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Abstract. Starting from a 4n-dimensional quaternionic K/ihler base space, we 
construct metrics of cohomogeneity one in (4n + 3) dimensions whose level 
surfaces are the S 2 bundle space of almost complex structures on the base 
manifold. We derive the conditions on the metric functions that follow from 
imposing the Einstein equation, and obtain solutions both for compact  and 
non-compact  (4n + 3)-dimensional spaces. Included in the non-compact  solu- 
tions are two Ricci-flat 7-dimensional metrics with G2 holonomy. We also 
discuss two other Ricci-flat solutions, one on the R 4 bundle over S 3 and the 
other on an R 4 bundle over S 4. These have G2 and Spin(7) holonomy 
respectively. 

1. Introduction 

There are many examples of homogeneous Einstein metrics to be found in the 
literature, but inhomogeneous examples, where there is no transitively-acting 
isometry group, are much rarer. In this paper, we construct examples in 4n + 3 
dimensions which can be described as S 3 or R 3 bundles over quaternionic Kfihler 
base manifolds. After reviewing some relevant properties of quaternionic K~ihler 
spaces, in this section we then discuss the notion of the twistor space Z cor- 
responding to a quaternionic Kghler space M [1]. This space plays a central 
role in the rest of the paper. In Sect. 2 we give a local discussion of our construction, 
including details of the local calculation of the curvature of our spaces. In Sect. 3 
we consider the regularity conditions on the local metrics that ensure that they 
can be extended to globally-defined metrics on complete manifolds, and we apply 
these conditions to discuss the existence of complete Einstein metrics on compact  
manifolds, which we have found numerically. In Sect. 4, we consider non-compact  
Ricci-flat spaces, and present two exact solutions in seven dimensions. These are 
the same as the seven-dimensional metrics with G 2 holonomy constructed recently 
by using different methods [2]. In Sect. 5, we consider two more exact Ricci-flat 
metrics, one on the manifold R 4 x S 3, with G 2 holonomy, and the other on an R 4 
bundle over S 4, with Spin(7) holonomy. Again, these coincide with examples 
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constructed in I-2]�9 In Sect. 6 we discuss the asymptotic structure of the non-compact 
metrics, and relate this to earlier work on gravitational instantons. Finally, in 
Sect. 7, we use the fact that metrics with Gz or Spin(7) holonomy admit a 
covariantly-constant spinor to obtain relations between the eigenfunctions of 
certain differential operators on the manifold, and also to relate the space of moduli 
for the Ricci-flat metric to certain topological invariants of the manifold. 

A quaternionic K~ihler space is a Riemannian space M of real dimension 4n 
whose holonomy group is contained in Sp(n)'Sp(1). It has a set of three almost 
complex structure tensors J~,r (i = 1, 2, 3; ~, fl = 1 . . . .  ,4n) which satisfy the quater- 
nion algebra 

j i  p j j p~  = _ 6t j 6  J + r, l j k j k  ~. (1.1) 

The metric is quaternionic-Hermitian, which implies that J~,~ = - j t  . From 
the corresponding 2-forms j t  one may construct the closed 4-form I2 = j r ^  jr,  
dO = 0. These conditions imply the existence of three local 1-forms A t, such that 

V~Jta~ + g.tjkA JaJkfl~,, -~- O. (1.2) 

A t corresponds to the Sp(1) part of the Sp(n)-Sp(1) connection, and has curvature 

F i =  dA i + �89 A j  /X A k. (1.3) 

One can show that 

Fi~,p = ~nnJ'~ Rr~,a. (1.4) 

All four-dimensional manifolds are quaternionic K/ihler, but in 4n > 8 dimen- 
sions the quaternionic K/~hler condition is more restrictive, implying in particular 
that for an irreducible space the metric is Einstein, R~p = A4,g~p, and 

�9 

F',p = J'~p. (1.5) 

We shall be concerned exclusively with the case where A4, is strictly positive, and 
so without loss of generality we may choose A4, = n + 2; 

R~r = (n + 2)9~r (1.6) 

Thus if 4n > 8 and M is irreducible it follows that 

Fic~# = j i  . (1.7) 

If 4n = 4 or M is reducible, we shall impose (1.7) as a further condition. Classic 
examples of quaternionic K~ihler spaces are provided by the quaternionic projective 
spaces P,,(H). A more complete description of quaternionic K/ihler spaces may be 
found in [3, 4, 5, 6]. 

Before describing our construction of metrics on S 3 or R 3 bundles over M, we 
first consider the bundle of almost complex structures on M. This has been discussed 
extensively in [1]. It follows from (1.1) that the tensor J,P defined by 

J a = uiJi  ~ (1.8) 
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is an almost complex structure tensor, where the u i are any set of three scalar fields 

satisfying 

u i u i =  1. (1.9) 

Thus the bundle of almost complex structures on M is parametrized by points on 
a 2-sphere. The (4n + 2)-dimensional total space of this S 2 bundle over M is known 
as the "twistor space" Z of M [1]. Defining the Sp(l)-covariant exterior derivative 
D of u i by 

0 i =- D u  i = du  i -k- eiJkAJu k, (1.10) 

one can show that dJ  = 0 ~/x J~ and that 

uiO i = 0; DO i = eiJkFJu k, (1.11) 

where DO ~ = dO ~ + e~JkAJ/x O k. The twister space Z may be given the metric 

ds 2 = ,~ 2 0iOi -~- e=e = = . ~2 ( du i  Jr- eijk A Juk) 2 -~ e= e ~, (1.12) 

where 2 is a constant, e ~ is an or thonormal  frame for M and the co6rdinates u i 
on the S 2 fibres are subject to the constraint (1.9). 

The isometry group (~ of the metric (1.12) on Z is generically equal to SO(3) x G, 
where G is the isometry group of the quaternionic K/ihler base space M and the 
SO(3) preserves the condition (1.9) that defines the S 2 fibres. (In special case (~ 
might be larger than SO(3) x G, in the same way as the (4n + 3)-sphere, described 
as an SU(2) principal bundle over P , ( H ) ,  can have SO(4n  + 4) rather than the 
generic SU(2) x Sp(n + 1) as isometry group in the special case that it is metrically 
the round sphere.) 

It is straightforward to calculate the curvature of the metric (1.12) on Z. This 
is most  easily done by first taking the three coordinates u ~ to be unconstrained, 
and then using the Gauss-Codazzi  equations to relate the curvature of this 
(4n + 3)-dimensional metric to the curvature of the metric on Z defined by imposing 
the hypersurface condition (1.9). The non-vanishing components of the Ricci tensor 
on Z, in the or thonormal  frame (20 i, e'), are 

Rap = (n + 2 - 22)6~p, 

R i j  = ( n 2 2  q- )~ - 2)hij,  (1.13) 

where 

hi; - 6ij - uiu j (1.t4) 

is the two-dimensional metric on the S a fibres, referred to the frame 20 i. 
F rom (1.13) we see that Z admits two Einstein metrics of the form (1.12), 

corresponding to taking the "squashing parameter" 2 to be given by 

1 
22 = 1 or 2 2 -  . (1.15) 

n + l  

They satisfy the Einstein equation Rab = A g , b  with A = n + 1 or A = (n 2 + 3n + 1)/ 
(n + 1) respectively. If 22 = 1, one can show that the metric on Z is K/ihler, with 
the K/ihler form given by 
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J '  = - u i J  i q- 1](28ijkblioJ A O k. (1.16) 

If we take M = P,(H) ,  the corresponding twistor space Z is the complex 
projective space P2n+I(C). Taking ) f l=  1 in (1.12) gives the usual Fubini-Study 
Einstein K/ihler metric on P2,+ 1(C), while )fl = (n + 1)- ~ gives the second homo- 
geneous Einstein metric discussed in [7], which is Hermitian but not K~hler. When 
n = 1, so that M = PI (H)  = S 4, Z is the ur twistor space P3(C). 

