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Abstract: We consider the q5 4 quantum field theory on a torus and study the short 
distance behavior. We reproduce the standard result that the singularities can be re- 
moved by a simple mass renormalization. For the resulting model we give an Lp 
bound on the short distance regularity of  the correlation functions. To obtain these 
results we develop a systematic treatment of  the generating functional for correlations 
using a renormalization group method incorporating background fields. 

1. Introduction 

The renormalization group is not a group, but a technique for isolating the singularities 
of  a quantum field theory. Originally invented by Wilson it has become one of  the 
standard tools used in rigorous work on the subject. Still, its application is far from 
routine. 

In a series of  papers starting with a paper by Brydges and Yau [BY90], the authors 
have developed a systematic version of  the technique which we believe has substan- 
tial advantages [Bry92, DH91, DH92b, DH92a, DH93]. Until now the Brydges-Yau 
method has not been applied to 4 4 type models, but we have developed a modification 
(incorporatingbackground fields) which covers this case as well. In this paper we use 
it to study the short distance problem for the q~4 model. We believe it can be used for 
many other problems. The paper [BDH93] also reviews the general framework of  the 
background field method. 

Here is a brief history of  rigorous work on the r model. The original stabil- 
ity estimate was given by Glimm and Jaffe [GJ73] in a very difficult proof using a 
phase-cell cluster expansion. The complete construction of  the model was finished 
by Fetdman and Osterwalder [FO76] and Magnen and S6n6or [MS77]. Since then it 
has been worked over by many other authors, usually looking for a simpler proof. 
Some of  the work continued to use a phase-cell cluster expansion, for example Battle 
and Federbush [BF83] and Williamson [Wi187]. Others used renormalization group 
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techniques, for example Benfatto et al [BCG+80] and Bataban [Ba83]. Each of these 
techniques was subsequently substantially strengthened to attack more difficult mod- 
els. For the phase-cell cluster expansion there is the recent work of the Paris school 
[FMRS86, Riv91, MRS93] and for the renormalization group there is the work of 
Gaw~dzki and Kupiainen [GK85, GK86]. The method of Gaw~dzki and Kupiainen 
was applied to the 44 model in [Wat89]. We should also mention a third method using 
a random path representation due to Brydges, Frthlich, and Sokat [BFS83]. 

The present paper is intended not only as a discussion of the 44 model, but also 
as a development of new and general methods. We work in a fixed volume and 
use the renormalization group with a mass renormatization to obtain stability bounds 
independent of the ultraviolet cutoff. In w we set up the 44 model, and define the 
renormalization group. The perturbative renormalization problem is solved to second 
order in w as a warmup to non-perturbative problem. Section w sets up a general 
renormalization group for polymer expansions with background fields. Section w 
provides the details of the norms we will work with. The technical heart of the paper 
is in w where we give in a model independent form the basic lemmas which control 
a single renormalization group step. We return to 44 in w where we set up and prove 
the main theorem giving uniform bounds on the polymer expansions at each step 
of the renormalization group. This implies the ultraviolet stability of the generating 
functional for correlations. The final section w derives in a straightforward fashion 
new bounds on all correlation functions. These say, for example, that the test functions 
can be taken to be in Lp for any p > 3. All these results carry over to the theory with 
no ultraviolet cutoff. The ultraviolet limit could be taken using our techniques, but 
this requires further technical results we do not include. (See however [DH93] where 
this step is carried out for the sine-Gordon model). 

Acknowledgement. We thank Lon Rosen for helpful conversations and comments. 

2. The Model and the Renormalization Group 

We define the r model on the unit toms A = Rd/Z d. (We could as well take any 
finite toms.) The fields are real valued functions 4 on A and the model is defined by 
a measure on these functions. 

As a reference point we take the massless free theory is defined by the Gaussian 
measure with covariance ~ = ( - A )  -1, denoted d/ze(4). (We could as well take a 
massive theory with covariance ( - A  + m2)-1.) We also use a regularized version of 
the flee measure, where ~ is replaced by a covariance VN with kernel: 

pCA* pr 

(1) 

Here A* = (271-2) d. This function approximates ~ at distances larger than ~(L-N) ,  
and converges to ~ as N ~ c<). The kernel is now smooth and the corresponding 
measure d#vN(r can be realized on a suitable Sobolev space ~ ( A )  of smooth 
functions whose integral is zero. 

The regularized full theory is defined by a measure 

2N (r162 (2) 
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on ~ ( A )  with 

~,N(q~) = e - fN( r  (3) 

The potential is of  the form 

~rN((~) ---- AV4(r A; VN) + ]-tY2(r A; VN) (4) 

where we use the notation 

V,dr A; v) = fA " r  :~ dx. (5) 

Here A is the coupling constant and # is a possible adjustment in the mass. 
The correlation functions of  this measure have the generating functional 

sN(p) = <ei(P'4~)> N = f ei(P'r ) (6) 

where (p, r  = fA p(x)r 
The goal is to show that a normalized generating functional has a limit as N --+ oc. 

For  d = 2 this is well-known. For  our case d = 3 there is a limit provided we 
renormalize the mass (i.e. let # depend on N).  For  d > 4 it may be that all limits are 
trivial no matter how one renormalizes. 

I f  we make a contour shift in the functional integral replacing r by r + i~;Np we 
obtain the formula 

SN(p) = r f zN(r  + i~Np)d#~N(r (7) 

= r N , 2N)(i~)N[) 

where # ~ .  denotes convolution by the Gaussian measure d#~. Since VN has a limit 
as N ---+ oc, this shows that it suffices to find a limit for #eN * 2 N .  

We break the integral with respect to #~N into pieces as follows. For  any 0 < i < 
N ,  we define the fluctuation covariance z~ N = ~N -- ~i, where ~i is given by (1) with 
N --+ i when i > 0 and v0 = 0. For i > 0, this has Fourier transform 

~ N  - - " Wi (p)=p_2[e_ L 2Np2--e Z 2~p2] (8) 

and @0 N = ~N- For  each i, there is a decomposit ion of Gaussian measures 

If  we define 

for any 1 < i < N then we have 

#~N = # ~  * # ~ 7 '  (9) 

2 ~  = ~ �9 2N (10) 

#~N * 2 N  = # ~  * Z/N" (11) 

This further isolates the N dependence. The family {~U}  interpolates between ~N 
and Z0 N --= #~N * 2 N .  Each density 2 N is supposed to capture the behaviour of the 
original measure on length scales greater than ~ ( L  0.  

To control the 2 N it is also advantageous to give an iterative definition: 
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z N 1  = P01 * 2 N  (12) 

with a single-slice fluctuation covariance Ci = v i - v i - 1  (note the special case C1 = vl). 
As it stands each fluctuation integral comes on a different momentum scale. To 

really understand the iteration we need to scale the problem so each fluctuation step 
comes on the same scale, say a unit scale. This will make it easier to identify the 
most important terms in the functionals 2/N (the relevant variables) and follow the 
true renormalization group flow. 

The basic rescaling is a transformation from ,~b~(A) to , ~ ( A N )  where AN = 
R d / ( L N Z )  d. We define Z N on , ~ ( A N )  by 

z N ( r  = z N ( r  N) (13) 

where in general 
eL(X) = L(d-2)/2r (14) 

After this change of variables we find 

(PeN * z N ) ( r  = (P~N * zN) ( r  -N) (15) 

where the new covariance VN has unit cutoff and is given by 

VN(X,y) = IAN1-1 Z eip(x-y)p-2e-p2' (16) 

pEA* N 
PC 

where A* N = ( 2 7 r L - N ~ )  d. The interaction density is now 

zN((9) = e--YN(r 

with 
v N ( r  = ,~NV4(O, AN; VN) + pNV2(r AN; VN)), 

�9 ~N = L--(4--d)N/~ PN = L - 2 N p  �9 

We also define effective densities Z u on ~ ( A 0  by 

and find that (12) becomes 

where now (taking Vo = 0),  

C~(x - y)  

z/N_I((/)) ---- [ p <  * zN](q~L-1) 

(17)  

(18) 

(19) 

(20) 

= vi(x - y) - L2-dvi_l ( (X -- y ) / L )  (21) 

IAi1-1 ~peA* eip(x-y)p-2(e -p2 -- e -Lzp2) i > 1 
= pC 

IAl1-1 ~peA7 eiP(x-Y)p-2e -p2 i = 1 
pv0 

The dependence on i is weak (except for i = 1) and hereafter we write C for Ci. 
Note that ( l l )  can now be written (PeN * z N ) ( r  = (#v~ * z N ) ( r  and this 

gives an expression for •N(p) Oil the volume Ai for any i. Specializing to i = 0 we 
have 

s N  (p) = e-1/2(P'eN P) Z N  (i~N p). (22) 

Thus to gain control over the generating functional SN(fl) it suffices to have control 
over Z N. 
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3. Perturbative Renormalization 

Now we specialize to d=3 and discuss renormalization. I f  one calculates the physical 
mass in perturbation theory one finds that the shift represented by the diagram 

@ 
diverges like ~ ( N )  as N ~ ec. This turns out to be the only serious divergence and 
one renormalizes by subtracting it off, choosing #N = #N N in (18) to be defined by 

#N = 48A2 fAN VN(X-- y)3 dy. (23) 

It corresponds to choosing # = L2NIzN = ~ ( N )  in (4). Note that p u  N is very small 

(O(A~v-*)). It is characteristic of  superrenormalizable models that the rescaled cou- 
pling constants like )~N and PN are exponentially small. 

We now show how this does the job in perturbation theory. We consider the 
effective potentials V/u defined by 

Z N = exp( - Vi N) 

and show that they stay bounded to second order in A as N ~ exp. This will be a 
guide to the complete flow which we study later on. Our discussion parallels that of  
[GK86]. 

We focus our attention on the relevant terms: those which grow under the iteration 
of the renormalization group map (20). In addition to terms f : q~2 : and f : r : 
which grow respectively like L 2 and L, we also consider nonlocal polynomials of  the 
form 

Q2n(v, w; r = / : r  n :v w(x - y) : r :~ dxdy. (24) 
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These have the diagrammatic representation: 

Q0 = ~ Q2 = 

Q4 = ~ Q6 = 

Ignoring constants and (0r  2 terms we now assert that the effective potential on 
,~ (Ai )  has the form 

where 

V~ = ;~�88 + uN�89 -- Qi + r 

Qi = A~(8Q6(v~, w N) + 36Q4(vi, (wN)2)). 

Here l i  = L - i l ,  

w N ( x  -- y) 

(25) 

(26) 

N 

= Z L k - i C k ( L k - i x ' L k - i Y )  
k=i+l 

= LN--iVN ( L N - i ( X  -- y)) -- Vi(X -- y) 

= IAi]-I Z eip(x-y)p-2(e-L-2(N-i)P2 -- e-p2) (27) 

pEA~ 
pC 

(except for i = 0 where the e -p2 t e r m  is omitted). Also 

= L 2 ( N - i ) . ~  v -- 4SA~ f ( w ~ ( x  - y ) )3dx  (28) 

= 48A~ f ( ~ u ( x  - y) + ~,(x - v))3. ( ~ ( x  _ y))3dx 

This establishes the boundedness as N --+ oc since in the expression for pN the two 
G(N)  divergences cancel and give a finite result. 
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To see that the assertion is true we proceed by induction and compute V/_ 1 from 
Vi. We have 

V~_1(r = V#(r 
V # = - log(#c~ * exp( -VO)  

where now e L - '  (x) = L - 1 / 2 r  Perturbation theory can be generated by expand- 
ing in powers of  V and has the form 

V#(r = (Pc,  * V~) + 1 / 2 ( - # c ,  * V/2 + (#c ,  * Vi) 2) + . . . .  

