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Abstract. The center of the quantum algebra is studied. Especially an analogue
of the Harish-Chandra isomorphism is established.

1. Introduction

In the study of the quantum Yang-Baxter equation, Drinfel’d [3] and Jimbo [6]
found a certain Hopf algebra, which is a quantization of the enveloping algebra
of a symmetrizable Kac-Moody Lie algebra (The sl, case is due to Kulish-
Reshetikhin and Sklyanin). The purpose of this paper is to investigate the structure
of the center of this quantum algebra associated to a finite dimensional semisimple
Lie algebra. Our main result is Theorem 2 below giving an analogue of the
Harish-Chandra isomorphism ([5]).

Let 4 =(a;;); <; j<; be a symmetrizable generalized Cartan matrix. This means
that 4 is a matrix of integers such that a; =2, a;<0 for i # j and there exist

positive integers d,...,d, satisfying d;a;; = d;a;. We fix such d,,...,d,. Let k be a
field of characteristic zero. Choose a finite-dimensional k-vector space t, and

elements a,,...,aet, t,,...,1,€t, satisfying the following conditions:

(@) {ay,...,% is linearly independent,
(b) {t;,...,4} is linearly independent,
(© a(t)=dia; ti, j=1,....1)

The Kac-Moody Lie algebra g (see [8]) associated to A is the Lie algebra over
k, generated by the k-vector space t, and the elements e,,..., e, f,,..., f, with the
following fundamental relations:

[,£1=0 (4t ¢ety), (1.1)
[ted = wltle, (tete,i=1,...,1), (12)
6 fil=—w®f: (tety,i=1,...,]), (1.3)

Lew fil=0.;t:/d; G, j=1,...,D), (1.4)



556 T. Tanisaki
(ad () ~*(e) =0 (i %)), (1.5)
@d (/) " (f)=0 (i #)). (1.6)

We introduce the following g-analogue of the binomial coeflicient (n) for
m

non-negative integers n,m with n > m:

. 1
. M ”
e Dl -9 l]l @-q

The quantum algebra U,(g) is the algebra over the formal power series ring
R =k[{#]], which is #-adically generated by the R-module t = R®,1, and the
elements e,...,e, f1,..., f; with the following fundamental relations:

t—tt=0 (t,t'et), {1.8)
te; —eit —a;(t)e; =0 (tet,i=1,...,0]), (1.9
tfi— fit+o,(0)f;i=0 (eti=1,....,1, (1.10)

sinh (ht;/2) oL
eifj_fjei_ i,jm—o Gj=1,....0, (1.11)
1—a;; ..
b (—1)"'[ “"] el T meer =0 (i ) (1.12)
1—aiy . l_aij e ) )
Z (=1 m ]fi wImffT=0 (i#)), (1.13)

where q; = exp (ha;(t;)/4)eR* for i=1,..., 1. Let us be more precise. Let U be the
1 I .
tensor algebra of the free R-module t@(@ Re)@(@ R fi>. We denote by U

the completlon of U with respect to the A-adic topology (see Sect. 2.1 below). Hence
we have U = lrm(U/h" U) and U has a natural R-algebra structure. Let I be the
two-sided ideal of U generated by the left-hand sides of (1.8),...,(1.13) and let I
be its closure with respect to the A-adic topology. Then I is also a two-sided ideal
of U, and we define U,(g) to be the quotient algebra U/I. Apparently U, (g)/hU,(g)
is naturally isomorphic to the enveloping algebra U(g) of g.

Let N* (respectively N, respectively T) be the subalgebra of U,(g) generated
by ey,..., e (respectively f,..., fi, respectively 1), and let U{(g) be the subalgebra
generated by NY*,N~, T, where barring denotes the #-adic closure We denote by
N the R-algebra wrth 1 which is given by the presentation with generators vy, ..., 1,
and relations:

1—a:;

y (—1)'"[ a”] of T =0 (i ) (1.14)

m=0
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Theorem 1. (i) N is a free R-module and we have isomorphisms of R-algebras:
N*~Nx=N~ (eov0f). (1.15)

() T is naturally isomorphic to the symmetric algebra S(t) of the free R-module t,
and the inclusion T ., T is the h-adic completion.
(i) We have an isomorphism of R-modules:

Ulg) =N " Q@TON* (uww—u®@v@w). (1.16)
(iv) The inclusion Uf(g) = U,(g) is the h-adic completion.

This theorem may be well-known to the experts (see [3]); however, we will
give its proof since it seems that it does not exist in the literature and since it will
be used in the proof of our main result. The proof of the freeness of N is based
on the character formula of integrable highest weight modules (Lusztig [9]), and
the other statements are proved using the arguments of Yamane [13].