2. Curvature and Local Calculations 

In this paper, we shall construct metrics on (4n + 3)-dimensional manifolds A4, for 
which the metrics take the local form 

d~ 2 = o~2dr 2 + fl2(dl, li--[- gijkAJblk) 2 q- y2e~e=, (2.1) 

where r is an additional co6rdinate and ~, fl and y are functions solely of r. The 
level-surfaces r = constant are therefore the (4n + 2)-dimensional twistor space Z 
described in the previous section. The isometry group of the metric (2.1) is 
generically the same as that on the level surfaces, which as discussed in the previous 
section is itself generically SO(3) x G, where G is the isometry group of the base 
space M. 

We introduce an or thonormal  frame ~ for (2.1) that is defined by 

0 ~ 0 i=flOi; U = T e  ~, (2.2) 

where 0 ~ is given by (1.10) and as before e ~ is an or thonormal  frame for M. The 
connection 1-form o3~b, defined by d~ ~ = -&~b/x eb and O3~b = --&b,, is given by 

- e', ~Y O3oi - -  "̂ a3o~= _ 7~, 

('Oia = fl~gijkJJafl IAk~fl, (f)ij = --gijk Ak, 
272 

cb=p = co~a - ~ eiSka =e , (2.3) 

where a prime denotes differentiation with respect to r and co=~ is the connection 
1-form for M. Note that we have not yet imposed the hypersurface condition (1.9). 
The curvature 2-form defined by @~b = d ~ b  + &~ A 03~b has the components 

- ~ 0  ~ A ~ + - + % # % u % '  ^ ~e, 

3' ~' / 3  2 2 1 \ k .~ ~Y' ~,kSJ~uk~O ee Oia=  20~V 2 2~y3// s ~ A + ~ U - - ~ 2 2 ) g i j g J = # e  Ae  I~ 

( 3 2 3 ' / ' x  ^. 
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Oi j.~_ __ ~i A e J - -  bl 2 -  1 eijk Jk,  

5 ~)~p= 0 ~ - -  ((SijU 2 - u l u j ) ( J i ~ J j ~ - t - J i  j j  ) ~  AO~ 

_ 7 '  2 A 0  p +  U 2 -  ~ii8 I A ~ ,  (2,4) 

where O ~  is the curvature 2-form on M and u 2 = u~u ~. The calculate the curvature 
of the.metric (2.1) with the hypersurface condition (1.9) imposed, we use the 
Gauss-Codazzi equation (see, for example, [8]) 

iabcd ~ 4n+3eabcd = 4n+4eefohhaehbfhcahah -I- ZacZba -- X~aXbc, (2.5) 

where 

h~b = 8~  -- u"u b, (2.6) 

with u ~ = (u ~ u ~, u ~) = (0, u z, 0) the orthonormal frame components of the unit vector 
N = fl-~u~8/Su ~ orthogonal to the hypersurface, and Z.b--h.~hbdV~Ud the second 
fundamental form of the hypersurface. Since Vu.  - du.  + ch.~uo = VbU.O b, it follows 
from (2.3) and (2.6) that the only non-zero components of h~b and Z~b are given by 

1 
hoo = 1; hij = ~ -  uiu~; h~a ---- (~t~; )(.U = ~hij" (2.7) 

The Ricci tensor/~b of our (4n + 3)-dimensional metric (2.1) with the constraint 
(1.9) therefore has the following non-zero orthonormal-frame components: 

2fl" 2~'fl' 4n7" 4n~'7' 
/~oo - ' + ~- - -  ~2fl O~3fl ~27 (X37 ' 

4n '7' 1 y 2  n/ 25. 
= - + 7 + 

( _  7 "  ~'7' 2fl'7' (4n-1)7 '2 n + 2  f12,~ 
~37 0~2fl7 ~272 + 72 74 ; 6ctfl" (2.8) 

In subsequent sections we shall find it useful to construct a certain harmonic 
3-form on the space/Q, and here we give the local construction of this object. There 
are three 3-forms on ~r that are invariant both under the isometry group G of the 
base space M and under the SO(3) symmetry of the 2-spheres defined by (1.9). 
These 3-forms, which we denote by U.)l,U.) 2 and ~Oa, take the local forms 

03 1 = 0 i/k j i ;  (-0 2 = dr/x  J; co 3 = dr/~ X,  (2.9) 

where J = uiJ i as in (1.8) and 

=-- �89 j A 0 k (2.10) 

is the volume element on the S 2 fibres u lu i=  1. Using D u i =  O~,DO~= e~jkJJu k and 
DJ i=  O, where Da i=_ dai + eijkAJ A a k for any Sp(1)-valued p-form a ~, it follows 



534 G.W. Gibbons, D. N. Page and C. N. Pope 

that the exterior  derivatives of the 3-forms (2.9) are 

d o 1 = 0 ;  d~o2= - d r  A o l ;  dco3= - d r  A o 1. (2.11) 

The duals of the 3-forms (2.9), in the (4n + 3)-dimensional metric (2.1), are 

172 ~4 
*01=-lo~i jkUldrAOJAdk;  *O2 =~--Y" A J ;  *O3 = 2~fl~J A J .  (2.12) 

An harmonic  3-form, which is invariant  under  G and Sp(l), can be written as 

o = f o  x + go2 + h~o 3, (2.13) 

where f , g  and h are functions of r to be determined. F rom (2.10) it follows that  
the condi t ion that  o be closed, d o  = 0, implies that 

f '  = g + h. (2.14) 

The condit ion that o be co-closed, d , o  = 0, implies that  

af =(/729)'=(74h ) ' (2.15) 

There  is therefore an harmonic  form (2.13) if f ,  g and h satisfy 

/74"~- 1 ~xf = [ f l ~ f '  ( 1 -  ];4J 1"  (2.16) 

9 = f ' (1  --/74/74 ) -  1 and h = - 9/74/74. 

Finally in this section we note  that for some purposes it is advantageous  to 
have a parametr iza t ion of the metric on M that  is given in terms of (4n + 3) 
independent  co6rdinates  ra ther  than the (4n + 4 )  co6rdinates subject to the 
hypersurface constraint  (1.9) that  we have been using so far. This can be done  by 
writing the metric d~ 2 in the form 

dd 2 = oeZdr 2 q-/T2!Tij(dxi q- KiAAA)(dx j q- KJBA B) + ?2ds2, (2.17) 

where i, j . . . .  run over the values 1,2, 9is is the s tandard metric on the unit two-sphere 
and K iA, A = 1,2, 3, are the three Killing vectors on the two-sphere. Thus we may 
introduce the o r thonormal  basis 

~o = cedr; U = ?e ~, 

~1 = ~7(dO - sin qSA 1 + cos qSAZ), 

0 z =/7 sin O(d(o - cos ~b cot OA 1 _ sin q~ cot OA 2 + A 3). (2.18) 

This yields the connect ion form 

/7' /7' ~,' 
O)01 - -  5/7 ~1, (d)02 - -  (X/7 ~ 2  (J)Oa - -  ~ )  ~c~ 

1 
(512 = - ~ cot 0~ 2 - cosec 0(cos q~A 1 + sin q~A 2), 

f l '  sin cbl~ = ~z~z t - -  qbF 1 ~/~ + cos q~FZ~t~)0~, 



Einstein Metrics 535 

(f)2~t = ~ 2  ( - cos ~) cos OF~a - sin ~b cos  OF2~# + sin OF3~)~ ~, 

~b~t ~ = co,a + 2 ~  (sin ~bF~t~ - cos ~bF2~a)~ 1 

+ 2 ~  (cos q5 cos OF~,a + sin q5 cos OF2~o - sin 0F3~#)~ 2, (2.19) 

where og~a is the connection form for the base space M. From this, it follows that 
the curvature 2-form is given by 

