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Abstract. The center of the quantum algebra is studied. Especially an analogue 
of the Harish-Chandra isomorphism is established. 

1. Introduction 

In the study of the quantum Yang-Baxter equation, Drinfel'd [3] and Jimbo [6] 
found a certain Hopf algebra, which is a quantization of the enveloping algebra 
of a symmetrizable Kac -Moody  Lie algebra (The ~12 case is due to Kulish- 
Reshetikhin and Sklyanin). The purpose of this paper is to investigate the structure 
of the center of this q u a n t u m  algebra  associated to a finite dimensional semisimple 
Lie algebra. Our main result is Theorem 2 below giving an analogue of the 
Harish-Chandra isomorphism ([5]). 

Let A = (aij)l <i,j~ be a symmetrizable generalized Cartan matrix. This means 
that A is a matrix of integers such that % = 2, a~j < 0 for i r j and there exist 
positive integers d l , . . . ,  dl satisfying diaij = djaj~. We fix such dl . . . .  , dl. Let k be a 
field of characteristic zero. Choose a finite-dimensional k-vector space to and 
elements el . . . . .  etet~, t~ . . . .  , tteto satisfying the following conditions: 

(a) {cq . . . . .  el} is linearly independent, 
(b) {tl . . . . .  tl} is linearly independent, 
(C) Cti(tj) = diaij (i, j = 1 . . . . .  l). 

The Kac-Moody  Lie algebra fi (see [8]) associated to A is the Lie algebra over 
k, generated by the k-vector space t o and the elements e~ . . . .  , el, f~ . . . . .  f l  with the 
following fundamental relations: 

[t , t ' ]  = 0 (t, t'Eto) , (1.1) 

[t, el] = ei(t)e i (tEto, i = 1 . . . . .  l), (1..2) 

[t, f / ]  = - ~i(t)fi (tato, i = 1,...,l), (1.3) 

[e,, f j]  = (~i , j t i /di  (i, j = 1 . . . . .  l), (1.4) 
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(ad (ei)) 1 - "'~(ej) = 0 (i ~ j) ,  (1.5) 

(ad (f~))~ -"'J(fj) = 0 (i r j). (1.6) 

We introduce the following q-analogue of the binomial coefficient ( : )  for 

non-negative integers n, m with n > m: 

(qr _ q - r )  [nl= ' = ~  . - , .  (1.7) 
m q [ I ( q ' - - q - ' )  [ I  (q, q - r )  

r = l  r = l  

The quantum algebra Uh(g ) is the algebra over the formal power series ring 
R =  k[[h]] ,  which is h-adically generated by the R-module t = R |  and the 
elements e l , . . . , e ,  f t , - - . ,  f~ with the following fundamental relations: 

t t '  - -  t ' t  = 0 (t, t'~t), (1.8) 

tei - -  ei t  - cq(t)e i = 0 (tct, i = 1 . . . .  ,1), (1.9) 

t f i - f i t + a i ( t ) f i = O  (tet, i =  1 . . . . .  l), (1.10) 

e i f  j - f j e ,  - 6 . .  sinh (h t i /2)  
"~ sinh (hdi /2)  - 0 

1 -aid I ( - 1 ) "  1 - %  e : - " ' J - "  m=O 
m = 0 D'l _lq~ ejel 

( i , j =  1 . . . .  ,/), (1.11) 

(i -r j), (1.12) 

( i :  j), (1.13) 

where q~ = e x p ( h ~ ( t 3 / 4 ) s R *  for i =  1 .. . .  , I. Let us be more precise. Let U be the 

free. modu,e < We denote tensor algebra 

the completion of U with respect to the h-adic topology (see Sect. 2.1 below). Hence 
we have 0 = l i m ( U / h " U )  and 0 has a natural R-algebra structure. Let I be the 
two-sided ideal~--of U generated by the left-hand sides of (1.8) . . . . .  (1.13) and l e t /  
be its closure with respect to the h-adic topology. T h e n / i s  also a two-sided ideal 
of U, and we define Uh(g ) to be the quotient algebra Off-. Apparently Uh(g) /hUh(g)  

is naturally isomorphic to the enveloping algebra U(g) of g. 
Let N + (respectively N - ,  respectively T) be the subalgebra of U~,(g) generated 

by e l , . . . ,  eg (respectively f l  . . . .  , fi, respectively t), and let U[(g) be the subalgebra 
generated by N+, N - ,  T, where barring denotes the h-adic closure. We denote by 
N the R-algebra with 1 which is given by the presentation with generators vl . . . . .  vz 
and relations: 

( _ 1 )  m 1 - a l j  1- . , j - , .  m Z 0 D'l dq~ l?i VjV i = 0 (i ~ j). (1.14) 
m= 
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Theorem 1. (i) N is a free R-module and we have isomorphisms of  R-algebras: 

N + ~- N ~- N -  (ei+-~vr (1.15) 

(ii) T is naturally isomorphic to the symmetric algebra S(t) of  the free R-module t, 
and the inclusion T c_~ T is the h-adic completion. 
(iii) W e  have an isomorphism of  R-modules: 

U/(g)~_N - | T |  + (uvw+-*u|174 (1.16) 

(iv) The inclusion U{(g) c_~ Uh(g ) is the h-adic completion. 