The topological Hopf algebra structure on U,(g) defined by the following is
one of the ingredients of the proof of our main result (see [3],[6]):

A =t®1+1®t (tet), (L.17)
Ale)) = €i®exp( —%) +exp (%)@ei i=1,...,D, (1.18)

A(fi)=fi®exp<—%> +exp (%)@fi i=1,..D, (1.19)

s =0 sle)=c(f)=0 (i=1,...,1) (1.20)
S()=—t (tet), (1.21)
Sle)=—qi e, (i=1,...,1) (1.22)
S(f)=—qfs G=1,...,0). (1.23)

Here A, ¢, S are the coproduct, the counit and the antipode, respectively. Note that
the definition of the topological Hopf algebra structure on an R-algebra H is given
by replacing H ® H, H® H® H in the definition of the Hopf algebra (see [1]) with
their #-adic completions.

In the rest of this section we assume that A is a Cartan matrix of finite type
(see [8, Chap. 4]) and t, is spanned by ¢,,...,t,. Therefore g is a finite-dimensional
semisimple Lie algebra and t, is identified with a split Cartan subalgebra of g. Let
W be the Weyl group, that is, the subgroup of the automorphism group of the
k-vector space t, generated by the transformations s,, ..., s, given by:

Si(tj): b—agt;. (1.24)

Since the action of W on t,, is naturally extended to an R-linear actionont = R® to,
the group W acts on T and T as algebra automorphisms. Define pet¥ < Homg(t, R)
by p(t;)=o;(t;)2=d; fori=1,...,1

We define an analogue of the Harish-Chandra homomorphism as follows. Let
¢*:N* >R be the algebra homomorphisms defined by ¢* (e)=0, e (f,)=0 for
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i=1,...,] and let B be the unique algebra automorphism of T satisfying
B(t) =t — p(t) for tet. Identifying U{(g) with N ® T® N” by Theorem 1 (iii), we
define §: U{(g)- T by b=¢" ®p®et. By v1rtue of Theorem 1 (iv) § is uniquely
extended to an R-module homomorphism 5:U #{(8) = T. Let 3(U,(g)) be the center
of U,(g) and let 8:3(U,(g))— T be the restriction of 5.

Theorem 2. § is an injective algebra homomorphism and its image coincides with
TV = {zeT|w(z) = z for all weW}.

The organization of this paper is as follows. In Sect. 2 we will give a proof of
Theorem 1 except for the freeness of N. In Sect. 3 several basic facts concerning
highest weight modules are stated and a proof of the freeness is given. Section 4
is devoted to the proof of Theorem 2.

2. Structure of Uy(g)

2.1. h-Adic Topologies. We recall basic facts concerning the topologies of modules
defined by ideals (see for example [10]). In this subsection only, R is a general
commutative ring with the identity element 1.

Let M be an R-module and let {M,|n=1,2,...} be a decreasing sequence of
submodules of M. We have a topology on M such that {x + M,[n=1,2,...} is a
fundamental system of neighborhoods of x for any xeM, and this topology is
called the linear topology of M defined by {M,|n=1,2,...}. For an ideal I of R the
linear topology defined by {I"M} is called the I-adic topology. Especially, when
R =k[[h]] and I = (h), the I-adic topology is called the #-adic topology. Note that
any homomorphism of R-modules is continuous with respect to the I-adic
topologies.

An R-module M with a linear topology is said to be separated if it is Hausdorfl
as a topological space, and is said to be complete if any Cauchy sequence has a
limit in M. Here a sequence {x,} of clements of M is called a Cauchy sequence if
it satisfies the following condition:

(*) for any open submodule L of M, there exists n, such that x,; — x,,€L for
any ny,n, 2 n

Note that the limit of sequence in M is not necessarily unique unless M is separated.

Let M be an R-module with a linear topology. An R-module M with a complete
separated linear topology together with a continuous R-homomorphism f: M — M
is called the completion of M if, for any R-module L with a complete separated
linear topology, and for any continuous R- homomorphlsm f':M — L, there exists
a unique continuous R- homomorphlsm @:M — L satisfying gof =f". It is known
that the completion exists and is unique up to isomorphisms. When the linear
topology of M is defined by {M,}, we have M= hm M/M,, M, =ker (M- M/M,),
and f:M — M is the natural homomorphlsm It is easily seen that f is injective
(respectlvely surjective) if and only if M is separated (respectively complete). The
following is clear by definition:

Lemma 2.1.1. Let M be an R-module with a linear topology and let L be its submodule.
If f:M — M is the completion of M, then the natural homomorphism M/L— M/f(L)
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is the completion of M/L with respect to the quotient topology of M/L. Here barring
denotes the closure.

It is obvious that the quotient topology of M/L with respect to the I-adic
topology of M coincides with the I-adic topology.