(~01 = ~ - - ~ ' ~  - d0 /k el  -~ - ( - -  sin ~bFl + cos  q~F2), 

~ 0 2 =  -- + ~0A~2_[_ f l T ' f l '  (_cosc~cosOFl_sinc~cosOF2+sinOF3),  

0~2] ) \2c~73 2 ~  2 ( -  sin q~Fl,p + cos qSF2,p)~ 1 OP 

\2ct73 2~7z ( - cos ~b cos OFl,p - sin q~ cos OF2~p + sin OF3~a)O 2 ^ dP, 

O12 = fl-2 ctS~2)e ^ + ~5~z - 1  (c~176 

~ 2~ 2~?./(-sin'~F''~+c~ ~~ 4~ ~-.)e ̂  

+ ~3~3( - sin c~D~FX,a + cos  (pD~F2,~)~ ~ A ~ 

+ 4~r 272 (cos ~b sin OF~,~ + sin q5 sin OF2,~ + cos 0F3,t~)O 2 ^ OP, 

( O2, = 2~72 2~73 j cosq~cos0Fl~a sin~cosOF2,a+sinOF3,a)d ~ ~ 

-1- ~-~4 0~2fl] ~ ~2 A e~ 

+ 2~y~3( - cos 4~ cos OD~F~,~ - sin 4~ cos OD~F2# + sin OD~F3~,t~)O ~ ̂  ~ 

- 47 4 2 2 (COS ~ sin OF~a + sin q5 sin OF2~ + cos  0F3~#)d 1 A d 0, 

= (sin q~Fl~a -- cos  ~bF2~a)~ 0 A ~1 

+ ~ (cosq~cos0FX,a + sinqScos0FZ,a - sin0F3,a)~ ~ dz 
7 /  
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+ + ( s i n  ~D~Fa~ -- cos c~D~F2,p)~ ~/x 

2 ~  3 (COS q~ COS OD~FI~ + sin q5 cos  OD?F2~ --  sin OD~F3,~)O ~ A 02. (2.20) + 

With the Ricci-tensor components given by (2.8), the orthonormal components 
of the Einstein equation 

Nab -~- AOab -= A~)ab (2.21) 

are the extremal equations of the ADM-type action 

where 

T =  2 + 1 6 n ~ - +  4n(4n-  1) , (2.23) 

2 4n(n + 2) f12 
V = (4n + 1)A f12 ] ; ~  + 2n 7~. (2.24) 

The variation of I with respect to the non-dynamical lapse function c~(r) gives the 
first-order scalar constraint equation 

ct-2T + V =  2(~0o + (4n + 1)A = 0. (2.25) 

So long as this constraint is maintained, one may reparametrise the co6rdinate r 
so that af1274"V is held constant, and then [13, 14, 6] varying I gives the equation 
for a timelike geodesic with affine parameter r in the two-dimensional minisuper- 
space metric 

dco2= f1478"V(2 dfl2~-+ 1 6 n ~ + e n ( 4 n - 1 ) @ 2 2 )  

= - fl4ys"V( - dt z + dz2), (2.26) 
where 

 4n+  i/2 (sn  1/2 
t = \ ~ - j  log(fi274"), z = \ ~ - ~ j  log . (2.27) 

This geodesic of (2.26) may alternatively be viewed as the trajectory of a particle 
of variable mass-squared, 

i~ 2 = - fl4~S'v, (2.28) 

in the conformally-related fiat metric - dt 2 + dz 2. 
An alternative way to formulate the Einstein equation (2.21) is to use the 

logarithmic expansion rate, the trace of the second fundamental form of the 
twistor-space hypersurfaces of constant r, 

2fl' 4n~,' (2.38) 
z=V+ aT 



Einstein Metrics 537 

The (00) component of (2.21) implies that the proper radial derivative of ;~, 

- -  2 - 4 n  - A ,  (2.39) 

is negative semi-definite for A > 0, so in this case Z varies monotonically and hence 
may be taken as the independent variable. A convenient choice of dependent 
variables is the twistor-space shape parameter 

2 = -  g (2.40) 
? 

and its logarithmic rate of change with proper radius, the shear 

,~! ]?' 7' 
o - c~Z - ~g c~ 7' (2.41) 

One can now use the definitions of ;~ and 0 in (2.39) to write the radial proper 
derivative as 

1 d X' d X z+8na  2+(4n+2)A  d 
- - - -  (2.42) 

dr c~ d)~ 4n + 2 d)~' 

In terms of the variables )~, 2 and o, the constraint equation (2.25) gives 

~" 4(2n_+_l)[l__k__2n(n+2)22 n24] }1/z, 7=]? (2.43) 
]? = [(4n + 1))~ z - 8ha 2 + (4n + 1)(4n + 2)A 2'  

and then (2.41-2.43) and the remaining independent component of the Einstein 
equation (2.21) give 

d2 (4n + 2)20 
d)~ )~2 + 8no.2 + A' (2.44) 

da 2(4n + 2))~0 - 0(2)1-(4n + 1 ) Z  2 - 8 n a  2 + (4n + 1)(4n + 2)A] 
dz 2[Z 2 + 8n02 + A] , (2.45) 

where 

1 2n+  1 2 d l o g [ 1  g(2)= + 2n(n + 2);tZ - n24] 
4n d2 

1 - ( n + 2 ) 2 2 + ( n + l ) 2 4  ( 1 - 2 2 ) [ 1 - ( n + 1 ) 2 2 ]  

1 + 2n(n + 2 ) 2  2 - -  n24 1 + 2n(n + 2 ) 2  2 - -  nd, 4 " 
(2.46) 

3. Complete Compact Einstein Spaces 

Having given the local construction of the metric (2.1), we now turn to the 
consideration of the global topological structure of the manifold/~ on which (2.1) 
is to be defined. The discussion is very similar to that given in I-6, 9]. The range 
of the radial co6rdinate r in (2.1) is determined by the nature of the zeroes or 
infinities of the r-dependent functions cr ]? and 7. These define the "endpoints" 
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of the radial variable. There are essentially two kinds of possible endpoint, 
corresponding to one or both of/7 and y going either to zero or to infinity. If .M 
is to be a compact  manifold, we require that/7 should vanish at the endpoints rl 
and r 2 of the range of the r co6rdinate, r 1 < r < r 2. This is necessary in order that 
the 3-dimensional fibres parametrised by r and u i (subject to (1.9)) can be compact.  
Provided that /7 approaches zero appropriately at rl and r2, the 3-dimensional 
fibres will have the topology of a 3-sphere. The required behaviour for/3 at the 
endpoints is that 

= + 1; = - 1 ,  ( 3 . 1 )  

together with the requirement that (1/~/3)(/3'/~)' remain finite at the endpoints. The 
3-sphere fibres are foliated by 2-spheres uiu i = 1, growing from zero radius at r = rl 
and collapsing down to zero radius again at r = r2. The regularity conditions (3.1) 
ensure that the 3-sphere does not have conical singularities at the north and south 
poles rl and r2. The requirement that (1/,/3)(/3'/,)' be finite at the poles ensures 
that the curvature does not diverge there (see (2.4)). 

Since a level surface r = constant in M is the twistor space Z, it follows that y 
must remain non-zero for all r in the interval rl _-< r < r2. This is because unless 
the level surfaces are round spheres, it is impossible for them to "nest" down to 
zero radius without the occurrence of a conical singularity. Thus we cannot 
have/3 and 7 going to zero simultaneously. To see that Z can never be a sphere, 
we observe that it is a K~ihler space of dimension 4n + 2 > 6. Now the only sphere 
that is K~ihler is S 2, whence Z cannot be a sphere. Not  only must y be non-zero 
everywhere in the interval r~ < r < r2, but also we see from (2.4) that in order to 
avoid curvature-singularities at the endpoints, y'/~/3 must remain finite at rz and 
r2. In particular, this implies that 7 ' / ,  must go to zero there. For ~r to be compact,  
Y must also remain finite in the interval rx < r < r2. 

In terms of the geodesics of the minisuperspace metric (2.26), a complete, 
compact,  non-singular Einstein space requires A > 0, and corresponds to a geodesic 
coming from t = - co, z = - co at r = rl ,  where the regularity requirement (3.1) is 
that as r ~ r ~ ,  

z (  2. ( 2t 
7 \417T)  

The geodesic has t increasing until it reaches the region V__> 0, where it can turn 
around. Then it goes back to t = - ~ at r = rz, where it must again satisfy the 
regularity requirement (3.2). (A generic singular solution has ins tead  z/ t  ~ + 1.) 
The only known non-singular solutions are symmetric about the midpoint of r, in 
which case the geodesic turns around precisely on the line V = 0 (where it has 
/3' = Y' = 0) and reverses itself to go back down the same path in the (t, z) or (/3, 7) 
space that it came up. 

