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Abstract. We consider the Zakharov equation in space dimension two 

iu t = -- A~u + nu , 

{ ~o ntt = A n  + z~[u] 2. 

In the first part of  the paper, we consider blow-up solutions of this equation. We 
prove various concentration properties of  these solutions: existence, characterization 
of  concentration mass, non existence of minimal concentration mass. 

In the second part, we prove instability of  periodic solutions. 

I. Introduction 

We consider as in Part I [7] the Zakharov system in space dimension two, 

i% = - A u  + nu ,  (1.1) 

1 
(It~ c~ ~ = zxn + zXl~l 2 , (1.2) 

u ( 0 )  = r  n ( 0 )  = n o , % ( 0 )  = % ,  

where A is the Laplace operator on IR 2, u:  [0, T)  x ]R 2 ---+ C, n :  [0, T)  x IR 2 ---+ N and 
r no, nl  are the initial data. c o > 0 is a fixed number. 

Let us recall the main results of  part I. 
It is known that the local-in-time Cauchy problem of  (Ic0) is solvable in various 

function spaces. Existence of  strong solutions of  (It0) for regular initial data has been 
investigated by several authors (see Part I [7]). You can show that, for initial data 

* This work was partially done while the second author was visiting Rutgers University and Courant 
Institute 
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(II:0 

where 

(q~0, no, nl)  in H 2 = H 2 x H 1 • L 2, there is a unique solution (u, n, n t )  in H 2 on 
[0, T2) and 
- T2 = + o o  or 
- I~*(t)lu2 + In(t)l/~l + ]nt(t)lL2 --, + o o  as t --, T a. 

The question to know if this space is optimal for local existence is open. For 
example the case of  the energy space /~1 = H1 X L 2 X ~ - - 1  (or even H 1 = 

H 1 x L 2 • H -1) for the Cauchy problem is unknown, where ~ - 1  is the space 
of functions u such that By : R 2 ---+ 1R 2 such that 

n = - V . v  and v E L  2 

and 

The main result of  Part I was to show existence of blow-up solutions of  equation 
(I~0) in H 2 and/2/~ of  a special form which we call self-similar 

g(O_}_A.[xl 2 ~z2 ) 
. ~ - r + 4 ~  ~ - T + ~  p(  ~o "~ (1.3) 

u( t , x )  = T ~ - t  e \ r -  t J '  

n(t ,  x)  = w N x w  , (1.4) 

where P, N are radial functions and 0 E S 1, w > 0, T > 0 are fixed parameters. 
(u, n) is a solution of  (Ir is equivalent to saying that (P, N)  satisfies the following 

equation: 

A P -  p = N P ,  (1.5) 

A2(r~2N~ + 6rN~ + 6 N )  - A N  = A lP [  2 , (1.6) 

1 
A =  

COCO 

o w  ~aw=w~r+lw~._ 
and r = Izl, W~ - Or ' r 

We show in par t I  that there exist solutions (P~,N~) of the system (II~) for 
0 < A < A* such that 
- (Px, Nx)  -~  (Q, _Q2)  as A --~ 0. 
- ~ is unbounded in IR + • Hr  1 x L~, where ~ is the connected component of the 
set 

{A, Pa,  N),), (Px, N:0  solution of  (II~)} 

containing (0, Q, _Q2)  E R + x H I • L 2 (L 2 = L 2 • {u(x) = u([x])}) and Q is the 
unique radial solution of 

(V +) Q = AQ + tQ[2Q, Q > o, Q(x) = Q(Izl),  

- P x > 0 .  
Solutions of  the corresponding Zakharov equation (u, n) defined by (1.3)-(1.4) are 

such that 
- f o r t < T , ( u , n , n  t) C I q  t N H  2 
- -  - -  t--+Tlim I (u ,n ,  n t ) l &  = l i m  I(u,n,n,)lg2 = +oo. 
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In particular we have the existence of blow-up solutions of  (I~0). 
In this paper, we are interested in two types of results. 

A) Qualitative properties of  blow-up solutions of  (I~0). That is, if we consider a 
solution of the equation (I~0) (u(t), n(t)) which blows up at t = T, what can be said 
about the structure of  the formation of the singularities? 
B) Instability by blow-up of periodic solutions of (I~o) of the form (u(t), n(t)) = 

ei(~t+~ - Xo) , - V 2 ( x  - Xo)), where x 0 E ]R 2, w > 0, 0 E S 1 are parameters and 
V is a solution of the equation 

(gw) cuV = A V  q- IVI2V in R 2 . 

I .A Qualitative Properties of  Blow-Up Solutions of  Zakharow Equation. Let us 
consider (r no, n l )  E H k (k > 1) such that the solution (u(t), n(t)) of (It0) blows 

up in finite time T > 0 in H ,  where H k = H k z H k-1 • H k-z ,  that is 

l(u(t), n(t), nt(t))lH k ---, +oc as t -+ T .  

We are interested in this section in the behavior of  (u(t), n(t)) at the blow-up time in 
various spaces and in particular in L 2 for physical reasons. 

In the case of  the special blow-up solution (u;~, n ;0  of (1.3)-(1.4) associated with 
(P;~, N~), we remark that 

- T = T 1 = T 2 . . . . .  T k . . . . .  where T k is the blow-up time in H~. 
lua( t , z ) l  2 ~ IP~l~26x=o and I nx ( t , x )  I -~ IX~lz16x= o as T --+ T. 
The question is to know if this concentration phenomenon of the self similar 

solutions is a general behavior for blow-up solutions or not. That is, given any initial 
data (r no, nl) ,  are the parameters rn~ > 0, rn n > 0 and a function t ~ x(t) E IR 2 
such that 

VR, liminft__~T lu(l';' X)IL2(B(x(t)'R)) ~- m u  

limt___,Tinf lu(t, X) ILI(B(x(t),R) ) ~ 77), n 

where lUlL2(mx,R) ) [resp. LI (B(x ,  R))] represents the L 2 norm [resp. L 1 norm] of the 
restriction of u to the ball of center x and radius R? 

This phenomenon is known for the nonlinear SchrSdinger equation (formal limit 
of  (It0) as c o --+ +oc) :  

(ioo) [ iu t = - A u -  lul2u, (1.7) 
[ u(0) = r (1.8) 

Let us consider a solution of (1~) which blows up at time T > 0 in H 1. Various 
properties are known: 
1) Mass concentration at the blow-up time (Merle, Tsusumi [18] and Weinstein [29]). 

- In the case where r = r we have 

2 2 
VR l iminf  lu(t, X)L2(B(O,R)) > IQIL~" 

t-~ T 

- In the general case there is a function x(t) such that 

vR,  lim~fb(t,x)l~2(~(x(~>,R)> _> IQI~2, 

where Q is the unique radial solution of (V+). 
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2) Lower bound for blow-up solutions. As a corollary of property 1) (see also 
Weinstein [28]), we have if Ir 2 < ]Q[L2, the solution u(t) is globally defined 
in time. 
3) Characterization of minimal blow-up solutions and optimality of lower bound 
(Merle [14, 15]). 

If  u(t) blows up in finite finite time T > 0 and ]~0]L 2 = ]Q]L 2, then there are 
0 E S ~, :c 0, x 1 E 1R 2, co > 0 such that 

( 03 ~ei(O-{ -'x-x1]2 ~2 ) (~X__ll) ) 4(--T+t) (--T+t) Q ( co 
u( t ,  z )  = So,~,xo,x~ (t, x )  = \ ~-57 ] Xo �9 

Our goal in this section is to prove similar results for Zakharov equation (It0) with 

O < c 0  < + ~ .  
The first result is about the relation between the  different blow-up times of a 

solution in various spaces where a Cauchy theory can be done. We have the following 
proposition. 

Proposi t ion 1 (H~ Control on Higher Derivatives). I f  (r no, n~) ~ H a fo r  k >_ 2, 
then there is a unique solution (u(t), n(t)) of  (Ico) in H a on [0, Ta) and i f  T a < +cr 

[(u(t), n( t) ,  u t ( t ) ) l z  k --+ + o c  as t --+ Tk .  

Moreover, (u(t),  n(t) ,  v(t))  is bounded in H 1 on compact sets o f  [0, Ta) and i f  

T k < +oo, I(u@): Tb@), nt(/:))lH 1 --+ -LOO as t ---+ T a. 

Remark. The uniqueness of  the weak solutions is still an open problem. 
Assuming that ( r  E H a, and that we can apply different Cauchy 

theories in H 1 , . . .  , H a, let T i be the blow-up time of (u(t), n(t),  n~(t)) in H i. From 
Proposition 1, it then follows that T 1 = T 2 . . . . .  T k.Thus,  we can restrict ourselves 
without loss of generality, to the study of blow-up solutions of (I~0) in H 1. That is, 
we consider (u, n, nL), solution of (It0) such that for T > + o o  

](u( t ) ,n( t ) ,n t ( t ) ) lH 1 --~ +oo as t --+ T .  

In fact, for the Zakharov equation as t ---+ T, we have a phenomenon of mass 
concentration of u and n. 

T he o rem 1 (L2-concentration of Blow-Up Solutions). Let (u, n) be a blow-up solution 
o f  equation (I~0) in H l, That is 

I~l~a + + IntlH-1 ~ + ~  as t ~ T .  

Then, there is a constant m ~  > 0 depending on the initial data such that the fol lowing 
properties are true: 

1) I f  n 1 E ff1-1. 

i) Radial case. 

and 

V R  > 0 liminflu(t,x)]L2(B(O,R)) > ]Q]L2 ' t-+T 

lim inf In(t, X)lLl(B(O,m ) > rn n . t---+ T 
ii) Nonradial case. 
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There is a function t --+ x(t)  such that VR > 0 

liminflu(t,X)}L2(B(x(t),n)) >- IQIL~ and liminf[n(t,X)lL~(B(r ) > m,~. 
t ~ T  t ~ T  - -  

2) l f  n 1 ~ H - I  and % ~ ~ - l .  There is a sequence fk --~ T as h --~ +ec such that." 
i) Radial case. 

and 

VR > O, liminflu(tk,k._,+ao a:)lL2(B{~ -- > IQIL2 

lim inf In(tk, x)! L~(~(O,R)) 2 m~ . 
k---,+oo 

ii) Nonradial case. 
There is x~ such that VR > 0, 

lira inf I~t(tk, x)iL2(B(z~,n)) > I QIL~ 
k---++ec '~ - -  

and l iminf ln( t~ ,x) tLl(~x~,~)  ) _> mrs. 
k - - - ~ + ~  

Remark. We are not able to find a non-zero lower bound of m,~ independent of  the 
initial data. We remark that in the case of the self-similar solution ( % ,  n;0 defined 
by (l.3)-(1.4): 
- m~ is not necessarily equal to m~. 
- m n  --+ IQI~2 as .~ -+ 0 and m n --+ + o c  as ), ~ +ec .  

However, it can be shown using variational arguments that if - M0 and 
(u(t), n(t)) blows up in finite time, then m n > K(Mo) > 0, where K(~/~0) ~ 0 (resp. 
K(Mo) ~ IQI~2) as M 0 --~ + e c  (resp. M 0 -+ IQt2c2). We do not know if these 
results are optimal or not. 