To evaluate the convolutions it is helpful to know that on polynomials F ,  P c  * F = 
e A c F  where A c  is defined in (34). Also one has : F :c = e - A c F .  

For the first order term we find the contributions 

N # pc*V~ = )~/V4( v#)+#i V2(v ) 
_/~2 (8Q6(v# ,  Wi ) + 72Q4(v# w~C) + 144Q2(v #, wiC2)) 

2 4 # 2 - :~  (360 (v,  ~ ) + 144@(v #, ~ c ) )  + 0(:~)  

where v # = vi - C and we abbreviate wi = w N. For the second order term we find 
(cf. [GK86], Eq. 2.33) 

- - .~  (8Q6(v #, C)  + 36Q4(v #, C 2) + 48QZ(v #, C3)) + ~ ( ) ~ ) .  

Adding these all together and defining w # = wi + C we find 

N # V # = ,~W4(v #)+#~ �89 ) 
_/~2 (8Q6(v# w #) + 36Q4(v# (w#)2) + 48Q2(v# (w#)3 _ w~)) 

+~(:~). 

Now in the term - 4 8 ) ~ Q 2 ( v  #, (w#) 3 - w ~ )  replace r162 by 1 / 2 ( r 1 6 2  

The difference depends only on 0 r  What is left (mOdulo constants and (0r 2 terms) 
is 5#iNV2(v #) where 

/ ( w # ( x  _ y)3 _ w N ( x  _ y )3 )d  x (29) ~ # N  ~ 48 ~ 

and we combine this with the other quadratic term. 
Now do the scaling and compute V~_I. We use that V i - l ( X  - y)  = L v # ( L ( x  - y)),  

that w i - l ( x  - y)  = L w # ( L ( x  - y))  , that/~i-1 = LAi, and that 

#iN_l 2 N N = 6 ~  ). (30) L (#~ + 

We obtain (25) for i - 1 and so our assertion is correct. 
When we come to this step for the full non-perturbative theory there will be a 

number of  modifications. There will be explicit bounds on the errors. The interaction 
terms will be broken up into local pieces. In each step we will only pick out local 
contributions to the mass and so there will be some residual non-local Q2. Nevertheless 
the core idea is the same. 
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4. Polymer Expansions 

The starting point in an analysis such as this is the representation of each Z = Z N by 
a polymer expansion in the d-dimensional toms A = Ai. In the original Brydges-Yau 
treatment [BY90] polymers are closed so that adjacent blocks overlap and thus are 
excluded from occurring in a single term in the expansion. This has some definite 
advantages, particularly for infrared problems. Nevertheless, in the present paper we 
find it convenient to return to a more standard formulation in which the basic blocks 
are open (or localized by their centers), so that adjacent blocks do not overlap. It 
seems that the open approach we adopt will work for most ultraviolet problems. 

A polymer X is defined to be a union of blocks, where a block is an open unit 
cube centered on a point of the lattice Z a. Every set is a polymer unless otherwise 
specified. For example, A is now regarded as a union of open blocks. We consider 
polymer activities which are real valued functions A(X) defined on polymers and 
possibly other variables. There is a commutative product 

(A o B)(X) = E A(Y)B(X  \ Y)  
Y c X  

and an exponential 
~xp(A) = ,~ + A + 1/2A o A +... 

where ~(~)  = 1 and otherwise 57(X) = 0. Note that one can also write 

i (~xp(a))(X)  = E 1-I A(Xj) 
{x~} j 

where the sum is over partitions of X into collections of polymers {Xj}.  
In our formalism each interaction density Z on some toms A is expressed as a 

polymer expansion 
Z(r = const (~xp(A))  (A, O) (3 l) 

with polymer activities A(X, r depending on r for x E X (in a sense made 
precise in chapter 5). It will further be convenient to write polymer activities A in the 
form of a background term and a deviation. The simplest choice for the background 
is [] where [~(X) defined to be 1 if IXI = 1 (i.e. X is a single block) and to be 
0 otherwise. More generally we take the form []e -V and assume that V(X, r is 
additive in X: 

V(X, r = E V(A, r (32) 
ACX 

where the sum is over single blocks A contained in X. The deviation is represented 
by polymer activities K(X,  r so that 

A = []e - v  + K. (33) 

For any polymer Z one finds that 

(~xp(De -v + K))(Z) = E exp(-V(Z \ X)) H K(Xj) 
{xj } j 

where now the sum is over sets {Xj}  of disjoint polymers in Z (possibly empty) and 
x = u j x j .  

We now discuss how the representation (31) - (33) changes under the action of 
the renormalization group. 
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4.1. The Fluctuation Step. Suppose that P c  is a Gaussian measure on ~ ( A )  with 
covariance C and suppose that we have polymer activities A. We want to find new 
activities ~ : ( A )  so that 

# c  * ( ~ x p A )  = ~ x p ( J "  (A)). 

We reformulate this as asking for activities A(t)  such that 

# t c  * ( ~ x p A )  = ~ x p ( A ( t ) )  

and then taking ~ ( A )  = A(1). Now ~ x p  has an inverse B o g  defined on activities 
which have the value 1 on the empty set. Thus if Z(t )  = # t c  * ( U x p A )  then A(t)  = 
S o g ( Z ( t ) ) .  

The function Z(O is the solution of the infinite dimensional diffusion equation 

where 

8Z/Ot - AcZ = 0 

f O 2 
A c  1 / 2 ] d x d y C ( x ,  = Y) Or162 (34) 

(Functional derivatives are discussed in chapter 5.) It follows that A(t)  = ~ o g ( Z ( t ) )  
satisfies the equation 

OA OZ 
_ oZ-I 

0t 0t 
= A c Z  o Z -1  

= A c A + I / 2 c ( O A o O A ~  , ar  / (35) 

with the initial condition A(0) = A. Here 

= Y)Oo(x) 0r C - ~ ,  Of 3 ] dxdyC(x ,  o . 

This is equivalent to the integral equation 

0 t (OA(s) OA(s) 
A(t) = # tc  * A + 1/2 #(~-~)c * C \ 0r  ? Of3 ] ds. (36) 

Note that a finite iteration of this equation yields a closed form expression for A(t, X). 
In the background version (33) we can write the result as 

# c  * ~ x p ( D e  - v  + K )  = ~xp(E]e -y~ + ~ ( K ) )  (37) 

for any additive V1 provided we define 

#~- (K)  = ~ ( D e  - v  + K )  - [~e -y '  . 



152 D. Brydges, J. Dimock, T.R. Hurd 

4.2. The Extraction Step. This is a rearrangement that is helpful in keeping track 
of the leading terms. In this step one removes a piece F(X ,  r from the activities 
A(X,  r Typically F is a local version of the low order terms in A. We suppose that 

F(X, r = F0(X, r + El(X, r 

where for a = 0, 1 we have 

Fa(X, r  = C~a(X)Pa(X, r  

and assume that Pa is additive in X. The extraction operation factors the F0 terms 
out of the ~ x p ,  but incorporates the FI terms into a change in the potential V. (For 
r F0 will be constant and F1 will be quadratic in r 

Given the activities A = E3e - y + K we seek new activities ~ (  A ) = De-  Y' + ~ ( K)  
so that: 

~xp([]e - y  + K)(A) = exp( ~ Fo(Y))~xp(F-qe - y '  + ~(K))(A) ,  (38) 
YcA 

where the potential is changed by 

V' (A)  = V (A)  - [ ~ ~(y) )[P~(A)]  (39) 
y3A 

and the linearization in K and F is 

~ ( K ,  F) = K - Fe - y .  (40) 

See Eq. (52) in the appendix to this section for the formula for ~ .  

4.3. The Scaling Step. Here a polymer expansion ~ x p ( A )  on Ai is scaled to a polymer 
expansio n on Ai-1. To keep the basic blocks the same size one must also incorporate 
a reblocking operation. 

The new activities S~(A) are chosen so that 

~xp(S~(A)) (Ai_ l ,  r = ~xp(A)(Ai ,  eL-l) .  

We find that 
~ ( A ) ( Z ,  r = ~ 1~ A(X j ,  r ). (41) 

{Xj}-~LZ j 

The sum in (41) is over sets of disjoint polymers { X j }  with the property that {2L}  is 

overlap connected and the union of the {~L}  is LZ,  where ,~L denotes the smallest 
L-polymer containing X. A set {Xi} of polymers is called overlap connected if the 
graph on {Xi} consisting of bonds (i j )  such that Xi  f9 X j  5 [ 0 is connected. 

In the background version we define ~ ( K ) ,  so as to satisfy 

~xp(E]e - v '  + ~ ( K ) ) ( A i - 1 ,  r = Wxp(De - v  + K)(Ai,  eL-l), 

by 
De - v '  + ~ ( K )  = Sf([3e - v  + K)  
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where V~(X, r = V ( L X ,  CL-~ ). Then, after some rearrangement, we find 

,Y~(K)(Z, r = Z exp(-  V ( L Z  \ X ,  CL-~)) 1--[ K ( X j ,  eL- ' )  (42) 
{Xj)-+LZ j 

where X = UX/. Now the sum is over sets of disjoint polymers { X j }  with the 
prope,~ that { 2 7 }  is overlap connected and the union of the { 2 7 }  is LZ. 

4.4. Appendix: The Equation for ~ (K) .  Given a polymer activity J define 

J+(X)= Z I-I J (XO (43) 
{x~)-~X i 

where the sum is over overlap connected sets of distinct polymers whose union is X. 

Lemlna 1. 

Z 1--[ J (Xi )  = ~xp([~ + J+)(X), (44) 
{x~) i 

where the sum is over sets of distinct polymers contained in X .  

Proof Group the {Xi)  into disjoint overlap connected sets. 

Lemma 2. Let F be any polymer activity and let 

Y2(X) = Z F(Y) .  
Y c X  

Then 

[] 

(45) 

Then 

[] 

e - v  o ~ x p ( K )  = e -v+n o ~ x p ( R )  

with Y2 as in Lemma 2. 

(47) 

(48) 

Lemma 3. Let K, F be any polymer activities and let 

K ( X )  = K ( X )  - (e F - 1)+(X)e -v (x ) .  

e n = ~xp (D  + (e F - 1)+). (45) 

Proof Write e n ( X)  = I ] y c x ( e  F(Y) - 1 + 1), expand the product and use Lemma 1 
with J = e  r - 1 .  
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Proof. e - v  o ~ x p ( K )  = ~xp(l-qe - v  + K)  by the additivity of V (see Eq. 32). 
Wxp(I-qe - v  + K)  = ~xp(Vle - v  + (e F - 1)+e - v )  o ~ x p ( f f )  by the definition of K. 
By Lemma 2, ~xp(IE]e - v  + (e F - 1)+e - v )  = e-V ~xp([3 + (e F - 1) +) = e -v+o. 

[] 

Since f? is not additive, we cannot immediately rewrite e -v+n  o ~ x p ( R )  in the 
form ~'xp([S]e - v '  + K)  for some V'. We are now going to absorb this non-additivity 
by reorganizing e -v+o o ~ x p ( f O  into new polymers. 