In terms of the variables Z,2 and a, and their equations (2.44) and (2.45), a 
complete compact  Einstein space must have the shape parameter  2 be zero at the 
two endpoints but positive in between, and the shear .a  vary from + m to - 
(not necessarily monotonically), as the expansion Z, taken as the independent 



Einstein Metrics 539 

variable, varies monotonically from + oe to - oc. The regularity requirement (3.1) 
is that 

O" 
- - , � 8 9  (3.3) 
Z 

at the endpoints. A solution symmetric about  the midpoint would have ~ = 0, 
where Z = 0. 

One can look for solutions numerically by integrating the geodesic equation 
in the metric (2.26), starting from the regularity condition (3.2) at r = rl or t = - o% 
with the initial value, 71, of 

7 = exp [(4n + 1)- 1/2(4n + 2)- 1/2t - (2n)l/2(4n + 2)- 1/2z] (3.4) 

chosen by trial and error to give a geodesic that obeys the regularity condition 
again when it returns to t = - oe. Alternatively, one can integrate (2.44) and (2.45), 
with the regularity condition (3.3) at ;g = o% and look for a trial initial value of 7, 
given by (2.43), that yields a solution regular also at Z = - oe. In actual calculations, 
one should replace Z and a, which have infinite ranges, by invertible monotonic 
functions of these variables that have finite ranges. 

A preliminary numerical analysis indicates that complete compact  solutions 
do exist, at least for small n. For  large n, one may readily construct approximate 
solutions analogous to those in [6]. Hence it appears likely that solutions exist 
for all natural numbers n. All of the solutions found are symmetric about  the 
midpoint. Further details of the solutions will be given in a future publication. 

Having ensured that the above regularity conditions are satisfied, the metric 
(2.1) is now seen to be globally extendible on a compact  manifold M. The topology 
of ~t  is that of a certain S 3 bundle over the quaternionic K~ihler base manifold 
M. Although S 3 is topologically SU(2), the S 3 bundle here is not a principal SU(2) 
bundle; rather, it is an associated bundle with structure group S0(4). In the case 
that the base space M is S 4 it is shown in [10] that such bundles are characterised 
by giving the transition functions on an equatorial 3-sphere on S 4. Thinking of S a 
as SU(2) or the unit quarternions, the transition functions are homotopic to the 
map q ' ~  q" +"q'q-". Steenrod called these bundles B . . . .  where B,,,. and Br,+,,-, 
are equivalent. The case Bo, 1 is the standard one-instanton SU(2) bundle, which 
as a manifold is diffeomorphic to S T. The bundle on which we have constructed 
our metric is BLo. In fact this is reducible to an S0(3) bundle where the action of 
SO(3) on S a is just rotations that leave fixed the north and south poles of S 3. 
Because they are left fixed the bundle Bl,o, and more generally B,,,o, admits a 
global cross section whereas Bo,1 does not. In terms of our construction the S0(3) 
rotates the u i and leaves r fixed. The global sections are just r = r~ and r = r 2. It 
is not difficult to find two charts on the S 4 base and to calculate the co6rdinate 
transformation between them. The A i transform as the Bo, a case but the induced 
action on the u ~ is just an SO(3) rotation of the u ~. Although the integers m and n 
distinguish the bundles as SO(4) bundles, they do not distinguish the bundles as 
manifolds. In fact the bundles B,,,o have the same homology and homotopy  groups 
as the product S 3 x S 4, i.e. as Bo,o. It has been shown however [11] that B,,,o and 
B,, o have the same homotopy  type if and only if m = _+ n mod 12. Thus M cannot 
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be homeomorphic  to S 3 x S 4. It clearly cannot be homeomorphic  to S 7 either, 
because its homology groups are different. The reader will appreciate the need for 
care here if he recalls Milnor's famous result [12] that ifk 2 r 1 mod 7 then B~k_ ~)/2,1 
i shomeomorph ic  but not diffeomorphic to S 7. It follows from Hodge theory that 
M has just one harmonic 3-form and just one harmonic 4-form. Since it is unique 
the 3-form must be invariant under G and Sp(1). It is given by (2.13), where f 
satisfies (2.16) and g and h are obtained from f as indicated. 

By taking the base space M to be P2(C), the complex projective plane, we can 
obtain another  example of a seven-dimensional compact  Einstein space 2~. We 
do not know of any discussion of the topology and differentiaNlity of the 
three-sphere bundle over M in this case. 

4. Non-compact Ricci-flat Metrics 

In order that A4 be non-compact,  while the base manifold M is compact,  at least 
one limit of the range of r must be an infinite endpoint, i.e. it must correspond to 
a region in A~ that is at infinite proper  distance from all points in A~ corresponding 
to the other values of r within its range. We shall consider only the case where 
there is just one infinite endpoint, which without loss of generality may be taken 
to be located at r = ~ ,  so that without loss of generality we may take the range 
of r to be r 1 __< r < ~ = r 2. This assumption that there is just one infinite endpoint 
is in fact not a restriction at all for the situation of interest to us in this section, 
where the Ricci tensor vanishes. This is a consequence of a theorem by Cheeger 
and Gromoll  [15], which asserts that for any complete manifold with metric 
satisfying R,b >_-- 0, there can be at most one infinite endpoint (excluding the special 
case of R x T"). This conclusion also follows from (2.39). Since r = ~ lies at 
infinite proper distance from all points in the manifold, there are no regularity 
conditions to be imposed on the functions ~,/~ and ~, there. At r = r 1, which we 
are taking to be a finite endpoint, the condition (3.1) must  hold, together with the 
additional requirements discussed in Sect. 3 that ensure boundedness of the 
curvature. Over a given point in the base manifold M, the 3-dimensional fibre has 
the topology R 3, since it consists of a nested sequence of 2-spheres that collapse 
down to a regular origin at r = rl.  Thus the topology of A4 in this case will be 
that of an R 3 bundle over M. 

In general, we have been unable to find explicit solutions for ~, ]~ and ~ such 
that the Ricci tensor R,b given by (2.8) is zero. However, in the case that n = 1, so 
that M is a seven-dimensional manifold, we have found an explicit solution. The 
radial functions take the form 

~ 2 = ( 1 - r - 4 ) - 1 ;  ~2=�88 72=�89 2. (4.1) 

One can verify by substituting (4.1) into (2.8) that the metric is indeed Ricci-flat. 
The range of the radial co6rdinate is 1 < r < ~ ,  and it is easy to see that the 
regularity condition (3.1) is indeed satisfied at r = rl = 1. 

Since the quaternionic Kfihler base manifold M is four-dimensional in this 
example, the conditions (1.6) and (1.7) are not automatic, but must be imposed as 
further restrictions on M. We know of two cases for which these conditions are 
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satisfied, namely M = S 4 and M = P2(C). When M = S 4, with its standard Einstein 
metric normalised so that 

O~p in (2.4) is given by 

R,a = 3g,a, (4.2) 

O,p = e"/x e a. (4.3) 

The almost complex structures flap take the form Jioj = - 6~j, fljk = -- e~jk, and A ~ 
is a potential for the single-instanton bundle over S 4. 