This theorem may be well-known to the experts (see [3]); however, we will 

ht~\ / h t ~ \  

( ht,'  (ht,5 A(fD=f,|174 ( i= 1,...,/), (1.19) 

e(t) = 0 e(ei) = e(fi) = 0 (i = 1 , . . . , l )  (1.20) 

S( t )= - t (tet), (1.21) 

S(ei) = - q[  lei (i = 1 , . . . ,  t), (1.22) 

S(f~) = - q,f~ (i -- 1 , . . . ,  l). (1.23) 

Here A, e, S are the coproduct, the counit and the antipode, respectively. Note that 
the definition of the topological Hopf  algebra structure on an R-algebra H is given 
by replacing H | H, H | H | H in the definition of the Hopf algebra (see [1]) with 
their h-adic completions. 

In the rest of this section we assume that A is a Caftan matrix of finite type 
(see [8, Chap. 4]) and t o is spanned by t l , . . . ,  ft. Therefore g is a finite-dimensional 
semisimple Lie algebra and to is identified with a split Cartan subalgebra of g. Let 
W be the Weyl group, that is, the subgroup of the automorphism group of the 
k-vector space to generated by the transformations sl . . . . .  sl given by: 

S i ( t j )  = t j  - -  a i j t  i. (1.24) 

Since the action of W on t o is naturally extended to an R-linear action on t = R | to, 
the group W acts on T and T as algebra automorphisms. Define pet* c Horn R (t, R) 
by p(ti) = ei(ti)/2 = d i for i = 1 . . . .  , l. 

We define an analogue of the Harish-Chandra homomorphism as follows. Let 
e+-:N+-~ R be the algebra homomorphisms defined by e+ (e/)= 0, e - ( f ~ ) =  0 for 

give its proof since it seems that it does not exist in the literature and since it will 
be used in the proof of our main result. The proof of the freeness of N is based 
on the character formula of integrable highest weight modules (Lusztig [9]), and 
the other statements are proved using the arguments of Yamanc [13]. 

The topological Hopf  algebra structure on U~(g) defined by the following is 
one of the ingredients of the proof of our main result (see [3], [6]): 

A ( t ) = t | 1 7 4  (t~t), (1.17) 
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i =  1 . . . . .  l and let fl be the unique algebra automorphism of T satisfying 
fi(t) = t - p ( t )  for tet. Identifying U[(g) with N -  | 7 ' |  + by Theorem 1 (iii), we 
define ~ :U[(g)~  7" by 8 =  e |174 +. By virtue of Theorem 1 (iv) 6 is uniquely 
extended to an R-module homomorphism ,~: U~(8)~ 7". Let ~(Uh(9)) be the center 
of Uh(g ) and let &3(Uh(g))~ T be the restriction of 8. 

Theorem 2. 6 is an injective algebra homomorphism and its image coincides with 
~ w =  {z~Tiw(z ) = z for all w~W}. 

The organization of this paper is as follows. In Sect. 2 we will give a proof of 
Theorem 1 except for the freeness of N. In Sect. 3 several basic facts concerning 
highest weight modules are stated and a proof of the frecness is given. Section 4 
is devoted to the proof of Theorem 2. 

2. Structure of Uh(g ) 

2.1. h-Adic Topologies. We recall basic facts concerning the topologies of modules 
defined by ideals (see for example [10]). In this subsection only, R is a general 
commutative ring with the identity element 1. 

Let M be an R-module and let {M,[n = 1,2,...} be a decreasing sequence of 
submodules of M. We have a topology on M such that {x + M,[n = 1, 2 . . . .  } is a 
fundamental system of neighborhoods of x for any x6M, and this topology is 
called the linear topology of M defined by {M, In = 1, 2 . . . .  }. For an ideal I of R the 
linear topology defined by {I"M) is called the l-adic topology. Especially, when 
R = k[[h]]  and I = (h), the I-adic topology is called the h-adic topology. Note that 
any homomorphism of R-modules is continuous with respect to the I-adic 
topologies. 

An R-module M with a linear topology is said to be separated if it is Hausdorff 
as a topological space, and is said to be complete if any Cauchy sequence has a 
limit in M. Here a sequence {x,} of elements of M is called a Cauchy sequence if 
it satisfies the following condition: 

(,) for any open submodule L of M, there exists no such that x,1 - x , 2 6 L  for 
any n l , n  2 ~ n 0. 

Note that the limit of sequence in M is not necessarily unique unless M is separated. 
Let M be an R-module with a linear topology. An R-module M with a complete 

separated linear topology together with a continuous R-homomorphism f : M  ~ 
is called the completion of M if, for any R-module L with a complete separated 
linear topology, and for any continuous R-homomorphism f':M---, L, there exists 
a unique continuous R-homomorphism q~:_A~f ~ L satisfying q~ of  = f ' .  It is known 
that the completion exists and is unique up to isomorphisms. When the linear 
topology of M is defined by {M,}, we have M = lim M/M,,  .M, = ker (M --+ M/M,), 
and f :  M ~ M is the natural homomorphism. It is easily seen that f is injective 
(respectively surjective) if and only if M is separated (respectively complete). The 
following is clear by definition: 

Lemma 2.1.1. Let M be an R-module with a linear topology and let L be its submodule. 

I f  f : M  ~ M is the completion of M, then the natural homomorphism M/L ~ MI/f(L) 
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is the completion of M/L  with respect to the quotient topology of M/L. Here barring 
denotes the closure. 

It is obvious that the quotient topology of M/L with respect to the I-adic 
topology of M coincides with the l-adic topology. 

We will use the following lemma in Sect. 2.2. It is an easy consequence of the 
well-known fact that if I is finitely generated, the topology of the l-adic completion 
3~t of an R-module M is the I-adic topology. 