Let Y2~(X) = ~ v c x  Fo,(Y) and let X ~ = A \ X. We have 

nl(XC) = E El(Z) 
Z C X  c 

: 

Z C X  ~ A C Z  

E Z D z ~ , Z ~ X  A c X  c 

Add V(X c) = ~z~cxc  V(A) to both sides. Recalling the definition of V', Eq. (39) 
we find 

(v - nl)(x c) = v'(xo + 

A C X  ~ Z D ~ , Z ~ X  c 

= V'(XC) + E (~I(Z)PI(Z \ X). 
z c x , z c x  c 

Therefore 

e-V+a'(XC) = e -V ' ( xc ) "  I I  e-~'(z)P'(Z\X) 
Z ~ X , Z f s  ~ 

= e-V ' (x~)"  E H (e-~'(zk)P'(zk\X)- 1) (49) 
{z~} k 

with Z E {Zj}  required to intersect X and X ~ . We also have 

en~ = en~ l - [  ( e - -F~  - -  1 + 1) 

Y : Y N X 9 9  

= en~ E 1-I (e-F~ - 1) (50) 
{vj} j 

where the sum is over sets {Yj } of distinct polymers intersecting X. Substitute Eqs. 
( 4 9 , 5 0 )  and the definition of ~ x p ( R )  into 

e -v+n o ~xp( f{) (A)  = E en~ (51) 
X c A  

Then group the polymers in the sum over {X{}, {Yj}, {Zk} into disjoint overlap 
connected sets. One finds that e -v+n o ~xp( f f ) (A)  = en~ -V'  + ~(K)) (A)  
with W(K) = ~ ( K ,  F)  given by 
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~(K)(W) = ~ e x p ( - V ' ( W \  X))  (52) 
{z~},{~ },{z~}-~w 

H R(x0 H(exp(-F0(~)) - 1) H(exp(--al(Zk)Pl(Zk \ X)) - 1). 
i j k 

Here X = U~Xi, and the sum is over collections of disjoint subsets {X~} and pairs 
of collections {Yj}, {Zk} of distinct subsets so that 

1. the union is W; 
2. each Yj intersects X;  
3. each Zk intersects both X and X ~ = A \ X;  
4. the polymers {Xi}, {Yj}, {Zk} are overlap connected. 

5. Norms 

In this section we define the weighted norms on the polymer activities which will 
enable us to control the activities Ki  in the renormalization group flow. For more 
details see [BY90]. 

As a preliminary step we make a modification in the definition of the activities. 
Typical functionals such as f (0 r  2 have functional derivatives with respect to r which 
are derivatives of measures. We prefer to avoid this by treating 0r  as a new field. 
This is formalized as follows. Let A' = A x (0, 1 , . . . ,  d). Every differentiable function 
r on A determines a function ~ on A' by 

~b~(~)=r if ~ = ( x , ~ )  

r162 = 0kr if ~ = (x,k).  

We consider continuous complex valued functions r on A' and at each stage of our 
analysis will construct functionals K(X, r with the property that they reduce to 
the K(X,  r when ~b = r162 This is possible because all the elementary operations of 
Chapter 4 (including ~ - )  have natural generalizations to functionals on r We require 
that the K(X, r are ~:~ functions on the Banach space C(X). The derivatives at 
r = ~br are measures written as 

[ r ] 
KN(X,  ~b, ~1, ..., ~N) = L6~b(~l).. " (5~b(~N)J r162162 

We also require that the support of this measure is X;  x ... x ~ , .  
Since we do want to keep track of the field and its derivatives separately, we 

define A 6 = A x ~ and A~ = A x ( 1 , . . . ,  a). Then we have the decomposition into 
components A' = A 6 U A~. For n = (n0,nl)  and In] = no + nl let K,~(X,r be 
the restriction of KInI(X, r to (A'o) n~ x (A~) n' . These partial derivatives determine 
the full derivative. For each X, r n, let IIKn(x, r be the total variation norm of 
Kn(X, r 

Next, dependence on the variable r is dominated by a large field regulator 

G=G(eo, el;X,r fxr fx ~_, 10=r (53) 
l_<l~l<s 

Here we usually chose s > d/2 + 1 so that r E CI(X) when G is finite. More 
generally, we say that G(X, r is a regulator iff for all polymers X, Y, 
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- (G1) G ( X , r  1 
- (G2) G ( X  u }1, r _ G ( X ,  r r whenever X A Y = 0. 

We introduce a partition of  unity into products of blocks A = A1 x . . .  x An and 
define 

IlKn(X)lla = ~'~ sup IIKn(X,r (54) 
A 4,G,~'~(A) 

This choice for G lacks terms from the boundary of  X which were necessary 
in previous papers to keep G from growing too rapidly under repeated convolution 
with the Gaussian measures (cf. the property (78). For ultraviolet problems one can 
allow e to start off very small and hence allow the more rapid growth. In any case 
our open set formalism does not allow boundary terms, since condition (G2) would 
be violated. 

Dependence on the set X is controlled by a large set regulator which we will 
choose to be either of the form 7 (X)  = 2121 or of the form 

F ( X )  = A I X I o ( x )  (55) 

O(X) = infl-I0(lbl)  (56) 
bE'r 

for some large constant A > L d+l. Here the infimum is over trees -r composed of 
bonds b connecting the centres of the blocks in X.  Lengths such as ]b[ are measured 
in an l ~ metric on R d. The function 0 is defined so that 0(s) = 1 for s = 0, 1 and 

O({s /L} )  = L-d- IO(s ) ,  s > 2 (57) 

where {x} denotes the smallest integer greater than or equal to x. 
This regulator has been constructed to satisfy certain bounds which relate a poly- 

mer X to )?L, the smallest union of  L-blocks containing X.  The polymer X is called 
a small set if its closure is connected and if it has volume IXI _< 2 d. Otherwise it is 
a large set. For any set X ,  there is a constant c such that 

(',/F)(L-1)~ L )  < e(3,-3ff)(X). (58) 

For any large set X ,  there is a stronger bound 

( ' ~ ] ' ) ( L - I J ~  L) < cL-d-l(~/-31")(X). (59) 

These bounds are needed to control the scaling step (41), and are proved in [BY90]. 
Next for each n define the norm 

IIKnlLc,r = sup ~ r(X)llKn(X)llc. 
zfl XD A 

(6o) 

If  the function is translation invariant one can drop the supremum. 
Finally, for h - (h0, hi), h n n0 nl = h 0 h 1 and n! =no!n1! we define 

II~llG,ah = ~ (hn/n!)IIKnlIG,~. (61) 
n 

A functional for which this norm is finite is analytic in ~b. In the translation invariant 
case this can also be written 
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IIKIla,r,h = ~ F(X)IIK(X)IIc,h. (62) 
XDz3 

We will find it necessary to have extra control over the low order 0 and 0r  
derivatives at r = 0. This control is provided by an additional norm defined in the 
translation invariant case by 

h n 
IK(X)lh = ~ ~ ( l l K n ( X , r  = 0)11 

n 

IKlr, h = ~ F(X)IK(X)Ih. 
XDZl 

(63) 

The kernel norm IKlr, h can be thought of as a limiting case of the norms ]]Kl[a,r,h 
in which G is concentrated at r = 0. 

The following multiplicative properties can be derived: 

IIKl(X)K2(X)ltc, a2,h <_ IIKl(X)llc,,h IIK2(X)IIc2,h, (64) 

[KI(X)K2(X)Ih _< IKl(X)[h IK2(X)lh. (65) 

We now estimate the norms of certain classes of functionals which will arise later. 
First, we consider polynomials of degree r of the form 

7' 

P(X,  r = E 1/td f r162 Xl, . . . ,  xk)dxl...dxk (66) 
k=O J X k  

where pk(X, xl, . . . ,  xk)dXl...dxk is a symmetric measure supported on X k, and r 
means ~b(x, 0). 

Lemma  4. For some constant c and ~ > 0 

IlPlla(~,~),r,h _< IPlr, h + ~  (67) 

<_ 1 + ]P l r ,  h. (68) 

Remark. The norm ]P]F,h is generally easy to estimate. This lemma also has straight- 
forward generalizations to polynomials depending on gradients. 

Proof Computing the derivatives and taking the norm of the measure yields 

IIPn(x, r _< ~ 1/(k - n)!llr IlPk(X)l~ll. 
k=;,7, 

But by a Sobolev inequality 

[lr _< ~,/g-#a(~/r, ~/~, X, r 

which leads to 

IIP~IIc(~,~),F < ~ 1/(k - n)! (cr/c) (k-n)~2 [IPkllF. 
k 
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Multiplying by h~/n! and summing over n gives the first bound and the second 
follows directly. 

[] 

For the next example, we estimate e - v  where V(X,  r  AV4(X, r v)+#V2(X, r v) 
with A > 0 and # possibly complex. 

Theorem 1. Let Ah 4, ez/A, and 1#I2/A be sufficiently small and let h-2v(0) _< 1. Then 
for any polymer X:  

IIe-V(X)[[~(_~,O),h <_ 2 IXI, (69) 

le-V(X)lh < 2 Ixl. (70) 

Remark. If X is a subset of a unit block Zl, then the same proof gives: 

][e-V(X)llc(_~,o),h <_ 2. (71) 

This fact will be needed when we verify the hypotheses of Theorem 6. 

Proof. We first prove the result when X is a single block A. We compute the deriva- 
tives of e - v  by 

h n h n 
-~..(e-V(r Xn) = ~.  E ( - - 1 )  [Tr[ 1-I  Vnj ((9, XTrj )e -V(@). 

j 

Here 7r = {Tr/} is any partition of 1 , . . .  ,n  and nj = [z~j[, and x ~  denotes the set of 
points xi with / E 7v i. Now take the total variation norm. Furthermore classify the 
partitions by the number of elements r and order the elements in the partition which 
overcounts by a factor of r!. Finally use the fact that there are n!/nl  !...nr! ordered 
partitions with given nj. This yields 

-~1 l [ h ~  HV~j(r e_~v(r ) 

r n j=l,...,r 

Dropping the constraint ~ j  nj = n gives 

~ll(~-v(%nll < e x p ( - ~ V ( r  E ~., IlVn(r 
n_>l 

Next we note that 

- ~V(r + Z ~ h~ -< - Ah4 f ~  p(h-1 [ IlVn(r Ir + O(bl  h2) ~ .  q(h-11r (72) 
n> l  d/_.l 

Here p(t) is a polynomial whose coefficients are integers times non-negative powers of 
h-Zv(O) and p(t) = t4+terms of lower degree in t. Also q is a polynomial of the same 
type with q(t) = t 2 + . . .  Since eh 2 = (eA-1/2)(A1/2h 2) and ]#[h 2 = ([#]A-U2)(A1/2h 2) 
it follows that 

- + IIV (O)ll + h-2r  2 < ~(Ah4)+G((c2+Ip]2)/A) (73) 
n>1 
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for all r From this we conclude 

h ~ ~l[(e-V(c))nl[c(_~,0) _< exp ( ~ ( A h  4) + ~ ( ( e  2 q- I#[2)/A)). (74) 

This argument was valid for arbitrary h _> ~'v(0). Therefore we can replace h by 4h 
and conclude that 

h ~ n~ II(e-v<~))~ II G(-~,o> _< 4 - ~  exp (~( /~h 4) + O((e  2 + 1~12)/;~)). (75) 

If  we now take the parameters sufficiently small the sum over n is bounded by 2 as 
required. 

In the general case we write 

e-V(X) 

G(X) 

= H e-V(A)~ 
AEX 

= H G(A). 
ACX 

By the multiplicative property (64), 

Ile-V(X)llc,h -< I-[ 
ACX 

The kernel bound follows similarly. 

Ile-V<~)llG,h ~ 2 rxl. 

[] 

Corollary 1. Under the hypotheses of  the theorem there is a constant 0 < a < 1 such 
that if  e I >_ aAU2, and P is a polynomial of  degree r then 

IIPe-Vl[c(o,c,),r,h <_ (1 + v/cr/aA1/2hZ)rIPl7r,  h, (76) 

IPe-V[v,h < IP[.yl-,h. (77) 

Proof Choose a so that the theorem holds for e _< aA 1/2. We prove the bound for 
e ~ = e - aA 1/2. Combining the theorem and Lemma 4 we have 

IIPe-Vlia(o,c),r,h <- IIPllc(~,c),~r,h sup ['y(X) -llle-v<X)ll~(_c,0),h ] 
x 

< (1 + ~ Y l P l ~ r , h .  