We are now in a position to calculate the holonomy group of this 7-dimensional 
metric. We recall that the holonomy group of an m-dimensional manifold is defined 
as that subgroup of the tangent space group SO(m) which describes the rotation 
of a spinor or tensor field under parallel transport around all possible closed curves 
in the manifold. The rotation of a field ~ under such an infinitesimal transformation 
is given by 

(~1 = Gabf~ Aab~l ,  (4.4) 

where 

! o  red  (4.5) Gab =- 2it.abed J , 

Fab are the generators of SO(m) in the representation of the field ~0 and 6A ab is an 
infinitesimal area element spanned by the closed curve. In many cases, including 
the metrics that we are considering in this paper, the group generated by the Gab'S 
is the holonomy group. In general, however, the holonomy group may be larger, 
corresponding to the fact that parallel transport around non-infinitesimal curves 
may enable one to reach parts of the tangent-space group that infinitesimal curves 
cannot reach. This is true even for the restricted holonomy group, which is generated 
by contractible, but not necessarily infinitesimal, curves. Since parallel propagation 
around non-infinitesimal curves involves the components of the Riemann tensor 
away from the starting and finishing point of the curve, it follows that in general 
the restricted holonomy group is determined by the Riemann tensor and all its 
covariant derivatives. Using (2.4 2.7), we find that the generators Gab are given by 

G o i  = 4AhijFo~ - A~ , i j kJJ  .~uk I "  #, 

Go~ = _ 2AFo ,  , - -  Ag.ijkJJ puk l"i~O, 

Gi~ = - (A + B ) h i j I " j ~  - Bhikh jr? ,k lmJm~#f f ' j~  "1- ASijkJJo~#uk ff'O# , 

Gij = h ikh jzFgt -  Bhikhjzekl,,,Jmo~pF~, 

Ga~ = l(5A + B) F,#  - �89 - B ) u i u J [ J i ~ j i ~  + j i  j j  ] F~o, 

- -  Bhikhj lF ,  k lmJmatpFi j  - -  2A~ , i j kJJa#uk  ff'Oi, (4.6) 

where A and B are the following functions of r: 

A = _  �9 B = 3 + r  -4) 
- -  r 6 ,  

Ostensibly, there are 21 

(4.7) 

quantities Gab, generating the tangent space group 
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S0(7). However, not all 21 generators are independent. In fact, we find a total of 
7 relations among the Qb, which take the form 

i i J ~pu Go~ , + Ji~Gi~ = O, 

hijJJc~ G~ + 2~ijkl, t j Gok = O, 

uiJi~#G~ + tlieijk Gjk = 0. (4.8) 

The first of these equations gives four relations amongst the Gab , the second gives 
two relations (since although i runs over three values, the expression is orthogonal 
to u i) and the final equation gives one further relation. Thus there are fourteen 
independent generators Gab of the restricted holonomy group. In particular, it 
follows from (4.8) that Goi, Go~ and Gii, which comprise 2 + 4 + 1 = 7 combinations, 
can be expressed in terms of the remaining combinations, and thus we may choose 
the 8 + 6 = 14 combinations G~ and G~a as the independent generators. It is a 
straightforward exercise to show that G~ and Gap may be expressed as linear 
combinations of the 14 generators Hab of the exceptional group G2, which can be 
written in the form [16] 

1 
Hoi = INoi + ~F, ijkI'f~, 

H~ = F~j + Frf, 

Hi f=  2Fi; + F j f -  6~jF~i + ~'ijk FoE, (4.9) 

where i, j = 1,2, 3 and T, f =  4, 5, 6 = 1, 2, 3. Since it turns out that the G~ and G~ 
generate the entire holonomy group, the Ricci-flat metric in the R 3 bundle over 
S 4 has G2 holonomy, which is the exceptional possibility for 7-manifolds included 
in Berger's classification of holonomy groups for Riemannian manifolds [17]. 

The level surfaces r = constant in the R 3 bundle over S 4 are the twistor space 
Z discussed in Sect. 1 with M = $4; i.e. Z = P3(C). From (4.1), we see that the ratio 
of f12 to 7 2 tends to 1/2 as r tends to infinity. Thus from (1.15) it follows that the 
metric on the P3(C) level surfaces is tending asymptotically to the "squashed" 
Einstein metric on P3(C). 

There is another Ricci-flat non-compact solution corresponding to the case 
where M is taken to be the complex projective plane P2(C) rather than S 4. The 
only difference in the calculation of the curvature in this case is that the curvature 
2-form O~  on the base space M now takes the form 

0 ~  = �89 + K~Kp~ + K~K~6)e "~ /x e ~ (4.10) 

rather than simply (4.3), where K~a is the K/ihler form on P2(C). The generators 
Gab of the holonomy group are given by (4.6) except for G~, which now 
takes the form 

_ l ( A _ B ) u l u J [ J i  djp6+ j i  dj ]1-6  

__ BhighjlSklmJmcql jFij -- 2AeijkJJ pu k Foi. (4.11) 

One can show that again there are 7 relations among the 21 Gab's, and that the 
14 independent ones can be written in terms of the H~b'S of (4.9). Thus the 



Einstein Metrics 543 

Ricci-flat metric on the R 3 bundle over P2(C) also has holonomy group G2. As in 
the case where M = S 4, the metric on the twistor space Z that comprises the level 
surfaces r = constant tends asymptotically to the "squashed" Einstein metric 
(22-- 1/2 in (1.12)) as r tends to infinity. In this case, the twistor space Z for 
M = P2(C) is the flag manifold SU(3) /T  2, where T 2 is a maximal torus in SU(3). 

5. Other Ricci-flat Metrics with Exceptional Holonomy 

There are other examples of Ricci-flat metrics with exceptional holonomy groups 
that may be constructed by methods similar to those of the previous sections. The 
first of these is another seven-dimensional example, which has the topology of an 
R 4 bundle over S 3. Since S 3 is parallelizable, the bundle is trivial, and so in this 
case the seven-dimensional manifold has the product topology R* x S a. The metric 
takes the form 

d~2 = ~a dr2 + flz(ai _ Ai)2 _+_ 72 ~i ~i, (5.1) 

where S ~ are a set of left-invariant one-forms on the S 3 base manifold, satisfying 
d271 = _ ~.2 A 273, etc., ~r ~ are a set of left-invariant one-forms on the fibres of a 
principal SU(2) bundle over S 3, with connection A ~ given by 

A i = �89 i, (5.2) 

and as usual e, fl and ~ functions of the seventh co6rdinate, r. The level surfaces 
r = constant have the topology S 3 x S 3. In fact the metrics ds 2 = 21(a i - (1/2)27i) 2 + 
2;~2; ~, where 2 = constant, give a family of homogeneous metrics on S 3 x S 3. The 
standard Einstein metric corresponds to taking 22= 4, and there is a second 
Einstein metric given by taking 22 = 4/3. 

We introduce the orthonormal basis 

~o = ~dr; ~ =  fl(ai _ Ai); Oi = 7,~v,i, (5.3) 

where i, j = 1, 2, 3, and ~, f =  1, 2, 3 = 4, 5, 6. The curvature 2-form for (5.3) can be 
calculated by standard methods. It may in fact be read off from the results in [6], 
by making minor modifications to take into account the fact that the base space 
is three-dimensional rather than four-dimensional. One can then verify that a 
Ricci-flat metric is obtained by choosing the functions a, fl and 7 as follows: 

~ 2 = ( 1 - - r - 3 ) - 1 ;  f l E = l r 2 ( 1 - - r - 3 ) ;  72=1~r  2. (5.4) 

As r tends to infinity, the level surfaces therefore approach the geometry 
of the second Einstein metric on S 3 x S 3 discussed above. Defining the functions 
A and B as 

3 1 
A =~r~; B=~r~(5 +r-3), (5.5) 

one can show that the curvature components G,b, defined by (4.5), take the form 

G0r = 2 A F o r -  AeijkFjk, 
Goi = - 2AFol + AeijkFj~, 
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Grj = - ~(4A + 3B)Frj + �89 - 3B)Fj~ + �89 + 2B)6qF~ + AezjkFOk, 

G~j = (2A + B)Fij + B F r f -  2Ae~jkFO~. (5.6) 

One can easily show that these quantities generate the group Gz. For example, by 
interchanging the hatted and unhatted indices and reversing the sign of the epsilon 
tensor in (4.9), one can show that all the 21 components G~b can be expressed in 
terms of the 14 G2 generators H~b given by (4.9). 