We will use the following lemma in Sect. 2.2. It is an easy consequence of the
well-known fact that if I is finitely generated, the topology of the I-adic completion
M of an R-module M is the I-adic topology.

Lemma. 2.1.2. Let M be a separated R-module and let M =, M be the I-adic
completion. | ]: I is finitely generated, then the topology of M induced from the I-adic
topology of M coincides with the I-adic topology.

Example. Let R=k[[#]] be the formal power series ring over a field k. For a
k-module M, set M = R®,M,. Let M be the h-adic completion of M. Then we
have the following natural identifications:

={ Y h"mi]mieMo},

i=o

M ={ hm;\meM,, dimk( Y kmi> < oo},
i i=0

o0
where Y A'm; is a formal infinite sum.
i=0

e

2.2. The Triangular Decomposition. In the rest of this paper R denotes the formal
power series ring k[ [ #]], where k is a field of characteristic zero, and R-modules
are endowed with the %-adic topologies. We will use the notations in Sect. 1. From
now on until the end of Sect. 3 we assume that A4 is a symmetrizable generalized
Cartan matrix, which is not necessarily of finite type.

Let I, be the two-sided ideal of U generated by:

i —ttr (t,t'et), (2.2.1)
te; — et —ay(tye; (teti=1,...0), (2.2.2)
tfi—fit+o,(0)f; (teti=1,...,1), (2.2.3)
sinh (ht,/2)
efi—fie i.jm Li=1,...1), (2.2.4)
and set U, = U/I,. Let I, be the two-sided ideal of U, generated by:
1—a; L.
PIED [ “U} elmuTme e (i ]), (2.2.5)
m qi

1w m 1~ai}' 1—aij—~m m . -

Z’o (=om ATTT G#)), (2.2.6)

Lemma 2.2.1. The R-algebra U,(g) (= U/I) is naturally isomorphic to U /T,.

Proof. Let f: U — U, = U/I, be the natural homomorphlsm Wehave f~1(f(I)) =
I'by I, = I Since f is a surjective open map and [~ !(f(T)) is closed, we see that
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f(I'}is a closed subset of U, , and hence we have f(I) = f(I). (Note that a surjective
homomorphism of R-modules is automatically an open map with respect to the
#i-adic topology.) Since f(I)=1,, we have

ST =Ty =T ) =1
and the assertion is proved. [J

Let R{x,...,x;» (respectively R{y,,...,y,>) be the tensor aigebra of the
R-module with free basis {x,,...,x,} (respectively {y,...,y,}), and set

V= R(Pys s 1D @ g SE) @ g REx sy X)), (2.2.7)

Choose a basis {zi,...,z,} of the k-vector space t,. Then V is a free R-module
with basis:

a " . .. .
(Vi Y, 202Xy, X5 P, GGy s @ Z 0,0,y e g = 1,00, 1

We define a U-module structure on the completion ¥V by:

‘Zr

e Ve Vi, 21 X e X,
— A Slnh(h(t ﬂ( !s+1 o ‘p)(t))/z) al a
—lgggpyil Yig Vi, smh(hdl/2) Zy iy Xj“"qu

¥y le = e = ), e, =L 228)
I P SR

L (229)
fi'yi;"'yipzli ...erle...qu

=YV Vi, IARRE S SRR i=1,...,1). 2210)

More precisely, we first define R-homomorphisms V— V by the above formulas
and extended them to the endomorphisms of the R-module V. Since U is a free
R-algebra, we get an action of U on ¥, and it lifts uniquely to the action of UonV.

Lemma 2.2.2. (i) The ideal I, of U annihilates V, and hence V is a U, -module.
(ii) The R-homomorphism from U, to V given by u—u-1is an isomorphism.

Proof. (i) Since V is separated, we have only to show I,V = 0. Details are omitted.
(ii) Let D be the k-subspace of U spanned by the elements

fil---fiPZ‘;---Z‘,,"ej‘me}-q (p,q,ali...,argo, il,...,ip,jl,...,jq: 1,,1)

Then we have:
U=1,+D+hU. (2.2.11)

Indeed, this is easily proved using the fact that the k-algebra U/, +hU) has a
presentation with generators to,ey,..., €, f1,...,f;, and the fundamental relations:

=1t (t,tety),
el =(r—o;(t))e; (tety,i=1,...,1),



Quantum Algebras 561

tfi= fit —o,(0) (teto,i=1,...,0),
eif;=fie+otd, (Lj=1,...,1).

Let u be an clement of U. By (2.2.11) we can take elements b,el,, c,eD,
e,cU(n=0,1,2,...)satisfying u = by + ¢ + heg, €, = b4 1 + Cos1 + Hey 1. Then we
have

u= Y #bt Y e+ Ht e, (1=0,1,2,..)