The result (76) follows for e' > e. The kernel bound (77) is similar. 
[] 

6. Estimates on ~ ,  ~ ,  S ,~. 

In this chapter we obtain general estimates on the three functionals J ,  ~ and 2W 
which make up the renormalization group transformation for any space dimension d. 

For greater generality, we treat ~ "  rather than ~ .  For the same reason, we will 
treat ~ and ,9 ~ with hypotheses for a general background V. 
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6.1. Estimates on J .  The basic result bounds ~ - (A)  for A not too large, provided 
we allow a deterioration of the regulators G and h. Let G(t) be a family of large field 
regulators which satisfies the "homotopy" property 

IZ(t_s)c * G(s) <_ G(t) for 0 < s < t < 1 (78) 

and let h = (h, h), h ~ = (h', hi), with h' < h. We denote "before" and "after" norms 
by [l" Iio = I1" llGo,F,h and I1" I11 = [1" IIG1,F,h'. The size of the fluctuation covariance 
C is measured by a norm 

IlCllo = sup y]~ c(zxl ,  & ) O ( d ( & ,  AN)) 
z~l A2 

where C(A1, A2) = suPr 2 ]C(~I, ~2)1- We suppose that A is not too large in 
relation to the above choices: 

IIAIl0 <_ D =_ (1611C1[o)-1(h - h') 2. 

Theorem 2. [BY90] Under these assumptions, 

II~(A)II1 _< IlZll0 

and the map A --~ o~(A)  is Frechet analytic. 

Remark. Analyticity is reviewed in [DH93]. 

We can obtain sharper control over the fluctuation step if we can find approximate 
solutions of the flow equation (35) for ~ = A(t). Suppose B(t) satisfies 

Of 2 - - ~ '  0r  J + E (79) 

where the error term E(t) is to be thought of as small. Let (~-)I(A; B) denote the 
derivative of the fluctuation operator evaluated at A, namely 

(~-)I(A; B) = ~ - - ~ ( A  +/3B)lz=o. (80) 

The following formula can be used to show that if A(0) is close to B(0), then A(t) 
remains close to B(t). 

Theorem 3. Suppose A(O) = B(O) + R(O). Then ~(A(0 ) )  _= A(t) = B(t)  + R(t) where 

/01 /o R(t) = (:~)~(B(O) + sR(O); R(O))ds - (O~_s) 1 (B(s); E(s))ds. (81) 

Proof 

R(t) = A ( t ) - B ( t )  

= [ ~ ( B ( o )  + R(o ) )  - ~ ( B ( 0 ) ) ]  + [ ~ ( B ( 0 ) )  - B( t ) ]  
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Now 

do-- 2 ~_~(B(s ) )  d _ 

_ d - I =0 
dr 

= ( ~ - - s )  1 (B(8); E(8)) 

0B(s) where E ( s ) = - d ~ ~  o~ " 
[] 

This formula will be used in conjunction with the following bounds on the lin- 
earized fluctuation operator: 

T h e o r e m  4. Assume the hypotheses of Theorem 2 hold with the family G(t) satisfying 
G ( t , X , r  = O) <_ ~/(X)for all t E [0, 1]. 

1 1. I f  IIAll0 <_ ~D then 

IIo~(A;B)II1 _< 21lBIIo. (82) 

2. Let IlA]lc(o),Tv, n <_ 4. For any ~7 = (% ~1) with ~ E [0, 1) and any M there exists 
c -- c(~, M, IICllo) such that for  all sufficiently large h, 

I~i(A;B)lr,~ <_ C([B[r,1 + h-MllBll~(o),~r,h). (83) 

Remark. The idea is that 11/311 enters the kernel estimates with a large negative power 
of  h to reduce its contribution. 

Proof 

1. The first bound is a consequence of the Cauchy integral formula: 

f d3 
~ I ( A ;  B)  = (27ri) 1 f -~-s ~o,; (A + 

We integrate over the contour [/31 = 1 -1 ~DIIBI[0 and use the bound II~(A + 
D D which follows by Theorem 2. 3B)FI1 _< IIA+~BI[0 _< T + ~- 

2. The difficulty here is that there is no straightforward version of Theorem 2 for 
the kernel norm. We consider the Taylor expansion of ~ about a = 0: 

N 

1 ~(B,A, ,A)+ 1 / da 1)o~(aA; ~ ' ( A ;  B)  = Z (j - 1)! . . .  ~ aN(a  _ B), (84) 
j=l 

and take the I - ]F,v norm of both sides. For the error term, we take the contour 

lal = R = glD A C(0),-yr, h - 1  (we may assume that R _> 2 since h is large) and by 
(82) 

I~(aA;  B)lr,~ < II~(aA; B)lla(1),~r,h, < 2llBlla(o),~r,> 
For the terms in the sum over j ,  we use the bound IAIr,~ < IIAIla(0),~r,h < 4 
and apply the following lemma with h' = h/2. We obtain 
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I~(A;B)lF, v ~ C(N)ItcIIN-I(IBIr,  I+h'-MIIBIIG<o),~r,h) 
4 

+h-~ IIBIIG(0),~r,h. 

Since R = O(h2), (83) follows from this bound by choosing N large enough. 

[] 
The technical 1emma we need gives bounds on the derivatives of J at A = 0: 

L e m m a  5. Assume the hypotheses of Theorem 2 hold with the family G(t) satisfying 
G(t ,X,  r = O) < ~(X) for all 1; C [0, 1]. Then 

1. For any n >_ 1 

II~(A1,.. . ,  A~)II~ 
J 

2. For any ~l < 1 and any integer M there is a constant O(1) such that for h > 4, 
d~(A) = #c  * A is bounded by 

Io~(A)lr, n < O(1)(IAiF,] + h-M UAUa(o),.~r,h). (86) 

For n > 1 

I~(A1 .,A~)t~,~o _< o(a)llCll7 -~ I-[(IAjI~,,,>_, ,-M , . .  +h [[Aj lla(o)>.yC, h) (87) 
J 

where I. IC, h,>l = i" ]r,h - - I '  it, h=0. 

Proof 

1. This follows immediately from Theorem 2 via Cauchy bounds. 
2. We prove these results for o ~  for all 0 < t < 1. 

For (86), we let _A(t) = #re * A(0) and make a Taylor expansion of -Ar,(t) = 
P(t--s)C * Am(8) around t = s. We find 

~-~ (t - s)JAJc~.~(s, x )  
A.~( t ,X)  = Z j!  

j=O 

+ ( 1 - 1 ) !  (t--~-)l-a#O--~)C*(AlCAm)(s'X)dm" 

Now evaluate at r = 0, and take the variation norm, II " 11. Then use 

II(A~A)m(t;X,r = 0)ll < C l ( m , j ) I I C / 2 l l ~  ~ IlAp(t,x,r = 0)11. 
p>m:[p-mi=2j 

(88) 
Recall that ]A]r,n = ~-]~,~ n-~ri]-'i,~(r = 0)]]F. By multiplying by F ( X )  and sum- 
ming over X,  we obtain 

tl(AJcA)~(t,r <_ C,(m,j) llCll~ ~ tlA-~(t,r 
p>_m:lp-mi=2j 

< C2(m, j ) I lCl l~  r/-Iml-2j Ifi.(t)lr, n. 
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By the hypotheses on G 

II [~<~-~)c * (A~A(S))m](r = o)11 r 

p>_m:lp--m]=21 

C4(1, m) IICll~ h-lml-21 IIA(s)ll~(~>,,mh. (89) 

Therefore 

liAr(t, r = o)llr 

liAr(t, r = o)llr 

_< cs(l, m, ~) { IA(s)lr,,7+ 

h-l~n,-2z IIA(s)lla<~),~r,h}, (90) 

m! 
-< h~  IIA(s)lla<s>,~r,h. (91) 

The second inequality is obtained from A~( t )  = P(t-~)c * A ~ ( s )  and the hy- 
potheses on G using (89) with 1 = 0. Estimate the terms in the sum IA(t)lr, w = 
~ m  ~IIA~(~, r  = 0)lit  with Iml < M by using (90) with l the least integer 
such that Iml + 2l > M.  For Iml _> M use (91). We obtain the bound 

[A(t)lr,, ~ G(1)(IA(s)[F,1 + h -M IlA(s)llG(~),~r,h) (92) 

from which the special case (86) follows. 
We prove (87) for n, assuming it is true for i with 1 < i < n (there is no 
assumption on n = 2). Taking derivatives in (36) with respect to A at A = 0 we 
find 

1 /[ 
(~-)~(A1, . . . ,  A~) = ~ E #(t-~)c * C~jds (93) 

I ,J  

where 

((~)~(AD (~,J~cAj)) C~j = C \ 0 r  9 - -  " (94) 

The sum is over partitions of  (1, ....n) into two proper subsets I ,  d and we define 
Ar = {A~}~ci and i = [I[. Neither set can be empty since ( ~ ) 0  = 0. Estimate the 
norm of # ( t - s ) c  * Cm using (92) to obtain 

G(1)  L~d ~ ~ t 

I (~  ...An)IF, v~ 

h' --riM [rC~Jl~,~n + ( ) IICzJlIc(s),~F,h/2] d~. 

< (95) 

(96) 

Now 

IC~,s 

0 

< 2llclle -~l(~)i(AI)Ir, h ~ h l ( ~ ) 5 ( A J ) l r ,  h 
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and by the inductive hypothesis if 1 < i, j < n and (86) if i = 1 or j = 1, we 
have 

ICHIr,,~ _< ~(1)[ICllo [ (~) i (A l ) l r ,  w%>ll (~) j (Aj ) t r ,  vJ,>_l 
t - - m  < ~(1)lICll~ -11-I(IAj]F,l,>l + h ]tAjlla(o),~r,h)- 

J 

By similar estimates followed by (85) for o ~  we have 

IIC~Jllc<~),.~r,h'/2 < O(1)l lCIloIl(~)g(AI)i lG(~),.,r,h' l l(~)j(AJ)l lG(~),~r,h' 

_< ~(1) l ICII ; ' -~II  IIAjlIG(o),~,~. 
J 

These suffice to prove the bound (87) for n > 1. 

[] 

6.2. Estimates on ~ .  An important aspect of  the definition of  ~ is finiteness of  the 
geometric constant  ~- defined as the largest number of  distinct small sets that can 
intersect, i.e., 

~- = sup ]{X : x c X and X is small}l. (97) 
x 

Recall that large and small sets were defined in Chapter 5. 

Theorem 5. Let G be any regulator. Let F, ~ ,  Pi, 17, V ~ and ~ ( K )  be defined as 
in Sect. 4.2 and suppose F, V are translation invariant. Assume that for some r > 0 

-{--O~Pl, A -  , II e t )llG7,h --< 2 (98) 

for all complex c~ with ]ct] <_ r. /t is a unit block. Assume in addition that 

- P o = I ;  
- Fo(Y), FI(Y)  = 0 i f Y  is not a small set; 
- II~ollr, < 1  II~lllr, and IIKIIc,~r,h are sufficiently small. 

Then ~ is.jointly analytic in K,  Fo, F1 and there is O(1)  such that 

1. II~(K)ilc,r,h < ~(1)(IlKlic,h,~r + Itc~ollr +r-lllc~lHr), - 
2. [ ~ ( K ) l r  _< O ( 1 ) ( I g l ~ r  + IIo~01Ir +,-~llo~,l lr). 

Proof We prove the first bound. The second bound is a variation in which the large 
field regulator G-1  is concentrated at r = 0. Also we only give the proof for the case 
where K is translation invariant. 