As discussed earlier, strictly speaking it does not necessarily follow that the 
group generated by the curvature components (4.5) is precisely the restricted 
holonomy group of the space in question: one should really consider the (possibly 
larger) group generated by the Riemann tensor and all its covariant derivatives. 
However, in this case the following argument enables us to demonstrate that the 
holonomy group is indeed just G2. We note that in a seven-dimensional space, 
one can define Majorana spinors that transform as the 8-dimensional representation 
of the Spin (7) double covering of the tangent space group. If the holonomy group 
is GE, then there should exist a covariantly-constant spinor q, satisfying 

/sq - dr/+ �88 / = 0, (5.7) 

since under the embedding of G 2 in Spin(7) the 8 of Spin(7) decomposes to the 
7 + 1 of G 2. The singlet in this decomposition corresponds to the covariantly- 
constant spinor q. The integrability condition that follows from acting on (5.7) 
with another covariant exterior derivative/5 is precisely the condition that tl be 
annihilated by G,b, i.e. G, btl = 0. But since we have noted that in this case the GajS 
generate the group GE, this necessary condition on t'/in fact determines it entirely, 
except for an overall factor. This factor may be fixed (up to a sign) by requiring 
that r/ be real, and be normalised to tTt / -- 1. (Since/Sr/~ 0, it follows that r/ has 
constant norm.) It is now straightforward to calculate D, defined by (5.7), 

zc~# z~z~ ~p 

/~ Ak-- 1 F fl e~k ~ Fij, (5.8) + l-~y2 'Sljk e l i f  + ia)ij ij 32~2 

where a)~j is the connection one-form for the base space with dreibein S i. From 
(5.5), one can then show that the unit-norm real spinor annihilated by (5.6) does 
indeed satisfy Dr/= 0. Thus the holonomy group for the Ricci-flat metric on R 4 x S 3 
is indeed G2. 

In eight dimensions, where the holonomy group is generically SO(8), there is 
another exceptional possibility that appears in Berger's classification [17], for 
which the holonomy group is Spin (7). An example of an 8-manifold with Spin (7) 
holonomy may also be constructed using the techniques of this paper. In fact this 
example is a special case of the general class of quaternionic line bundles over 
quaternionic projective spaces that were discussed in 16]. The metric takes the form 

d~ 2 = e2dr2 + f l 2 ( o - i  - -  Ai) 2 + y2ds 2, (5.9) 
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where ds 2 is the metric on the base space, which we take to be S 4 =  P~(H). The 
a~ are left-invariant one-forms on the SU(2) fibres of the single-instanton bundle 
over S '~, and as usual c~, fl and 7 are functions of the remaining co6rdinate r. We 
introduce the orthonormal basis 

0 ~  0 i=f l (a  i - A ; ) ;  U = y e  a , (5.10) 

where e" is an orthonormal basis for S 4. The curvature 2-form for (5.10) is given 
in [6]. One can then verify that if one takes a, fl and 7 to be given by 

9 
~ 2 = ( 1 - - r - 1 ~  f12-=l~dr2(1--r-l~ 7 2 =  r 2, (5.11) 

then the metric (5.9) is Ricci flat. Topologically, the manifold M is an R 4 bundle 
over S 4. As r tends to infinity, the metric on the level surfaces r = constant tends 
to the homogeneous "squashed" Einstein metric on the seven-sphere. 

From [-6], one can show that the curvature components G,b defined by (4.5) 

Goi = 4AFoi + AdiapFaa, 

Goa = - 3AFoa + AJia#l-i#, 

Gia = - (A + 2B)F~a - BeijkFjp + AJi,r 

Gij = 4BI'~j - Beijkjk~ F~e,, 

Gap = 2(A + B)FaB + 2AJiapFoi - Beijkdka~Fij, 

are given by 

(5.12) 

where A and B are given here by 

A =5/.-16/3;  B=9~2 (4 + r-l~ (5.13) 

After some algebra, one can show that all the G,b's in (5.12) may be expressed as 
linear combinations of the 21 generators of the Spin(7) subgroup of the 28 
generators Fab of SO(8), as given, for example, in [18]. 

As in the case of the Ricci-flat metric on R 4 x S 3 discussed above, we can easily 
show explicitly that there exists a covariantly-constant spinor for our Ricci-flat 
metric on the R 4 bundle over S 4. In this case, the irreducible spinor representations 
of the Spin (8) double covering of the SO(8) tangent space group are the 8 + and 
8_, which correspond to left-handed and right-handed Majorana Weyl spinors 
respectively. Under the embedding of Spin(7) in Spin(8), one of the spinors 
decomposes irreducibly, say 8_ ~ 8, while the other decomposes as 8+--.7 + 1. 
The singlet in this decomposition corresponds to the covariantly-constant spinor 
t/. Again, this means that G,brl = 0 is an integrability condition for the existence 
of ~7, which determines t/ uniquely up to an overall factor. As before, we fix the 
factor (up to a sign) by demanding that t /be real and have unit norm. The exterior 
derivative defined by (5.7) takes the form 

= d -  e ' F o l -  ~aFoa 472 ~ - - -  J ar 0" Fia  - ~ e~jkO F ~  

t ~  
_ 1  k +�88 ~ J i a p 0  i ~ijk A l~ij + ra~, (5.14) 
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where co,a is the connection one-form for the vierbein on the S* base space. Thus 
using (5.11), one can show that the unit-norm spinor 17 that is annihilated by G,b 
given by (5.12) is indeed covariantly constant. Hence it follows that the Ricci-flat 
metric on the R 4 bundle over S 4 has precisely Spin (7) holonomy. 

Using the covariantly-constant spinor ~/ in the seven and eight-dimensional 
spaces that we have discussed in this paper, one can immediately construct 
certain covariantly-constant p-forms, with components given by 

r .... p~, (5.15) 

where F,,...,p = Ft,1 .-. F, , j ,  the totally antisymmetric product of p Dirac matrices. 
In the case that M is seven dimensional, it follows from the fact that q is Majorana 
(and commuting) that (5.15) is non-zero only if p = 0 , 3 , 4  or 7, owing to the 
antisymmetry of the Dirac-matrix products under the interchange of spinor indices 
when p = 1, 2, 5 or 6. When p = 0 or 7 we just get a constant scalar or its dual, but 
the case p = 3 gives the 3-form that we discussed in Sect. 2. When p = 4 we obtain 
the dual of this 3-form. When M is eight dimensional, r/is Majorana and Weyl, 
so (5.15) is non-zero only if p = 0 , 4  or 8. The non-trivial case p = 4  yields a 
covariantly-constant 4-form in the Ricci-flat R 4 bundle over S ~ discussed earlier 
in this section. 

It is interesting to note that the existence of a covariantly-constant spinor r/in 
a space automatically implies that it must be Ricci flat. To see this, consider the 
integrability condition 

Rabcaff'carl = 0 (5.16) 

which follows from taking the commutator  of covariant derivatives on t/. 
Multiplying on the left with Fb, and using the cyclic identity Rafbcal = 0, we obtain 

n . b r ~  = o, (5.17) 

where R,b is the Ricci tensor. Multiplying on the left by #Fc then yields the result 

Rab = 0. (5.18) 

This provides a simple alternative derivation of the result [19-1 that any seven- 
dimensional space with G 2 holonomy or any eight-dimensional space with Spin(7) 
holonomy must be Ricci flat. Indeed, more generally, whenever the holonomy 
group H of a space is such that the decomposition of the spinor representation 
under H includes a singlet, the space must be Ricci fiat. Examples are provided 
by 2n-dimensional K/ihler manifolds that have SU(n)  holonomy. 

6. The Asymptotic Structure of the Non-Compact Metrics 

In this section we discuss the asymptotic behaviour of our new metrics in more 
detail. In all cases the metric tends to a Ricci-flat metric on a generalised cone, i.e. 
the n-dimensional metric tends to 

ds 2 = dr2 + r2dl2Z, - 1, (6.1) 

where ~2_ ~ is a metric on the "base" of the cone. The metric (6.1) will be Ricci-flat 
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if and only if dO.  z_ 1 is Einstein, with the scale chosen so that 

RA8 = (n -- 2)gAB, (6.2) 

where A, B = 1, 2 , . . . ,  n -- 1. It seems to be a fairly general feature of cohomogeneity- 
one Ricci-flat matrics that they tend to such cones, where dO,  z_ 1 is an Einstein 
metric on the homogeneous space G/H, G being the isometry group and H the 
isotropy subgroup. The generic orbit of G is (n - 1) dimensional, but in the interior 
the orbit collapses to an orbit of lower dimension of the form G/H', G ~ H' ~ H. 
Such an orbit of lower dimension is called a "Bolt of the second kind" unless it is 
zero-dimensional in which case it is called a "NUT  of the second kind". In earlier 
work the terms "NUT"  and "bolt" were used to describe an isolated (NUT) or 
2-dimensional (bolt) fixed-point set of a U(1) subgroup (possibly proper) of the 
isometry group of a 4-metric [20]. Thus our non-compact metrics can be thought 
of as smoothed-out cones, the bolt replacing the singular vertex. In fact our examples 
can also be thought of as vector bundles over the bolt; the bolt in fact corresponds 
to the zero section of the vector bundle. The space thus retracts onto the bolt and 
this is useful in understanding the topology of our manifolds. The Euler number 
is, for example, given by the Euler number of the base. 