Remarks. i) The proof  of  part i) of the Theorem 1 follows directly from techniques 
of  [17, 18J. 
ii) We point out that in the case where n 1 ~/~r-1 ,  we do not have the conservation 
in time of the energy ffd, which does not allow us to prove the result for the full 
sequence. However,  we suspect strongly that the result is true for t --~ T. 

This property of the L2-concentration of u(t,  x) at the blow-up time raises an 
important question namely, which amount of  mass can be concentrated at a blow-up 
point. 

More precisely, the following question can be asked: 
Characterize the set {m} with the property ( 2 ) ,  where 

(5~) There is a initial data (r no, 'nl) SUCh that 
- the solution (u(t), n(t)) of  (I~o) blows up in finite time T > 0, 

- iu(~, x)l 2 = m ~ =  0 where t -+ T with m = lu(t, x)l~ 2 = 1~01~2. 
In fact, using the explicit blow-up solutions constructed in Part I and the concen- 

tration results, we are able to give a complete answer to this problem. 

T h e o r e m  2. m has the property ( .2)  if and only if m > IQlasz. 

Remark. In particular, there is no quantification of the concentration of mass. Indeed, 
the set we obtain in Theorem 2 is (IQI~2, + o e )  which has no isolated points. 

We want to point out the same problem for the limit equation as c o --4 +oQ: ( I~ )  
(nonlinear Schr6dinger equation with critical exponent). This problem is open and the 
structure of the set of mass concentration is unknown. In particular, we don' t  know 
whether there is or not a quantification of the concentration of mass. 
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Remark. The result is independent of the Cauchy space in the sense that for a given 
m > 0, we exhibit a solution in H k for all k >_ 1. In addition, the result we obtain in 
Theorem 2 is independent of the parameter e 0 because of the scaling property of the 
equation. Indeed, if (u(t, x), n(t, x)) is a solution of (It0) on [0, T), then V# > 0, 

(uu(t , x), %( t ,  x)) = (#u(#2t, #x),/Z2r~(p2t, #X)) 

is a solution of  (Ic0/~2) defined on [0, T/#2). It is then easy to check that if 

lu(t,x)l 2 ~ m~6x= o and In(t,x)l ~ m~5x= o as t---+ T ,  

then 

]uu(t,x)12~m~6~=o and ]n~(t ,x)l~m~(Sx= o as t - -+T/#  2, 

Theorem 2 will be a consequence of the following propositions. 

Proposition 2. (Global Existence for ]r < IQIL2). Assume Ir < IQIL2- Then 
the solution (u(t), n(t)) is globally defined in time. 

Remark. In the case where n 1 E f t -1  (which is not assumed in this proposition), the 
result has been proved by C. Sulem, P. L. Sulem [25] and H. Added, S. Added [1]. 

Proposition 3 (Non-Existence of Minimal Blowing-Up Solutions and Global Exis- 
tence for Iq~0]L2 ---- IQIL2) Assume I%1L2 = IQIL2. Then the solution (u(t),n(t)) is 
globally defined in time. 

Remark. As before, we do not assume that n 1 E f i - i .  

Remark. The result is completely different from the one in the case of Schr6dinger 
equation. Indeed, for the nonlinear Schr6dinger equation, there are minimal blow-up 
solutions in L 2, that is blowing-up solutions which have minimal mass in L 2 norm 
among the set of blow-up solutions ([14]). 

Remark. Let us point out an important corollary of this proposition. Let ~0 be such 
that the solution of (I~) (nonlinear Schr6dinger equation), u(t) blows up in finite time 
and 1~501L2 = IQIL  2. For all c o > 0 and no, n 1, the solution (u(t), n(t)) is globally 
defined in time and does not blow up in finite time. 

Let us consider now the explicit solution constructed in Part I, 

1 e~ 'a ( -~ )  ~ P;~ e0A(T- t) ' u~(t, x) - Col( T _ 1) 

( 1 ) 2 N x (  x ) (1.10) 
na(t ,x)  = Co;~(T- t) Co)~(T - t) ' 

where T >_ 0 and (Px, Nx) satisfies (IIx) and ~11 be the connected component of 
()~, Pa, NA) in N + x H I • L 2 of solutions of (IIa) containing (0, Q, _Q2). 

We claim that Vm > IQI~2, there is a 3~ = )~,~ such that (uz,~, nx~)  is a blow-up 
solution which has the following property: 

lu;~,~(x,t)12~m~5x=o as t---+T with m=lua~(t,x)122--Ir 
Proposition 4. 1) There is a sequence (As, P~, N~) of ~ such that ]P~IL2 --+ IQ[L2 
as n---~ +oc. 
- There is a sequence ()~, P~, N~) of ~ such that IP~IL~ --" + ~  as n --+ + ~ .  
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2) Vm > IQ[~z, there is A m such that (ux~,  n;~,~) defined by (1.9)-(1.10) is a blow-up 
solution o f  (I~0) which  has the fo l Iowing  propert ies:  ( o ) 
- f o r  all  t C [0, T) ,  u) ,~( t ) ,nA~(t) ,  ~ nx~( t )  ~ H k, Vk _> 1, 

- lu;~,~(t,x)] 2 ~ m~Sz= o as t --+ T with 1~(o)1~2 = m. 

It is then easy to see that Theorem 2 follows from Propositions 2, 3, 4. Indeed, 
from Proposition4, if m > IQI~2, then ra satisfies property ( 3 )  and if m < [QI~2 
then rn does not satisfy property (.2). 

I .B  S tronglns tabi l i ly  o f  Per iodic  Solutions of(Ico). We recall from Part I, that equation 
(It0) has periodic solutions of  the form 

(u(t), n(t)) = (e~'~V(z), -IV(x)]2), 

where V satisfies the elliptic equation (V~) in ~2. The set of  solutions of (V~) for 
w > 0 has a minimal element in L 2, Q the unique solution of (V+). 

More precisely, 
- If  V ~ 0 satisfy (V~) for some ~ > 0 then IvIL2 _> IQIL2, 
- If  V ~ 0 is a solution of (V~) for some co > 0 such that IVIL 2 = ]QIL2, then there 
are 0 E S 1, x 0 E R 2 such that 

V ( x )  = e i~  c o l / 2 Q ( o J ( x  - Xo) ) . 

The question we are interested in this section is to know whether these periodic 
solutions are orbitally stable or not in spaces where the Cauchy Problem of (Ic0) can 
be solved locally in time: 
- t7t 1 = H 1 • L 2 x H - ~  for weak solutions, 
- H 2 = H 2 x H 1 • L 2 for strong solutions, 
- H k = H k • H k-1 • H k-2 for k > 2 for solutions with additional regularity. 

That is Vi _> 1, Ve > 0, 36 > 0 such that 

I((~0, nO, n l )  -- (V(z ) ,  - Iv(z) l  2, 0)IH ~ _< 5. 

Then Vt E N 2, 

min I(u(t), n(t),  nt ( t ) )  - ( e i ~  - x0), - [ V ( x  - x0)l 2, 0)114 ~ _< e .  
OES 1 

cc 0 E~ 2 

We first show that any minimal periodic solution V is orbitally unstable in H1 and 
/{i (Vi _> 1). That is, if V is such that there are 0 o E S 1, w0 > 0, :c o C IR 2, 

V(x) = d ~  - ~0)), 

then V is unstable. 
We then give a similar instability result for a general periodic solution of equation 

(It0) ( e i ~ t V ( x ) , -  I V(x)I 2, O) under some nondegeneracy conditions on V. 
More precisely, we want to prove that for a given periodic solution of the form 

(e~tV(z) ,  - fV(z) l  2, 0) 

and i > 1, there is 5i such that Vs > 0, ~(~b0z, 7t0~,nl~) and t~ such that 

I(r no~, n ~ )  - (V(x), - I v ( x ) l  2, 0)1~ _< 
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and 

rain u~(tr) , nr(tr) , ~ (ts) - (e i~  - Xo) , - I V ( x  - Xo)[ 2, 0) >_ ~ ,  
OES l 

xo EN 2 

where (ur, he) is the solution of (Ico) with initial data (@or, nor, nle)" 
In fact, we show a stronger result (strong instability or instability by blow-up): 

There is a sequence of initial data such that 

(r --+ (V (x ) , - IV (x )12 ,0 )  in H e for / _> 1, 

such that (uk,nk) blows up in finite time T k < +co in H i for i _> 1 (in other words, 
5 i can be taken arbitrary in the definition of instability). 

Such results are well known in the case of the nonlinear Schr6dinger equation 
(I~). Indeed if V is a solution of (V~o) then Pohozaev identity yields that •(V) = 0 
where 

1 /  1 /  [V(x)[4dx ~ ( v )  = -~ IVV(x)12dx - ~ 

~2 ~2 

Now considering r = (1 + e)V, we have r -+ V in H i and 

g~(r < O, /Ixl2lr < +oo. 
t /  

N2 

Therefore, the solution of (I~) with initial data r blows up in finite time 
(see [8] and [23]). We can also mention a similar result obtained by Berestycki and 
Cazenave [3] for nonlinear Schr6dinger equation for the ground state solution 

i u t = - - z ~ U - - l u l P - l u  in IR N 

4 N + 2  
w i t h l + ~ < p <  N - ~ "  

The argument will be quite different (argument such as in [3] does not apply) and 
uses strongly self-similar solutions of (Ic0) constructed in Part I and their asymptotics. 

Theorem 3 (Strong Instability of Minimal Periodic Solutions). Let (u(t), n(t)) a non- 
zero minimal periodic solution of (It0), that is there are 0 o E S i, oJ o > O, x o E R 2 
such that 

eiOoa t /2~. 1/2. 
V(x)  = o ~ o  ~ X - Z o ) ) "  

i) There is a sequence (r -~ (V, -IVI2,0) in Hh Vk >_ 1 as e --~ 0 such 
that (ue(t), ne(O ) blows up in finite time T r in H i, where (u~, he) is the solution of 
(It0) with initial data (r nor, nit)" 
ii) (V(x ) , - I I / ' ( x ) l  a, 0) is orbitally unstable in H i, Vi > 1. 

Remark. Part ii) is a direct consequence of patti). In addition, if (u~, n~) blows up 
in H 1 in finite time, then it blows up in H~, Vk _> 1. 

For a general periodic solution, we have the following result. 

Theorem 4 (Strong Instability of Periodic Solutions). Let V a radial solution of 
equation (V~) and (e ~ t  V(x) ,  - IV(x ) ]  2, 0) the associated periodic solution of (Ie0). 
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Assume in addition that V is a nondegenerated critical point of the functional 

1 1 iV(x)14d x + iV(x)12d x ~ ( V )  = -{ IVV(x )12dx-  4 T 

R 2 ~2 ~2 

in H i = {v C H 1 such that v(x) = v(Ixl)} in the following sense." the operator 

W ---+ - A W  + caW - 3V2W 

is a continuous one to one application from H 2 N Hr to L~, where 

L2~ = {v �9 L 2 such that v(x) = v(lxl) } . 

