
Commun. Math. Phys. 141,475-502 (1991) Communications in 
Mathematical 

Physics 
�9 Springer-Verlag 1991 

Classification of Irreducible Super-Unitary 
Representations of eu(p, q/n) 
Hirotoshi Furutsu t and Kyo Nishiyama 2 

1 Department of Mathematics, College of Science and Technology, Nihon University, 
Kanda-Surugadai 1-8, Chiyoda, Tokyo 101, Japan 
z Department of Mathematics, Yoshida College, Kyoto University, Sakyo, Kyoto 606, Japan 

Received September 10, 1990; in revised form January 17, 1991 

Abstract. In this paper we classify all the irreducible super-unitary representations 
of ~u(p,q/n), which can be integrated up to a unitary representation of 
S(U(p, q) x U(n)), a Lie group corresponding to the even part of ~u(p, q/n). Note 
that a real form of the Lie superalgebra ~l(m/n; ~ )  which has non-trivial super- 
unitary representations is of the form su(p, q/n)(p + q = m) or ~u(m/r, s)(r + s -- n). 
Moreover, we give an explicit realization for each irreducible super-unitary 
representation, using the oscillator representation of an orthosymplectic Lie 
superalgebra. 

Introduction 

The theory of Lie superalgebras and their representations have come to play an 
important role in physics in recent years. They appear in several fields of physics 
such as elementary particle physics, nuclear physics, theory of supergravity and 
so on (cf. [20]). 

Much fundamental work regarding basic classical Lie superalgebras and their 
finite dimensional representations has been produced by V. G. Kac ([16-18]), 
who classified all the finite dimensional simple Lie superalgebras. Thereafter, in 
mathematics, many interesting papers on these algebras and their representations 
have appeared. 

In the early stages, mainly finite dimensional representations were studied. 
Irreducible representations of simple Lie superalgebras are divided into typical 
and atypical ones according to their central character ([18]). Finite-dimensional 
typical irreducible representations have many properties in common with the finite 
dimensional irreducible representations of simple Lie algebras ([1, Chap. II.5; 
16, 18]). But atypical representations are not so easy to treat even if they are finite 
dimensional. Properties of atypical (finite dimensional) representations have not 
been studied sufficiently (cf. [7]). 



476 H. Furutsu and K. Nishiyama 

In due time, infinite dimensional representations of simple Lie superalgebras 
become more important (e.g., [3]). At the same time, there appeared many 
papers on super-unitarity of the representations. It is worth noting that 
whether a representation is typical or atypical has little to do with its super- 
unitarity. 

In the last few years, super-unitary representations have been studied extensively 
in several different ways. For example they were studied from a general point of 
view in [4] and explicit cases such as orthosymplectic algebras were treated in 
[3, 9, 10, 23], etc. 

Classification of the irreducible super-unitary representations was made for 
some basic classical Lie superalgebras which have low ranks. For ~l(2/1; ~)  and 
its real forms ~I(2/1;R), ~u(2/1) and ~u(l, 1/1), classification of the irreducible 
super-unitary representations was made in [5] and [6]. Also, classification of 
o~(2/1; R)  of type B(0, 1) was completed ([6]). In 1-12], irreducible super-unitary 
lowest weight modules of o~p(4/1) were classified. 

Furthermore, all the irreducible super-unitary representations were classified 
for ~u(n/1) in [8], and for ~u(n/m) in [13]. In a sense, these special super-unitary 
algebras ~u(m/n) correspond to compact Lie groups. So their irreducible super- 
unitary representations are all finite dimensional. For general orthosymplectic 
algebras o~p (2n/m; IR), a large number of irreducible super-unitary representations 
were realized in explicit forms in [23]. It seems that these representations exhaust 
almost all of the irreducible super-unitary representations of o~p(2n/m;]R). For 
generic super-unitary representations called "discrete series," their (super-) 
characters were also obtained in [21]. 

Recently, the authors received a preprint [14], which classifies super-unitary 
highest weight representations of basic classical Lie superalgebras. The method of 
classification in Jakobsen's paper uses Kac's determinant formula and resembles 
a method used in the case of semisimple Lie algebra of the Hermitian symmetric 
type. However, his method is completely different from ours. 

Super-unitary (or star) representations of Lie superalgebras have also often 
been discussed in papers of mathematical physics ([9, 15, 19]). The notion of 
"super-unitarity" was defined under several different names and in different ways 
in those papers. 

Here, in this paper, we study the irreducible super-unitary representations of 
a real form of a complex Lie superalgebra ~l(rn/n; ff~) of type A ( m -  1, n - 1) (for 
the notations, see Sect. 2). The Lie superalgebra ~l(m/n; ff~) has two types of real 
forms ~l(m/n; ~ )  and ~u(p, q/r, s) (p + q = m, r + s = n). However, ~l(m/n; IE) itself and 
~I(m/n; IR) have no irreducible super-unitary representation except trivial ones. The 
real form ~u(p, q/r, s) also has no irreducible super-unitary representation but trivial 
ones if p, q, r and s are all positive at the same time. So the only real forms which 
have non-trivial super-unitary representations are ~u(p ,q /n ) (p+q=m)  and 
~u(m/r ,s ) (r+s=n) .  This fact seems well-known among experts (e.g., [-3, 14]). 
However, since we cannot find any available proof in the literature, we have given 
a short proof (Proposition 2.2). 

The main result presented in this paper is a classification of all the irreducible 
super-unitary representations of ~n(p,q/n), which can be integrated up to 
representations of S(U(p, q) • U(n)), a Lie group corresponding to the even part 
(Theorem 5.3). Let us explain the method of the classification. At first, note that 
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integrability implies they are admissible (see Lemma 1.4). Then Proposition 2.2 
tells us they must be lowest or highest weight representations. So what we have 
to do is to determine which highest weight modules or lowest weight modules are 
super-unitarizable. 