We write e v ' ( w \ x )  = I ] z ~ c w \ x  9~(A) where g(X)  = e -v ' (x ) /~ .  Then we can 

redistribute factors g(A) to rewrite Eq. (52) as 

~(K)(W) = ~ I I  (g'~(A)(a)) 
{xJ ,{Yj} , {zk} - .w  A c W \ X  

H / ( ( X i )  U ( e x p ( - F o ( Y j ) ) -  1) H J(Zk,  Zk \ X )  
i j k 
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where n(A) = r - I{Zk �9 Zk D A}[ and J(Z, Z \ X )  = (e -'~'(z)P~(z\x) - 1)9(Z\X ). 
Since Z~ are small sets, n(A) > 0. We take the norm using the multiplicative property 
(64) and obtain the result 

II~(K)(W)lb,h ~ ~ ~ (~(A)) n(A) (99) 
{XI},{Yj},{Z~}--~W AcW\X 

1-I IIR(x~)lb,h 1-I I e x p ( - f ~  - iI I X  II J(Z,Z \ X)lla~(z\x),h" 
i j k 

We have used [[9(A)[[a(,~),/.%n _< 7(A) which follows from (98). 

With the contour It[ = r' - 2r(3laa(Z)l)-~: 

II H et~'(Z)Pl(Zx)-g'~)[lc+(z\x),h 
Acz\x  

Vt(Zx) 
1 sup H etal(Z)P~(A)- ~- 

< r' 1 t - - G~(A),h 
z~cz\x 

_< 3r -lla~(z)l~(z \ x). 

We have used (98) and assumed ~YDz~ lal(Y)l <- Ilall[~ ~- �89 
Next we write 

1 

{Xi} N (X1 ,...,XN) 

where the sum is over ordered sets, but otherwise the restrictions apply. Similarly 
{Y3} and {Zk} are replaced by sums over (Y1,. . . ,  YM) and (Z1,..., ZL). 

The factors "yn(z~)(A) and "7(Zk \ X)  in (99) combine to give 7r(W \ X). Since 
W \ X  is a union of sets Yj \X ,  Zk \ X  and these are small sets, we have ]W\X] < 
2d(M + L). Therefore, we can overestimate 7r(W \ X) by 22d~'(M+L) = ~ ( 1 )  M+L. 
Next we multiply b y / ' ( W )  and use F(W) < r-[i F(xi) I-I~ F(Yj) rIk F(Zk) which 
follows from the overlap connectedness. Then sum over W with a pin, and use a 
spanning tree argument 1 and the small norm hypotheses to obtain 

{{~(K)IIG,h,r 

< E (N+M+L)!  N!M!L! IlKUN'h"~r(~(1)]exp(-F~ II~*')M 
N , M , L  

N*M+L~I 

< ~(1) (ll~lla,h,~r + Ila011r +r-~ll~lllr). 

Since F lives on small sets we have dropped the 7 in the norms of F0, cq at the cost 
of increasing the 0(1) .  

1 described in the proof of Lemma 5.1 of [BY90] 
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In the case of translation invariance 11. [[a,r,h = [l ] la ,h , r ,  so the proof  is complete 

once we show that IIRIIG,h,,r _< O(a){llKIIG,h,,r + II~011r + <111~lllr} for R = 
K + (e - F  - 1)+e - v .  The norm of 

(e-F - 1)+e-V(X)= e-V(x) E H (e-F - 1)(Xi) 
{ x d  

(100) 

is estimated by the same argument we just  used. By introducing a Cauchy integral 
over a circular contour Itl = r ~ chosen so that 

log2/Io~0(x)l k r '  ~ 1 + ( 2 r - '  I~,(x)l + 2lao(X)l) -1 

and using the hypothesis on r ,  one finds 

II(e -F  - 1)(X) e-v(X)/~IlG~/~(x),h 

1 f dt ]]e_t[ao(X)+adX)PdA)]_ v(z~) 
-< 2-7 It(-ysq5_l)l ]-I  ~ Gl(~),h 

ACX 

1 II 
-< r '  - 1 t ACX 

< ~ ( 1 )  ( r - l l a l ( X ) [  + I~otX)l). 

(for ~ ( 1 )  here we need that X is small). Now we use 

II((e -F  - 1)+e-V)(X)llc,h 
<- ~ H (7(Zx))n(~)I-[ II (e-F -- 1)(X~)e-v(x'V~llG"(x'),h" 

{ x J  ACX 

This is obtained by writing e - v (x )  = [ I A c x  9~-(A) where 9(A) = e-V(a)/~- and 
distributing the factors of g(A).  Now one inserts the first bound into the second and 
continues as before to obtain the desired bound o n / ~ .  

[] 

Co ro l l a ry  2. Assume the hypotheses of Theorem 5. Let 

~i(K,  F)  = K - Fe  v 

~'>_2(K, F)  = ~ ( K ,  F)  - ~I(K, F), 

where ~ ( K ,  F)  - ~ (K) .  Then 

1t~_>2(K, F)llc,r,h _< ~(1)llKlla,h,-~rllc~llr 
I~_>2(K, F)IF < ~(1)]Kl,~rllaltc 

where l ight  = II~ollr + }1f~111c. 
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Proof Since, by construction, ~>2(uK, vF) vanishes if either u = 0 or v = 0 and 
~ ( K ,  F )  is analytic, we have the Cauchy representation 

f f  du f f  dv ~(uK, v F). ~>_2(K, F)= 27ciu(u- 1) 27:iv(v- 1) 
(101) 

The Corollary follows by choosing Iv I proportional to Ila]]~ 1 and lu] proportional to 
the inverse norm of K and taking norms. 

[] 

6.3. Estimates on ~ .  Given a functional F(X, r we define the rescaled functional 
l,l-d/ZA(x~ Also for h = (h0, hl) F L - , ( X , r  ) = F ( L X , r  ) where q~L- l (X)  = ~ " r  

d e f i n e  hL = (L l -d /2ho ,  L - d / 2 h l ) .  

Theorem 6. Let G := G(e0, q). Let V be additive and translation invariant and sup- 
pose, for some h, it satisfies." VL-lscale polymers X C some unit block A 

ll(e-V)L-,(X)Ha,h < 2. (102) 

If [ I K l [ a L , . y - 3 r ,  h ~ is sufficiently small, then 

llS(K)lb,r,h ~ O(1)LdllKIb~,7-3r, hL (lO3) 

[Sf(K)[r,h <_ O(I)LdlKIT-3F, hL. (104) 

Proof The bound on the kernels is the special case where the large field regulator G 
is concentrated at r = 0. We only prove the first bound. We give the proof only for 
the case of translation invariant K. We rewrite (42) as 

"S(K)(Z '~b)=Z1/N!  E (e-v)L-I (Z\L-~X'~))HK(x~ '~L- ' ) '  (105) 
N (XI,...,XN) i 

where the Xi are disjoint but the L-closures )~L overlap and fill LZ. Using 

G(Z, r -~ G(Z \ L--JX, r H GL(Xg' CL-1)--I (106) 
i 

we obtain by (64) 

IloW(K)(Z)lb,h _< 

E 1/N! E H(e-v)L ~(Z \ L-1X)lla,h H lIK(XOHaL, hL" 
N (X1 ,...,XN) i 

By (64) and the small V hypothesis, 

i[(e-V)L ~(Z \ n-Ix)[Ia,h < H [I(e-v)L-~(A \ L-~X)]Ia(~\L-'X), h <- ~(Z). 
AcZ 

(107) 



168 D. Brydges, J. Dimock, T.R. Hurd 

Now multiply by F(Z). By the connectedness we have (TF)(Z) < 
1-L(TF)(L-1){L).  Furthermore we have the bound (58) for some constant O(1):  

(TF)(L-l f(L) < O ( 1 ) ( 7 - 3 F ) ( X ) .  

Summing over Z with a pin and using a spanning tree argument 2 we obtain 

OZ) 

II'~W(t()ilG'F'h <-- Z ~(1)N--I(Ld[I'[fIIGL,7-3F, hL)N" 
N=I 

This gives the result. 
[] 

We can replace the hL by h in the right hand side of the above theorem, because 
the norm on the right hand side becomes larger when hL is increased to h. If  we 
also know that low dimensional derivatives vanish at zero, we can gain some critical 
factors of  L -1 when we make this replacement, at least for small sets. Our next goal 
is to see how this is accomplished. 

A key role is played by an estimate dominating functionals K with derivatives 
satisfying Ks(X,  r = 0) = 0 for dim n < p by a norm involving only derivatives 
with d i m n  > p for all r (not just r = 0). This originally appeared as Lemma 4.3 in 
[BY90] for functionals depending only on 0r The proof involved using a Sobolev 
inequality to dominate fields 0 r  by G(0, e) and does not work for plain fields r We 
have a modification using the factors e - v  to dominate the r  The details follow. 

L e m m a  6. There is a constant D such that the sup norm on a small set X satisfies 

IIr ~ DLIIOr + DL-d/2IIO[I2,X~\x 

where 11r is the L2 norm on f(L \ X. 

Proof Let Y = _~L \ X.  Note that Y is not empty for a small set X.  For x E X we 
have 

r - [ y l - 1 / y  ( fxYdO) dY+ [Yl-l fyO(y)dy �9 

The first term is bounded using Ix - Yl -< ~ ( L ) .  The second term is bounded by 
IY]-l/2Hr by the Schwarz inequality and since IYI = ~ ( L  d) the result follows. 

[] 

We define, for p a nonnegative integer, 

G(eo, el, X )  = GL(eo = 0, el, ~L)  Gc(eO, el = O, ~ L  \ X), (108) 

d - 2  d 
dim(n) = n 0 ~ - - - -  + nl  ~, (109) 

]IKIIG'F'h'dim>--P= E (hn/nt) [[K'~llc, r" (110) 
n:dim(n)>_p 

2 described in the proof of Lemma 5.1 of [BY90] 
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Lemma 7. Suppose K is supported on small sets and Kn(X,  r = O) = O for n with 
dimn < p. Let a = min{coho 2, elh~, q h  2 } > O. Then there exists e(p, a) such that for 
all F, 

IIKIlO(~o,~,),r, hL <_ e(p, a)ltKllc~(o,~,),r, hL,dim>_p. 

Proof Let F C W ( 2 '  x . . .  x )( ') be a test function for the derivative Kn(X,  zb) and 
A = (A1, . . . ,  AN). By the fundamental theorem of calculus, if dim(n) < p, 

~0 '1 K ~ ( X , r  = E dt E K ~ ( X , t r 1 7 4 1 6 2  
m>_n,]ml=lnl+l za 

(111) 

We evaluate this at ~ = ~r We also have, by a Sobolev inequality, that 

IOr 
= L-d/2IOOLI~,L_,X~ 

<_ L -d/2 - 1 1 1 1 t 2 (Y( ) ~ v ~ G -  (O,q,L-1RL,r 

1 t -1_t2 
< L - d / 2 0 ( 1 ) ~  v/~_G (X,r 

and by Lemma 6, GL(eO, O) = G(L-2co, 0) and a Sobolev inequality 

<_ DLIOr + DL-d/2Fr 
~(1)  1 =  [ L ' -d /a  L'-d/2] 

v / 1 - t  2 -  L ~  + ~ 0 0  J GI-t2(X'  (~)" 
< 

By these two bounds and fd dt ~ < cxD we obtain 

ItKnllo,r 
L d/2 Ll-d/2~ m~176 

G(1) E \ ~ - - 1  + v ~  ] (112) 
-~_>n,lml=lnt+l 

( L-d/2 ~ ml-nl 
v~ / IIKmllo,r- (113) 

We iterate this equation starting with n with dim n < p and obtain 

Ll_a/2 Ll_d/2 ,, too-no 
IIKnllo,r -< C(p) ~ \~-~-~ + ~ 0 0  / ' (114) 

m>n:dim m=p 
( r-d/2"~m'-n' 

v~ / IIKm[Io,r- (115) 

Recall that hL = (Ll-d/2ho, L-d/2hl). We multiply both sides by h2 and sum over ~T. 
n with dim n < p to obtain 
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tlKllo,r,h~,dim(n)<p <_ c(p)  
m>n:dim m=p 

( 1 1_2_  
E-o-o-o , + ho4  ] 

IIKll~,r, hg,dim=p �9 

We complete the proof of  the lemma by using the hypotheses on e and h to bound 
the sum by c(p, a) and then add [IKll~,r,h~,mm_>p to both sides. 