Then the conclusions of Theorem 3 hold. 

Remark. We strongly suspect that the result is still true without the nondegeneracy 
condition (we in fact conjecture that the set of degenerate solutions of (Vo,) is empty). 

Remark. In Part I, we have shown that Q is a nondegenerate critical point of ~o in 
H 2 0  H i.  Therefore, Theorem 3 can be seen as a consequence of Theorem 4. 

A. Qualitative Properties of Blowing-Up Solutions of Zakharov Equation (Ico) 

Let us consider in this section a solution of equation (Ico) (u, n, nt) which blows up in 
finite time T < + ec in H k for k _> 1. Existence of  such a solution has been proved in 
Part I [7]. We show in this section various properties of  (u, n, n~) at the blow-up time 
T. We first give some general properties of  solutions of equation (Ic0). For blow-up 
solutions in H 1, we then show some concentration properties at the blow-up time in 
Sect. A.1. In Sect. A.2, A.3 we show some properties of the concentration mass. We 
conclude Sect. A showing that a solution which blows up in H k for k _> 2 blows up 
in H 1. 

Let (u, n, nt) solution of  equation (I~0) in H k for k _> 1. Let first give a different 
formulation of equation (Ic0). 

If  n~ E H - I ,  there is a (Vo, w o) E L 2 x L 2 such that 

n I = - V .  v 0 + w o. (A.1) 

We remark in addition that 
- i f n  1 E H  k-I  f o r k > 2 ,  we can choose (v0, w0) E H  k 2 x H  k-z, 

- if n 1 E ~ - 1 ,  we can choose w 0 = 0. 
We can check that (I~o) can be written in the form 

I iu t = Au + nu,  

n t =- - - V ' V q - W  O, 
(I'c o) 

v~ + w = - v l ~ l  2 , 

with the initial data u(0) = r n(0) = no, v(0) = v 0. 
We can remark (u, n, nt) is a solution of (It0) in H k if and only if (u, n, v) is a 

solution of (I'~0) in H~ = H k • H k-1 x H k-1. 
We have the following properties for a regular solution 
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L e m m a  A.1. i) Vt ~ [0,T),  ]%t(t)[L2 : ] r  2. 

ii) g t  E [0, T), d ~ ( t )  _ f wo(n + lu[2), 
dt ~2 

where .~,gG(t) = ~(u({) ,  n(~), v(t)) and 

/ (  1 ] v ] 2 + l  ) 
~r~(U, n,  V) = IVul 2 J- nlu[ 2 ~- ~c02 ~ n 2 . (A.2) 

R2 

Remark. For weak solutions of (It0), we can show inequalities, and we can check that 
all proofs in this section can be carried out. For simplicity, we will assume that the 
solution is regular enough to prove properties i) and ii). We can check directly from 
the local uniqueness in time of the solution in H 2 that if  (u(0), n(O), %(0)) C H 2, the 
solution satisfies these identities. 

Remark. In the case w 0 = 0 (%(0) = n 1 E ~ - 1 ) ,  we remark that ~ ( t )  is a conserved 
quantity in time, otherwise it is not. 

Proof. Proofs of  i) and ii) follow from direct calculations. 

A.1 L2-Concentration of Blow-Up Solutions. We consider in this section a solution 
(u(t), n(Q) of  (Ico) such that 

b ( t ) l m  + b(t)lL2 + Int(t)lH-~ ~ + oo as t -4 T ,  

or equivalently 

lu(t)lH~ + [n(t)lL2 + ]v(t)lL2 -~ + oc as t -4 T. 

We want to show concentrations properties of  (u, n) in suitable spaces. This result 
is obtained using methods similar to those in Merle Tsutsumi [18], Merle [17] and 
Weinstein [28]. 

Proof of Theorem 1. It follows from energy arguments. Let us recall the energy 
identity: 

L e m m a  A.2. ([28]) 

zt 2 
V~ C .H 1 1 1~144 ~ 2 ' ' ~ \ 1QIL2 ] Iv,~l~ (1.3) 

where Q is the unique solution of (V+). 

Define for (u, n) E H 1 • L 2, 

1 
~(u) = / IVul2 - ~ f ,u] 4 

~2 ~2 

and 

3b~l(u, n) = IVul 2 + In] 2 + nlul 2 = ~ (u )  + (n + lul2) 2 . (1.4) 

R2 R2 N2 R2 

We consider several cases. 
We first consider the case where (u, n) radial functions and n 1 C /2/-1. We can 

remark (u, n, v) are radial functions for all t E [0, T)  if (r no, na) belongs to H 2 
and is a radial function (uniqueness of  the Cauchy in suitable space .Hk, k > 2). 
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We then consider the general case. 

Case l. n 1 E ~1-1 and (u,n) radial. 
In this case, the functions are radial and Vt E [0, T), ~ ( t )  = ~ ( 0 ) .  We argue by 

contradiction following [17]. Assume there are 6 o > 0 and R o > 0 and a sequence 
t k --~ T as k ~ + ec such that 

/ 
or 

lu(tk, x)l 2dx ~ IQI~2 - 60 

k~+~ In(tz, x)l dx 

Ixl 

as R ---+ 0.  

Step 1. Scaling arguments. We consider 

uk(x) = A~lu(tk, xA~-l), 

nk(x ) = A~2n(t~, xA~t) ,  

where A k = IVu(tk, X)[L2. By direct calculations, we have 

/ [ V U k [  2 l ,  f [ % k '  2 [r 2 
= ~_ L2 

R2 L~2 

~(U;~) : AEI ]Vu(tk' x)[2dx - 2~2 [u(tk' x)14dx : A7 

and 
1 

Y l ( u k ,  nk) = ~ ~ ( u ( t k ) ,  n(tk)). A~ 

From the fact that ~ ( ( t )  = .Y~(0) where 

~ ( t )  -- ~(u(t)) + 5 (n(~) + b(t)12) 2 + ~- [v(t)l 2, 
~2 ~2 

~(u(t~)) < ~ l (u( tk ) ,  n(tk)) < ~ ( t  k) < J~(O) 
we have 

1 J6 (0 )  ~ 0 ~(uk) _< ~r nk) _< .X~ 
and 

In particular, (A.8) yields 

as k ---+ + e~. 

l i m s u p f ( u k )  _< 0 and l i m s u p ~ l ( u k , n k )  _< O. 
k-*+ e~ k ---+ + 

(A.5) 

Therefore, 

(A.6) 

(A.7) 

(A.8) 

(A.9) 
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lira I/(. l 
k~2 N2 

limsup / I ~ l  ~ ~ :limsup / I ~ l  4 ~ 
k ~ + ~  k ~ + ~  

R2 R2 

(A.~0) 

Moreover, property (A.5)-(A.6) and the fact that A k --, + eo as k --+ + oo imply 
V R > 0 ,  

lim sup / ] u e ] 2 < ] Q ] ~ 2 - ~ o  or l imsup / l n k ] = 0 .  
k--~+ cxD k--++ o,z 

/~l<R I~I<R 

(A.11) 

Step 2. Compactness procedure. Let us obtain a contradiction by compactness pro- 
cedures. Using classical compactness procedures from (A.7), (A. 10), we can assume 
that there is a (U, N)  E H ~ • L 2 such that u~ -~ U in H 1, n k ~ N in L 2. Since u k 
is a radial function, a compactness lemma (see Strauss [24] yields u k ~ U in L 4. 

We then have from (A.9) 

f l u [ 4 > 2  and U ~ 0 .  

N2 

(A.12) 

Let k going to + c o  in (A.11), we have 

[UI < [Q[~2 or N = 0 .  

R2 

(A.13) 

Indeed, VR > 0, 

f f Q22 ]U] 2_<l iminf  ]ukl 2-<1 Ir -(50 
k---~+ oo 

IxI<R {xl<R 

o r  

{Nt _< liminf f ~ = O. 
k - ~ +  oo 

Ixl<R I~I<R 

Letting R -+ + ec, we obtain (A.13). 
Furthermore, since u~ --* U 2 (u k ~ U and L 4) and n k ~ N in L 2, we have 

f I I  2 fNIuI 2 n k u  k ~ as k - ~ + c ~ .  
~2 ~2 

(A.14) 
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We deduce from (A.8), (A. 14) that 

" ~ l ( U ' N )  < l i m i n f ~ l ( u k ' n k ) =  l i m i n f /  lV%12 + l k--,+c~ 2 n2 + / nkluk[2 <_ 0 

~2 R2 R2 

or equivalently l/ 
~(~(U) q- ~ (N  q- IUI2) 2 ~ 0.  (A.15) 

N:2 

- If  f ruI 2 < 10122 - ~0, w e  have  
R2 

g~(U) = IVUI 2 - ~ {gl 4 < 0 and U ~ 0 

R2 R2 

which is a contradiction (Lemma A.2). 
If N = 0 then Ygl(U, N)  = f ]VUI 2 _< 0 and U ~ 0, which is a contradiction. 

1~2 
Therefore, there exists a constant m~ > 0 such that VR > 0, 

l iminf lu(t ,x)t  2dx  21 IL and liminf In(t,x)ldz > m  n 
t-~ T t---~ T 

Ixl I< 

General case. We now do not assume that ~ ( t )  is a conserved quantity nor the 
functions (u(t), n(t), v(t)) are radial. 

Let us give a crucial estimate. 

Proposition A.3. There is m~ = mn([CflO[i.2 ) > 0 such that the following properly is 
true." Let u k ~ H 1, v k E L 2, n k C L 2 a sequence such that 

Let assume in addition that there are R o > 0 and ~o > 0 such that 

sup / I%12 -< IQI~ -~o 
Y 

ly-<<Ro 

or 

Ix-yl<R0 

There are then constants C 1 > O, C 2 > 0 such that 

_< ~ ( % ,  % ,  %) .  

Remark. We can replace the condition ]uk]~2 = [r by [uk[22 _< 1r 
Before proving this crucial estimates, let us conclude the proof of Theorem 1. 

Case n 1 ~ ~ - 1 .  
In this case we have Vt, gS(t) = ~ ( u ( t ) ,  n(t), v(t)) = ~ ( 0 ) .  
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Let mn(lr ) defined by Proposition A.3. Assume there is a sequence t k --+ T 
as k --+ +oo, R 0 > 0, ~5 0 > 0 such that 

liminf ( sup  f dx )<  2 k--++c~ \ u lu(tk'x){2 - -  I Q I L 2  - -  60 (A.16) 

]z-yl<Ro 
o r  

k~+oo sup 
Ix-yl<R 

We then apply Proposition A.3 with (u(tk) , n(tk) , v(tk) ) and we obtain 

f IvuG)l  +/n(ek)t 2 + Iv(tk)l 2 _< c and t k ---+ T ,  

R 2 

which is a contradiction. Thus, there is xk, Yk, R~ --+ 0 such that 

k---+q- oo 

and 

liminf ( f ) 1  k++~ In(tk' x)l dx >- mn(lr > 0, 

x -  ykl< 
which concludes the proof. 