Since U is complete and separated, any Cauchy sequence in U converges to a
unique element, and hence we have:

;;MB

Thus, setting E ={ Y. #e;lc,eD}, we have;
i=0

U=I,+E. (2.2.12)

Let ¢: U — V be the R-homomorphism defined by ¢(u) = u- 1. By (i) we have ¢|I, =0
and by definition we see that ¢|E is an isomorphism. Therefore the assertion
follows from (2.2.12). O

Let N{ (respectively N7, respectively T,) be the subalgebra of U, generated
by eq,....¢ (respectlvely S1s--., f1, respectively t), and let U{ be the subalgebra
generated by N{ N[, T,.

Lemma 2.2.3. (i) We have isomorphisms of R-algebras:
N =R{xq,..., x> = N7 (eyox;<f)). (2.2.13)

(it) T, is naturally isomorphic to the symmetric algebra S(t) of the free R-module t,
and the inclusion T, =, T, is the h-adic completion.
(iii) We have an isomorphism of R-modules:

U{=N{®T,®QN{ (mwou®@v®@w). (2.2.14)
(iv) The inclusion U{ =, U, is the h-adic completion.

Proof. By Lemma 2.2.2 it is sufficient to show that N T, N is a subalgebra of
U,. This is easily checked by direct calculations. [
Set

128 m l_aij l—gi— . .,
= Y (=1 m ei "M Me;el'eNT (i #£J)),
qi

= f( 1)'"[ - ]f?““”’""f,-f?’eNf (i # ),

andlet J* (respectively J ~, respectively J) be the two-sided ideal of N {respectively
N7, respectively U{) generated by {u;} |i #j} (respectively {u; |i #j}, respectively
{u,ug li#7}).
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Lemma 2.24. () J=J TN +N;T,J".
(i) J=1,.
(it) J=U{nI,.

(The bars denote the closures in U, )

Proof. (i) It is sufficient to show that J~T,N; and N, T,J* are two-sided ideals
of U{. Let us consider J~ T, N{. Since it is apparently a right ideal, we have only
to show that it is preserved under the left multiplications by e;, f; (i=1,...,[} and
elements of T,. This can be shown by using the identity

enui; = ui; €y (l 7&])5 (2215)

which is proved by direct calculations. The proof for Ny T,J " is the same.
(i) Since UY is a dense subalgebra of U,,J is a two-sided ideal of U,, and hence
we have J o I,. Another inclusion J < I, is obvious.
(iii) By (ii) we have U{ I, = U{J. Since the topology of U{ induced from the
I-adic topology of U, coincides with the I-adic topology (Lemma 2.1.2), it is
sufficient to show that J is closed in U with respect to the I-adic topology of UY.
Under the identification U{ =~ N; ® T, ® N; of Lemma 2.2.3 (iii), J corresponds
toJ T ®T,®N; + Ny ® T, ®J* by (i). (Since R is a principal ideal domain, an
R-module is flat if and only if it is torsion free. Hence J~ ® T; ® N and
N; ®T,®J* are naturally identified with submodules of Ny ® T, @ N; )

For an I-tuple H = (h,,...,h;) of non-negative integers, let N (respectively
N7 y) be the R-submodule of N7 (respectively N ) spanned by the elementse;, ---¢;,
(respectively f; ---f;,) such that i appears h-times in the sequence (iy,...,i,) for
i=1,...,1 Setting J =J*"Niy, we have Nf = @®4Nfy and J* =@,J 5 by
the definition of J*. Hence we have:

Ni®T,ON{ =@®uu(Niu® T,QN{u),
J ®T,®ON; + N1 ®T\®J* = @uyUa®Ti®N{ 5+ Nia® T ®J).
Therefore it is sufficient to show that (J; @ N o+ NIg®JE)®T, is closed in
(NT u® N{z)® T, for each H,H'. Since Ny ® N{ . is a frec R-module of finite

rank, we have only to show that (0) and #"T, (n=0,1,2,...) are closed in T,. This
is obvious by definition.

Proof of Theoem 1 Except for the Freeness of N. By Lemma 2.2.1 and Lemma
2.2.4 (i) we have Uf(g) = U{/J. Hence the statements (i), (ii), (iii) except for the
freeness of N follow from Lemma 2.2.3 (i), (ii), (iii) and Lemma 2.2.4 (i). The statement
(iv) is a consequence of Lemma 2.2.3 (iv), Lemma 2.2.4 (i1), Lemma 2.2.1 and Lemma

211, O
Set

0= { i miailmiez} c t¥, (2.2.16)
i=1

Q"= { i moeQlm; 2 0} g, (2.2.17)
i=1
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14
Note that {«;,...,0,} is linearly independent. For y= ) mo,eQ*, let NS
i=1