We imbed ~u(p, q/n) into an orthosymplectic algebra o~p(2(p + q)N/2nN;IR) 
(N > 1). Note that we indicate by o~p(2m/2n;R) the orthosymplectic algebra of 
type D(n,m), whose even part is isomorphic to ~o(2m;R)@so(2n). Since an 
orthosymplectic algebra has a special super-unitary representation called oscillator 
representation ([22]), we get a super-unitary representation of su(p,q/n) through 
the above imbedding. By decomposing it, we can obtain a variety of irreducible 
super-unitary representations. In this paper, complete decomposition is not carried 
out. Instead, we construct a number of primitive vectors for su(p, q/n) in explicit 
forms. Then their weights are lowest weights of irreducible super-unitary 
representations. The explicit forms of primitive vectors seem to be interesting for 
combinatorics theory. 

Finally, using the necessary conditions for super-unitarizability, we prove that 
the obtained super-unitarity representations indeed exhaust all,of the irreducible 
super-unitary representations. 

Our method of classification is completely different from that in [14] and we 
think ours is simpler. However, note that we only treat integrable super-unitary 
representations, while Jakobsen classifies all the irreducible super-unitary highest 
weight modules in 1-14]. Our method has one more advantage, namely it produces 
realizations of the representations naturally. 

Let us explain each section briefly. We introduce the notion of"super-unitarity" 
in Sect. 1. Super-unitarity for representations of a Lie superalgebra is considered 
also in [6, 24, 27], etc. We also define the "admissibility" for representations in 
Sect. 1 and clarify the relation between integrability and admissibility. 

In Sect. 2, we obtain a necessary condition for super-unitary admissible 
representations of ~u(p, q/n). This condition is a very weak one and requires that 
all the weights of a super-unitary representation satisfy the same kind of inequality 
(Proposition 2.2). Roughly speaking, this inequality requires that the weights of 
the ~u(n)-part are to be distributed between those of the ~u(p)- and ~u(q)-parts of 
the ~u(p, q)-part. From this inequality, it follows that an irreducible super-unitary 
representation must be a lowest or highest weight representation. The standard 
positive root system A § of ~u(p, q/n) is also introduced in Sect. 2. 

In Sect. 3, we imbed ~u(p,q/n) into osp(2(p+q)/2n;R) in explicit forms and 
introduce another positive system ~ +  of ~u(p,q/n). This is called the twisted 
positive system and its image, caused by the above imbedding, is the standard 
positive system for o~(2m/2n;R). 

Further, in Sect. 4.1, we explain the oscillator representation of osp (2mN/2nN; IR) 
which is a super-unitary lowest weight representation. An imbedding of su(p, q/n) 
into osp(2mN/2nN;R) is introduced in Sect. 4.2 and operators in the above 
representations for the root vectors of ~u (p, q/n) are shown in Sect. 4.3. We construct 
a number of primitive vectors for 7 t -  in the representation space. Then each of 
these vectors generates the irreducible super-unitary ~F+-lowest weight 
representations (see Proposition 4.3). Thereafter we transform those ~U-_primitive 
vectors into primitive vectors for the standard positive system A-.  So we produce 
realizations of irreducible super-unitary A+-lowest weight representations as 
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subrepresentations of oscillator representations (Proposition 4.5). This proposition 
gives a sufficient condition for super-unitarizability. 

In Sect. 5, as the first step, we introduce the triplets of Young diagrams each 
of which represents a weight satisfying the necessary condition in Sect. 2. Then, 
as the second step, we translate the obtained super-unitarizable lowest weights in 
Proposition 4.5 into simpler forms by means of the above triplets of Young 
diagrams. After that, we show that these weights indeed exhaust all of the super- 
unitarizable lowest weights. Thus we obtain the complete list of super-unitarizable 
lowest weight representations in Theorem 5.3. Furthermore we produce their 
realizations by the imbedding ~u(p,q/n)c_~ o~p(2(p + q)N/2nN;IR) and oscillator 
representations of the latter. 

For highest weight representations, we can get a result in a similar way as in 
the case of lowest weight representations (Theorem 5.5). 

I. Definitions of Super-Unitary Representations 

1.1. A Definition of Super-Unitarity. There are different ways of defining 
super-unitary representations of a Lie superalgebra ([6, 22, 24]). They appear 
different, however their essence is the same. 

Let (L, E) be a representation of a real Lie superalgebra g = g0 ~ g~- 

Definition 1.1 ([6, Sect. 1.3]). (L, E) is called super-unitary if there exists a positive 
definite Hermitian form ( . , . )  on E = E~(g E~ such that 

(i) (E6, Er )  = O, 
(ii) ~s  (x~g~) is symmetric with respect to (-, "), i.e., (x~-1L(x)v,  w) = 

(v, ~ -  IL(x)w) (v, w~E). 
(iii) There is a constant ~ = +_ 1 depending only on (L, E) such that, if one chooses 

a square rootj o f e x / ~ l ,  thenjL(y) (y~g~) becomes symmetric with respect to ( ' ,  "), 
i.e., (jL(y)v, w) = (v,jL(y)w) (v, wr 

We call this constant ~ an associated constant. 
The notation j sometimes leads to misunderstandings because there often 

appear many different j's. In this definition, we respect the notation as used in the 
original paper. However, later on we prefer the notation ~ - - 1  rather than j. 