[] 

Now consider the linearization ~ of S ,~ which is given by 

~C,f(K)(Z) = E K(X,  9L-1) (e-V)n-i (Z \ L - ' X ,  r 
X:fCL=LZ 

T h e o r e m  7. Let V be translation invariant and let G = G(O, el), g = G(eo, 0). Suppose 
g and h are such that 

II(e-v)L-,(X)llg-,,h <_ 2 

for all L-l-polymers X contained in a unit block A. 

1. If K ( X )  is supported on large sets then 

115fl(K)lla,r,h _< O(1)n-ll lKIIc~,w-~r,h~. 

2. Let K ( X )  be supported on small sets with K n ( X , r  = O) = O for d i m n  < p. Let 
a = min{eoh 2, q h  2, q h  2} > 0 (as in the last lemma) then there exists C(a,p) 
such that 

I[~l(K)lla,r,h _< C(a,p)LdlIKIlaL,~ 3F, hL,dim>_p" 

Remarks. The same estimates hold for the kernels. Notice that in the small set estimate 
a factor of  L -p is gained if the norm on the right hand side with hc is bounded in 
terms of the norm with h. 

Proof (1) We give the proof assuming translation invariance of K .  Proceeding as in 
the proof of Theorem 6 we obtain 

II~(K)(Z)lla,h _< 7(Z) 

which leads to 

ll.Sf(K)lla,r,h <_ L d 

IIK(X)llaz,hz 
X : f ( L = L Z  

E (TF)(L-'f(L)IIK(X)IlaL,hL" 
XDAo 

But for X l a r g e  we have the bound (7F)(L- l f (L)  <_ ~ (1 )L-d - I (7 -3F) (X)  which 
gives the result. 

(2) Let 0 = G(eo, el). This time we use 

G ( Z , r  = GL(LZ,r  
= GL(X L, CL-,)gL(X L \ X, CL-1)g-I(z \ L-1X,  r 

=_ G ( X , r 1 6 2  



Short Distance Behavior of (r 171 

and obtain 

llaf(K)(Z)llC,h < 

so that 

ItK(X)ll~,hg II(e-v)L-,(Z \ L- '  X)llg-,,h 
x:XL=LZ 

_<7(z) ~ [IK(X)lIO,h~ 
X:XL=LZ 

II~(K)lIG,r,h ~ L d E (Tr)(L-12L)MK(X)I[o,hL" 
XDz% 

Now use the previous lemma and the bound (TF)(L-1)~ -L) < O(1) (7 -3F) (X)  to 
complete the proof. 

[] 

Remark. In [BDH93] we have given stronger versions of these theorems that allow a 
larger class of polymers, preparing the way for problems such as infrared r 

7. Main Theorem 

Now we return to the ~4 model and study the renormalizafion group flow using the 3 
machinery we have been developing. The starting point is the density 

Z N = e -VN(AN) (116) 

= ~xp(KIe--VN)(AN) 

v N ( x )  = )kNV4(X; VN) + ~ N v 2 ( x ,  VN). 

Here AN = L - N A  and we make a basic mass renormalizafion by choosing 

pN 48A 2 f vg (x - - y )3dy ,  (117) N = 
JA N 

following the suggestion of second order perturbation theory as in Sect. 3. We do not 
renormalize the energy. 

After N - i renormalization group transformations we have a density Z N on Ai. 
f2N . N We will find constants i , tti and polymer activities K N such that 

Zi N -- e f2N[al I~xp(AN)(Ai)  (118) 

= er2NIA~l ~xpO--le-E ~ + KN)(AO 

Y i N ( x )  = AiY4(X , vi)  + ]tiNy2(X, vi). 

(Hereafter the superscript N is suppressed.) 
To write Zi in this form we assume it has been done for i and derive the form 

for i - 1. For the fluctuation step we have 

Pc * Zi = er2~rA~l~xp(A #) (119) 

= e~2~lA~l~xp(E3e -V# + K #) 

V#(X)  = Ai �88  #) + #~�89 
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Here A # = o~(Ai )  and we have defined 

K # = 3 " ( K 0  = A # - n e  - v " .  (120) 

The Wick ordering v # = v i  - C now matches the free measure. 
Next we extract F = F0 + F1 where 

Fo(Y) = so(Y), (121) 

FI (Y)  = ctl(Y)V2(Y,v#). (122) 

The parameters o~0(Y),  C~l(Y) are still to be specified, but they will be invariant under 
lattice symmetries. Then we find 

Pc * Z~ = e(~+~e?Ol&l ~xp(r-qe -V* + K*) (123) 

V* ( X )  --- .~i V4( X ,  v #) q- (l~i + ~]~i ) V2( X ,  v #) 

where 

K* = ~ ( K  # ,F) ,  (124) 

6~1i = E C~o(Y), (125) 
YDZI 

5#i = - Z Ctl(g). (126) 
YD A 

Finally we scale to obtain Zi_ 1 which has the claimed form if we define 

Ki-1  : . ~ ( K * )  
Ai-1 = LA~ 
#~-1 = L 2 [pi + 5#~] 

Oi-~ = L 3[0~+5~d.  

Note that K~- i  = (oc~~ and that our notation can be summarized by 

K,i ~ K# ~ K * ~> Ki-1. 

(127) 

Q2n(v, w; A u A ' ,  0) = fzaxzX'uz~,xza : r  n :v w(x -- y) : r  :v dxdy (128) 

if IX] = 1,2 and defining Q2n(v, w; x ,  4) = 0 if IX] > 3. Then the following formula 
defines Q i : 

@(X,  O) = AZ[8Q6(vi, wi; X, 4) + 36Q4(vi, (Wi)2; X,  q)) + (129) 

48Q2((wi)3xcL; X, 4) + 12Q~ X)]  + Q~(X, r 

We shall write Ki  = Qi e x p ( - V i ) +  R~ where Qi includes the terms which are 
second order in Ai and Ri is the remainder. We track the flow of the Qi as in 
perturbation theory (Chapter 3), now including the 0 r  terms and constants and give 
general bounds on the remainder. 

We introduce quantities QZn(v, w; X ,  4) for 0 < n < 3 by setting 
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Here X(x, y) = 1 if Ax U By is a small set (Ax = the unit block containing x), and 
is 0 otherwise. Also X c = 1 - X and Xn(X, y) = x(Lx,  Ly). The last term Q~(X, r is 
supported on small sets X with I XI _ 2 and has the form 

Q~(X, r = A 2 [ r x, y)(O~r (130) 
J x  x x  

where the kernel qi is a function (not just a measure) to be specified further. 
All the functionals Ki ,  If/, Qi, Ri are to be regarded as functions of  g) E C(A~). 

For V, Q one replaces r  by r x) and (0 , r  by r  x). As functions of  r 
these functionals have norms of the form discussed in Sect. 5. 

We now make specific choices for the norms 

II'll~ - I I ' l l a . r , h , ,  (131) 

1"1 -= ]'IF,,-  (132) 

We take 
Gi = G(0, ~;i) (133) 

1/2 
where G is given by (53) and hi = A i . The large set regulator F is as defined in 
Sect. 5. Finally 

hi = (hio, hi1) = (6Ai -1/4, 6Ai  1/4) (134) 

for some constant (5. This is the largest choice of h consistent with Theorem 1. 
As a reference point for the mass we take a local version of second order pertur- 

bation theory: 

= L 2 ( N - i ) f Z N  - -  48A 2 [ (wi(x - -  y ) ) 3 X L ( X  , y)dxdy. (135) 
J za x A i  

As noted previously this is bounded uniformly in N.  For the change in the second 
order mass we use 

6/2i = - 4 8 A  2 [ (w#(x - y)3X(x, y) - wi(x - y)3XL(X, y))dxdy (136) 
J za •  

where we recall that w # = wi + C. We still have/2i-1  = L2(/2i + 6/20. 
All the results to follow are obtained under the following hypotheses. Fix 0 < c < 

1/2. We assume that 6 is sufficiently small, that L is sufficiently large (depending on 
6), and that A is sufficiently small (depending on/5, L). Constants that may depend on 
/5 are denoted by ~ ( 1 )  and constants that may depend on L are denoted by the letter 
C whose value may vary from line to line. A constant of  this type whose value does 
not vary from line to line is denoted by C1, C2, etc. 

Now we are ready to state the main theorem which gives bounds on the poly- 
mer activities Ki  and the effective masses /zi uniform in N.  (Since we have not 
renormalized the energy we do not get good bounds on ~2i.) 

T h e o r e m  8. Under the above hypotheses there is a choice of C~o(Y), ~ l (Y)  and a 
constant C1 so that for all i, N with 0 < i < N the polymer activities have the form 

Ki = Qi exp ( -VD + Ri 

where IQ~l-yr,1 < C1 -~2 and 
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The bounds on Ri are smaller than the following bounds on Qie - ~  so the Ri 
really are remainder terms. 

L e m m a  8. There is a constant Cz such that fo r all i, N with 0 < i < N 

liQ~ -v'll~ <- c2~/2 <- x~/z-~ 
I@e-V'l <_ C2A~ <_ A~ -~. 

Proof. Since e;i)~i -1/2 = 1 > a, Corollary 1 implies 

IIQ~ -v~ II~ -< ~O)l@l~F,h,- 

To estimate [Qi[-yF, h~ we note that 

rex IwP(x'y)ldxdy <<- Cexp[-ced(A,A')],  for p = 1,2 
• 

fzx [w~(x'y)[X~L(x'y)dxdy <- Cexp[-ced(A,A')],  for p = 3 ,4  
X z3d 

for some C and 0 < c~ < l, both depending on L. Note that in the second bound the 
characteristic function enforces that Ix - y] > IlL: this is needed since wi(x, y) has 
the singularity ~ ( t x  - y ] - l )  as Ix - Yl ---+ 0. Using also 

E ( " y F ) ( z ~  , Z~t)e -~d(zS'A') ~ C 

A' 

we find that the first four terms in Qi have norms bounded by CA2h 6. For the last 
term we use ]Q~].rV, h~ = h2]Q~l.rr,1 <- C, A2h2. Thus we have 

2 6 C2,~/2. I@l~r,h, <-- C),~h~ <_ 

Similarly, 
I@e-V~lr,1 <-[Q~l-rr,1 <- C2 A2- 

[] 

The proof of Theorem 8 is by induction on i working down from i = N.  Clearly 
the result is true for i = N,  since KN = 0. The proof of  the inductive step i ~ i - 1 

is broken up into three lemmas, each analyzing a piece of the transformation Ki-1  = 

S'gJKi.  
To control the fluctuation step we introduce a norm II" II# with regulators: 

G#(X, qS) = G(0, t~ / -1 ;L-1X,  qSL), (137) 

V#(X) = 7 (X) - IF(x) ,  

h # = (1/2)hi  

and also the norm I" [# = I" [v#,l/2. 
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L e m m a  9. K # has the form 

where 

Q# = 

and where 

175 

K # = Q# e x p ( - V  #) + R # 

)2 [8Q6(v# w #) + 36Q4(v# (7/)#)2) 4_ 48Q2((w#)3 _ (wi)3XL) 

+12Q~ 4 - (4(wi) 3 c  + (wi)4)XL)] + Q'i + AcQ~ 

IIR#II# ~ ~ ( l ) ) ~  -~ 

IR#I# ~ o ( 1 ) ~  -~ 

T h e  extraction step is controlled using the norm I1" II, defined with the regulators 
G* = G #, F*(X)  = "y(X)-3F(X),  and h* = h #. We also define I" l, = I' Ir*,~/2. 
L e m m a  10. K* has the form 

K* = Q* e x p ( - V * )  + R* + S* 

with 

Q,  = /~2 [8Q6(v#,w #) + 36Q4(v#,(w#)2) 

+48Q2((w#)3xC) + 12Q~ + Q'i'. 