Lemma. 2.1.2. Let M be a separated R-module and let M c_~M be the 1-adic 
completion, l f  I is finitely generated, then the topology of M induced from the 1-adic 
topology of M coincides with the l-adic topology. 

Example. Let R = k[[h]]  be the formal power series ring over a field k. For a 
k-module M o set M = R |  o. Let ~t be the h-adic completion of M. Then we 
have the following natural identifications: 

= m i mi~Mo , 
i =  

h i �9 M = mitmisMo, dlmk kml < oo , 
i = 0  i =  

where ~ h~m~ is a formal infinite sum. 
i = 0  

2.2. The Triangular Decomposition. In the rest of this paper R denotes the formal 
power series ring k[ [h] ] ,  where k is a field of characteristic zero, and R-modules 
are endowed with the h-adic topologies. We will use the notations in Sect. 1. From 
now on until the end of Sect. 3 we assume that A is a symmetrizable generalized 
Cartan matrix, which is not necessarily of finite type. 

Let 11 be the two-sided ideal of U generated by: 

t t '--  t't (t,t'~t), (2.2.1) 

t e i -  eit - cti(t)e i (tet, i = 1 . . . .  l), (2.2.2) 

t f i  - f i  t + ~i(t)fi (tet, i = 1,. . . ,  l), (2.2.3) 

6 sinh (hti/2) 
e i f  j -  f je~ - i,~sinh(hd~2~/2i (i,j = 1,.. . l), (2.2.4) 

A - -  

and set U1 = U/I 1. Let 12 be the two-sided ideal of U~ generated by: 

1 - , ,  E -- aO1 ~ 1 7 6  a" 
~=o(--1)" 1 m d,,-i -j-i ( i# j ) ,  (2.2.5) 

~ ( _  1) m 1 f~ f j f~  ( i#j) .  (2.2.6) 
m = O  m 

Lemma 2.2.1. The R-algebra Uh(fi) (= U/T) is naturally isomorphic to U1/] 2. 

Proof. Let f :  U ~ U 1 = U/T 1 be the natural homomorphism. We have f -  l ( f([))  = 
I-by T 1 ~ L Since f is a surjective open map and f--l( f(-f))  is closed, we see that 
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f ( I )  is a closed subset of UI, and hence we have f ( l )  = f ( I ) .  (Note that a surjective 
homomorphism of R-modules is automatically an open map with respect to the 
h-adic topology.) Since f ( I )  = 12, we have 

f -  ~(r2) = f -  l(f( l))  = f -  l(f(~-)) = [, 

and the assertion is proved. [] 

Let R ( x l  . . . .  , x t )  (respectively R ( y ,  . . . .  , y , ) )  be the tensor algebra of the 
R-module with free basis {Xl . . . . .  xz} (respectively {YI . . . . .  Yz}), and set 

V = R(y  1 . . . . .  y~) @RS(t) |  . . . . .  x~). (2.2.7) 

Choose a basis {zl . . . . .  zr} of the k-vector space t o. Then V is a free R-module 
with basis: 

. . . .  a r  ~ . . . . . .  {Yil " 'yi ,  z~' zr xj~. . .xjqLp,  q, al  . . . . .  a~>O,  i t , . . . , i p ,  j~ ,  , j q =  l, l}. 

We define a U-module structure on the completion ~" by: 

ei'Yi~ "'Yi~Z~ ~ �9 ~ " �9 " �9 Z r X j l  " �9 X j q  

= ~ Y i , ' " ) i s ' " Y i ,  s i n h ( h ( t i -  ( % ~  + ""ei , ) ( t l ) ) /2)  z"l . . . .  z~ ~ 
1 ~,~p sinh (hd]2)  x J t " ' x J q  

i s = i  

+ Y i ~ ' " Y i , ( z l  -ei(Zl))  . . . . .  ( z r - e i ( z , ) ) " ~ x i x ~ , ' " x j ,  ( i=  1 . . . .  ,l), (2.2.8) 

t. Yil . yivZal, . a. . . . . .  Z r X j l  "" X j q  

-- y~ , , . . y~ ( t  - ( a ,  + . . .  + c%)(t))z~' . . ,  z, "~xj, �9 ..x~q (tet), (2.2.9) 

f vY i~" 'Y i~Z~  ~''" z~'xj,  " ' 'xj~ 

= YiYil " "Y i f i ]  . . . .  z~"x~ . . . x j ,  (i = I . . . .  , I). (2.2.10) 

More precisely, we first define R-homomorphisms V ~  ~" by the above formulas 
and extended them to the endomorphisms of the R-module V. Since U is a free 
R-algebra, we get an action of U on V, and it lifts uniquely to the action of 0 on V. 

Lemma 2.2.2. (i) T h e  ideal [1 o f  0 annihilates 1/, and hence V is a U , -modu le .  
(ii) T h e  R - h o m o m o r p h i s m  f r o m  U1 to V given by u~-*u.1 is an isomorphism. 

Proof. (i) Since ~" is separated, we have only to show 1 l V = 0. Details are omitted. 
(ii) Let D be the k-subspace of U spanned by the elements 

f l , ' " f i f i ~ "  " . . . .  "" = " . . . .  ' �9 .z ,  ej, ej ,  (p,q,  a l ,  . , a , > 0 ,  il . . . . .  i p , j l , .  , j q =  1, 1). 