In the above definition, the choice of j = ~ seems superfluous because 
super-unitarity only depends on the choice of ~ = +_ 1. So there must be a definition 
only using the constant e. 

We call a form (', .) on E x E super-Hermitian if it satisfies 

(a, b) = ( - -  )dega'legb(b, a) 

for homogeneous elements a and b in E. Here deg a means the degree of a. A 
super-Hermitian form is said to be homogeneous of degree zero if (E6, E r ) =  0. 

In [22, Definition 5.2], [24], a representation (L, E) of Lie superalgebra g with 
the following properties is introduced. There is a super-Hermitian form (.,.), 
homogeneous of degree zero, on E which satisfies 

(i) (., ") is e-positive definite on E, i.e., (., )lEa is positive definite and there is a 
constant e =  ___1 depending only on (L,E) such that ex/-Z-i-(.,.)lE6 is positive 
definite. 
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(ii) The form (.,.) is invariant under L, i.e., 

(L(x)v, w) + (--)aegxdegV(v, L(x)w) = 0 for homogeneous x~g and v, w~E. 

This representation is also called super-unitary. In fact it is easy to see that they 
determine the same class of representations. 

1.2. lntegrability and Admissibility. In this subsection, we gather some practical 
terms and notions for super-unitary representations, which mainly concern 
integrability of representations. The first statement is about a Lie superalgebra g 
itself. 

Definition 1.2. ([17, Sect. 2]). A complex Lie superalgebra g r  g~g~ is called 
classical if it is simple and the adjoint representation of g~ on g~ is completely 
reducible. A real Lie superalgebra g is called classical if its complexification is 
classical. 

In this article we only treat classical Lie superalgebras and thier super-unitary 
representations. If g is a real Lie superalgebra which is classical, then 96 is reductive 
Lie algebra ([17, Theorem 2]). Let f be a maximal compact Lie algebra in 90. 
Here we say ~ is compact if exp (ad f) is compact in exp (ad 96). So by definition, 
f contains the center of 96. 

Definition 1.3. Let (L, E) be a representation of 9. Then we say (L, E) is admissible 
if its restriction (LI~,E) to f is decomposed into a direct sum of finite dimensional 
irreducible representation of ~ with finite multiplicity. 

This definition assures that an irreducible admissible super-unitary representa- 
tion can be integrated at least up to exp(g6) (see [26, Theorem 0.3,10], for 
example). Conversely, we have 

Lemma 1.4 ([11, Theorem 6]). Take an irreducible super-unitary representation 
(L, E) of 9. I f  (Llgo, E) is obtained by the differentiation of a unitary representation 
of a reductive Lie group G o with the Lie al9ebra 96, then it is admissible. 

Hence, in the following, we can assume all the super-unitary representations are 
admissible. 

Lemma 1.5. Let 9 be a classical Lie superalgebra and (L,E) its admissible 
representation. Then (L, E) has a weight space decomposition with respect to a Cartan 
subaIgebra of L 

Proof. Since (L, E) is admissible, it is a direct sum of finite dimensional irreducible 
representations of f and each of them has a weight space decomposition according 
to an elementary theory of Lie algebras. Therefore (L, E) itself has a weight space 
decomposition if we sum up weight spaces in each irreducible component of 
f. Q.E.D. 

2. A Weight Condition for Unitarizable Lowest Weight Modules of eu(p, q/n) 

Let V = Vo | Vr be a superspace of dimension (re~n) over ~,  that is, V 6 and Vt 
are complex vector spaces of dimension m and n respectively. We often denote V 
by r We define a super-Hermitian form h~p.~/,,s)(.,. ) on V using the matrix 
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J(p,q/r,s) for p + q = m and r + s = n: 

J(p,qlr,s) = 

and for v, well;  m'', 

h(p,q/r,s ) ( v, w) = tt3 j (p,q/r,s) l~, 

where we consider an element in 112 m'n a co lumn vector.' Let us define a Lie 
supera lgebra  which leaves h(., ')= h(p,q/,,,)(-,;) invariant.  Fo r  ke{0,  1}, we put  

u(p, q/r, S)k = {AegI(m/n; ll;)klh(Av, w) + (--)kaeg(%(v, Aw) = 0 for v, weV},  

and ~ = u(p, q/r, s) = u(p, q/r, s)6 (~ u(p, q/r, s)r. A subalgebra ~u(p, q/r, s) = u(p, q/r, s)n 
d(m/n; 112), denoted by g, is a real form of d(m/n; ~2). The  sets of  all d iagonal  matr ices 
of  these Lie superalgebras  become Car t an  subalgebras  and  we write them as 
and [~ respectively. Let H k ,  t = Ek, k -'}- Et,teb r for 1 < k < m < l < m + n, where Ek,  l 

is a matr ix  of M(m + n; (E) with (k, /)-element 1 and elsewhere 0. 
N o w  we s tudy the uni tary  representat ions of  ~u(p, q/r, s). However ,  in a lmost  

all the cases the only irreducible uni tary  representa t ion  is the trivial one. In  fact, 
we have 

L e m m a  2.1 (cf. [5, Propos i t ion  2.2]). Let (r~, V) be an irreducible admissible super- 
unitary representation of g = ~u(p, q/r, s) with associated constant ~ = +_ 1 and ), be 
any weight of  V, then 

l <_k<_p,m<l<__m+r or 
e2(Hk,l) < 0 for 

p < k < = m , m + r  <l<=m+n,  
and 

l<_k<_p ,m+r<l<__m+n or 
e2(Hka ) >= 0 for 

p < k < = m , m < l < = m + r .  