Here Q{' has the form (130) and satisfies IQ{'l.yv,1 <_ O(1)C1A 2- Also R~(X,  r = O) = 
O for X small and d imn  = no~2 + 3nl /2  < 2 and 

IIR*II, ~ ~(1)A~ -e 

IR*I, ~ ~(1)A~ -~ 

IIS*ll, ~ ~(1) )~ /2-~  

IS*l, __ o(1)~/2-~ 

Finally the proof of the theorem is completed by the scaling step: 

L e m m a  11. Ki -1  = �9 , = ~ ( K  ), Qi - l  and/zi-1 L2(#i + ~/zi) satisfy the conditions of 
Theorem 8. 

Now we prove each of these lemmas. 

Proofoflemma 9. The proof relies on Theorems 2,3 and 4. These will apply once we 
have checked that the homotopy hypothesis 78 can be satisfied since IIC~ll0 _< c for 
all i (even for i = 1) which follows from standard bounds on such covariances. In the 
Appendix to this section we show that the homotopy hypothesis is satisfied. 

Let B(t) = (IS] + Q(t))e -v(t) where 
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V(t ,  X) = ),iV4(X, re) + m V i ( X ,  vt) 

---- ~2 [8@6(Vt, Wt ) + 36Q4(v,, wt2) + 4 8 Q 2 ( v t ,  w 3 - ~/)i3)~L) O(t) 

+12Q0(wt 4 _ (4tw3C + w4)XL) + Q' + t A c Q ' ]  

with vt = v~ - tC  and wt = wi + tC. Then B(t)  interpolates between B(0) = ([3 + 
Qi)e -V~ and B(1) = ([3+Q#)e -V#. It is also an approximate solution of the fluctuation 
equation (35), Indeed we will show that the discrepency 

E(t)- OB ~ c B -  ~C (OB oOB~ 
- o ~ -  2 ~ ' ~ /  

satisfies 

IIE(t)ll{ <_ CA{, (138) 

IE(t)l < Cl~. (139) 

Recalling that A(t) = ~ is the exact flow of the fluctuation equation, and 
that A # = A(1), it follows from Theorem 3 that 

R # = A ( 1 ) - B ( 1 )  

/0 /0 1 ~ l ( B i  + tRi; R d d t  (J11-th(B(t); E(t))dt.  

Now the proof of Lemma 9 follows from Theorem 4 since 

I1~1t# -< ~(1)IIRilIi + ~(1)sup  IIE(011r <_ ~(1)A) -~. (140) 
t 

Similarly using Theorem 4 we get IR#I# < ~(1);~-< 
We prove (138) and (139) by first defining {1 fz~ xA2UA2xA, C(x  - Y)O~)~ ,OV(t) OV(t)Or if X = ~ t  U A2 (141) 

J ( X )  = 0 otherwise, 

and then writing 

( 0  ) e_V(t) E(t)  : -~ - A c  + J [] call th isI ,  

(o ) 
+Q(O" -~ - A o e -V(t) call this I I ,  

(OQ(O o~-~(~)~ 
- C \  ~ , ~ ] call t h i s l I I ,  

{o } 
+ ( ~  -- A c ) Q ( t  ) - J[] e -g(t) call this ! V, 

- ( J  - J[])e -v(t)  call this V, 

- c  \ ~ o o~ ] 

1c ( ~ ~ ~ call ~s v~. 
2 k o7 o oo / 
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(The first four terms come from ( o  _ A c ) B  and the last two from _!~(OB2 ~ ,  0r o, ~).)OB 

We now proceed to estimate each term 

1. I vanishes because ( o  _ Ac)V( t  ) = 0 by the definition of  Wick ordering. 

2. I [  has the form QPe -v(t) for some polynomial  P .  The polynomial  has terms 
labeled by two vertex tree diagrams. (Again we use ( o  _ Ac)V( t  ) = 0 to suppress 
the single vertex term.) Each vertex either comes from a mass counterterm and is 
~(# i )  = ~(A~)  or from the interaction and is ~ ( l i ) .  
By Corollary 1 and a variation of Lemma 8 we estimate this term by 

IIQPe-V(t)h <_ IQPl~r,h ~ (142) 

<- IQl~r,h~lPlwF, h~ 
< Cli. 

Here the bound on P can be patterned on the bound on Q. Similarly 

]QPe -v(t)] <_ CA 4. (143) 

3. I I I  has the form Pe -V(t) where P is a polynomial  with ~(A~)  coefficients (or 
smaller). It has terms labeled by three vertex tree diagrams localized in at most  
two squares. More precisely it is a tree provided we regard the terms from Q as 
having single propagators 2 3 c wi, wi ,  w i XL or qi. Since there are at most 8 fields in 
any term, it is straightforward to bound the norm by CA3h 8 _< CAi and the kernel 
norm by CA~. In making this estimate for the terms involving qi one can use the 
fact that it is supported on small sets X and that for A,  A '  C X 

f ~  --2 ! Iq~(X;x,y)ldxdy <_ A~ IQ~l~nl ~ C~. 
• 

4. I V  + V = Pe -v(t) where P is a two vertex tree diagram of  the form ~ ( l i # i )  + 
2 (#i) ,  i.e. at least one vertex is from the mass counterterm. To see this we 

compute 

0 [ 
( ~  - Ac)Q(t)  = ~ 8Q6(vt, C) - (8)(9)Q4(vt,wtC) (144) 

+(36)(2)Q4(vt, wtC) - (36)(4)Q2(vt, w~C) 

+(48)(3)Q2(vt, w~C) - 48Q~ - w3CXL) 

+12Q~ - 4w3CXL)] 

8A~Q6(vt, C) 

and 

d = 8A~Q6(vt, C) + ~(Aipi)  + ~(/z2).  (145) 

These remainder terms have norms bounded by C)~ i3 hi4 ~ C/~ 2 and kernel norms 
bounded by CA 3. 



178 D. Brydges, J. Dimock, T.R. Hurd 

5. V I  can also be written in the form Pe -v(t) and treated similarly, although the 
details are a bit more involved. For example, one contribution to P evaluated on 
X = z~ 1 U A 2 U A 3 U Z~ 4 is 

( 0 V ( A 1 )  0V(ZI3) 
" I / 2 Q ( A 1 U A 2 ) Q ( A 3 U A 4 ) C \  - ~  ~ ) "  

This is a product of three tree diagrams. Each diagram has G(A 2) coefficients 

and at most 6 fields for an CA~/2 bound. Overall the term is bounded by CA~/2. 
Note that the localizations overlap in such a way that in the sum over X there is 
always adequate decay to cancel the growth of 7F(X):  do the sums in the order 
A4, A3, A2. 

[] 

Proof of lemma 10. We write 

K* = ~ ( K  #, F)  = ~ ( K  #, F)  + ~_>2(K #, F) 

where ~ is the linearization of the extraction step and ~ 2  is the remainder. The 
first term is 

~ ( K  #, F) = K # - Fe -v# 

which, if we write F = FQ + FR, can be expressed as 

~ ( K  #, F) = (Q# - FQ)e -v"  + (R # - FRe-v") .  

Now I4" can be written in the form Q*e -v*  + R* + S* if we define 

Q* = Q # -  FQ, (146) 

R* = (1(4 - FRe-V~), (147) 

S* = ~>z(K #,F) + Q*(e -v# - e-V*). (148) 

We choose FQ and FR to cancel the local low order terms in r in Q# and R # for 
small sets. Let X = A U A t be a small set. We define F o ( X  ) by taking the constant 
terms in Q#, and also inserting the identity 

r162 = ~-~ dz (r 2 + ~sr162 (149) 

into the Q2 term in Q# and retaining the first term. Here "/xz(s) is some standard 
choice of path in X from z to x. This can be done in a way that is invariant under 
lattice symmetries (see [BK93] for a detailed discussion). The complete definition of 
FQ is then 

FQ(X) 12AZQ0(X, (w#)4 (4w3C _ 4 + t = - wi )Xr)  A c Q i  (150) 

for X = A U A'  and small and FQ(X) = 0 otherwise. 
Notice that this has the form 



Short Distance Behavior of (r 179 

FQ(X) = c ~ o Q ( X ) I X ]  + OqQ(X)�89 v #) 

where 

48A2/z~ [(W#)3 x 3 
OqQ(X)  = 7 ~  T x A ' U A ' x A  -- Wi)CL] 

and ao satisfies ]ao(X)] < CA 2. The Q extractions lead to the perturbative change in 
the mass (cf. Eq. (136)) 

- E eqQ(X) = -48A 2 f [(w#)3 X 3 - WiXL] =- 5~ti. (151) 
XDA dz~ xAi 

The definition of Q* = Q# - FQ agrees with the definition in the lemma provided 
we define 

Q~' = Q'i + 5Q (152) 

where for X = A U A' and small 

5Q(X)  = 48A 2 f dxdy  [(w#) 3 - w~XL](X, Y) 
J A  x A ' u A ' x A  

We redefine it as a functional of tb by carrying out the s derivatives and replacing 
(0ur = Ol,~b(x, O) by ~b(x, #). Then aQ has the required form. 

3 cancel so that Taking into account that the leading singularities in (w#) 3 and wi 
(w#) 3 - w 3 is locally integrable uniformly in i and N, we can bound 5Q using the 
techniques in the proof of Lemma 8 and obtain [6Ql,vv,1 < C1A 2 provided C 1 is 
sufficiently large; this fixes C1. Then IQ"l~r,1 _< o(1)c,:q 

For the choice of FR we proceed similarly. Let R #,-<2 be the expansion of R # 
to second order in r on small sets and zero on large sets. In the quadratic piece we 
localize the r dependence using (149). This means we replace R #,-<2 by R #,<2 - 5R 
where 

1 fxdZ l d 5R = 1/2/R#,o(X,O;x,y)[F~7~ fro -~sr 

Then we choose FR so that (FRe-v#) <<-2 = R #,<2 - 5R. We find we should take (for 
small sets only): 

FR(X) = aoR(X)tX ] + alR(X)V2(X, v #) 

where aon, a ln  are the solutions of the equations 

(CeoR(X) -- CqR(X)v# (O) )e  - b  = R # ( X ,  O) (153) 

(eqR(X) -- o~oR(X)a)e -b = (2]X]) -1 J 'P~,0(X,  0; x~ y)dxdy. 

Here a, b are the coefficients of the quadratic and constant terms in V#: 

a = --6Aiv#(O) +/_t i 

b = 3.~i(v#(0)) 2 - Iziv#(O). 
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The contribution to the change in mass is by definition 5#i - 5/2i and is given by 

5 # ~ -  @ i = -  ~ a l R ( X ) .  
X D  A 

Now taking into account that v#(0) is bounded we have that a, b are O(Ai), and s o  
one can show 

15#i - 5/2il _< Z IC~ln(X)l -< ~(1)ln#l # -< ~ 1 6 2  
XDA 

which gives the bound on 5#i - ~fii- 
We write 

V # _ R # , -  <2] R* = (R  # - F R e -  ) = [R # + 5R + [ (FRe-V)  <-2 - FRe-V] .  (154) 

Note that in the term 5R we can again replace 0~r by ~b(x, p) and then R~(X ,  r = 
0) = 0 for X small and dim(n) < 2 as claimed. To bound R* note that the terms 
1[SRII# and IIR # - R#'<211# are bounded by ~(1)IIR#11# < ~'(1)),~ -~. Since oeR = 

3--e ~(A  i ) we also have [IFRe -V - (FRe-v)<-zll# <_ C)~[/z-r <_ ~(1 ) )~  -~. Thus 

I[R*II, _< IIR*II# _< ~(1)),~ -~. Similarly the kernel norm satisfies IR*I, <_ ~ (1 ) )~  -~. 
Finally consider S*. For the bound on ~_>2(K #, F )  we shall apply Corollary 2. 