Then we have: 

= I~ + D + hO.  (2.2.11) 

Indeed, this is easily proved using the fact that the k-algebra U/(Ix + hU)  has a 
presentation with generators t o, el . . . .  , ez, f~ , . . .  ,f~, and the fundamental relations: 

It' = t't (t, Veto) ,  

e~t = (t -- ~i(t))ei (teIo, i = 1 . . . . .  l), 
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tfi = fi(t -- ~i(t)) (teto, i =  1,.. . ,l), 

e i f  j= f jei + cSijti/di ( i , j= l .... ,I). 

Let u be an element of U. By (2.2.11) we can take elements b.eI1, c, eD, 
e, e 0 (n = 0, 1, 2 . . . .  ) satisfying u = bo + Co + heo, e, = b, + 1 + c. + 1 + he, + 1. Then we 
have 

u= ~" h'bi+ ~ hic~+h"+le, (n=0,1 ,2 , . . . ) .  
i = 0  i = 0  

Since 0 is complete and separated, any Cauchy sequence in U converges to a 
unique element, and hence we have: 

u= ~ h~bi + ~ h~c i. 
i = 0  i = 0  

Thus, setting E = hiq[cieD}, we have; 
i =  

U = I1 + E. (2.2.12) 

Let q~: U ~ ~ be the R-homomorphism defined by q~(u) = u. 1. By (i) we have q~lI- 1 = 0 
and by definition we see that ~01E is an isomorphism. Therefore the assertion 
follows from (2.2.12). [] 

Let N~- (respectively N [ ,  respectively T1) be the subalgebra of U 1 generated 
by el . . . . .  e~ (respectively f l , . . . , f i ,  respectively t), and let U~ be the subalgebra 
generated by N~-, N [ ,  T1- 

Lemma 2.2.3. (i) We have isomorphisms of R-algebras: 

N~ ~- R ( x l , . . . , x l )  ~- N1 ( e i ~ x ~ f i ) .  (2.2.13) 

(ii) T~ is naturally isomorphic to the symmetric algebra S(t) of the free R-module t, 
and the inclusion T a c_~ ~F 1 is the h-adic completion. 
(iii) We have an isomorphism of R-modules: 

U {~- N~ | ~FI | N~ (uvw.=+u|174 (2.2.14) 

(iv) The inclusion U{ c_~ U 1 is the h-adic completion. 

Proof By Lemma 2.2.2 it is sufficient to show that N~-T 1N + is a subalgebra of 
U1. This is easily checked by direct calculations. []  

Set 

u~+=x~9(-1)m[ l - a ~  e~-ag-meje.~eN~ (i#j) ,  
ra = 0 m ~ q i  

Ulj= -'(--1)m[ 1-aO] f:-a"-rafjf.~IV~ (i~j), 
~S=o' m _l,t, 

and let J + (respectively J - ,  respectively J )  be the two-sided ideal of N ~+ (respectively 
N 1, respectively U{) generated by {u~li C j} (respectively {ui~li :/:j }, respectively 
{ui~,u 5 [i #j}) .  



562 T. Tanisaki 

Lemma 2.2.4. (i) J = J -  TaN~- + N~- 7'1J+- 
(ii) d = 12. 
(iii) J = U~ ~ /z -  

(The bars denote the closures in U 1.) 

Proof. (i) It is sufficient to show that J-7"IN~ and N~F,J  + are two-sided ideals 
of U~. Let us consider J-TaN~-. Since it is apparently a right ideal, we have only 
to show that it is preserved under the left multiplications by e~, f~ (i = 1 . . . .  , l) and 
elements of T~. This can be shown by using the identity 

e,ui-j = ui~e, (i #j), (2.2.15) 

which is proved by direct calculations. The proof for N~-T~J+ is the same. 
(ii) Since U~ is a dense subalgebra of U 1 , J i s  a two-sided ideal of Ua, and hence 
we have J = 12. Another inclusion J c I 2 is obvious. 
(iii) By (ii) we have U~ n/-2 = U~ c~ Z Since the topology of U~ induced from the 
I-adic topology of UI coincides with the I-adic topology (Lemma 2.1.2), it is 
sufficient to show that J is closed in U~ with respect to the I-adic topology of U~. 
Under the identification U~ - Ni- | 7'1 | N~- of Lemma 2.2.3 (iii), J corresponds 
to J - |  T~ |  + + N~-| TI |  by (i). (Since R is a principal ideal domain, an 
R-module is flat if ~md only if it is torsion free. Hence J - |  T I |  and 
N~- | T~ | J+ are naturally identified with submodules of N~- | T~ | N~-.) 

For an l-tuple H = (hi . . . . .  h~) of non-negative integers, let N +~,~ (respectively 
Ni- , )  be the R-submodule of N~- (respectively N~-) spanned by the elements ez, . . .% 
(respectively f~. . . f~,)  such that i appears h~-times in the sequence (ix, . . . , i  v) for 
i = 1,. . . ,  I. Setting J~ J -+ m N +It, we have N + -+ J -+ + = , = ( ~ ) H N 1 , H  and = @H Jr7 by 
the definition of J+. Hence we have: 

N ;  | ~F~ | N + = @U,u,(N[m| T1 | NI+H,), 

J -  | TI | N[  + N-[ @ TI @J + = OH,H'(JH @ TI @ N+I,H" + N~,H| TI @J~')" 

Therefore it is sufficient to show that (J~ + | Nl,u, + NLH | J ] ' )  | T1 is closed in 
(N;,H|174 ~F, for each H,H'. Since N~,u| is a free R-module of finite 
rank, we have only to show that (0) and h"T1 (n = 0, 1,2 . . . .  ) are closed in TI. This 
is obvious by definition. [] 