It is also useful to think of our spaces as manifolds _M with boundary 0 n ,  the 
boundary being a level surface r = constant. By glueing two such manifolds together 
across the boundary we obtain a compact manifold without boundary called the 
"double," 2M. Our two compact Einstein 7-manifolds with positive Ricci scalar 
constructed in Sect. 3 are of course just the doubles of the smoothed-out cones 
with base ~M where ~M is P3(C) or SU(3)/T z. Similarly the compact Einstein 
8-manifold with positive Ricci scalar constructed in [6] is topologically the double 
of the non-compact 8-manifold with Spin(7) holonomy constructed in Sect. 5. There 
is a useful relation [21] between the Euler number of a manifold, its boundary 
and its double. This is 

:~(Oh4) - 2Z(~Q) + )~(2.M) = 0. (6.3) 

Compact odd-dimensional manifolds without boundary have vanishing Euler 
number so that we deduce that the Euler number of the boundary is twice that of 
the non-compact 7-manifold, that is, twice that of thc bolt. On the other hand for 
compact 8-manifolds the first term in (6.3) vanishes and the Euler number of the 
double is twice that of the non-compact manifold. Clearly not all generalised cones 
can be smoothed out even topologically to give a compact manifold of which the 
base is the boundary. The base must be cobordant to zero. In particular from (6.3) it 
follows [21] that the Euler number of the base must be even, 

Since the occurrence of asymptotic behaviour of this conical sort is common 
we wish to expand on it a little. If the metric dl2"z ~ is not only Einstein but of 
constant positive curvature, i.e. 

R ABCD = (O ACgBD - -  O ADgBC), (6.4) 

the associated cone is fiat. If d.O"z_ 1 is the standard round metric on S"- ~/F with 
F c  SO(n) the metric (6.1) is said to be asymptotically locally Euclidean, ALE, 
unless F = 1 in which case it is asymptotically Euclidean, AE. It is known [22, 23] 
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that there are no complete Ricci-flat AE metrics, but examples of Rieci-flat ALE 
metrics are known. Note that S " - 1 I F  need not be homogeneous. If it is not 
homogeneous the associated ALE metrics are not isotropic at infinity: certain 
directions are picked out. The condition that S " - 1 I F  be homogeneous restricts F 
considerably. From [24] one finds that F must be a finite multiplicative group of 
numbers chosen from the real, complex or quaternion fields. In all three cases the 
sphere is thought of as the set of unit vectors in a k-dimensional vector space over 
the three fields and the group acts by multiplication on the vectors. Thus the 
possibilities are: 

1. Sk/ + 1, 
2. S 2k- 1/Cp, p = 2, 3 , . . . ,  
3. S 4k- 1~Dr,, S4k - 1 / T ,  ' S4k - 1 /0 ,  ' S4k - 1 / i ,  ' 

where Cp is the cyclic group of order p, D* is the binary dihedral group of order 
4p, T* the binary tetrahedral group, O* the binary octahedral group and I* the 
binary icosehedral group. Familiar examples of Ricci-flat ALE metrics of this sort 
are generalized Eguchi-Hanson metrics [25, 26, 9] with p = k, for all k, and the 
self-dual gravitational instantans for k = 1[-20, 27, 28]. Both of these examples 
have special holonomy. The Eguchi-Hanson metrics are K/ihler and so have 
holonomy SU(k). Their isometry group is U(k + 1) acting in the standard way on 
the k t~ power of the Hopf  bundle over Pk(C). They are cohomogeneity-one metrics 
and are thus similar to our present examples, being R 2 bundles over the 
Einstein-K/ihler base manifold with bolt corresponding to Pk(C). The gravitational 
instantons are not of cohomogeneity one but they do have special holonomy, 
namely Sp(1); i.e. they are hyper-K/ihler. It is interesting to note that the only 
odd-dimensional flat cones (homogeneous or not) arc those over Pz,(R). However 
this has Euler number one so that there is no way of smoothing out the vertex to 
obtain a manifold. Thus ALE spaces must be even dimensional. As far as we know 
all known ALE spaces, which may be of interest as generalisations to higher 
dimensions of the conical metric of a cosmic string, have special holonomy. 

The metrics we have constructed also have special holonomy but they are not 
ALE, indeed from our remark above, those with holonomy G2, being 7-dimensional, 
could not possibly be ALE; rather they and the 8-dimensional example with 
holonomy Spin(7) can be said to be AC, that is, they tend asymptotically to 
Ricci-flat cones. In fact Bryant's original incomplete examples [29] were precisely 
Ricci-flat cones. The metrics we have constructed in this paper (and which were 
previously constructed by Bryant and Salamon [2]) are smoothed-out cones, the 
singular "vertex" at r = 0 being replaced by a smoothly-embedded bolt. In this 
respect they are similar to Calabi's hyper-K/ihler metric on T*(Pk(C)) [25]. This 
has isometry group U(k + 1) acting on orbits of co-dimension one of the form 
U(k + 1)/(U(k - 1) x U(1)). The bolt is Pk(C), and at infinity the metric is asymptotic 
to a Ricci-flat cone with base an Einstein metric on U(k + 1)/(U(k - 1) x U(1)). If 
k = 2 we have an 8-dimensional metric on an R 4 bundle over P2(C) which is 
analogous to the example with holonomy Spin(7), which is an R 4 bundle over S 4. 

For  the reader's convenience we list here the bases, bolts, holonomy and Euler 
numbers of our four examples and the two generalisations of the 4-dimensional 
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Eguchi-Hanson metric: 

1. U ( k + l ) / ( U ( k - 1 ) x U ( 1 ) ) :  Pk(C): Sp(k): z = k + l ,  
2. U(k + 1)/U(1): Pk(C): SU(k): )~=k + 1, 
3. $7: $4: Spin(7): ;g=2, 
4. Ps(C): $4: G2: )~=2, 
5. SU(3)/T2: Pz(C): G2: Z=3 ,  
6. S 3 )< $3: $3: G2: Z = 0 .  

The manifolds that these metrics live on are respectively 1) the tangent bundle 
Pk(C), 2) The ,/c th power of the Hopf bundle over Pk(C), 3) the bundle of positive 
chirality spinors over S 4, 4) the bundle of anti-self-dual 2-forms over S 4, 5) the 
bundle of anti-self-dual 2-forms over P2(C) and 6) the spin bundle over S 3. 

Finally we should remark that not all cohomogeneity-one Ricci-flat metrics 
are asymptotic to Ricci-flat cones. The higher-dimensional Schwarzschild metric 
[30]: 

2 2 ds 2 = (1 - rS-n)d'c 2 "k- (1 - r3-")-  l dr2 + r d-Q,- z, (6.5) 

where d,Q2_2 is an n -  2-dimensional Einstein metric with scale chosen to satisfy 
(6.2), is asymptotic to S 1 x whatever Einstein manifold we choose but with the 
length of the circle direction going to a constant. It can thus be said to tend to 
S i x  an (n-1)-dimensional Ricci-flat cone. A more complicated but similar 
example is provided by the higher dimensional version of Taub-NUT [9, 31] which 
is defined on R zk+2 and has a NUT at the origin. The isometry group is U(k + 1) 
which acts on the Hopf bundle over Pk(C). The orbits of the isometry group 
correspond to S 2k- 1 but at infinity the length of the Hopf circles goes to a constant 
whereas the Pk(C) base expands. The asymptotic form in similar to the associated 
Schwarzschild (6.5) metric with dg'22_2 being an appropriate multiple of the 
Fubini-Study metric on P~,/z-1)(C). This can be said to be asymptotic to a circle 
bundle over the Ricci-flat cone with base P~,/z-I)(C). As far as we know neither 
of these two examples, unlike the closely-related ALE Ricci-flat K/ihler generalised 
Eguchi-metric, has special holonomy except the 4-dimensional Taub-NUT metric. 

