (5.2) has the 
form (5), (6) with small parameter ~ .  In this case the role of the matrix B is played by the matrix 
B: o c(,t)) 

-B= D ( z l , t )  , 

where C(xl,t)  = f2z2(xl,0,~(zl,t),t,O). If de tB ~ 0 then the following possibilities are most 
typical: (a) all eigenvalues of the matrix B have nonzero real parts and system (5.2) admits an nl- 
dimensional conditionally stable slow integral manifold (such situation is often encountered in optimal 
control problems [11, 12]); (b) the eigenvalues of the matrix B are purely imaginary (such systems 
are encountered in modeling gyroscopic systems and satellites with double rotation [2]). In each of 
the two cases the slow integral manifold is sought in the form of expansion in the powers of V~, i.e., 
in fractional powers of the parameter ~. 

Fractional powers of the small parameter arise not only owing to the presence of adjoint vectors. 
Consider an autonomous system of the form (5), (6), with the functions X and Y vector-functions 

of the variables z and y homogeneous of degree r; i.e., 

X()~z,,~y,r = ,~'X(z,y,r Y($z,,~y,e)= s rycz ,y , e )  

for every number ,~ and all z, y, and s in the domain under consideration. In this case the slow 
manifolds are described by equations of the form y = L(s)z, where L(s) = (/0),,x,n. 
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For L, we have the equation e L X ( x ,  Lx,  e) = Y ( z ,  Lx,  e). Equating the coefficients of the corre- 
sponding terms, we obtain a ramification equation [17] of the form 

Cr(L,~) + e~r+l (L ,e )  = 0, (5.3) 

where ~k is an (n + m)-dimensional vector-function whose entries are polynomial functions of degree 
at most k in the variables lij, i = 1 , . . . ,  n; j = 1 , . . . ,  n. On assuming Y ( x ,  O, O) = O, we are interested 
in small solutions to equation (5.3), i.e. such solutions for which L(0) = 0. To each such solution Lq(e) 
there corresponds an integral manifold y = Lq(e)x. If there are several such solutions, this means 
that we have ramification of slow manifolds. The problem of ramification of solutions to equations of 
the form (1.5) was considered, for instance, in [17]. 

EXAMPLE. Consider the system 

= 3 z 3  g~l = y3 A- ex 3. 

For it, the equation Y ( z ,  y, 0) = 0 takes the form y3 = 0, and naturally the results of the previous 
sections are inapplicable. 

Using homogeneity of the system, we attempt to seek an integral manifold of the form y = l(e)z. 
Then we obtain the following equation for l: 

13 - -  3al + e 3 = 0. (5.4) 

It plays the role of the ramification equation (5.3). It is demonstrated in [18] that equation (5.4) has 
three small solutions: 

1 2  8-~ 1 2  tl = + ? + o ( ? ) ,  t2,3 = U + o(?). 
Consequently, the system in our example has three integral manifolds of the form y = lq(X), 

q = 1,2, 3, on each of which the motion is governed by the equation $ = 3x 3. 
Now, consider a system of the form (5), (6) with 

Y = + + y, t, 

where the vector-function Y~(x, y, t) is homogeneous of degree r with respect to y; i.e., the equality 
Yr(x, Ay, t) = ArYr(x, y, t) holds for every number $ and all x, y, and t in the domain under consid- 
eration. For the function Y~+I(x, y, t), we assume Y~+I = O(llyll r+l). Denote by ~ the quantity r 
The change of variable y = #z reduces system (5), (6) to the form 

:b = X(x , l . t z ,  t, pr), p k =  Yr ( x , z , t )  + ]rq(x, 0, t, 0)-4- p Y 2 ( x , z , t , # ) ,  (5.5) 

where #Y2 = P-ryr+l(X,  pz,  t, pr) + Yl(X, uz,  t , u  r) - Yl(X, O, t, 0). 
For the initial system, the generating equation takes the form 

+ = o 

and has the zero root y = 0 of multiplicity r. In this case the matrix B is identically zero. If the 
equation 

Y r ( x , z , t )  + Yl(x,O,t ,O) = O 
admits an isolated root z = ho(x, t) such that all eigenvalues of the matrix Y~y(x, h0, t) have nonzero 
real parts, then it follows from the results of w 1 that  system (5i5) possesses an integral manifold 
z = h(x,  t, p) for which the asymptotic expansion in the powers of the small parameter  # is valid. 
If there are several such roots then the system possesses several integral manifolds. Returning to the 
initial variable, we infer that  in the case under consideration system (5), (6) possesses several slow 
integral manifolds of the form 

y = ~V~ho(x, t  ) + ~2/rhl (x , t )  + . . . .  