Proof of Theoern 1 Except for the Freeness of N. By Lemma 2.2.1 and Lemma 
2.2.4 (ii) we have U{(g) ~= U{/J. Hence the statements (i), (ii), (iii) except for the 
freeness of N follow from Lemma 2.2.3 (i), (ii), (iii) and Lemma 2.2.4 (i). The statement 
(iv) is a consequence of Lemma 2.2.3 (iv), Lemma 2.2.4 (ii), Lemma 2.2.l and Lemma 
2.1.1. [] 

Set 

Q = micqlmieZ ct~,  
i 

(2.2.16) 

(2.2.17) 
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l 

Note that { ~ 1 , . . . , ~ / }  is linearly independent. For ;~= ~ m~cqeQ +, let N~- 
i = 1  

(respectively N-~) be the R-submodule of N + (respectively N-)  generated by the 
elements % . . . %  (respectively f~. . . f i , )  such that i appears mctimes in the sequence 
(i 1 . . . . .  ip). By definition we have the following: 

N +=  @ N=+,. (2.2.18) 
yeQ + 

3. Highest Weight Modules 

3.1. Highest Weight Modules. Let K = k((h)) denote the quotient field of R : k[Eh]]. 
Set 

(g) = K c [ ( g ) ,  

~[+- K |  +-, -+ + = N ~ = K @ R N ~  (7~Q+). 

By (2.2.18) we have: 

N-+ = (~  Nu (3.1.1) 
,/e Q + 

For 2~HOmR(t, R)let ~z: T~  R be the R-algebra homomorphism determined 
by (z(t)= 2(0 (t~t). We denote by ~ : K  | T ~ K the scalar extension of r 

Let 2~HomR(t ,R), A U~(g)-module M is called a highest weight module with 
highest weight 2 if M is generated by a non-zero element v~M satisfying ei'v = 0 
(i = 1,..., l), t.v = "(,(t)v (t~K| Such v is called a highest weight vector. 

For a 0~(g)-module M and #EHomR(t , R) set 

M r = {m~Ml t 'm  = ~,(t)m for t ~ K @ R T  }. 

We define an ordering on HOmR(t , R) by 

2 > #  if and only if 2-12~Q +. (3.1.2) 

Lemma 3.1.1. Let M be a highest weight module of Uf  (g) with highest weight 
2~HOmR(t, R) and let v be a highest weight vector. 

(i) M = @ M  r and Mz-7= ]V_-ev (7~Q+). 
~<~, 

(ii) M has a unique irreducible quotient, which is also a highest weight module with 
highest weight )~. 
(iii) Let M' be the U[(g)-submodule of M generated by v. Then we have 

M ' = ( ~ ( M ' c ~ M ~ ) ,  M' c ~ M ~ _ ~ = N ~ v  (~eQ+). 
tL<;~ 

Furthermore, M'c~Mu is a free R-module of finite rank and the natural map 
K | ~ M u ) ~  M~ is an isomorphism. Here M' is a free R-module and we have 
K |  

Proof. (i) This follows from the following obvious facts: 

M = N - v =  ~ NY_~v, NS_rv~Mz_ ~. 
),eQ + 
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(ii) It follows from (i) that any submodule of M is a direct sum of certain subspaces 
of Ma_~ = NZ~v (yEQ+). Hence M has a unique maximal submodule contained 
in @ M u. 

#<2 
(iii) The first half is clear. Let f :K | (M' c~ Mu) ~ M, be the natural map. Since 
M'ca M u is a finitely generated R-submodule of the K-vector space M,, and since 
f is surjective, we see that f is an isomorphism. [] 

For 2sHomR(t, R) we set 

) )~s(2) = 0[(g) 0i(g)ei + US(9)ker ~x . (3.1.3) 
i 

This is obviously a highest weight module with highest weight 2. Since any highest 
weight module with highest weight 2 is a quotient of Ms(2), there exists a unique 
irreducible highest weight module Ls(2) with highest weight 2. We denote by Ms(2) 
(respectively LS(2)) the U/(g)-submodule of MS(2) (respectively Ls(2)) generated 
by a highest weight vector. We call 3ds(2) and MS(2) the Verma modules. 

A uS(g)-module M is said to be integrable if the elements ei, f i  (i = 1, . . . ,  l) act 
on M locally nilpotently. The following is proved in exactly the same manner as 
in [9]. 

Lemma 3.1.2. Let 2 be an element of  HOmR(t, R). Then Ls(2) is integrabte if and only 
if 2(2tJei(ti) ) is a non-negative integer for each i=  1 . . . . .  l. 

For 2eHOmR(t,R ) we define 2~ * by: 

>t~ -- ,~(t)l~-0 (teto). 

Let 2 be an element of Homg(t, R) such that 2(2tJa~(ti)) is a non-negative integer 
for i = 1,..., I. Then as in [9] we can determine the dimensions of the spaces LY(2), 
for # =<2 in the following manner. Set L~ k| where the ring homo- 
morphism R ~ k  is given by h~0 .  Since k|  is 
naturally isomorphic to the universal enveloping algebra U(9) of the Kac-Moody 
Lie algebra g, we have a U(g)-module structure on L~ Furthermore it is easily 
seen that L~ is the integrable highest weight module with highest weight 2 o in 
the sense of [8]. Identify t o with the abelian subalgebra of g and set 

L~ {meL~ = v(t)m (tet0) } (v~t~). 