The hypothesis (98) is verified by using Theorem 1 with a value r = O(1))d/2.  With 
I1~11 = II~011 + r -~ I1~ 11 we find that 

11~>2(K#,Y)ll, _< o(1)ll~ll~llK#ll# 
I~>_a(g#,F)l, < O(1)llodlr, IK#I#. 

Since IIK#II# _< ~(1);~/2 ~, I/<#1# _< O(1)a~ -~, and II~llr~ -< Ca~/2 we obtain the 
bounds ~(1),k~/a-~ and ~(1),k~/2-~. Finally Q*(e -y#  - e -V*) supports a similar 

bound (details are left to the reader) and we have the required IIs*ll, _< o(1)~ /2-~  
and IS*l, _< O(1);~/2-~. This completes the proof of Lemma 10. 

[] 

Proof of  lemma 11. We have 

/ ( / - 1  = - 9 ~  = ~ f l  (~ /* )  + :~>2(-/(*) 

where ~ is the linearizati0n of 5/~ and ,-~2 is the remainder and further 

~ ( g * )  = 5f(Q*e -v*)  + ~,T~(R*) + 5f(S*). 

Let ~ 0  be the linearized scaling operator with V = 0, that is 

~~ r : ~ K(X, eL ,). 
x : X L = L Z  

Then the first term is computed as 

,~l(Q* e -V*)  = ~ l~  -Vi- ,  = Qi_le  -y~-, 

provided we define 
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Q~-I = ~1 ~ �9 

The remainder is then given by 

Ri-1 = 5~_2(K*) + ~ ( S * )  + .5'fl(R*). (155) 

To estimate the remainder we use Theorem 6 and Theorem 7 to bound each term 
separately. Thus we need that 

I](e-v*)L-,(X)llg,h~_, = I]e-~-'(X)llg,h~=~ < 2 

holds for any L -1 scale polymer X C A, both for 9 = 1 (and hence for Gi-1) and for 

g = G ( - e 0 ,  0)  w i t h  e0 = ahi-_l(  2 a n d  a = G ( 1 )  (but small). This follows by Theorem 
1. 

The first two terms of (155) are higher order in hi than we need, and we use this 
extra smallness to cancel any growth factor. By Theorem 6 and Lemma 10 we have 

that s ~ .~ ( sK*)  is analytic in say Isl <_ hi -1/2+e/2 and is bounded there by 

II ( K*)II -I <_ ~(1)L31IsK*I[. _< ~(1)L3Chei/2. 

Since 
1 ~ S f ( s K  *) , 

~_>:(K*) : ~ a s-~s ~ ~ a s  

around the circle Isl = A~ -1/2+~/2 we get the bound 

11~2(K*)lli-1 _< O(1)L3CA~ -~/2 <_ ~(1)A~ -~. 

Similarly we have 

lf (S*)ll -i _< O(1)L3h /2-  _< 

For the last term we need the more delicate estimate given by Theorem 7. Sepa- 
rating large and small set contributions gives 

II (R*)ll -i _<  (1)L -llIR*ll, + ~(1)L3lIR*lla*,r*,(h,_,)L,dg~>_2 
where 

(hi-1)L -- (L-3/4~h~l/4, L-7/4 ~h~l/4). 

The theorem is applicable since 

min{~0h~_l ' 2 fZi_lhi_l} = rain{a, 1} = a = ~ (1 )  > 0. 

Now we can extract some powers of L -1 in the second term in passing from (hi-1)L 
to h* = (16A~ -1/4, �89 The worst term with dim _> 2 is a r 0r term which 
gives L -5/2. Then we may continue with 

II l(R*)lli-  _< O(1)LV2A~ -~. 

Combining the above bounds gives the required result ]lRi_l Ili-1 -< G(1)L1/2h~-e _< 
h~_-~, where we use hi = L - l h i - 1  �9 

Now for the bound on the kernels of Ri-1. Again for the first two terms of (155) 
we have a higher power of hi than we need: 
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1.5~>2(K*)1 < ~(1)L3X 4-~ 

_< o(1);~ 3-~ 

I~(s*)l  ~ ~ ( 1 ) L 3 , ~ / 2 - e  

_< C(1)5~ -~. 

And for the last term we again use Theorem 7 to obtain: 

I~fl(R*)l < G(1)L-1IR*[, +~(1)L3lR*lr*,(1)L,dim>_2 

_< ~(1)L.k~ -c.  

3--e Combining the above we get the required IR~-l Ir < ~(1)L)~ -~ _< ),~_~- 
l The previous bound is also a model for the bound on Q~-I  = ~ 0 ( Q , ) .  Since 

(Q")n(X, 0) = 0 for dim(n) < 2 we have as above 

! 2 IQ~-l l .yr ,  t < ~(1)LlQ"l-~r,1 -< G(1)C1LA~ < ClAi-1. 
Finally we note that the mass term has the correct behavior: 

~(1)L2.k~ ~-e 

3-c  -< ;~i-1, 

This completes the proof of  Lemma 11 and the main theorem. 
[] 

7.1. Appendix: The Homotopy Hypothesis. We have defined Gi = G(0, e;i) and 
G #(X , r  -z G(O, tq_I;L-aX,r  Recall that t~i = x/~-i. To apply Theorems 2,3 
and 4 let Gi(t) be the geometric interpolat ion 

Gi(t) 1-t # t = G i ( T G ) ,  ( 1 5 6 )  

where t E [0, 1] and 7 = 7 (X)  - 2 Ixl. 

L e m m a  12. Given L >_ 2, there exists ~o > 0 such that V)~ E [0, )~o], Vi > 0 and 
V s < t E [ 0 , 1 ]  

P(t-s)c * Gi(s, X )  <_ G~(t, X). (157) 

Proof Let U(s, r := log G(s, r It is enough to prove that 

OU 1 C OU OU 

because of the implications 

OU A c  U _  1 OU OU 
o-2 - c ( , -g-d ) > o ) =~ #(t--s)c * \ Os AcG(s)  >_ 0 

0 
=~ ~s#(t_s)c * G(s, X )  >_ 0 for s C (0, t) 

#(t-~)c * G(s, X )  < G(t, X). 

(158) 
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From the definitions 

U=*log(2)[XI+ ~ ~ '  L IoqO~12" ((L2]~[-3/2-1)~+ 1) 
I_<1o,1<~ 

from which we verify (158): for example, if  we choose A0 small so that 

(159) 

~ 0  sup [O~OZyC(x - Y)I (160) 
x~y 

is small for 1 _< I<, 191 ~ s then the q~ independent term in OU/Ot dominates A c U  
OU OU for all i. To dominate C ( ~ r  ~ - ) ,  we use 

(161) 
OU OU 

IC(bT, ~7)1 < I[Cll;~ ~ (L21<-3/2)2/x 10~r 
l_<lcq_<s 

which is smaller than the r dependent terms in OU/Ot when v/~0llcH is sufficiently 
small. Here IICII is an L2 norm in x - y  on the (matrix-valued) kernels ]O~O~vC(x-y)[, 
1 ___ 1<,]91 ___ s. 

[] 

8. The Generating Functional and Correlations 

Now we consider the generating functional SN(p). From (22) and (118) this can be 
written 

SN(p) = exp(--1/2(p,~;Np) + ~g)SN(D), 

~ N ( p )  = (g~xpAo~)(A, r = i v N p )  = AN(A,ivNp).  (162) 

The truncated correlation functions are the functional derivatives of  log S(p) with 
respect to p. For the two point function one has 

02 82P2) 8=0 (q~(pl)r T = ( - / ) 2 0 s - - ~  2 logS(slPl + 

02 + 82P2) s 0 = (Pl, 0NP2) + ~ log ~ N ( s l p  1 = 

and for the truncated n-point function 

On s,~p,O) s o" (r  �9 - �9 r = (_i)n OSa... OS~ log S(s lp l  + ' ' "  + 
= 

Now we can give a bound on the correlation functions that is uniform in N.  

Theorem 9. Suppose the hypotheses of Theorem 8 hold. 

1. For any p > 3 there is a constant JR so that S(p) is analytic in the ball IIpHp <~ 
JR-aA-1/4 in LP( A) and satisfies there 

J&p)- 11 _< 1/2. 
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2. For Pi E LP(A) 

I(r - (Pl, ~NP2)I <_ 

I(r  _< 

22R2A1/21IP1IIplIP21I~ 

nnRn/~n/4 f i  IIP~II,. 
i=1 

Proof (1.) We start with the analyticity properties of 

AN(A, r : e--VoN(A,O) + KN(A, r 

By the main theorem KoN(A,~) is analytic in II~01[o~ < h0,11~lllo~ < h0 and if we 
make a Taylor expansion around r = 0 we find that 

I/~0~(A,r < r(zx)(1 I1%11~176 II~J~ 0 
- ho ho " 

This gives analyticity and a bound for KoN(A, r = K N ( A , r 1 6 2  If we also use 

IIKoNIIc,r, ho 
2,~ 1/2-e and take IIr _< h0/2and 110r _< h0/2 we find 

IKoN( A, r 1/4. 

With the same restrictions on r we have IVoN(A, r --< G(1)  Ah4 = O(1)5. Thus 
taking 6 smaller if necessary we have 

le vff(A'r - 1[ _< 1/4. 

Thus if IlCLl~ a n d  IlOr are less than ho/2 = 6~-1/4/2 we have that Ao~(ZX, r is 
analytic and satisfies 

lAW(A, r  11 < 1/2. 

Now specialize to S(p) = AN(A, i~Np). Since ~N(x) and O~u(x) have the sin- 
1 2 gularities ~ ( Ix l  - ) and O(Ix  I- ), the best we can say about both of them is that 

they are in Lq(A) for q < 3/2. For p > 3 take q < 3 /2  so 1/q + lip = 1. Let 
Rq = max([l~NHq , ]lOvN[Iq). By Young's inequality we have 

II~u*Pllo~ <- Rqllpllp 
IlO~u*plloo _< R~IIPlI~. 

T h u s  if UpIIp <- R - 1 / ~ - l / 4  with R = 2Rq/6 these quantities are bounded by 5)~-1/4/2 
and so S(p) is analytic and satisfies IS(p) - 11 _< 1/2. 

(2.) By part (1.) for Ilpll, -< R-1A-x/4 we have that logS(p)  is analytic and 
satisfies Ilog~(p)l < 1. It follows that for llmll~ <_ R-a:w~/Zn= ~ the function 
log ~:(SlPl + . . - +  s,~pn) is analytic in [si I < 1 and is also bounded by 1. By Canchy 
bounds the derivatives satisfy 

if [ Osl Osn log S(81P1 + ' ' "  + 8nPn) ~ 1. 
. . . 8 =  0 

This gives the bounds of the theorem with the restriction on the Pi. The general case 
of p~ E LP(A) follows by linearity. 
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Remarks. The fact that the test functions can be in Lp for any p > 3 is a limitation 
on how singular the truncated correlation functions can be at coinciding points. The 
result is probably not optimal and one could try for a lower value of p and hence 
more regularity. The best one could hope for would be p > 12/11, for example this 
is needed so that VoN(A, i~Np) is well defined. In any case to do better one would 
have to get better regularity for the derivatives of the polymer activities K ~ ,  possibly 
by using a stronger norm. 
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