Proof. Let  ( . , . )  be a Hermi t i an  form on V which makes  rc super-unitary.  F r o m  
the definition of unitarity,  we have 

( t , /~ )~  <~(x)~(x)v~, v,> > o, 
where X ~ g  r and v~ is a non-zero  weight vector  with weight 2. T o  get the first 

condition, we put  X -- Eka + ~ Ez,keg> Then  it holds that  2re(X) z = re(IX, X ] )  = 

~t(x/Z-1Hka) and we get 

- e2(Hk,l) >= O. 

The second condi t ion can be obta ined  in the same way. Q.E.D 

F r o m  the above  lemma,  we can easily see that,  if V is not  trivial, then either 
p = 0, m or r = 0, n. In  fact, let us consider a weight )~e(~) r * of V, and put  2k = e2(Ek,k) 
for 1 --< k _< m and p~ = -e2(Em+~,m+Z) for 1 _< l -< n. Then f rom the lemma,  we get 

2k -<- #2 for the first condition,  
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and 

#t < 2k for the second condition. 

Therefore if p # 0, m and r # 0, n it holds that 

2~ < #b -< 2~ < #d < 2, 

for l < a < p < c < m  and l < b < _ r < d < n .  Thus 2k=#l  for all k,l, and the 
restriction of 2 to b is trivial. 

Since su(p, q/n, 0), ~u(p, q/O, n), ~u(n, O/p, q) and ~u(0, n/p, q) are all isomorphic 
to each other, hereafter we only consider the algebra g--su(p ,  q/n, 0). Mainly we 
will write ~u(p, q/n) = ,u(p,  q/n, 0). Let us list a basis for ~u(p, q/n). 

a) Basis for ~u(p, q/n)~: 

x//-~(Ei,i- Ej,j) (i < j  and i, j e l p  = {1 . . . . .  p} or i, j e lq  = {p + 1,.. . ,m}), 
m " "l" rt 

x ~ : I C ,  where C = n  E E i ,  i + m  X Ei,i, 
i = l  i = m + l  

I(E,,j + ej,,), E, , j -  
( i < j  and i, jE I  v or i , j~lq or i , j 6 l , =  {m+ 1 . . . .  ,m + n}), 

(i6lv, j~lq). x /~ - l (E i . j -E j . i ) ,  Ei.j + ELi 

b) Basis for ~u(p,q/n)~: 

E i , j + ~ - l E j , i  

E ~ , j - x ~ - I E j , ~  

(ielp, j e l ,  or ieI , ,  je lp) ,  

(ielq, j e l .  or ie I , ,  jelq).  

We describe a positive system in the root system of ~u(p,q/n). Let {ek} be a 
basis of(be) * such that ek(Et,~) = 3k,~, then one of the positive systems is given by 

A + = {ek -- elJk < l, k, l e I  v or k, lelq or k, I~1,} 

:the set of positive compact roots, 

A +. = {ek -- e l lk~I  v, l~Iq} 
A + A+ - +  = c U Z l n  

A-~ = {ek - e, lk~I  v ~Iq,  l~In} 
A § + + : A 6 U d~ 

:the set of positive non-compact roots, 

:the set of positive even roots, 

:the set of positive odd roots, 

:the set of positive roots. 

Let us call the positive system standard (see Sect. 3.2 bis) and the terms highest 
or lowest refer to this particular positive system A § Sometimes we use the notation 
f t  (l < n) instead of el+,.. If 2~(Dr * is expressed as 

2 =  ~ 2,e i -  Z #i f l ,  (2.1) 
l <=i<=m l <_i<_n 

then we write 2 = (21,22 . . . . .  2m/#1,#2 . . . .  ,#,) and call it a coordinate expression 
of 2. Note that the coordinate expression has ambiguity because it is a restriction 
of an element in (b r to b- 

Proposition 2.2. Let (~, V) be an irreducible admissible unitary representation o f  
g = ~u(p, q/r, s) with associated constant e = 4- 1. 
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(1) I f  p :# O, m and r # O, n, then (re, V) is trivial. 
(2) For g = ~u(p, q/n) = ~u(p, q/n, 0), there are two possibilities. 
(2a) I f  e = 1, then (~, V) is a highest weight representation and its highest weight 

2 satisfies 

2p+1 >""  >=2m> l~, >' '" > ~1> 21 >="" ~2p. 

(2b) I f  e = -- 1, then Oz, V) is a lowest weight representation and its lowest weight 
2 satisfies 

2p+1 <. . .  <=2m< # , < " "  ~#1 <21 <_"" < 2p. 

Proof. (1) was proved and now we show (2a). 

Since V is admissible, V has a weight space decomposition. Let v be a non-zero 
weight vector. From the irreducibility of V, we get V = U(gC)v, where U(g c) is 
the universal enveloping algebra of ge. Denote 

g o , , :  @ g~, g ~ =  @ g~, and g a , c = b G @ g ~ ,  

where g~ or ga is a root space of gC of root :r or fl respectively. Then g0,~ is the 
complexification of a maximal compact subalgebra f of g0. According to Poincar6- 
Birkhoff-Witt theorem, it can be written as 

v = v(g*)v = ( ̂  g?)(^ g+)V(go"-:)v. 