7. Eigenfunction Relations and Moduli 

For a general space in n dimensions, one can consider the spectrum of various 
differential operators acting on fields carrying certain representations of the SO(n) 
tangent space group. These operators would include the Hodge-de Rham operator 
(d + r acting on p-forms, the Dii'ac operator iF"Va acting on spinors, and the 
Lichnerowicz operator A L acting on symmetric tracefree tensors. Generically, there 
will be no relation between the spectra of these various operators, If, however, the 
holonomy group H of the space is a proper subgroup of the tangent space group 
SO(n), then rather than classifying fields by their SO(n) representations one can 
instead classify them according to their representations under H, since the 
differential operators under consideration commute with H. In general a field that 
transforms irreducibly under SO(n) will be reducible under H. This means that the 
spectra of the various differential operators will be at least partially related. This 
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was discussed in detail in [32] for the case of four-dimensional manifolds with 
self-dual Riemann tensor. 

Let us begin by considering the case of an eight-manifold with Spin(7) holonomy. 
As we know, this implies that there exists a covariantly-constant Majorana-Weyl 
spinor q, which we shall take to be left-handed and normalised to unit length. 
Thus we see that the 8_ representation of Spin (8), the double cover of the SO(8) 
tangent-space group, decomposes under Spin(7) as 

8_ - , 7  + 1. (7.1) 

This defines the embedding of Spin(7) in SO(8) uniquely. It follows that the 8v 
vector representation and the 8+ right-handed spinor representation decompose 
irreducibily as 

8v-, 8; 8 + --* 8. (7.2) 

Equation (7.2) shows that in a manifold with Spin(7) holonomy, right-handed 
spinors and vectors transform in the same way under the holonomy group, and 
in fact the spectrum of the square of the Dirac operator on right-handed spinors 
is the same as the spectrum of the Hodge-de Rham operator on 1-forms (which 
are equivalent to vectors). This can be seen explicitly by noting that if V a is a 
vector, then we may form the right-handed spinor ~ given by 

~, = i V"F~q.  (7.3) 

Conversely, given by a right-handed spinor 0, we can form the vector V" given by 

V" = - i q F " r  (7.4) 

It is easy to check from the algebra of the gamma matrices that these maps are 
invertible, so that any  right-handed spinor may be mapped into a vector, and vice 

versa. If V" is an eigenfunction of the Hodge-de Rham operator A, 

A V a ~ - -  V b V b g a  -~ Nab gb  = ,~.ga, (7.5) 

then substituting (7.4) into this equation shows that 0 is aft eigenfunction of the 
square of the Dirac operator with the same eigenvalue: 

( iF"Va)2t )  = - V"V~' + �88  = 2~b. (7.6) 

(Note that the curvature terms in (7.5) and (7.6) are zero in our case, since the 
eight-manifold must be Ricci flat.) 

In a similar manner one can establish that there is a one-one mapping between 
self-dual 4-forms and symmetric traceless 2-index tensors, which transform as the 
35+ and 35, of SO(8) respectively. Under Spin(7), both of these representations 
decompose irreducibly: 

35+ -,35; 35o~35. (7.7) 

The mapping can be made explicit by defining the anti-self-dual 4-form 

q,bca = gI Fabcatl, (7.8) 

which is clearly covariantly constant. Given a self-dual 4-form co,bca, one can now 
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show that hob, defined by 

hab- 1 c~e (7.9) 
- -  ~ 0 3 a c d e ~ b  , 

is symmetric and tracefree. Conversely, given a symmetric tracefree hab , (.Oabcd defined 
by 

( J ' ) a b c d  = - -  h[aetlbcd]e (7.10) 

can be shown to be anti-self-dual. The maps (7.9) and (7.10) are invertible, so any 
anti-self-dual 4-form is equivalent to a symmetric traceless 2-index tensor, and vice 
versa. Substituting into the Hodge-de Rham operator for 4-forms, and the 
Lichnerowicz operator for symmetric tracelss 2-index tensors, one finds that if 
COabcd is a self-dual 4-form satisfying Aco = 2co, then h~b given by (7.9) is an 
eigenfunction of the Lichnerowicz operator with the same eigenvalue; 

ALhab =-- --VCVchab - 2R,cbah ca + 2 R j h b ) c  = 2hab. (7.11) 

(The Ricci tensor term will be zero in here.) Conversely, if h,b is any eigenfunction 
of the Lichnerowicz operator, satisfying (7.11), then C0,bcd given by (7.10) is a self-dual 
4-form that is an eigenfunction of the Hodge-de Rham operator, with the same 
eigenvalue 2. 

One consequence of the relation discussed above is that if CO,b~d is an harmonic 
self-dual 4-form, then h,b given by (7.9) is a divergence-free zero mode of the 
Lichnerowicz operator; i.e. it corresponds to an infinitesimal deformation of the 
metric that maintains the Ricci-flatness of the eight-dimensional space. Thus such 
deformations are in one-one correspondence with the volume-preserving moduli 
of the metric. In addition, there is a trivial volume-changing modulus corresponding 
to scaling the metric by a constant factor. Thus for eight-manifolds with Spin(7) 
holonomy, we have the result that the total number of parameters for Ricci-flat 
metrics is b + + 1, where b] is the dimension of the space of self-dual harmonic 
4-forms. 

Similar considerations apply to the case of seven-dimensional spaces with G 2 
holonomy. Here, the spinor representation of the double cover of the SO(7) 
tangent-space group decomposes under G2 as 

8 ~ 7  + 1. (7.12) 

Since the dimension of the space is odd, the Dirac operator here maps the space 
of spinors onto itself. Thus we can look at the first-order eigenvalue equation 

iF"VaO = #0 (7.13) 

for spinors. Simple algebra shows that if 4) is a scalar eigenfunction satisfying 

-- VaVa~ = 2~9, (7.14) 

then ~ + defined by 

tp • = 49r 1 +_ i2-1/2(Va(~)Fa ~ (7.1 5) 

satisfies (7.13) with eigenvalues ~ = _+ 21/2. Similarly, if V" is a divergence-free vector 
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eigenfunction satisfying (7.5), then ~_+ defined by 

~b +_ = iVaFarl ++_ 2-1/2(VaVb)l~abl ~ (7.16) 

satisfies (7.13) with eigenvalues/~ = T-22/2. There are also corresponding inverse 
t ransformations from spinor eigenfunctions to scalar and vector eigenfunctions. 

In manifolds with G 2 h o l o n o m y  there is a relation between the moduli  of 
Ricci-flat metrics and the space of  harmonic  3-forms. To see this, we note that  
3-forms, which correspond to the 35 representat ion of  the SO(7) tangent  space 
group, decompose  under  G2 into the 27 + 7 + 1 representations. On  the other  hand, 
symmetric traceless tensors, which are in the 27 of  SO(7), decompose irreducibly 
as the 27 of  G 2. Thus together with (7.12), this shows that  3-forms are equivalent 
to the sum of spinors and symmetric  traceless tensors. One can exhibit these 
relations explicitly in much the same way as those that  we have discussed previously. 
In particular, it follows that  the harmonic  3-forms are in o n e - o n e  correspondence 
with the set of  Dirac zero modes  together  with the Lichnerowicz zero modes. N o w  
if the space is compact ,  we know from Lichnerowicz 's  theorem that any Dirac zero 
mode  is in fact covariant ly constant  (recall that  the Ricci tensor vanishes for a 
metric with G 2 holonomy).  We know that  there is just one covariant ly constant  
spinor if the h o l o n o m y  group  is exactly G2, and hence it follows that  b3, the 
number  of  harmonic  3-forms, must  be equal to the number  oftraceless Lichnerowicz 
zero modes  plus one. Thus  the number  of  moduli  of  Ricci-flat metrics in this case 
is b3 - 1 + 1 = b 3, where we have included the trivial scaling mode  in addit ion to 
the volume-preserving traceless modes. 
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