Case n 1 ~ •--1. 
Assume that there is no sequence t k -+ T such that VR > 0, 

liminf ( sup  /[U(tk,x)[edX)>[Q,2L2 (A.18) 
k ----~ + c~ y 

Iz-yl<n 

o r  

k-++ oo s U P l x - y  I < R  

Then there are R o > 0, ~5 o > 0 such that Vt E [0, T), 

> mn([r (A.19) 

sup / ]~(t,x)12 dx) < [QI22 -(5o 
v Iz-yl<Ro 

o r  

/ 
[~-yL<Ro 

We apply Proposition A.3 and we obtain Vt c [0, T), 

IVu(t)] § In(0[ e + [v(0[ 2 < Co J~'( 0 + q 
~2 

(A.20) 

(A.21) 

(A.22) 
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In addition, from Lemmas A.1, A.2, Vt ~ [0, T), 

t t 

i ( I ( 7 ) )  ~( t )  <_ Yd(O) + ~ (s)ds _< c 1 + ]Wol (n(8) Jr- lU(S)[ 2) ds 

0 0 

t 

t 

t 

where 

From (A.22)-(A.23) we have 

(A.23) 

t 

0 

this implies from Gronwall lemma that Vt E [0, T), M(t)  _< e or equivalently 

vt c [0, T), I(u(t), n(t), ndt))l~l _< e, 

which is a contradiction. 
We remark that in the radial case, obvious symmetry reasons and the conservation 

of the L z norm implies that we choose x k = 0 in Theorem 1. 
This concludes the proof of  Theorem 1. 

Proof of Proposition A.3. It is based on similar ideas of Lieb [12] and Weinstein 
[28] for the nonlinear Schr6dinger equation. The proof we present here is based on 
a 1emma which was presented by Merle in a seminar as an alternative proof of  the 
result of Weinstein in [28]. 

We first remark that it is sufficient to prove that there are constants c 1 , ~ such that 

where .75 l(u, n) is defined by (A.4). 

Step 1. Scaling arguments. 
We argue by contradiction. Assume that the conclusion does not hold for a 

subsequence (uk, nk). Then 

I 'I 
R2 ~2 
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and 

l i m s u p ~ l ( u k ' n k ) _ < 0  as k---++oc.  
/~--++ ec /~2 

Indeed, 
- if Ak < c, then I~11 < c and the conclusion is obvious, 

- if 5~'{l(nk' nk) ---+ c > 0 as k ~ +oc ,  then for k large, 

C (j'l~7"kl2"q- ~/"l~kl2) ~l(uk,nk) >_ ~ 
1R2 

which is a contradiction (since Proposition A.3 will be satisfied with c 1 = 0 and 

c2 = 2 ) .  Consider 
\ 

Uk (x ) = /~k luk(X,~k  1) 

We have by direct calculations 

/ ]ukl2= f ,r 2 
~2 ~2 

We remark that 

and N~(x) : ~k2nk(X/~kl). 

and f lvu~12 + ~ / iN~j2= l 
N2 ~2 

(A.24) 

limsup(l+/NklUkl2 ) k + +  oo = lim sup ~(t (Uk' N k ) k ~ +  

R2 

= lim sup ~'~1 (uk, n~) _< 0. (A.25) 
k ~ +  oc A 2 

Since f NklU~I 2 < c by Sobolev estimates, we can assume that 

NklUkl2---,c<_--I k--,+oc. (A.26) as 

N2 

In addition, we have from the assumptions of the proposition, 

V R > 0 ,  /~-~+~liminf (SUpy / ,uk,e)<_,QI22-rSo (A.27) 

Ix-yl<R 

[liminf sup l )] R0  k ~ + o ~  INk[ ~ 0 as ---, 

or  

(A.28) 

Step 2. A non-vanishing property of (Uk, Nk). 
Let us give a crucial lemma which rules out the case of a vanishing sequence 

( U ~ ,  N , 0  in L 2 x L 1. 
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L e m m a  A.4. (Merle)Assume there is a sequence (U~, Nn) C H 1 • L 2 such that 

/ C1 / 2 1 /  12 C 2 / --~ --e3 ~ 0 Iukl 2 ~  > 0 ,  IVUkl 2+  rN~ ~ > 0 ,  NklUkr 2 

R2 R2 N2 R2 

as k--+ + oc. 
Then there are a constant c 4 = c4(q, e2, c3) > 0 and a sequence x k such that 

IN~] > C 4 �9 
Ix-~kF<~ 

Remark. For SchrSdinger equation, we apply this lemma with N k = -]U~ ]2. 

Proof. We use here some ideas of Lieb in [12]. Clearly, there exists some x k such 
that for large k, 

/ ( ~ (  1 ) )  
--NklUk] 2 > a IVgkl 2 + [Ukl 2 + ~ IN~I = , ( 1 . 2 9 )  

Ck 

where C k is the square of center x k and a - c3 . Indeed, by contradiction we 
2(c 1 + C 2) 

obtain from (A.29) ,  

i ( j (  1 ) )  --Nklgkl 2 < a Ivgkl 2 + Igkl 2 + ~ INk] 2 . 

N2 

c 3 
As k --+ + oo, we deduce c 3 ___ a(c 1 + e2) < ~- which is a contradiction. 

We claim now that there exists c > 0 such that 

J - - N h l S k r  2 ~ c and i INk] 4 ~ c. (1.30) 

Ck Ck 

Indeed, by Sobolev identity on C k there is s o > 0 independent of k such that 

IVUk] 2 + INk[ 2 • .S O [Skl 4 

Ck 

Equation (A.29) gives then 

2 a 2 [ 
a.SolU~lL4(C~) + 2 iNklL2(Ck) < J _XkjCkl2 <_ INklL2(C~)IU ~ 2 IL4(Ck) . 

ck 

Thus ]gklL4<C~) > 8x/g~doa and f --Nklgkl 2 > c > 0. 
Ck 

Assume by contradiction for a subsequence N k, 

/ I N ~ I - + O  as (1.31) k--+ + o c .  

C~a 
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We can assume that 

Nk(x ~ + . ) ~ N  i n L  2 and U~(x k + . ) ~ U  i n H  1. 

Then Uk(xk+. ) --+ U in L4oc and Igkl 2 ~ LuI 2 in La2oo. From (A.31), Nk(xk+.)  ~ 0 
in L2(Co) and 

OO. 

ck Co 

A contradiction follows from (1.30) and the lemma is proved. 

Step 3. Conclusion of the proof. 
Let us now conclude the proof of the proposition. 

Case A. 

r,im  f(  p I )] v R > 0 ,  L ~-~+~ IN~r ~ 0  
\ y i~_yqJ<R 

We apply Lemma A.4 and we obtain a contraiction with (1.32) with R = 1. 

Case B. 

VR > 0, "liminf ( sup  / IUkl2~ _< [QI~2 - 60. (1.33) 
/ 

~-~+~ \ ~ I x-~i<R ] 
We apply the same procedure then in [28[ to obtain a contradiction. In this case, we 
have from (A.25) and from the fact that 

.~ l (gk ,Nk)  = g(g~) + -~ (INkl + Igkl2) 2, 

~2 

lim sup ~(U a) _< lim sup.~l(Uk, N k) _< 0. 
k--~+ oo k -++  oc 

We now can conclude the proof. Indeed, we apply LemmaA.4 (and proof of 
Lemma A.4), and we obtain dichotomy 

1 u~ = u~ + u ~ ,  

where for a sequence x~, 

i 1 H 1 U 1 U~(x  k -~- x )  ~ ~)1 in and I klL4(lx--xkI<I) ~-- C > O. 

Therefore, by Sobolev estimates, there is a 61 > 0 (depending only of Ir 2) such 
that 

IS~lL2(Ix_xlk[<l ) ~-- 61 . 

On one hand, from (A.33), 

VR > 0, liminflU~(x k + .)[L2(BR) ~ IQI~ - 60, 
k---+-I- oc 

By usual techniques of concentration compactness method (see Lions [l 3}), we have 
by a suitable choice of Ug, 

12  1 2 2 1 2  2 Iu~ l~  _ IQI~ - 6 0  IU~IL2 ~-IU~I:IIL2 ~ Ir and 6~ < lim < 
k ~ + o c  
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On the other hand, 

~(~b~) + lim sup ~(U1R) _< lira sup f f (U~)+ lim sup ~(UIR) _< lim sup ~(U k) _< 0. 
k---,+ oc k--++ oo k--~+ oo k---~+ ec 

Therefore, from Lemma 1.2, since 51 _< 1r _< IQI~2 - 50, 

lim sup g(UIR) < - g ( r  < 0. 
k-++ oc 

Thus, extracting a subsequence, we have 

1 2 2 
[U~RIL2 ~ el < IQIL; -- 51 and lim sup ~'(UIR) _< - ~ ( ~ x )  < 0. 

k---~+ cc 

We iterate the same procedure and define 

u:R = + 

with ]Uk(x ~ § .)lLa(ix_z~l<l) > 51. 

Let us define p such that -p51 + Ir < Ic2122. Applying the same procedure at 

most p times, we find for a i < p and k large a function U~R such that 

o i --1 
IU;RJL  < ]QIL , f ( U k R )  --~ - 2 -  f ( ~ ) l )  < 0 and i 2 2 

which is a contradiction with Lemma A.2. This concludes the proof of Proposition A.3. 

A.2 Non-Existence of Minimal Blowing-Up Solutions in L 2. Let (r no, ~tl) E H 1 and 
(u, n, nt) the associated solution of (Ir From Theorem 1 and the conservation in 
time of the I~(t)lc=, we derive easily that if 

Ir < IQPL2, 
there is no blow-up in time in H 1 of (% n, nt) and the solution is globally defined in 
time (see also Sect. A.4). 

The Question is to know if there are solutions which blow-up in H 1 such that 

Ir = JQPL2. 
We see in the next section that for all m > [QIL2 there is (r non, nl,~) such that 

- fr = 
- (u,~, n~)  blows up in time [where (%~, n~)  is the solution of (Ie0) with initial data 
(r n0m, nlm]' Then the question is to know if there are minimal blow-up solutions 
of the Zakharov equation and to characterize them (if they exist). In fact, we claim 
that there are no blow-up minimal solutions in L 2. 