We write W = U(g~)v, then from Lemma 2.1 any weight 2 of W will satisfy the 
following condition: 

2~ < #k < 2i, 

for 1 __< i < p < j  < m and 1 < k < n. Therefore there exists a d~+-highest weight 
vector in W. In fact, from the above condition, there exists a non-negative integer 
t(1,p+ 1) such that (E~,p+l)"~'P+l)v#0 and (E~,p+l)t~ There also 
exists a nonmegative integer t(1, p + 2) such that 

(El,p+2)t(l'p+2)(El,p+l)t(l'P§ and tv "~t(I'p+2)+I/F7 I)t(I'P+I)v=--O, 
�9 ~ , ~ l , p +  21  ' ~ l , p  + 

and so on. Then the vector 

is A+-highest. We again denote this vector by yeW. Since v generates a finite 
dimensional representation for the compact subalgebra g~,~, there exists an 
Xe  U(g6,~) such that Xv becomes a A~+-highest weight vector. The vector w ~-Xv 
is also a A +-highest weight vector because of the relation [g~,,, g0,~] c g~,~. 

If Y, and Y2 are in g~, then we have 

[Y1, Y2] w =(Y1Y2 + Y2Y1) w =0,  

since [g~, gf~ ] c g~-. Therefore we can conclude that the action of A g~ on w is 
well-defined. Take p+e A g~- with the highest weight among the elements which 
satisfy p + w # 0. Then p + w becomes a A +-highest weight vector because: 



Irreducible Super-Unitary Representations of ~u(p,q/n) 483 

(i) If Y is a root vector in g~, then Yp+~ Ag I has a weight larger than that 
of p+. So by the above definition of p+, we have Yp+w = O. 

(ii) If Yis in + ~0,,, then it holds that Yp+w = p+ Yw--0 ,  since [g+, + g~,~ = (0). 
(iii) Assume that Y is a root vector in 9 -+ We can write 0,c" 

Yp+w=p+ Yw + [Y,p+]w= [Y,p+]w. 

Since + + + [90,c, gf ] =g~ ,  we can conclude that EY, p+]~/~g~, which has a higher 
weight than that of p+. Hence we have Y p + w = [ Y , p + ] w = O  by the above 
definition of p+. 

Thus p+w becomes a A+-highest weight vector, and V is a highest weight 
representation. The proof for (2b) is similar. Q.E.D. 

Corollary 2.3. Let(re, V) be an irreducible super-unitary representation of g = ~u(p, q/n). 
I f  (7c, V) can be integrated up to a representation of S(U(p, q) • U(n)), then (Tz, V) is a 
highest or lowest weight representation with integral weights. 

Proof. From Lemma 1.4, (z, V) is admissible. Then it is a highest or lowest weight 
representation. Since the weights are obtained by the differentiation of a 
representation of a maximal torus in S(U(p, q) • U(n)), they are integral. Q.E.D. 

3. Canonical Imbedding of Super-Unitary-Algebras 
into Orthosymplectic Algebras 

3.1. Abstract Imbeddin9. Let V =  V6~) V~ be a complex superspace with super- 
Hermitian form h(.,.). We assume that h is of degree zero, i.e., h(V6, V~)= 
h(Vf, Vo) = 0. Then by u(h) we denote a super-unitary algebra consisting of elements 
which leave h(.,-) invariant: 

u(h) = {x~gl(V)t h(xv, w) + (--)aegxdegVh(v, xw) = 0}. 

Consider V as a real superspace and put 

b(v, w) = Im h(v, w) 

1 
- x/-12~{h(v'w) + (--)"egvdcgwh(w,v)} (v, weV). 

Then b(., .) is a super-skew symmetric real linear form on V. 

Lemma 3.1. Every element x~u(h) belongs to osp(b) if it is considered as a real 
linear transformation on V. 

Proof. In fact, since x leaves h(., .) invariant, it leaves lm h(., .) invariant. Q.E.D. 

Note that b(-, .) is non-degenerate if h(.,.) is non-degenerate. 

3.2. Explicit lmbeddino. Let us consider the following normal form of h(', ') (cf. 
Sect. 2). Put dim c V = (re~n). We arrange first a basis for V~ then one for V r and 
get the basis for V = C m'". Using this basis, we define h(',-) = htp,q/r,~)(. , .) by the 
matrix Jtp,q/r,s)(P + q = m, r + s = n) as in Sect. 2. 

We write u(h) = u(p, q/r, s) and call it a super-unitary algebra of type (p, q/r, s). 
Let ~I(V) be a Lie superalgebra consisting of all the super-traceless matrices. Then 
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a special super-unitary algebra ~u(p,q/r,s) defined in Sect. 2 is equal to 
u(p,q/r,s)c~l(V). If m ~ n then the center of u(p,q/r,s) is isomorphic to u(1) and 
we have a decomposition 

u(p, q/r, s) = u(1) • ~u(p, q/r, s). 

Let {vii 1 _< i _< m + n} be a standard basis for V = ~m,,, whose i th element is 1 
and the others are all zero. Now we want to have a matrix B for super-skew 
symmetric form b(., .) = Im h(., .). Let V • be a real form of V spanned by the basis 
mentioned above. Then, as a real vector space, V has the following basis: 

{ ~ l v I , . . . , N ~ l V p ,  1)p+ 1 . . . . .  l)p+q,l) 1 . . . .  , V p , ~  lVp+ 1 . . . .  , x/~- 1 vp+q; 

Put 

= . . . .  = . . . . .  

Vr R =  <Vm+ 1 ... .  ,Vm+r>/~, Vs R =  <l)rn+r+l,...,1)m+r+s>/~. 

Then the above basis is arranged in the following order: 

rt V ~ V ~ ~ V ~ , x ~ - I  R R X~-- I VRp' VRq ' V p , x ~  - 1  q ,--, ,X/ ~ V~ , V~ . 

F~ this basis the matrix B f~ b("') is iressed as f ~  = [ l m . l , ,  ex  12r __12s 

and 
b(v, w) = tvBw (v, we V). 

We denote the orthosymplectic algebra o~p(b) for the above b by o~p(2m/2r, 2s; N.) 
or simply o~p(2m/2r, 2s). 