Then by Lemma 3.1.1 (iii) we see that, for yeQ +, dimKL~(2)x_7 coincides with 
dimk L~ and this is given by the Weyl-Kac formula ([8]). 

In order to write down the formula explicitly we need some notations concerning 
the Kac-Moody Lie algebra g. 

Set 

g~ = {xegl(ad(t))(x) = ~(t)x(teto)} (~eQ), 

A={c~eQ-(0)lg,r  A + = A n Q  +, 

W =  (sill  = 1 , . . . , l )  c GL(to) with si(t) = t - (2ei( t ) ) /e i ( t i ) ) t i .  

Then it is known that we have 

A = A + w ( - A + ) ,  dim g~ = dim g_~ < oo, 
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and that A is preserved under the contragredient action of W. Let p be an element 
of t~ satisfying p(2t~/~(t~))= 1 for i =  1, . . . ,  I. Set 

l(w) = min {plw = si~ ""si~ for some i l , . . . , ipe[1 , / ]}  (3.1.4) 

for we W. Then the preceding arguments imply the following: 

Lemma 3.1.3 ([9]). Let ), be an element of  HomR( t ,R)  such that 2(2ti/eg(ti)) is a 
non-negative integer for each i = 1 . . . . .  I. Then we have: 

dim Ls(2),e, = ~w 
,__<x ~I (1 - e - ~ )  dirn'% 

a e A  + 

3.2. Freeness of  N. Let us show that N is a free R-module. By (1.15) and (2.2.18) 
it is sufficient to show that NZe is a free R-module for each 7eQ +. Since N-~ is 
a finitely generated R-module, we have: 

N S_ ~ ~- R" (~ R/(h pJ 

for some n,m>=0, p l , . . . , p m > l .  Then we have N - _ ~ = K |  ~ and 
k| ~-k ~+". Hence we have only to show 

dimK N ~  ->_ dimk(k| (3.2.1) 

Let M be a highest weight module of ~]~(9) with highest weight 2~Homn(t , R). 
By Lemma 3.1.1 (i) we have: 

dimr N_-~ > dim r M~_~. (3.2.2) 

On the other hand, since k |  is naturally isomorphic to the enveloping 
algebra of the Lie subalgebra ~(fi~a* g-  ~ of g, we see by the Poincar6-Birkhoff-Witt 

theorem that 

1 
d i m k ( k |  coefficient o fe  -~ in 1--I (1 - e-~)dimg~" (3.2.3) 

aszi + 

Hence it suffices to show that there exist some 2eHomR(t , R) and a highest weight 
module M of U~(g) with highest weight 2 such that 

1 
dimKM~_r=the  coefficient ofe  -r  in 1-1 (1 - - e - ~ )  airng~" (3.2.4) 

l 

Let 7 = ~ mzeieQ +. Let ~. be an element of HOmR(t, R) satisfying 2(2ti/ei(tz)) = 
i = 1  

m~ (i = 1 . . . . .  l), and set M = Ls(2). By Proposition 3.1.3 we have 

dimnM~_ ~ = the coefficient of e ~- ~ in ~w 
F I  ( l  - -  e - a )  dimg~ 
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1 
=the  coefficient of e -~ in I-~ (1 - e-C~) dim% + weW2 ( -  1)t(w) 

~eA+ w=/: 1 

( ), �9 ,the coefficient ofe -(~+w(x+~ [ I  (! - e-~) aims" 

and hence it is sufficient to show 

7 + w ( 2 + p ) - ( 2 + p ) r  + (weW, w r  (3.2.5) 

Let us prove (3.2.5) by induction on l(w). If l(w) = 1, we have w = sj for some j ,  and 
hence 

y + w(2 + p) - (2 + p) = y - (m~ + 1)ejq~Q +. 

Assume that l(w)> 2. There exist some j and y e W  such that w =SiT with 
l(y) = l(w)-  1, and then it is known that y-l(aj)eA+ (see [8]). We have 

y + w(2 + p) - (2 + p) = (y + y(2 + p) - (2 + p)) - (2 + p)(y- l(2tj/aj(tj)))aj, 

and y-  l(2t j/ej(t j) ) is a linear combination of 2ti/ai(ti) (i = 1 . . . . .  l) with non-negative 
integral coefficients. Hence we have (3.2.5), and the freeness of N is verified. 

The proof of Theorem 1 is completed. 

Corollary 3.2.1 ([3]). (i) Un(g) is topologically free; i.e., it is the completion of a free 
R-module. 
(ii) U~,(g) is an integral domain; i.e.,if x, y are elements of Uf,(g ) such that xy = O, 
we have x =0  or y =0. 

Proof. (i) By Theorem 1 U~(g) is the completion of the free R-module N -  | T |  +. 
(ii) This follows from (i) and the fact that Uh(g)/hUh(g) (~-U(g)) is an integral 
domain. []  

3.3. Verma Modules. For 2eHomR(t,R) we define a Uh(g)-module M(2) to be the 
h-adic completion of the Uy(g)-module Mr(2). 

Lemma 3.3.1. Let 2eHomR(t, R) and let v be a highest weight vector of MY(2). 

(i) The R-homomorphism N -  ~ Mr (u~-+u'v) is an isomorphism. 
(i)' The R-homomorphism N -  -~ M(2)(u~--,u.v) is an isomorphism. 

(ii) Mf(2)~-U{(g)/(~=~ U{(g)e~+U{(g)ker~a). 

(ii)' M()o) ~ Uh(g ) U~(g)e~ + Uh(g ) ker ~'z . 