Proof of Proposition 3. Let us prove that if Ir I L2 = I QIL2, then the solution does 
now blow-up in H 1 (Sect. A.4 will imply the result). Let us argue by contradiction: 
assume there is T > 0 such that 

or equivalently 

IVu(t)lL2 -? In(t)lL2 + Int(t)lH_l --+ § O0 as t ---+ T ,  

IVu(t)IL: + In(t)lL2 + Iv(t)IL2 --* + OC as ~ --~ T .  (A.34) 
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Step 1. We claim there is a e > 0 such that 

[o, T), g'(u(t)) <_ c, / Iv(t, z)l 2 dx < c, gt 

~2 (A.35) 

f (n(a : ,  t) 4- lu(t, z)12) 2 <_ c. dx 
N2 

- If n 1 E ~ - 1 ,  then ~ ( 0 )  = Y#~(t), where 

1 /  ~c2f g~(t) = g'(u(t)) 4- (n(t) + lu(t)[2) 2 + Iv(.t){ 2 . (A.36) 

IR2 R2 

Since from Lemma A.2, 

1~<0122, ~ 
~'~('~(t)) ~ t 10122 ] IVu(t)122 _> 0, <A.37) 

we have from (A.36), Vt E [0, T), 

c2 f lv(t)12 <~(o),_ ~l f (n(t) + 1~(012) 2 _< ~ ( 0 ) ,  ~(~(0) _< .~(0) .  
IR2 •2 

- If rz I r b -1, let us show that Vt E [0, T), ~ ( t )  _< c and then conclude as before. 
We have from Lemma A.1, Vt E [0,T), 

d offal(t) ~ / 
-- W0(n(t ) 4- lU(t)12). 

IR2 

Thus by Cauchy-Schwarz, 

d'-'%e(t) < c + f (n(t) + tu(t)12) 2 
dt 

~2 

and 
t 

~(t5) ~ l..~(I5)l ~. C 4- . / / ( % ( 8 ) 4 -  [U(S)12) 2 d S .  

0 R2 

In particular, from (A.36)-(A.37), 

t 

JR2 

and the Gronwall lemma yields 

gt E [0, T), 

0 R2 

f (n(~) 4- lU(t)J2) 2 < C. 

R2 

Using again (A.38), gt  c [0, T), Jg(t)  _< c. 

(A38) 
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Thus as before there is a c > 0 such that Vt E [0, T), 

< c, [ t (t,x)r <_ c, i (t,x)12) < C. 
0 

N2 R2 

Step 2. Let us show that there is a c > 0 such that Vt C [0, T), Ilu(t)121u_l _< c.We 
have Vt c [0, T), n t = V - v + w 0, where w 0 E L 2, 

t 

[0, T ) ,  In(t)lH-1 _< c + / lnt(s)lH-1 Yt E ds 

0 

t 

_< c + / ( I v ,  v(s)l~-i + 
0 

IWolH_l )ds 

0 

t 

c+/(Iv(s)lL~ + Iw01L=)ds _< c < (A.39) 
, J  

0 

from Step 1. 
Since lu(t)] 2 = (n(t) + lu(t)l 2) - n(t), we have from (1.35) and (1.39), 

Vt E [0,T), I[u(t)12lH_~ < [n(t)lH_l + I n ( t ) +  lu(t)12lH_l 

< c + in(t) + I~(t)121L~ _< c. 

Step 3. Let us obtain a contradiction with the concentration property of u proved in 
Theorem 2. 

We have Vt E [0,T),  ~(u(t))  _< c, lu(t)lL2 = IQIL~. We claim that 

J V u ( t ) l c ~  --+ + oc  as  t ---+ T .  

Indeed, assume there is a c > 0 such that f IW(t)l 2 _< c, then f ]u(t)[ 4 _< c, and 
R2 R2 

from (A.35), f ( iVu( t ) I2  + n z ( t ) +  v2(t)) _< c, which is a contradiction with (A.34). 
~2 

Thus from Proposition A.3, there is a x(t) such that 

lU(t, X(t) 4- X)I 2 2 (5 ]Qlc2 ~=o as t ~ T  

in the distribution sense. 
Let h(t, x) = lu(t, x(t) + x)] 2. We then have 

Ih(t, X)IH-1 ~ C and h(t, x) 2 IQIL2~=o as t ~ T 

in the distribution sense. Therefore considering weak limit of h(t), 

2 6 H -1 IQIL2 ~=0 c 

which is a contradiction since there is a bounded sequence of  continuous functions 
z k in H 1 such that zk(O ) --~ 4- oc. Therefore there is no blow-up solutions of minimal 
mass and Proposition 3 is proved. 

A.3 Proof of Proposition 4 and Theorem 2. Let us prove now Proposition 4. 
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Proof of Proposition 4. 1) Let us consider ~11 be the connected component of 
(A, P;~, N),) in ]R + • H r  1 • L 2 of solutions of equation (II;0 containing (0, Q, _Q2).  
From Sect. 3 of  Part I, we know 

(PA' NA) -'-'+ (Q,--0 2) in H ~ X L 2 as A ~ 0 ,  

and in particular IP;~IL2 ~ IQlc2 as A --+ 0. Moreover from Sect. 5 of PartI ,  we 
know that ~ is unbounded in IR + x H 1 x L 2. This yields to the following alternative: 
There is a sequence (A,~, Pn, N~) E ~1 such that 
- Case 1: There is a 0  _ X** < + o o ,  k,~ --+ k**, and IP~[H1 § [NnIL2 -+ +oo. 
- Case 2: )'n ---+ + oo. 

We recall from Part I (Sects. 2 and 5), that we have the following identities. 

L e m m a  A.5. Let (P~, N;O r 0 a solution of the equation (IIx) with A > O. We then 
have 
i) f [VP~(x)I 2 dx + f p2(w) dw = f -Nx(x)P~(x) dx, ~2 N2 ~2 

1 f(~21X12 q_ 1)N2(x) dx, ii) f P2(z)dz = 
R2 ~2 

iii) f p2(x) dx > f Q2(x) dx. •2 ~2 
We claim that 

L e m m a  A.6. We have 

[P,~IL2~+~ as n - - + + ~ .  

Proof. Assume by contradiction that for a subsequence also denoted (An, Pn, Nn), 
we have 

p2 <_ e. (A.40) 

N2 

We claim from Pohozaev and energy identities (Lemma A.5) that 

f lvGl2 + f + f N2 <<_c. (1.41) 

R2 ~R2 R2 

Indeed, we have from Lemma A.5 ii) 

f f p2. (A.42) 
IR2 R2 

In addition, from Lemma A.5 i) and Gagliardo-Nirenberg inequality, 

( / ) 1 / 2 ( /  )I12 ( ! ) 1 / 2  

~2 N~2 \R 2 / 
Q~ )1/2(f )1/2 ( / ) I / 2  

<_ I V < l  2 _< c [ v < l  = 

\~2 \R2 / 
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and 

/ IVP~I 2 ~ (A.43) C. 

1{2 

From (A.40), (A.42), and (A.43) we have 

1{2 1{2 1{2 

Let us consider the two cases. 
- Case 1:(0 < &** < + oo). We have directly a contradiction since 

/ , V p 2 , + / P 2 + / N 2 ~ + c c  as n ~ + o c .  

1{2 R2 1{2 

- Case 2: Using Lemma 2.2 of Part I, from (A.44) we have that IP,~lLoo <_ c. 
Moreover from Lemma A.5, Ve > 0, 

1{2 1{2 IXl<~ I<>~ 

~ C / 'Nn'§ ( / N2) 1/2( L P4) 1/2 
I~1<~ Ixl> e Ix 

_< ce [ N2 + IxlXN2 

I x l < ~  r x  

C a 2 l X 2  2 ~ e g §  e a ~ "  
-< ce + e~7 Ix 

Since ;~,~ --+ + ec, we have Ve > 0, lira sup f p2 <_ ce and 
n--++ oo N2 

f P 2 ~ O  as n- - -++oo.  

R2 

This is a contradiction with Lemma A.5 iii). This concludes the proof of the lemma 
and Part 1) of Proposition 4. 
2) We consider (u),,n:O defined in (1.9)-(1.10) for (A,P)~,Nx) c ~11", where 
~ *  = ~ \{ (0 ,  Q, _Q2)}. We have from Part I, (or we can check directly) 

V t < T ,  Vk, u~,n~, Ot J E H  k, (A.45) 

lug(t, x)12 2 5 ~ l P x [ c  2 x=o as t - -~T and lux(t)lL2=lr~lc2. (1.46) 

Let us consider I = {IP IL2, where (A, Px, Nx) E ~ii*}. We want to show that 
I = (IQIL~, + oo). 



372 L. Glangetas, F. Merle 

Since ~11' is connected set in ]R + • H 1 • L 2 (see Sect. 4 Part I) and the application 
0,, P, N)  E 1R + • H 1 • L ;  --+ IPIL: is continuous, we have that I is a connected set 
of  ]R, thus an interval. 

From the facts that 
- V(A, P;,, Nx) c ~ * ,  f p2 > f Qe (Lemma A.5), 

R2 ~2 

- there is a sequence ()~,  Pn, Am) E ~11' such that IPnIL 2 --4 IQIL 2, 
- there is a sequence (A~,P~,N,O E ~11" such that IP I 2 we have that 

s = (IQIc2, + oo) ,  

and Part 2) follows from the properties of  (u~, n~) (A.45)-(A.46). This concludes the 
proof of Proposition 4 and Theorem 2 follows from Proposition 2, 3, 4. 

A.4 H 1 Control on Higher Derivatives. We assume in this section that different 
Cauchy theory can be done (Hk, k > 2) and we show that the blow-up times in 
H k for all k are the same. More precisely, if a solution blows up in H k (for k >_ 2), 
it blows up in H 1" 

lim I(u(t), n(t) ,  n t ( t ) ) l <  -- ~ im I(u(t), n(t) ,  v~( t ) ) l<  -- + 
t---, T 

Proof  o f  Proposition 1. The existence and uniqueness and the alternative in H k for 
k > 2 has been proved by Ozawa and Tsutsumi [20]. The H 1 control of H k norms 
follows from the two next lemmas. 

L e m m a  A.7. Let (u(t), n(t),  nt(t))  a solution of  (I~o) on [0, t o] such that 

Vt E [0, t0], lu( t ) ,n( t ) ,n t ( t ) ) lH 1 <_ c 

and 
( (u(0) ,n(0) ,%(0))  E H k for k _> 2. 

There is a constant c > 0 such that Vt E [0, to], [(u(t), n(t),  nt(t))]H k < C. 

L e m m a  A.8. Let (u, n, he) a solution of  (I~o) in H 2 such that 

](u(0), n(O), nt(0)lH 1 _< q .  

There is a 51 > 0 and c 2 depending on c 1 such that 

Vt C [0,51], I(u(t) ,n(t) ,%(t))lH1 ~_~ C 2 - 

Proof  o f  Lemma A.7. The lemma follows from the following property: Assume there 
is t 0 > 0 and c > 0 such that 

Vt E [0, t0], I(u(t) ,n(t) ,%(t))iszk_l <_ c and (u(O),n(O),r~t(O)) C H k. (A.47) 

Then there is a constant c such that Vt E [0, to], i(u(t), n(t),  nt(t))lsck < c. 
The cases k = 2, 3 follow directly from [1]. The cases k _> 4 use similar techniques 

than in [1]. 
a) Uniform bounds in H i imply uniform bounds in H2 (k = 2). From the same 
argument as H. Added and S. Added in [1], we show that if 

g t  E [O, to] , [(u(t) ,n( t) ,nt( t )) lH 1 <_ c and (u(O),n(O),nt(O)iH2 ~ C 

t h e n  

V t e  [0, to] ' I(u(t), n( t ) ,  n t ( t ) ) IU  ~ < C. 