The above results are summarized in 

Proposition 3.2. A super-unitary al#ebra u(p, q/r, s) can be canonically imbedded into 
o~p(2(p+ q)/2r, 2s;lR). With respect to this imbedding, the commutant of  u(p, q/r, s) 
in o~p(2(p + q)/2r, 2s;R) is the center u(1) o f  u(p, q/r, s) itself under the condition 
p + q ~ r + s .  

Proof. Take X in o~p(2(p+q)/2r,2s;[1). Since u(1) and a Cartan subalgebra of 
~u(p, q/r, s) together generate a Caftan subalgebra of o~p(2(p + q)/2r, 2s; IR), if X 
commutes with both n(1) and ~u(p, q/r, s) then X commutes with the whole Cartan 
subalgebra. According to the definition of Cartan subalgebra, X belongs to the 
Cartan subalgebra of o~p(2(p + q)/2r, 2s; N.). So X can be expressed as 

X = H u + H~u (Hu~u(1), H~uECartan algebra of ~u(p, q/r, s)). 

The component H~u commutes with ~u(p, q/r,s). Since ~u(p,q/r,s) is simple, it 
must be zero. Now we can conclude that X~u(l). Q.E.D. 
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In the following, we only consider the super-unitary algebra u(p, q/n, 0) = u(p, q/n) 
and the orthosymplectic algebra o~p(2m/2n, 0;11t)= o~p(2m/2n; It). 

To exhibit the correspondence of the roots of u(p, q/n) and o~p(2(p + q)/2n; R), 
we first prepare the notations for orthosymplectic algebras. The elements in 
o~p(2(p + q)/2n;N.) are matrices of the form 

_ _  t h 

~Q ,p 

where A egl(m; N) (m = p + q), B and C are symmetric, P and Q are m x 2n-matrices, 
and D belongs to ~o(2n). This algebra has a compact Cartan subalgebra t: 

t =  h =  0 
0 

- B  

A = diag(a 1, a 2 . . . .  , am), 

B = diag(bl, b2 . . . .  , b,), ai, b f i~} .  

We define cie(tr * (1 __< i _< m) and djE(tr * (1 < j _< n) by putting 

ci(h) = ~ a,, dj(h) = x ~ -  1 b,, 

for her of the form in (3.1). Then roots are given as 

Z '+ -- { q - c j l  1 <=i<j<=m}w{di+djll  <=i<j<=n} 

.S + = {ci+ @1 <=i<=j<=m} 

Zo 2 

Z'~- = {c,___ dj[1 < i < m ,  1 < j < n }  

s+=zg s  

If ae(tr  * is of the form 

: the set 

: the set 

: the set 

: the set 

: the set 

of positive compact roots, 

of positive non-compact roots, 

of positive even roots, 

of positive odd roots, 

of positive roots. 

~ =  ~ ~iCi "+ ~ 1*idi, 
l <i<-m I <i<n 

(3.1) 

where 

Av=diag(al,a 2 . . . . .  ap), Aq=diag(ap+ l,av+ 2 . . . . .  av+o) , 

Then, if we denote the imbedding 

B = diag(b 1, bz . . . . .  b,). 

described above (cf. Proposition 3.2) by 

then we write 2 = (21, 2 2 . . . . .  i'm~1*1, t'2 . . . . .  1.,) and call it a coordinate expression of 2. 
Take h in a compact Cartan subalgebra [9 of ~u(p, q/n): 

" X / - ~ Z  p 

h = x f T 1 A q  el?, 
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~, ~(h)~o~p(2m/2n;~,) is of the following form: 

Ap 

0 

- A p  
~,(h) = 

Aq 

-Aq  

--B 

~t. 

B 

Now it is easy to see that ~ maps roots 

" e l - e  j, e i - f j  and f i - f i  

of ~u(p,q/n) (see Sect. 2) to the roots 

sgn(i)cl-sgn(j)cj, sgn(i)ci-dj and d i -  d~ 

of o~p(2m/2n; IR) respectively, where sgn(/) is 1 if 1 ____ i =<_ p and - 1 if p + 1 < i < p + q. 
We define a positive system T+ for ~u(p, q/n) as 

and call it the twisted positive system (or compatible positive system for osp). 
Recall that we called the positive system A + for ~n(p,q/n) standard. 

4. Primitive Vectors in the Oscillator Representation 
for a Special Unitary Algebra 

4.1. Review of Oscillator Representations. In [22], we defined a super-unitary 
representation for o~p(2m/2n; F,) called the oscillator representation. Let us review 
the construction of it briefly. 

First we give the representation space of the oscillator representation p. Let 
Cr 1 =< I =< n) be a Clifford algebra over C generated by {rt] 1 < l < n} with 
relations 

r { = l ,  rirj+rjri=O (l<=i#j<=n). 

We denote by C~(rzl 1 < I < n) a subalgebra of Cr t < t < n) generated by even 
products of rjs and by Cr 1 < l <  n) a subspace generated by odd products of 
r]s. Then clearly we have 

Cr < l < n ) =  C~(rtll <l<n)@C~(rtll  <l<n)  

and Cr 1 < l<  n) becomes a superalgebra with this ;E2-grading. 
For the representation space F = F6@ Fr  of p, we take as follows: 

F = F 6 0 F ~ ,  
F 6 = ~ [ z  k [ 1 < k < m] | C~(rtll < l < n), 
Fy=C[Zkll <k<m]| <I<n), 
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where tE[Zk[ 1 <_ k <_ m] means a polynomial algebra generated by {zk[ t _< k _< m}. 
Second, we give the operations of o~p(2m/2n;R) on F. Let V =  Vo@ Vf be a 

superspace of dimension (2m/2n) on which o~p (2m/2n; R) naturally acts. We denote 
a super-skew symmetric form on V by b and consider that o~i(2m/2n; P,.) = o~p(b). 
Choose the basis {Pk, qkl 1 <-- k <- m} for V6 such that 

b(p i, q j) = - b(qj, p~) = 6 u, b(p~, p j) = b(q i, q j) = O, 

and an orthogonal basis {rt, st[ 1 < l <  n} for Vr with respect to b with length x/~. 