It means that  in a neighborhood about the multiple zero root y = 0 we have a ramification of slow 
manifolds and each branch is representable in the form of an asymptotic expansion in fractional powers 
of the small parameter  e. In the case settled, asymptotic expansions involve integral powers of the 
parameter  #. 
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w 6. Some Applications 

Systems of the form (1) are encountered in modeling and studying objects of different nature 
whose characteristic feature consists in their ability to make fast and slow motions simultaneously. 

The motion of a system of solid bodies presents an intricate composite of slow and fast motions. 
In the problems of dynamics of satellites, this phenomenon can relate to the presence of damping 
devices or elastic elements with small mass. For gyroscopic instruments and systems, the presence of 
fast (nutation) and slow (precision) oscillations is well known and observed practically always [21. 

A sharp distinction between the rates of transformation of substances is typical of a wide range 
of processes; also, the rates of thermal and concentration fluctuations differ sharply. For instance, in 
catalytic systems the rates of reactions on the surface of a catalyst have order of magnitude several 
times higher than those in a gas phase [19]. 

For the combustion systems, a high rate of heat release is natural under a comparatively low 
rate of consumption of the combustible substance. For the gas-ph~e systems, the distinction is so 
radical that  the phenomenon of self-ignition of a gas mixture has been acquired the name of "thermal 
explosion" [3, 8]. 

In the theory of automatic control over models, the described singularly-perturbed differential 
equations arise due to a number of causes. First, such situation is typical of the problems of control 
over systems whose dynamics objectively comprise motions with different rates: gyroscopic, elec- 
tromechanical, and similar systems. Second, the appearance of singular perturbations can relate to 
the specific of the involved control methods also in systems with a single rate. This is exemplified by 
problems that  use the penalty method with small penalty coefficient for control, "small-gain control," 
or the problems of stochastic filtration with noise degeneration in the observation channel. 

In the present article, we restrict ourselves to applying the results to two control problems. The 
first of them is a control problem with large amplification factor. Control problems admitting an 
unbounded increase of the amplification factor were analyzed by many authors in several settings. 
In the first place we mention M. V. Meerov's articles. From the standpoint of singular perturbations, 
such problems were treated in the articles [20, 21]. 

Consider a system of the form 

= f ( x , t )  + B l ( x , t ) u ,  x(O) = xo, 

where x E R n, u E R k, and t E [0, 1]. We assume as usual that the vector-function f and the matrix- 
function B1 are bounded and continuous together with partial derivatives of sufficiently high order 
with respect to x and t. The problem consists in finding a control u so as to transfer the system from 
the initial state x = x0 into a small neighborhood of a given smooth surface S(z)  = 0 of dimension m 
rather quickly. In the article [20], it was proposed to use as control the expression 

= 

g 

where K is some constant (k • m)-matrix and e is a positive small parameter.  Introducing the new 
variable y = S ( x ) ,  rewrite the extended system as 

e& = e f ( x , t )  - B l ( x , t ) K y ,  x(O) = zo, 

e~I - e G ( x ) f ( z , t )  - G ( z ) B l ( x , t ) K y ,  y(O) = Yo - S (xo ) ,  

where G ( x )  = OS/Ox .  Suppose that,  for the matrices G and B1, it is possible to pick a matrix K so 
that the matr ix  - N  = - G B 1 K  be Hurwitz while N -1 be bounded. 

The generating problem admits an n-parametric family of solutions z = v, y = 0. The role of the 

matrix A is played by the matr ix ( ~ -BxK)_N whose determinant differs from zero. 

The above-written differential system possesses an n-dimensional slow integral manifold that  is 
representable as 

z = v ,  y = + 
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The motion on this manifold is governed by the equation 

i~ = [I - B l ( v , t ) g N - l ( v , t ) G ( v ) ] f ( v , t )  + O(e2). 

Introduce new variables by the formulas 

x = v + B l ( v , t ) K N - ' ( v , t ) z ;  y = z + e N - l ( x , t ) G ( x ) f ( z , t ) .  