(respectively NZ,) be the R-submodule of N* (respectively N 7) generated by the
elements e;, ---e; (respectively f;, ---f; ) such that i appears m;-times in the sequence
(i1,-..,1,). By definition we have the following:

N*= P Ni, (2.2.18)

yeQt

3. Highest Weight Modules

3.1. Highest Weight Modules. Let K =k((h)) denote the quotient field of R = k[ [#]].
Set :

0! (g) = K®xU{(9),

N* =K®gN* N
By (2.2.18) we have:
Rt= @ R,

veQ

For ZeHomg(t, R)let &,: T-> R be the R-algebra homomorphism determined
by &,(t) = At) (tet). We denote by &,:K ® T - K the scalar extension of g,

Let AeHomg(f, R). A4 U{(g)-module M is called a highest weight module with
highest weight A if M is generated by a non-zero element ve M satisfying e,v =0
(i=1,....0), t.o=E,(t) (teK®,T). Such v is called a highest weight vector.

For a U{(g)-module M and peHom(t, R) set

M,={meM|t-m= fu(t)m for teK®,T}.

(3.1.1)

We define an ordering on Homg(t, R) by
Az pu ifand onlyif A—pueQ”. (3.1.2)

Lemma 3.1.1. Let M be a highest weight module of ﬁhf (@) with highest weight
AcHomyg(t, R) and let v be a highest weight vector.
) M= @ M,and M, ,=N_ »(yeQ*).
us A
(1) M has a unique irreducible quotient, which is also a highest weight module with
highest weight A.
(iti) Let M’ be the U (g)-submodule of M generated by v. Then we have
M =@M M), MnM, ,=NZ,»p (yeQ™)
pusi
Furthermore, M' "M u 15 a free R-module of finite rank and the natural map

K®r(M'nM,)— M, is an isomorphism. Here M’ is a free R-module and we have
K® M =M.

Proof. (i) This follows from the following obvious facts:

M=N"v=Y N4 NZjveM,

yeQ+
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(1i) It follows from (i) that any submodule of M is a direct sum of certain subspaces
of M;_,=NZ,v(yeQ"). Hence M has a unique maximal submodule contained

in PM,.
(iii) The first half is clear. Let f:K®(M'nM,)~ M, be the natural map. Since

M’ M, is a finitely generated R-submodule of the K-vector space M, and since
f 1s surjective, we see that f is an isomorphism.

For AeHomg(t, R) we set

W (3) = Of(g) / ( 3, T{(@e+ Ufg ker a). (313)

This is obviously a highest weight module with highest weight A. Since any highest
weight module with highest weight 4 is a quotient of M/(4), there exists a unique
irreducible highest weight module I/(%) with highest weight 1. We denote by M”(%)
(respectively L/(1)) the U{(g)-submodule of M”(J) (respectively I/(4)) generated
by a highest weight vector. We call M/(1) and M’(2) the Verma modules.

A U/(g)}-module M is said to be integrable if the elements e,, f; (i=1,...,1) act
on M locally nilpotently. The following is proved in exactly the same manner as
in [9]. :

Lemma 3.1.2. Let A be an element of Homg(1, R). Then L(A) is integrable if and only
if 2(2t,/%;(t;)) is a non-negative integer for eachi=1,...,1.

For AeHomg(t, R) we define i°et¥ by:

200) = A1)y (teto)

Let A be an element of Hompg(t, R} such that A(2t,/a,(t;)) is a2 non-negative integer
fori=1,...,I. Then as in [9] we can determine the dimensions of the spaces L’ (A
for u <4 in the following manner. Set L%(1) = k®g L/(1), where the ring homo-
morphism R—k is given by #—0. Since k®zU{(g)(=U{(g)/hU{(g)) is
naturally isomorphic to the universal enveloping algebra U(g) of the Kac-Moody
Lie algebra g, we have a U(g)-module structure on L°(4). Furthermore it is easily
seen that L°(2) is the integrable highest weight module with highest weight A° in
the sense of [8]. Identify t, with the abelian subalgebra of g and set

L), = {meLloA) tm=vOm (tete)} (vetd).

Then by Lemma 3.1.1 (iii) we see that, for yeQ™, dimg I’ (A)2-, coincides with
dim, L°(4);_,, and this is given by the Weyl-Kac formula ([8]).

In order to write down the formula explicitly we need some notations concerning
the Kac-Moody Lie algebra g.