Then there exists a superalgebra Ca(V;b)  over IR which is generated by 
{Pk, qk ] 1 <-- k < m} ~ {h, st [ 1 <= l <= n} with relations 

p~pj - qjp~ = 3 u, r~sj + sjr~ = 0, r~rj + rjr~ = 26u, s~sj -t- S i S  i = 2Oij, 

and all the other pairs of p,q ,r ,s  commute with each other. C~(V;b)  can be 
considered as a Lie superalgebra in a standard way (cf. [17, Sect. 1.1]), and 
o~p(2m/2n; ~ )  can be realized as a sub-Lie superalgebra in Ca(V;  b) (cf. [25]). Let 
L be a subspace generated by second degree elements of the following form: 

{xy + (-)a~g~d~gr yx  Ix, y E {Pk, qk l1 --< k < m} w {rt, st l1 < l < n} }. 

Then L becomes a sub-Lie superalgebra. An operator ad(xy+(--)dr 
preserves V ~ Ca(V;  b) and the bilinear form b, and this gives an isomorphism 
between L and o~p(2m/2n; JR). From now on, we will identify L and o~p(2m/2n; N )  
with each other. 

The oscillator representation p is actually a representation of the superalgebra 
C a ( V ;  b) given by 

p(p~)-  - -  z k -  j 1 ( l < k < m ) ,  

 51(or) 
P ( q k ) = - -  Zk+ |  (l_<k_<m), 

p(rt) = 1 | r I (1 =< l =< n), 

p(s3 = 1 |  rta, (1 __< I __< n), 

where a t is an automorphism of the Clifford algebra Ca(h i  I < l <  n) which sends 
r k to (-)o~,'r k (1 <k<_n).  If we restrict p to the sub-Lie superalgebra 
o~p(2m/2n; IR)cCa(V;b) ,  then p gives a super-unitary representation for 
o~p(2m/2n;lR). For more information on p, see [22] and [23]. 

4.2. Imbeddin 9 of  ~u(p, q/n) into o~p(2mN/2nN;]R). As in [23], we consider the 
following imbeddings: 

:~u(p, q/n) c -j' , o~p(2rn/2n; • )  c-' , o~p(2mN/2nN; N.). 

Here t is given as follows. Let V = V 6 ~ V r be the superspace with the super-skew 
symmetric bilinear form b ~ bv as above and W = W6 be a usual N-dimensional 
vector space with a positive definite inner product b w. Then a superspace 
V |  V6|  W 6 +  V~| W~ is endowed with a super-skew symmetric bilinear 
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form bv| = b v |  If we consider 

o~p(bv) = o~p(2rn/2n; IR) 
and 

o~p(bv| = o~p(2mN/2nN; ~ ) ,  

t is given by I(A) = A | lw for A eo~p(2m/2n; ~) .  In  the matrix form, this only means [al el ] 
t (A)= a211N a221N for A=(a~j). 

Since ~u(p,q/n) is imbedded into o~p(2m/2n;lR) by 0 as in Sect. 3.2, ~u(p,q/n) is 
now imbedded into o~p(2mN/2nN; IR). We denote this imbedding by 0. 

Let (p, F) be the oscillator representat ion of  o~p(2mN/2nN; R )  so that  

F =lE[zij[1 < i <m,  1 < j < N] |162  <=k <=n, 1 <_l <_ N). 

The successive application of  t} then p gives a super-unitary representation r = p o 
of su(p, q/n). In  the following subsections, we try to decompose this super-unitary 
representation ~ of ~u(p, q/n). Since the associated constant  of p is e = - 1, an 
irreducible super-unitary representat ion for ~u(p, q/n) which appears  in (t~, F) is a 
lowest weight module�9 Therefore what  we have to do is to find all the primitive 
vectors for ~. 

4.3. Operators for Root Vectors. Let X ,  (c~eA) be a non-zero roo t  vector for a root  
of  ~n(p, q/n). Then up to a non-zero constant  multiple, operators  ~(X,) are given 

as follows. 
Roo t  vectors for e t A - "  

(I) c~ = - (ek -- fz)(1 < k < p, 1 < l < n); 

(II) e = -- (ek -- fO(P < k < m, 1 < 1 < n); 

(III) e -- - (ei - ek)(1 < i < k -< p); 

(IV) cr = - (ei - ek)(P < i < k <-_ m); 

(V) e = -- (ei -- ek)(1 < i =< p < k _--< m); 

(VI) ~ = - (fk - ft)(1 < k < l < n); 

where al,j is an au tomorph ism of C*(rkzl 1 < k <- 
�9 

O~i,j(rk,l) = rk, 1 i f  i V ~ k 

[. - -  rio if i = k 

N 

- -  r l,j(1 -I- ~l,j), 
j= 10Zk,j 
N 

Z Zk,jrt,j(1 q- ~l,j), 
j = l  

N 

Z k , j _ _  
j= 1 ~Zi,j 

N 0 
Zi j 

j= 1 " 8Zk,j 

_ _ _ _  

j :  1 ~Zi, j  ~Zk,j 
N 
Z rk,jrl,j(1 -- ~k,J ) ( l  -I- ~l,j), 

j = l  

_ _ n , l - < l - < N )  s u c h t h a t  

or  j r  

and j -- l, 

for l <_k<_n,l <_l<_N. 