Concentration Properties of Blow-Up Solutions 373 

We recall that H. Added and S. Added use some energy estimates of C. Sulem 
and P. Sulem [25] and the following lemma: 

L e m m a  A.9. (Brezis and Gallouet [5]). For u E H 2 we have 
i) I~IL~ <_ c(1 + lUlH1 v/log(1 + IAUIL2)), 

ii) if ]UIH1 ~ C, then lUlL~ <_ c(1 + v/log(1 + IAUIL2)). 
b) Uniform bounds in H 2 imply uniform bounds in H 3 (k = 3) (see [ l iD.  Let us 
consider now the case k = 2p and k = 2p + 1 where p > 2. 
c) Uniform bounds in H2p_ 1 imply uniform bounds in H2p (k = 2/)). Let us first 

/ 
that k = 2/). We have by a recurrence and direct calculations that (with the assume 

\ 
notation u (~) = gt  E [0, to], 

Ot k 

[APu(OIL2 <_ alu(P)(OlL2 + b and lu(V)(t)tc~ < alAPu(t)lL2 + b. (A.48) 

We then remark that 

p--2 
i~(P+l) = A~z(p) _q_ rtu(p) q_ p~ttzt( p- 1) q_ E CkTt(P--k)~(k)" (A.49) 

k=0 

Thus 

d (p) 2 Tb(p-k),a(k)g~(p) --lu (t)tL~ < c n~u (v- + 
dt - = 

p--2 

I,~<%)lL~ + Int(t)lL4 § lu(P-1)(t)lL4 <_ c 
0 

yields with (A.50) 

d lu(p)(t)122 < @,(p)(t)122, Vt E [0,to],  dt  

and we conclude from Gronwall's lemma that Vt C [0, to], [u(P)(t)l~2 < c and in 
particular from (AA8), 

Vt C [0, t0], [u(t)lH2p _< c. (A.51) 

To conclude, we have from (1.2) that 

Vt E [0, to], 

Therefore 

d-t ~ IANp-Nntl2 

R2 

1 
(2 7 (A2p-2n)t t  _ z_~t(A2p-2n) = z~ 2plul 2 . 

+ IV(A2p-2n)I 2) ~ 2/1A2Plul2~2p-2nt l  

N2 

21Z~t2P 1'//,121L 2 Iz~2P--gntlL2. 
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From Galiardo-Nirenberg and the Gronwall lemma, 

--did/(izx2p_2n, i 2 + iV(A2p_2n)12) _< clA2 p 2nelL2 , 

R2 

vt �9 [O, to], /(l•  + IV(Aep-an)I 2) _< c and I(u(O,v(t),nt(t)l~2~ _< c. 
R2 

d) Uniform bounds in Hep imply uniform bounds in H2p+l (k = 2p+  1). From (A.49), 

we have with the notation v (k) = Ot k 

dt a2 

k-2 
=Re(p/n(l)u(P-l)~z(P+l)-l-zckfn(P-k)U(k)g(P+l) ) 

\ R2 0 R2 
or 

d (R2f Iv•(P)12 @ / nlu(P)12 de R 2 

k--2 
@p/Tb(1)U(P--I)~(P)-~ZCkf?~(P-k)U(k)~(P' ) 

N2 0 R2 

=Re(/p(n(2)u(P-1)q-n(l)u(P))~z (p) 

k--2 
q-Zckf(r~(P-k)u(k+l)+r~(P-k+l)u(k))~(P)). 

0 ]R 2 

Using direct estimates as in [1], we can easily conclude that 

Ve �9 [0, t0] , / [Vu(P)(e)[  2 _< c. 

N2 
Thus using the equation, 

Vt �9 [0, to], lu(e)lH2p+~ ~ c. 
From the fact that 

l__ V(A2p_ lnu)  _ V(A2pn ) = V(A2plul2) 
4 

d~d / c~1 [V(z~2p_lnt)]2 -}- f [A(2p)n] 2 ~ / V(A2(p_l)nt)z~2p+l 1~/,[ 2 
~2 ~2 R2 
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we obtain Vt E [0, t0], ln(t)lH~p + Int(t)l~2p_: < c, which concludes the proof for 
k = 2p + 1 and Lemma A.7 follows. 

Proof of Lemma A.8. It follows directly from the techniques used by Merle in [16]. 
Assume c 1 _> max(l ,  1r and I(u(0), n(0), v(0))]H ~ < q .  Let t 0 such that 

vt c [o, to], I(u(t), n(t), v(~))l~f ~ c' and I(u(t0), n(to), v(to))12~ _< c',  

100 ) 
where c' = ac 2 and a = max 100, IQ]~2 J" From Lemma A.7, (u, n) is defined on 

[0, t o] and let us show that t o > (51 > 0 where (51 depends only on c 1, which will 
concludes the proof of Lemma A.8. 
Step 1. Estimates on Ju(t)IL4. 

Let S(t) the SchrSdinger group. We have 

L e m m a  A.10. For 0 E H 1, we have 
i) /x(t)r = Ir 

ii) [VS(t)r = IVr 
1 

iii) IS(t)•IL4 < ~ Ir 

From (1.1) and Lemma A.10, we have Vt E [0, to], 

t 

u(t) = S(t) - i f S(t - s)n(s)u(s) ds 
0 

and Vt E [0, to], 

t 

lu(t)lL4 <_ IS(t)r + / I S ( t  - s)n(s)u(S)IL4 ds 
0 

cl/2 f f  1 In(s)u(S)lL4/3 ds 
~-- 6-) 1-~ @ ( t  - -  8)  1/4 

~r L2 0 

t 
< cl/2 / 1 

0 

1 1/2 i/2 
_ IQI1/2 2 e~ ( ~ _  s)~/4 

0 
t 

1 ( i/2 0~3C2 -~- ( t  - -  S ) 1 / 4  ds < 
< r )  l ~  q + - -  - -  ~ ~ 1 " 0  ) 

'~ L2 0 

< 1 . 2.3/4 
__ IQIL~222 ~ CClg 0 . (1.52) 
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Step 2. Conclusion. 
For t E [0, to], we have 

t 

~(t) = Y,(0)+ / S Wo(n(s)+ lu(s)i2) & 
0 R2 

t 

<_ ~(o )  + ./c([n(s)lc2 + I~(s)l~.) d. 
0 

t 

<_ gd~(o) + f c(c1 al/2 + c2)a ds 
0 

<_ ~(0 )  + cto(qa I/2 + c2a) < c~(1 + cto). 

From (A.52)-(A.53), for t E [0, to], 

I(u(t), n(t), v(t))l%, 1 < 

< 

_< 

< 

Therefore, t o > 61, where 61 

1 
1r + Y~(t) + ~ lu(t)144 

1 , 1/2 , .3/4 2~4 
C~(1 ~- Ct0) -V [ ~ L  2 tC1 -t- C~70 Cl] 

16 , 1/2 3/4 s 
c ~ ( l + c t o ) + ~ ( c  a + c t  0 q )  

1 -I- C@O C2 -i- .3/4 8- 
2 C2 ~0 C1)" 

> 0 depends only on Q 
3/4 ~8,,1 c(61c ~ + 61 c lq .  Thus, Vt E [0, 61], 

l(u(t), n(t), v(t))l~; <_ C 2 , 

which concludes the proof of the lemma and Proposition 4. 

(A.53) 

1 
[61 such that ~c  2 = 

B. Strong Instabilities of Periodic Solutions of (I~ o) 

We consider in this section the periodic solutions of (Ic0) of  the form 

(u(t), n(t)) = (ei~~ -IV(x)[2), 

where V is a radial solution of  the elliptic equation (Vw0). We want to prove the 
strong instability (instability by blow-up) of this periodic solution in H k for k _> 1. 

We consider two cases: 
- The case of minimal periodic solutions (in L 2 sense) that is there are 0 0 E S 1, 
w 0 > 0, x 0 E/R 2 such that 

V ( x )  = eiOoodl/2(~(&dO/2(X --  :T,O) ) . 

- The case of multiple solutions where an extra nondegeneracy condition is needed. 
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B.1. Case of Minimal Periodic Solutions. This section is devoted to the proof of  
Theorem 3. 

Let us assume that V is a minimal solution of (V~0), that is there are 0 0 E S 1, 

w 0 > 0, x o E IR 2 such that 

e~OOwl/2c)~wl/2~x _ Xo) ) . V(x) = o ~ ,  o 

Part ii) of Theorem 3 follows directly from Part i). Therefore, we restrict ourselves 
to the proof of  Part i). We want to show that there is a sequence 

(r nle)---+(V,-]VI2,0) in Hk, V k > l  as s---+0 

such that (%(t), %(t)) blows up in finite time T e in H 1, where (%, % )  is the solution 
of (Ico) with initial data (r n0e, nte)" To prove this instability result, we use in fact 
the explicit blow-up solutions constructed in Part I; for a fixed s > 0, 

/ i~12 _ ~2 

~At, x ) -  ( % - 0  e\(m~-t)) '  (8.1) 

% ( t , x ) =  N e \ ( T e _ t ) ] ,  (B.2) 

1 
where w e -- and the parameters 0~, T E will be carefully chosen and (Pe, Ne) 

c0s 
satisfies the following equation 

(iie) ~ A P  - P = N P ,  (8.3) 

[ c2(r2Nrr -4- 6rN~ + 6N)  - A N  = AIPt 2 . (B.4) 

Indeed, if we can show that as s --+ 0 

(toe, no~, rile) ~ (1/, - I V l  2, 0) 

in H k, Vk > l, where 

(-xJ e 7 (0~--4(7~2~) - c~ "~ ( W~ X "~ 
 0e(x) = H e  t--TT)' (8.5) 

( ~ e )  2AT (WsX"~ we (B.6) 
n0Ax) = e \ me ) '  

1 r 2 4 7  ( w e x ~ ]  

Then the uniqueness in time of solutions of equation (Ic0) implies that (%,  ne) 
defined by (B.1)-(B.2) is the solution with initial data (r The result 
follows from the fact (%,  ne) blows up in finite time T e. 

The proof  of  this result is done in several steps. 
- Step 1: Reduction to the case V(x) = Q(x). 
- Step 2: Choice of the parameters 0e, we, T~. 

Several steps and then needed to the proof of  the convergence of (r n0e, nle) 
to (Q(x),-Q2(x),  o) in H a, Yk > 1 as s -+ 0. 

- Step 3: Uniform convergence on bounded sets of IR 2 as s --+ 0. 
- Step 4: Uniform estimates at infinity in ]R 2 as e --+ 0. 

- Step 5: Conclusion of the proof  of  Theorem 3. 
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Step 1. Reduction to the case V(x )  = Q(x).  We claim that showing the result for 
V(m) = Q(x)  is enough from the scaling properties of  the equation. Indeed, assume 

. ' sO 1 C 1 Cl for all c I > 0 there is a sequence t~oe, nos, nle) E H}, V} > I, depending on c I such 
that 

~ C  I C l Cl - t@os,noe,nle) ~ ( Q , - Q 2 , 0 )  in H}, for/~ > 1. 
- (uso I (t), nsr ~ (t)) blows up in finite time T s in H i where (%~i (t), nsc ~ (t)) is the 

c I el solution of (I~o) with initial data (r nos, nls).  