Set

9, = {xegl(@d())(x) = ut)x (tety)}  (2eQ),

A={aeQ —(0)g, #(0)}, A" =4nQ",

W={s;)li=1,...,1> = GL(ty) with s;(t) =t — (e, (t})/o;(t:))t; .
Then it is known that we have

A=A"u(—A4"), dimg,=dimg_, < 0,
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and that A is preserved under the contragredient action of W. Let p be an element
of t§ satisfying p(2t,/o,(t))=1fori=1,...,1 Set

w)=min {pjw=s; ---s; for some i,,...,i,e[1,1]} (3.1.4)
for weW. Then the preceding arguments imply the following:
Lemma 3.1.3 ([9]). Let A be an element of Homg(t, R) such that A(2t;/a;(t;) is a
non-negative integer for each i=1,...,[. Then we have:

Z (— l)l(W)ew(Hp)—p
d- Ef )' u— weW .
uél 1m ( )ue l—l (1 __e—a)dlmga
acAt

3.2. Freeness of N. Let us show that N is a free R-module. By (1.15) and (2.2.18)
it is sufficient to show that NZ, is a free R-module for each yeQ™. Since NZ, is
a finitely generated R-module, we have:

NIy;R"@<é—|§1R/(h"f))

for some n,mz=0, p,,...,pm=1. Then we have 1\~]Zy=K®RNZy§K" and
k®@gNZ,=k"" ™ Hence we have only to show

dimg N2, > dim, (k®x N ,). (3.2.1)

Let M be a highest weight module of U/{(g) with highest weight AeHomg(t, R).
By Lemma 3.1.1 (i) we have:

dimg N2, > dim, M, _,. (32.2)

On the other hand, since k®z N~ is naturally isomorphic to the enveloping
algebra of the Lie subalgebra P g_, of g, we see by the Poincaré—Birkhoff-Witt

ac A*

theorem that

1
H (1 _ e—a)dimga'

acA*

Hence it sufﬁce~s to show that there exist some AeHomg(t, R) and a highest weight
module M of U/(g) with highest weight A such that

dim, (k® g NZ,) = the coefficient of e~ in (3.2.3)

dimg M, _, = the coefficient of e™” in (3.2.4)

1
[ 0=

acAt
1
Lety=) mueQ™. Let A be an element of Homg(1, R) satisfying A(2t,/0,(t;)) =
i=1
m;(i=1,...,1), and set M = L/(). By Proposition 3.1.3 we have

z ( _ 1)l(w)ew(i-+pl —p

weW

l_[ (1 . e-az)dimg,

acAt

dimg M, _, =the coefficient of e*~7 in
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1
Azt 50

weW
w1l

=the coefficient of ¢™? in

ac AT

. ] 1
| the coefficient of e~ ¢t WA+ o)~ (50D —
(1 —e a)dlmga ’

aed

and hence it is sufficient to show

v+wd+p)—(A+p)¢Q" (weW,w#1). (3.2.5)
Let us prove (3.2.5) by induction on /(w). If [(w) = 1, we have w = s; for some j, and
hence

y+wA+p)—(A+p)=y—(mj+ DoygQ".
Assume that I(w)=2. There exist some j and yeW such that w=s;y with
l(y) =l(w)— 1, and then it is known that y~'(a;)eA™ (see [8]). We have

Y+ WA+ p)—(A+p) =0+ YA +p)— A+ p) —(A+ )y~ ' (2t;/05(t )

and y~ (2t ;/o;(¢ ;))is a linear combination of 2¢,/0,(¢;) (i = 1,. .., [) with non-negative
integral coefficients. Hence we have (3.2.5), and the freeness of N is verified.
The proof of Theorem 1 is completed.

Corollary 3.2.1 ([3]). (i) U,(a) is topologically free; i.e., it is the completion of a free
R-module. _

(i) U,(g) is an integral domain; i.e., if x,y are elements of U,(g) such that xy =0,
we have x =0 or y=0.

Proof. (i) By Theorem 1 U,(g)is the completion of the free R-module N @ TN *.
(ii) This follows from (i) and the fact that U,(g)/AU,(g) (= U(g)) is an integral
domain. []

3.3. Verma Modules. For AieHomg(t, R) we define a U,(g)-module M(4) to be the
h-adic completion of the UJ(g)-module M/(4).

Lemma 3.3.1. Let AcHomy(t, R) and let v be a highest weight vector of M'(2).

(i) The R-homomorphism N~ — M7 (2) (u—u-v) is an isomorphism.
(i) The R-homomorphism N~ — M(A)(ur—>u-v) is an isomorphism.

(i) M/(2)=U{(9) / (iil Uf(9e; + Ul (g) ker 51)-

! ~
(i) M(%)=Uyg) / (; Un(gle; + Uy(g) ker 51)-

Proof. By Theorem 1 we have
1

i

Uf(@)=N- @( Ul (@)e,+ UL (@ker fl),

-

U/ (g)e; + Uf(g) ker 6)

A

I
-

ﬁ{(g)=1\7‘®<

14
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Since N~ is a free R-module, the natural map N~ - N~ = K®,N~ is injective,
and hence we have (i), (ii). The statements (i), (i) follow from Theorem 1 and
Lemma 2.1.1 O

Lemma 3.3.2. Let AcHomg(t,R) and ie[1,1]. Setm=AQ2t/a(t;)+ 1. If m is a
non-negative integer, then M(A — ma;) is isomorphic to a U,(g)-submodule of M(2).