Proof. By Theorem 1 we have 

U{(g)=N-O(~U{(g)e~+U{(g)ker~z),i=l 

U[(g) =/V-O(i__~ 1 U~(g)ei + U{(g)ker ~ ) .  
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Since N -  is a free R-module, the natural map N - ~ / ~ -  = K |  is injective, 
and hence we have (i), (ii). The statements (i)', (ii)' follow from Theorem 1 and 
Lemma 2.1.1 [] 

Lemma 3.3.2. Let ),eHomR(t,R) and i~[1,/].  Setm=2(2tJ~g(ti))+ 1. I f  m is a 
non-negative integer, then M ( 2 -  m~i) is isomorphic to a Uh(g)-submodule of M(2). 

Proof. Let v be a highest weight vector of Mg(2) and set v~ = f~.v.  By a direct 
calculation it is seen that ej.v 1 = 0 (j = 1,... ,l) and t.v~ = ~z-,,,,(t)vl (teT). Hence 
we have a U~(g)-homomorphism M s ( 2 -  mcq)~MI(),), sending a highest weight 
vector to v~. Taking the completions we get a U~(g)-homomorphism M(2 - m~g) 
M(2). The injectivity of this homomorphism follows from Lemma 3.3.1 (i)' and 
Corollary 3.2.1 (ii). [] 

4. Center 

In this section A is a Cartan matrix of finite type and we take to to be the linear 
hull of t 1 . . . . .  tz. 

4.1. Harish-Chandra Homomorphism. The purpose of this subsection is to prove 
the following. 

Proposition4.1.1. The R-homomorphism 6:g(U~,(g))~T defined in Sect. 1 is an 
algebra homomorphism and its image is contained in ~F w. 

The following arguments are parallel to those for U(g) (see [2]). 
By Theorem 1 we have 

U{(g) = Tff) U~(g)e~ + f~U[(g) , (4.1.1) 
i i = 1  

and hence 

) Uh(g) = T G U~(g)e~ + f~ Uh(g) . (4.1.2) 
i = i = l  

Let p : U h ( g ) ~ T  be the projection with respect to (4.1.2). Let f l : T ~ T  and 
S: Uh(g)~ T be as in Sect. 1. Then we have 8 =  flop by definition. 

Lemma 4.1.2. For zeg(Uh(g)) we have 

l 1 

z -  p(z)a ~ Uh(g)e i a ~ fiU~(g). 
i = 1  i = 1  

Proof. For yeQ set 

U/ (g) ,=  @ ( X 2 , , | 1 7 4  U/(g). 
yl,~]2EQ + 
y 2 - - y l ~ Y  

Then we have 

U{(g) = @ U{(g),, (4.1.3) 

tx - xt = y(t)x (tet, xsU[(g)~). (4.1.4) 
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Set z ,=(zmodh")eU~(g)/h"U~(g)= U[(g)/h"Uf(g). Since z, commutes with any 
element of t/h"t, we have z, eUf(g)o/h"U[(g)o by (4.1.3) and (4.1.4). Thus we 

have ze  U{(g)0. By the definition of U/(g) we have 

l l 

Y - P ( Y ) e  Z U{(g)elc~ ~ f~Uf(fl) (yeU[(fl)o) , 
i = 1  i = 1  

and hence 

l l 

y - p ( y ) e  ~ Uh(g)elc~ ~ f~Uh(g ) (y~U/(g)o). 
i = 1  i = 1  

We are done. [] 

Lemma 4.1.3. Let 2~HomR(t,R). For z~(U~(g))  and m ~ M ( 2 -  p) we have z 'm = 
~( ,~ ( z ) )m.  

Proof. Let v be a highest weight vector of M(2 - p). Since e i. v = 0 (i = 1, . . . ,  l), we 
have ( z -  p(z))'v = 0 by Lemma 4.1.2, and hence we have 

z . v  = p(z )v  = r p(p(z))v  = ~ ( ~ ( z ) ) v .  

Since any element m ~ M ( 2 -  p) is of the form m = u'v (u~Uh(g)), we have 

z . m  = (zu) .v  = (uz ) . v  = u . ( z ' v )  = ~ ( ~ ( z ) ) u v  = ~ ( ~ ( z ) ) m .  []  

Let P be the set of elements 2et~ such that 2(2ti/a~(ti)) is an integer for each 
i =  1 . . . . .  1. This is a lattice in t~ preserved under W. 

Lemma 4.1.4. I f  2,#EP are in the same W-orbit, then we have 

~ ( ~ ( z ) )  = ~, (~(z))  ( ze~(u~(g) ) ) .  

Proof. We may assume that 2 = s~/z. Since 2(2h/a~(ti)) = - #(2ti/~i(tO), we may also 
assume that 2(2t~/~(t~)) is a non-negative integer. Then by Lemma 3.3.2 we see 
that M(/~ - p) is isomorphic to a submodule of M(2 - p). Since M(2 - p) is a torsion 
free R-module by Theorem 1 and Lemma 3.3.1, the assertion follows from 
Lemma 4.1.3. []  

Proof of  Proposition 4.1.1. Let z~,z263(Uh(g)). Then by Lemma 4.1.2 we have 

l l 

Since ylp(z2)+ p(zl)y2 + YlY2 is an element of ~ U~(g)ei + ~ fiUh(g), we have 
i = 1  i = 1  

p(zaz2) = p(zl)p(z2) , and hence p:~(Uh(g))-~ T is an algebra homomorphism. Since 
fi(z) = fl(p(z)) for z~$(U~(g)), we conclude that 6 is an algebra homomorphism. Let 
us show that 6(z) = w.b(z) for z~(U~(g)) and w~W. For  any 2~P, we have 