Let consider a given V(x )  = ei~ 0 '~t 0 ~ - x o ) ) . W e f i x c  1=coco  o a n d l e t  

r (X) ~- e iO0 COl~2 r (COl~2 (X -- XO) ) , 

c t . 1 /2~ 
no~(X) = coono~tCo 0 tx - Zo)), 

~/2 q .  1/2. 
his(x) = coo nl~c% tx - Xo))' 

We have by direct calculations that 

(r nos, nip --+ (v, -IVl 2, o) 

in Hk, Vk > 1 and 

us(t  , x )  e~oo 112 . . W2. = w o uscitWo~,C~ 0 i x - x 0 )  ) ,  
1/2~ 

ns( t  , x)  = coon,s1 (coo t, w o tx  - Xo)), 

0 %  ) 
is solution of equation (Ico) with initial data ue (0), n s (0), --07- (0) = (Cos, n0s, nl~) 

which blows up in H 1 at Te < + oo. 
CO o 

We now consider the case V ( x )  = Q(x).  

Step 2. Choice of the parameters 0s, we, T s in formula (B.5)-(B.7). 
1 

We consider solutions (us, ns) of (Ic0) of the form (B.1)-(B.2) with co~ = - -  and 
C0C 

(P~, N~) solution of  (IIs) such that (Pc, Are) ---> (Q, _Q2) in H 1 • L 2 as g ---> 0. We 
have to choose rife, 0 e such that the initial data of  (us, he): 

(co  2Ns 
~os(X) = t , L )  t . T T ) '  

~,s(~) = ~ , , ~ )  Lt, L )  \ h ) +2Ns\  h )J' 

converges in H~ as g ---+ 0 to the initial data (Q, _ Q 2  0) of  the periodic solution. Let 

2 - 1  1 - w  e 
T s = c o  s = -  and 0 e -  

Cog T e Cog 
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We have 

Ojr i Ix2 CoS ~ . 

no~(X) = N~(x), (B.9) 

rile(x) = Co~(IxlN'Ax) + 2Ne(x)), (B.10) 

and the associated solution of  (It0) 

e ~ + ~ )  Pe(  l _--Coet), (B.11) 

We know from Part I that (Pe,Ne) converges in H 1 x L 2 to (Q _Q2)  as e -4 0. 
Therefore, (r hoe, nae) converges to (Q, _Q2,  0) in distribution sense. From the fact 
that (Pe, Ne) satisfies equation (IIe) we are able to prove a more accurate convergence 
of (r no,~, nl,e)" Indeed we show in the following steps that 

((~0,e, n0,e, %1,e) ---+ (Q, _Q2 ,  0) in H k, Vk k 1. 

This allows us to conclude the proof of  Theorem 3. 

Step 3. Uniform convergence (Pc, N~) to (Q, _Q2)  on compact set of  IR 2. 
Let us prove some uniform estimates in e on (P~,Ne)  in Hk(BA), where 

BA = {x c •2 Ixl < A}. We then conclude by compactness arguments that (Pe, Ne) 
converges to (Q, _Q2)  in Hk(BA) for all A > 0, k _> 1. 

Proposi t ion B.1. i) For A > 0 and k >_ 1, there is a %,A and e a such that for 
O < e < e  A, 

[PelHk(BA) + INelHk(BA) --< % A "  (B.13) 

ii) VA > 0 and k >_ 1, we have that (PE, N~) --~ (Q, _Q2)  in Hk(BA). 

Proof. i) Let us fix A > 0 and prove the result by recurrence on k. We know from 
Part I (see Theorem 4.2 and Corollary 4.3): 
- There exist t 0 > 0 and a constant e such that for 0 < c < c 0 the solution of (IIe) 
constructed in Part I is such that 

IPelH2 + IN~I U _< c, (g.14) 

- (Pc ,  N ~ )  --~ (Q,  _ Q 2 )  in H i  x L ;  as e ---, 0. ( ' )  Define e A = min c0, ~ . From (B.14) and Lemma 4.8 in Part I, we have that 

(B.13) is true for k = 1, 

[Pe[H,(BA) -t-[Nelttl(BA) < e and IPelL~ + INelL~ <- ~. (B.15) 

By recurrence, assuming (B.13) for k _> 1, let us prove the property for k + 1. We 
estimate IPelHk+l(Ba) using the elliptic regularity theory. We have 

A P  e= P~(N~ + I) in BA, 
Pe=Pe(A) on OB A. 
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We then deduce 

]PelHk+I(BA) <_ c(]P~N~lZZk-,(.A) + ]P~IHk-I(BA)) 

since (B.15). 
We now estimate IN, IHk-I(BA) from the integral formula (2.4) given in Part I: 

2Pe(s)P'(s) (EZs 2 - 1) 1/2 ds (B.16) 
1 

N~(r) -  (e2r 2 - 1)3/2 ~ 
1/e 

Thus the Leibnitz formula gives Vr E [0, A], 

1/e 

'N~k)(r)[ < -- ( ( 1 _ ~ r 2 ) 3 / 2 )  (k, /Pe(s)Ps ./28d8 
T 

+ c E  (1 - ~r:)3/2 ] ] I(P*(r)P'~(r))(i)[" (B.17) 
i=0 

We remark that for j >_ 0 and c~ > 0, 

dJ ( 1 ) a dJ (]~ly2)a 
drJ 1 - ) 2 r  2 = e J - -  dyJ 

1 where y = ex with lYl <- AeA <-- ~ and 

~ j (  1 a 1 a 

1 

From (B.17)-(B.18) and again Leibniz formula, 

) (  ) [N~(k)(r)[ _< c 1 + ~ ](Pe(r)P'~(r))(O I _< c 1 + E [P~(P)[ [P(q)] " 
i=0 p+q<_k 

Therefore 

I:V~k)lL~<B~) < (1 + Z p(:o) 2 P(q) 2 /x _ C ~ L (BA) e L (BA) ~ <-- C. 

p+q<_k 

This concludes the recurrence and the proof of Part i). 
ii) Let A > 0 and k > 1. Let us prove by compactness arguments 

(P~, N~) ~ (Q, _Q2) 

We already know that 

(/'~, N~) --+ (<2, _Q2) 

in Hk(BA) • Hk(BA). 

in L2(BA) x L2(BA). 

From Part i), there is a c > 0 such that for 0 < c _< e A, 

]P~IHk.I(BA) + INzlHk+I(BA) < C. 
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Therefore by compactness arguments for each sequence c n --+ 0 as n ---+ + c~ there 
is a subsequence (denoted on) such that 

(Pn, Nn) = ( P ~ '  N ~ )  ~ (P, N)  in Hk(BA)  • Hk(BA)  as n ---+ + ee .  

Thus (Pr~, Nn) -+ (/5, ~ )  in L2(BA) • L2(BA). From the uniqueness of the limit, we 
have ( /5  ~ )  = (Q, _Q2). We conclude that 

(P~,N~) ---+ ( Q , - Q 2 )  in Hk(BA)  x Hk(BA) ,  

and the proof of  Proposition B.1 follows. 

Step 4. Uniform estimates of  (Pc, N~) at infinity in R 2 as e ---+ 0. 
In Part I, we obtain some estimates on (P~, N~) at infinity for a fixed c > 0. We 

prove in this step these estimates uniformly for c small. 

Proposit ion B.2. There exist constants ~5 > O, e 1 > 0 and c k for each k <_ 1 such 
that VO < e < 61, V]~ ~ 1, Vr > O, 

rP~k)(r)l _< ~ e  -e~ , 

iN(k)(r)l _< ck 
1 + r k+3 ' 

Proof We prove in fact by recurrence on k the property: 

IP(~Z)(r)] <eke  - ~  for O < l < k + 2 ,  
(~)  ~k 

IN(eO(r)l <- l + r z+--------~ for 0 < l < k.  

a) We prove (.~0). We begin by estimates on P~. 

L e m m a  B.3. There exist constants ~ > O, Q > 0 and e such that for 0 < 6 < 61, 
Vr > 0 ,  
i) IP,(r)] _< ce - ~ .  

ii) IP~(r)l + IP~'(r)l < ee - ~ .  

Proof i) We need a crucial estimates on N~ proved in Part I (see Proposition 4.12): 
There exists constants 62 > 0 and A > 0 such that for 0 < a _< 62, 

1 
IN~PL~t{Ixr>A}) < ~" 

From Proposition B.1, there exist constants q > O, c such that for 0 < 6 < e~, 

IP~IL~(BA) <-- c. (B.19) 

Therefore we only have to estimate Pc(r) for r > A. 
We consider the elliptic problem on (A, + oc), 

1 
P~' + -  P ~ = ( N ~  + I)P~. 

r 

We have f o r 0 < 6 < Q  a n d r _ > A ,  

1 3 
IPe(A)l < c ,  P e ( + o o ) = 0  and ~ < ( N e ( r  ) + l ) <  ~. 
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Thus by usual techniques of maximum principle, there exists a constant c and 6 > 0 
which does not depend on ~ such that for 0 < c _< ~1, 

Vr �9 [A, + co), IP~(1")I _< ce - &  (B.20) 

and Part i) follows. 
ii) Let us prove the same estimate for P~ and P[ ' .  

Writing (1"P'(1"))' = r(N~(1") + 1)P~(1") and integrating on (1", + oo), we obtain (by 
decay of P~' for a fixed e proved in Part I) 

+oo 
P 

- / (N~(s) + 1)P~(s)sds .  (B.21) 1 " P e t ( T )  
a 
T 

It follows from (B.20) and (B.21) that 

V1" >_A, 

We conclude from (B.22) 

[1"P'(1")[ <_ cre -6~ . (B.22) 

V0 < g < C2, VT > 0,  [Pet(T)] ___~ C e  - S t  . 

The estimate on p~/ follows. 
- on one hand, from the uniform bound of P~'I on [0, A], 
- on the other band, from the relation on [A, + oo), 

P~" - - P ~  + (N  e + 1)P~ 
r 

and estimates on P~ and P~. This concludes the proof of  Lemma B.3. 
We now estimate N e. 

L e m m a  B.4. There is c > 0 such that for  g > 0 small, 

g 

[~(1")] -< 1 + 1 " ~  

Proof. We use for this estimate the integral formula (B.16) of  Ne, 

1 

Ne(1") - (e21"2 _ 1)3/2 K~(1"), 

where 

We remark that gr ,  

/ r e ( T ) =  j Pe(8)P;(8)(g282- 1)l/2ds. 
1/e 

j IKe(v)l < c j e-25s(r - 1) 1/2 d8 < c e -2&(es  + 1) ds 

7" 

<_ e e -6~ ds < c(e T + e - ~ ) .  