Proof. Let v be a highest weight vector of M7/(1) and set v, = f™v. By a direct
calculation it is seen that e;v, =0 (j=1,...,[)and t'v; =&, _ .., ()v, (teT). Hence
we have a U{(g)-homomorphism MY(1 — ma;)— M7 (4), sending a highest weight
vector to v, . Taking the completions we get a U,(g)-homomorphism M(4 — ma;) >
M(7). The injectivity of this homomorphism follows from Lemma 3.3.1 (i) and
Corollary 3.2.1 (i1). O

4. Center

In this section A is a Cartan matrix of finite type and we take t, to be the linear
hull of ¢4,...,1

4.1. Harish-Chandra Homomorphism. The purpose of this subsection is to prove
the following.

Proposition 4.1.1. The R-homomorphism &: 5(U,,(g))—>T defined in Sect. 1 is an
algebra homomorphism and its image is contained in T".

The following arguments are parallel to those for U(g) (see [2]).
By Theorem 1 we have

Uj(g)= T@(i Uf(g)e; + Z fi Uf(g> (4.1.1)

and hence

—

Ufl@=T ( Z »(@)e; + Z fiU, ) (4.1.2)

Let p: U,,(g)—»T be the projection with respect to (4.12). Let g:T—>T and
5:U,(g)— T be as in Sect. 1. Then we have § = Beop by definition.

Lemma 4.1.2. For ze3(U,(g)) we have

1 . 1
z—pl2)e ';1 U, (gle;n _;1 fiU(9).
Proof. For yeQ set
Uf@,= @ (NI, @T®N},)< Uf(g).

¥1,726Q 7
) 2yL=y
Then we have
Uf(g)= @Q Uf(9),, (4.13)
Y€

tx —xt=y(t)x (tet,xeU(g),). 4.1.4
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Set z,=(zmod #")eU,(g)/h"U () = U{(g)/h"U}(g). Since z, commutes with any
element of t/A"t, we have z,eU(g),/h"U{(g), by (4.1.3) and (4.1.4). Thus we

have zeU{(g)o. By the definition of UJ(g) we have

1 i
y=pe 3, Uilgen 2 fiUile) (yeUilgho).

and hence

1 1 _
y— p(y)s:Z1 Ui@le:n 3, /iUi(@)  (y€Uilg)o).

We are done. []

Lemma 4.1.3. Let AcHomg (1, R). For ze3(U,(a)) and me M(4 — p) we have z-m =
a(0(z))m.

Proof. Let v be a highest weight vector of M(1— p). Since ¢;;v=0(i = 1,...,[), we
have (z — p(z))'v =0 by Lemma 4.1.2, and hence we have

zv=p@)={;- ,(p(2))v = &;(6(2))v.
Since any element me M (A — p) is of the form m = u-v (ueU,(g)), we have
zem=(zu)v = (uz) v =u(z-v)= £,(6(2))uv = &,(d(z))m. [
Let P be the set of elements Aet} such that A(2t;/x(t;)) is an integer for each
i=1,...,1 This is a lattice in t§ preserved under W.
Lemma 4.1.4. If A, ucP are in the same W-orbit, then we have
£:(0(2)) = £,(6(2))  (ze3(U,(9)))-

Proof. We may assume that A = s;u. Since A(2t;/a,(t;)) = — p(2t;/,(t;)), we may also
assume that A(2t,/x,(t;)) is a non-negative integer. Then by Lemma 3.3.2 we see
that M(u — p) is isomorphic to a submodule of M(4 — p). Since M(/ — p) is a torsion
free R-module by Theorem 1 and Lemma 3.3.1, the assertion follows from
Lemma 4.13. [J

Proof of Proposition 4.1.1. Let z,,z,€3(U,(g)). Then by Lemma 4.1.2 we have

1 I
zy=pzy) +y1, z=pz;) + 2 <J’1:Y2EZ,1 Uh(g)eim;lfiU;.(Q))-

1 1
Since y,p(z,) + p(z1)y, + y1¥, is an element of ) U,(g)e; + 21 f:U,(a), we have
i=1 i=

p(z42,) = p(z,)p(z,), and hence p:3(U,(g)) > T is an algebra homomorphism. Since
8(z) = B(p(2)) for ze3(U,(a)), we conclude that J is an algebra homomorphism. Let
us show that &(z) = w-d(z) for ze3(U,(g)) and weW. For any 1€ P, we have

&2(0(2) — w-8(2)) = £,(6(2)) — £u-11(6(2)) = 0,

by Lemma 4.1.4. Set 8(z) — w-8(z) = Y, #'y;(y;€S(to)). Then we have _ZO HE(y)=0
i=0 =
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for any AeP. Since &,(y;)ek, we have £,(y;,)=0 for any AeP, and hence y,=0.
Therefore we have 6(z) = w-6(z).