~ ( ~ ( z )  - w . ~ ( z ) )  = ~ ( ~ ( z ) )  - r  = 0, 

by Lemma 4.1.4. Set 6(z) - w.6(z) = ~ h~yl (y~eS(to)). Then we have ~ h* ~(y~) = 0 
i = 0  i = 0  
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for any 2eP.  Since (a(yl)sk, we have r 0 for any 2eP,  and hence y~ = 0. 
Therefore we have 6(z) = w'f(z), [] 

4.2, Adjoint Representations. Let H be a (topological) Hopf  algebra over R. We 
define an R-module homomorphism 

ad:H ~ EndR (H) (4.2.1) 
by 

((ad)(x))(y) = (mo(m | 1)o~)(((1 | S)A(x)) | y), (4.2.2) 

where m is the product, S is the antipode, A is the coproduct and z:H | H | H 
H @ H | H is given by z(a @ b | c) = a @ e | b. Then it is easily checked that ad 
is a homomorphism of R-algebras. Therefore the R-module H is endowed with an 
H-module structure. We denote H by Haa when it is regarded as an H-module. 

We also denote by trivu the one-dimensional H-module given by the counit 
~ : H ~ R .  

Lemma 4.2.1. (i) For y~Uh(g), we have yE3(Uh(9) ) ifancl only/ f (ad(x))(y)  = ~(x)y 
for all x~ Uh(g). 

(ii) Let v be a generator of triveh(~ I. Then we have an isomorphism of R-modules 

Homv,,(~ ) (trivvh(~l, U~(g)aa) ~- 3(U~,(~)) (q~ ~ ~o(v)). 

Proof. The statement (i) is easily verified using (1.17) ~ (1.23), and (ii) is equivalent 
to (i). [] 

Remark. The definition of the adjoint representation of Hopf algebras and 
Lemma 4.2.1 are communicated to the author by T. Hayashi. 

4.3. Proof of Theorem 2. It remains to show that the algebra homomorphism 
6:3(Uh(g))~ ~w is an isomorphism. Set 

A, = U~(g)/h"U~(g)-- U{(g)/h"U{(9), 7", = T / h " T =  T/h"T, 

for simplicity. As in Sect. 4.1 we have algebra homomorphisms 

6 , :~(A , ) - -T  w ( n = 1 , 2  . . . . .  ), 

such that the diagram 

~(U~(9)) ~ , I  "w 

+ 

commutes. It is easily seen that we have 

3(U~(9)) ~- ~ ~(A.), ~w _ lim T~, 

and hence we have only to show that 5 , : 3 ( A , ) ~ T  w is an isomorphism for 
each n. 

Let us prove it by induction on n. Since 61 is the (original) Harish-Chandra 
isomorphism for U(g) (see for example [2]), we assume that n > 2 and 6k is an 



570 T. Tanisaki 

isomorphism for k < n -  I. By Corollary 3.2.1 (i) we have an exact sequence: 

O~A1 ~An--*An-~ ~0,  (4.3.1) 

where AI-~An is given by the multiplication by h n-l. Hence we have the 
commutative diagram 

~n- 1 

0 , 3(A1) ~ 3(A,,) , 3 (An _  1) 

0 ~  T~ h~-L T w , T~_ 1 ,0, 

whose rows are exact sequences. Since 31 and 6 n_ 1 are isomorphisms, it is sufficient 
to show that 3(An)~ ~(A~_ 1) is surjective. 

Similarly to Lemma 4.2.1, we have 

3(A,) ~- HOmA, (trivA~, (A,)ad) = Horn vh(.~)(trivv~(.q), (An)ad), 

and hence it suffices to show 

Ext~h(g J (trivuh(.q), V(g)ad) = 0. (4.3.2) 

Let B ~ C be a ring homomorphism. Then for a B-module M and a C-module 
N we have the following spectral sequence: 

E~ 'q = Ext~ (Tor~(C, M), N) ~ Extra+ q(M, N). (4.3.3) 

Let us apply this to the case 

B = Uh(g), C = U(g), M = trivv~(.~), N = U(g)aa. 

Using the free resolution: 

h 
0 ~ U~(g) - - ,  Uh(g) ~ V(g) ~ 0 (exact) 

of the right U~(g)-module U(g), we see that 

{oiVv(,q) q = 0  Tor~ "~'q) (U(g), trivvh~,q)) = q r 0. 

Hence we have 

E x t , , ,  (triv v ., U(g)ad) = Ext~(.q)(trivu(.q), V(g),d). (4.3.4) 
Mg) h g) 

have Ext~,.q,(V,(~ V,t') = (~Ext~(.q,(V, V~, for a finite dimensional In general w e  
\ ~t ] ). 

U(g)-module V and U(g)-modules Vz. Since U(g)~d is a direct sum of finite 
dimensional U(g)-modules, it is sufficient to show 

Extb~.~ ~ (trivv(.q ~, V) = 0 

for any finite dimensional U(g)-module V. This is a special ease of the well-known 
fact that 

Ext,(g) (V1, 1/2) = 0 



Quantum Algebras 571 

for finite dimensional U(g)-modules V1, V2. (This is equivalent to the complete 
reducibility of finite dimensional U(g)-modules.) 

The proof of Theorem 2 is completed. 

Acknowledgements. The author would like to thank T. Hayashi and H. Yamane for very interesting 
discussions. 
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