1/e 

(B.23) 

(B.24) 

Therefore 
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1 
- for  0 < r < - -  

- - 25 '  

5 e - - S t )  C 
INAr ) I  < c l K A r ) l  < c(eT- + -< 1 + r ~ '  

2 
- f o r t _ >  - ,  

E 

e - S t  C I K A r ) I  < c - -  < - -  
INs( r )  I _< c (52 r  2 _ _  1)3/2 _ (52r2)3/2 -- 1 + r 3 ' 

1 2 
- f o r - -  < r < -  a n d s > 0 s m a l l  

25 - - 5 

1 'f e - 2 5 s ( c 2 8 2  1) 1/2 ds 
IN~(r)] < ( 5 2 r  2 - 1)3/2 

1/e 

- 6  7" 

j -< ( s r  - 1)V2(-1 + 5r)3/2 (ss --  1) 1/2 d8 
1/e 

- 6  
e T -  ( s r  - 5  C < C - -  - -  _ 3 / 2  < Ce  5 7  % ~ 

- -  5 ( o r - - l )  3 / 2 -  - ( 1 )  3 1  + ~-~c 

This concludes  the p roo f  of  the 1emma. 
b) Proper ty  (~k)  impl ies  proper ty  (~k+l ) .  

We first prove  the es t imates  on N e and then on P~. 

L e m m a  B.5. There is a constant c k such that 

V0 < 5 < 51, V r ,  INfk+ l ) ( r ) l  ~ - -  
c k 

1 Jr- ~,k+4 " 

1 2 
Proof i) Es t imates  for  0 < r < 7 -  and r _> - .  

Z5  E 
Writ ing  again N~(r) = b~(r)Ke(r ), where 

K~(r) f ' - , = PAs)Pf(s) (52r 2 1)1/2 & 

1/e 

1 

b~(r) -  (52r2 _ 1)3/2 . 

Le ibn iz  formula  y ie lds  

IN~+I)(~)I < ~ ~ Ib~)(~)l [((1 - ~2~2),/2p~(~)p,(~))(~-q 
i=0 

q-Ib~/~+l)(r) l  I K e ( r ) [  . 

c 

1 + r  3 " 

(B.25) 

(B.26) 
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1 2 
- From (B.24) and direct calculations,  we  have  for  0 < r < ~ or r _> 3 '  

]b(i)(r)] < c ,  (B.27) 
-6 

IK~(r)l  _< c ( e ~  + e -6~) .  (B.28) 

- F rom est imates  on P , , . . . , P ( k + I ) ,  and again Leibniz  formula  we  have Vi = 
0 , . . . , k ,  

[((1 - e2r2)l/a p~(r )P[ ( r ) )  (k-i)] << ce -6~ . (B.29) 

- We claim that 

1 c 

for ]re - 11 _> 2 '  Ib(~k+l)(r)l -< i l  @Tk+4)e3 " (B.30) 

Indeed, 

1 

where  b(y) - (y2 _ 1)3/2 

and therefore 

b(k+l) = ek+i dk+lb(y)  
e dyk+l , 

and y = ez .  F rom direct computat ions ,  for  ]y - 1] >_ �89 

dk+lb(y)  1 

-< 1 +  [y] ~+4 '  

c e  k+l  C 
]b(k+l)(r)l <_ < 

(1 + ]er[ k+4) -- (1 + r)k+4e3 

which proves  (B.30). 
We then deduce f rom (B.27)- (B.30)  that for  ]er - 1] _> =1, z 

-5 

ii) Est imates  for r E ~ . 

We write N~(r)  = a~(r)Y~(r)  where  

1 
a~(r) - e(e + 1) 3/2 ' 

- 1 / ~  

Z c ( r ) = 2 P e ( r ) P ~ ( r ) ( e r + l )  1/2 . 

Leibniz  formula  yields 

IN(k+ 1)(T)] __C~ ( p+q=h+lE I, / 



Concentration Properties of Blow-Up Solutions 385 

On one hand 

3 

e(er  + 1) ~+p 

On the other hand, Lemma 2.9 in Part l and estimates for r E [ ~ , ~ l ,  

- 5  

IP~(r)l + . . .  + jG(k+2)(r)l < ce ~ , 

we deduce 

(B.31) 

V• 
From (B.31) and (B.32), Vr E L2 e e J '  

6 C 

Z 1 + r k+4 ' 
O<p<_k+l 

which concludes the proof of the lemma. 
We now estimate P)(k+3). 

L e m m a  B.& There exists c such that for  all 0 < e <_ Q, 

IP~(k+3)(r)[ _< ee -5~ " 

Proof. From Proposition B.1, there exists a constant c such that for 0 < c _< e 1, 

Let us estimate P(k+3)(r) for r _> 1. We derive (h + 1) the following relation: 

,, 1 p , + N ~ p  ~ 
P; : P ~ - r  ~ 

and we obtain 

lG(k+g)(r)l < I~k+l)(r)l  + c ~ P}q)(r) + c ~ IN~P)(r)P(~q)(r)l . 
p+q=k+] p+q=k+l 

From the estimates on P~, . p(k+2) and N~, ]v (~+1) �9 . , . . . , . . ~  we deduce 

Vr > 1, ]P(k+a)(r)l _< ce -S t  . 

Thus the lemma and property (~+1 )  is proved. 
This concludes the proof of Proposition B.2. 

Step 5. We are now able to prove (r n0~, n i t )  --+ (Q, _Q2,  0) in H k, Vk _> 1, 
which with Step 2 concludes the proof of Theorem 3. 

Proposit ion B.7. Let p, q > O. We then have as e ---+ O: 
i) xPP(~q)(x) ---+ xP(~(q)(x) in L 2, 

ii) N(~q)(x) ---+ -(Q2)(q)(x) in L a, 
iii) xN(~q)(x) ~ -x(Q2)(q)(x)  in L 2. 

--6 

Ig~q>(r)l ~ clZ~l w q  'c~ (1~,~2) -< ce57"  (B.32) 
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Proof. i) Let p, q _> 0. 
On the one hand, from Proposition B.2 there is a constant c such that 

VO < e < el ,  VX E ]I{ 2 , ]xPP~q)(x)l < el2c[Pe-Sl:~ ] 

which belong to L 2. 
On the other hand from step 3, Pe ~ Q in Hikoo for k _> 0. Therefore 

P}q)(x) ~ Q(q)(x) on compact sets and 

VX,  P(q)(x)  ~ Q(q)(x) .  

The convergence dominated theorem allows us to conclude to the proof. 
Proofs of  Parts ii) and iii) are similar. 
Let us now conclude the proof of Theorem 3. 

Proof of Theorem 3. We recall that 

CO i Ixl2 
r = --v e ~-~~ 

T~ 

n 0 v ( X  ) ~-- N E ( X )  , Tblv(X) = COC(]Xl_/~;(X) -~- 2 N e ( x ) )  , 

and the proof of Theorem 3 is reduced to the proof of the convergence of 
(r n0~, nl~) to (Q, _Q2 ,0 )  in H k for k _> 1, that is 

i) r  k, 
ii) n0e + _Q2  in H k-l, 

iii) nle --~ 0 in H ~-2 if k >_ 2, in ~ - 1  if k = 1. 

i) Let us prove that r ---' Q in H k for all k _> 0: gk  _> 0, v'0~'~(k) + Q(~) in L 2. By 
Leibniz formula and from Proposition B.2, 

- i lxl2c0 e 
(k) 4 p(k) 2 < c ~ lePlxlPp~q)lL2 < ce. Os -- C v L -- 

p+q=k 

Furthermore from Proposition B.7 and the dominated convergence theorem, 

- i lxl2c0 ~ 
e 4 p}k )~Q(k)  in L 2 as e ~ 0 .  

Therefore z(k) ~ Q(k) in L e and this concludes the proof of Part i). w0v 
ii) nov = N~ 7-4 _Q2  in H k by Proposition B.7. 

iii) Case k = 1. We have by definition 

Inle(x) l~- i  = IVelz2, 

where V �9 v e = nlv. By direct computations (see Part I), 

vAx) = exNAx) .  

Therefore Inl~(x)ls = elxNelL2 <_ ce ---+ 0 as e ~ 0. 
Case k _> 2. In~e(X)lHk-2 < COS I IxlN~(x) + 2N~(X)IHk-2 <_ Ce by Proposition 

B.7, that is Inl~(X)lHk-2 ~ 0 as e ---+ 0. 
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B.2 Case of Multiple Periodic Solutions, We consider as in Theorem 3 a real radial 
solution of 

(V~) ~ V = A V + [ V I 2 V  in R 2 

and (u(t), n(t)) = (e i ~  V(x), - IV(x)] 2) associated periodic solution of (It0). 
We assume that V is a nondegenerated in the following sense: the operator 

L v : W -+ A W  - w W  + 3V2W 

is a continuous one to one application from H i to L 2 with continuous inverse. 
By a similar proof to the one in Part I, we can prove that, for ~ E (0, Q)  small 

enough, there exists a radial solution (Pv,~, Nv,~) of 

(II~) A Pv,~ - Pv,~ = Nv,~Pv,~ , (B.33) 

o ) 
e 2 r 2 ~r 2 Nv, ~ + 6r Or Nv'~ + 6Nv'~ - ANv'~ = z~lPv~12, , (B.34) 

such that (Pv,~, Nv,~) --+ (V, - V  2) in H 1 x L 2 as e ---+ 0. 
In addition, 

4(--T+t) (--T+t) 
u ~ ( t , x ) -  T _  e ,  v , ~ \ T _ t ]  , 

n~( t , x )=  ~ N v , ~ \ T _ t / I ,  

1 
where w ~  - , T > 0 ,  a n d  0 E S l, is a blowing up solution in H 1 of equation 
(Ico). e0c 

Indeed, we only use in Part I 
- exponential decay at infinity of V (which is still true - see Berestycki-Lions [4]), 
- the nondegeneracy condition, 
to be able to prove that the operator 

Tv, e(h) -- L v I ( ( v  -k h)~/~((V q- h) 2) -~- V 3 -]- 3V2h) 

has a unique fixed point hv, ~ in a neighbour of  0 in H~ = H.) A H 2 for ~ > 0 small 
enough. 

We remark then (Pv,~, Nv,~) = (V + hv,~,~/~((V + hv,~)2)) is a solution of (II~). 

Moreover we have Pv,~ --~ V in H 2 as e ~ 0 and there exists constants c 2 > 0 and 
A > 0 such that for 0 < e _~ e 2, 

1 [Nv, e]L~O({x]>A}) <_ ~. 

We now apply the same procedure as the one of B. 1 to prove the instability of the 
periodic solution (ei~tV(x)~-IV(x)]2, 0). As in Sect. B.1, we prove that the initial 
data 

~ e i @ ~o~ r ~ -  PV,~(x), 

no,AZ) = Nv,~(z), 

~ ( ~ )  = ~o~(l~jNb, Az) + 2Nv, A~)), 
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of  the associated b lowing  up solution 

./" Ixl2c0 e t "~ X 

u~(t, x) = ( l _lo~t ) e~" ~ + ~  J Pv,~ ( l -CoOt ) , 

n~(t,x)= 1-coet  1 ' 

converges  to (V, -IvI2,0) in H k, Vk > 1 as e --+ 0. 
This concludes  the p roof  o f  Theorem 4. 
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