4.2. Adjoint Representations. Let H be a (topological) Hopf algebra over R. We
define an R-module homomorphism

ad:H - End, (H) (4.2.1)
by
((2d)(x))(y) = (Mo (Mm@ 1)o1)(((1 ® S)A(X)) ® y), 4.2.2)

where m is the product, S is the antipode, A4 is the coproduct and 1:HQ HQ H —
H®H®H is given by 1(a®b®c)=a®c®b. Then it is easily checked that ad
is 2 homomorphism of R-algebras. Therefore the R-module H is endowed with an
H-module structure. We denote H by H,, when it is regarded as an H-module.

We also denote by trivy the one-dimensional H-module given by the counit
&:H-R.

Lemma 4.2.1. (i) For yeU,(g), we have ye3(U,(g)) if and only if (ad (x)}(y) = e(x)y
for all xeU,(g).
(ii) Let v be a generator of trivy . Then we have an isomorphism of R-modules

HOmU,,(g) (trivU;,(g)’ Un(@)d) =3(U,(0)) (9= 0(v)).

Proof. The statement (i) is easily verified using (1.17) ~ (1.23), and (ii) is equivalent
to(1). I

Remark. The definition of the adjoint representation of Hopf algebras and
Lemma 4.2.1 are communicated to the author by T. Hayashi.

4.3. Proof of Theorem 2. It remains to show that the algebra homomorphism
0:3(U.(a))—> T¥ is an isomorphism. Set

A, = Uy@)/h"Uy(9) = Ujl@)/h"Ulle), T,=T/H'T=T/H'T,
for simplicity. As in Sect. 4.1 we have algebra homomorphisms
0,34 > TV (n=1,2,...,),
such that the diagram

3UN) =T

l !
34,) T
commutes. It is easily seen that we have
~T FW i W
3(Uh(g)) — 1‘121 3(14"), T - l(ln Tn s

and hence we have only to show that §,:3(4,)— TY is an isomorphism for
each n.

Let us prove it by induction on n. Since 6, is the (original) Harish-Chandra
isomorphism for U(g) (see for example [2]), we assume that n =2 and 0, is an
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isomorphism for k < n— 1. By Corollary 3.2.1 (i) we have an exact sequence:
0-4,-4,-54, -0, 4.3.1)
where 4, > A, is given by the multiplication by 4"~ !. Hence we have the

commutative diagram

0 3(41) 5 5(4,) —— 3(An_y)

éll anJ 6n1Jv
hn—l

O—s TV Z> 1TV — TV, —0,

whose rows are exact sequences. Since J, and 8, are isomorphisms, it is sufficient
to show that 3(4,) —3(4,- ) is surjective.
Similarly to Lemma 4.2.1, we have

3(4,) ~ Hom, (triv, ,(A4,),0) = Homy,  (trivy, .. (4,)aa);
and hence it suffices to show
Exty, g (t1ivy, ) Ulghaa) = 0. 4.3.2)

Let B— C be a ring homomorphism. Then for a B-module M and a C-module
N we have the following spectral sequence:

E21 = Ext2(Tors(C, M), N)=Ext§"4(M, N). (4.3.3)
Let us apply this to the case
B=U,g), C=U(g, M=trivy g, N=U(gh-
Using the free resolution:

0-U,(g) = U,(@)— U(@—0 (exact)

of the right U,(g)-module U(g), we see that

. trivyg ¢=0
Tor;]h(g) (U(g)’ terUh(g)) = {0 8 q # 0.
Hence we have
Extf, o (trivy, g, U(@ha) = BXthe (trivyg, U(@)a): (4.3.4)

In general we have Ext{’,(g)<V, @ VA> = @Ext@tg)(K V,) for a finite dimensional

U(g)}-module V and U(g)-modules V,. Since U(g).y is a direct sum of finite
dimensional U(g)-modules, it is sufficient to show

Exty (trivyg, V) =0

for any finite dimensional U(g)-module V. This is a special case of the weli-known
fact that

Extly, (V1 V) =0
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for finite dimensional U(g)-modules V,,V,. (This is equivalent to the complete
reducibility of finite dimensional U(g)-modules.)

The proof of Theorem 2 is completed.

Acknowledgements. The author would like to thank T. Hayashi and H. Yamane for very interesting
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