Then we obtain the following system in the variables v and z: 

iJ = ( I  - B 1 K N - 1 G ) f  + O(e), ~ - - ( N  + O(e))z .  

The relations imply that  

x = v + O(e-Vt/e), y = e~o(v,t,e) + O(e-Vt#), ~o = N - 1 O f  + O(e) 

for some u > 0 and arbitrary t > O. Thus, with the above choice of the control u = e - l K S ( x ) ,  the 
trajectory of a solution enters rapidly into the g-neighborhood of the surface Co(x) = O. Obviously, 
the modified control 

u = - e - l K [ S ( x )  - e N - ' ( x , t ) G ( x ) f ( x , t ) ]  

is preferable since, with the same choice of control, the trajectory enters the e-vat/e-neighborhood of 
the surface S(x )  = 0 at the same time At. With this choice of control, we obtain the equation 

e~ = e [ I -  B I ( x , t ) K ( G B I K ) - I G ( x ) ] f  - B , ( x , t ) K S ( x )  

in x and the equation 
~) = - N ( x ,  t)y 

in y = S(x); i.e., y = O(e-~qe),  v = 0, t > 0, e --* 0. 
Under modified control over the trajectory of a solution x = x( t) ,  the initial point x(0) = x0 

makes a jump into a neighborhood of order o(ek), with k standing for an arbitrary natural  number, 
about the surface S(x)  = O. 

In conclusion we consider the problem with the so-called "small-gain control." 
Look at the linear-quadratic problem 

= A ( t , e ) x  + B( t , e )u;  
1 

J = ~x ' (1 )Fx (1 )  + 2 / [ x ' ( t ) O ( t , e ) x ( t )  + e2u ' ( t )R( t ,e )u( t ) l  dr, 

0 

where Q = Q' > 0, F = F '  > 0, R = R' > 0, t E [0,1], and e is a small parameter. Since the 
quality functional involves a small parameter in control, we consider the problem with a "small" gain 
in control [21]. The optimal control is given by a formula of the form 

u = - e - 2 R - 1 B ' K x ,  

where K is a solution to the Ricatti  equation 

e 2 ( K + A ' K + K A + Q ) = K S K ,  S = B R - 1 B ' ;  K ( 1 ) = F .  (G.1) 

For e = 0, the generating equation has a multiple root K = 0. Asymptotic expansions of solutions 
to equation (6.1) with use of fractional powers of the small parameter were constructed, for instance, 
in the article [21]. We restrict ourselves to a certain particular example. 
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Assume that we have to minimize the quality functional 

1 

J = ~ [qCt)y2(t) + e2u2(t)] dt + y2(1), 

0 

where y meets the equation y(n) + a,(t)y(n-1) + . . .  + an(t)y  = u(t) .  
Let K = (#i+J-lKij)ij=~,...,= and # = e~/'. Then, for the matrix X = (Kij)ij=l,...,,,, we obtain 

the singularly-perturbed Ricatti equation 

#2 + (Ao + #AI(t ,#)) 'X + X(Ao + #AI(t, #)) + q = X S X ,  (6.2) 

where 

The Lurie equation 

A 0  - -  

0 1 0 . . .  O~ 

o ' " o ' " o " : : : " i J  . 
0 0 0 . . .  0 /  

A~o X + XAo - X S X  + Q = 0 (6.3) 
has several real solutions to each of which corresponds a zero-dimensional slow integral manifold 
of equation (6.2). To each such manifold there corresponds a slow integral manifold of the Ricatti 
equation in the form (6.1). However, all integral manifolds of this equation equal zero at # = 0; i.e., 
in the example we observe a ramification of slow integral manifolds of equation (6.1) and the role of 
the ramification equation in zero approximation is played by Lurie equation (6.3). Observe that Lurie 
equation (6.3) in the problem under consideration admits a unique positive definite solution X = Co 
for which the matrix A - SCo is Hurwitz. The corresponding slow integral manifold X = C(t, #) is 
easily calculable in the form of an asymptotic expansion in the powers of the small parameter #. 

Let C(t, #) = (Ci,j(t, #))i,i=l,...,,,. Then, for suboptimal control, we obtain the formula 

U : -~-n(#n-lCnny (n-l) "4""" + #Cnly). 

The error in the value of the quality functional is a quantity of order O(e -I/g) [22]. 
It is worth noting that, in correspondence with the results of [22], the value of the terminal 

component of the quality functional does not influence the amplification coefficient. 
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