Irreducible Super-Unitary Representations of ~u(p, q/n) 489 

Root vectors for ~eA + 

( I+)  ~ = e k -  f i ( l  < k < p , l  < I < n ) ;  

( I I+)  ~ = e k - - f i ( p < k < m , l  < l < n ) ;  

( I I I+)  e = e ~ - - e k ( l < i < k < p ) ;  

N 

Z 
j = l  

j = l  

N 

E 
j = l  

N 

(IV +)  ~ = ei - ek(p < i < k < m); i=~1.= 

N 

(V+)  ct = ei -- ek( l <_ i < p < k < m); 
j=l 

N 

(VI+)  e =  f k - -  f i ( l  < k  < l < n ) ;  
j = l  

Since the calculations are easy and elementary, we 

Zk3rlj(  1 -- ~lj),  

~ r ,  j(1 -- cqj), 
Ozgj " 

Zi j 
' ~Zk ,  j 

Zk'J  ~Z i ,  j '  

Zi,jZkj, 

rk,jrt,j( 1 + ~k,j)( 1 -- ~t,./)- 

omitted them. 

4.4. Descript ion o f  Pr imi t ive  Vectors  f o r  the Twi s t ed  Sys tems.  At first, we consider 
the twisted positive system T + (see Sect. 3.2). Then primitive vectors for T -  must 
be killed by the operators of type (I), (II +), (III), (IV +), (V) and (VI) in Sect. 4.3. 

For l _< a_< m i n { P , 2  } a n a l  _< b_< min{q ,N} ,  put 

A~ = det (zk ,2 j_  l + Zk,2j)p-a<k<p, Aa = de t ( zk ,2 j -1  -- Zk,2j)p-a<k<p, 
l<--j<a l<j.::a 

Sb = det(zk,21-1 + Zk,zj)~+~-~.k_~+~, ~b = det(zk,2j-1 -- Zk,21)~+.-~.~z~§ 
1 ~_j~_b 1 ~j  ~_b 

N 
For -- < a < rain {p, N} we replace the element Zk 2 j -  1 + Zk,zj ( N  -- a < j < a) in Aa _ , - 

and A~ by Zk,N_~+ j. Similarly, for N - - < b < m i n { q , N } ,  we replace the element 
2 

Zk,Zj- 1 +- Zk,2j ( N  -- b < j < b) in ~b and ~b by Zk, N b +j. We denote this situation by 

Aa = det(zk,2j_ 1 + ZklzjlZk,N_a+ flV_o<k<_p , 
I <=j <_a 

for example. We put, for a = 0 or b = 0, Ao = / ]o  = go = =o = 1. 
For 0 _< c _< N, we define 

n n 

R c = l - I R l , c ,  R c = - ~ I R , , c ,  
l = l  l = l  

where Rl, c and/~l,~ are given by 

Rl'c = j~=l= (rl'2J- 1 + rmj) if 

N - c  N 

Rl,~ = I-I (rz,zj-1 + rz,22) [ I  
j = l  j = 2 N - 2 c + l  

N 
l ~ c ~ ,  

N 
r~, i i f - - < c < N ,  

2 
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and 

t c N 
/~l,c = ] - I  (rl,2j- 1 -- rt,2j) if 1 _< c --< 

j=l"= 

N - c  N N 

gt,~ = F[ (rt,2j- 1 - -  r l , 2 j )  ~ I  rl,j if --  < c _< N. 
7=-1 j=2N--2c+l 2 - 

Here we consider Rt, o =/~t,o = 1. Note that  they are vectors in the representation 
space F = ~[zii[ 1 < i < m, 1 < j < N] | C(rul 1 <_ k <- n, 1 < l < N) of the oscillator 
representation p. 

Lemma 4.1. Let integ_ers a, b and c satisfy the condition a < c <_ N -  b. Then the 
vectors A , ~ b R  c and AaEbR ~ are primitive for ~P-. 

Proof. One can easily check that  the vectors in the lemma are killed by the 
operators of type (III) and (IV+).  For  the other operators, we note that  the 
following equations hold: 

Aa A,  ( j < m i n { a , N - a } ) ,  (4.1) 
~Zk,2j- 1 ~Zk,2j 

;. 3 - 
- - ~ ' b - -  - - 3  b ( j < = m i n { b , N - b } ) ,  (4.2) 
~Zk,2j- 1 ~Zg,2j 

r~,2j_l(l +ctt ,Ej_l)R~=--rt ,2j(l  +~z,2j)R ~ ( j < m i n { c , N - c } ) ,  (4.3) 

rL2j_l(1-Ch,Ej_l)Rc=rl,Ej(1--~l,Ej)R ~ ( j < m i n { c , N - - c } ) .  (4.4) 

First consider an operator of type (V). It kills the vectors in the lemma. In fact, 
for j < min{a,b}, we have 

c3 t3 ~3 ~ " ] A ~ b - /  ~3 + 
OZi,2j- 1 OZk,2j- 1 OZi,2j OZk,2j/ ~Zi,zj GZk,2j CZi,2j (3Zk,2j 

(4.5) 

from Eqs. (4.1) and (4.2). For  j > rain{a, b}, one of the factors ~A,/~z and ~-b/~z 
vanishes, where d/Sz represents an operator  which appears in Eq. (4.5). More 
precisely, if j > a, then we get 

0 
- - A  a = A,  = O. 
~Zi,2j- 1 ~2i,2j 

Similarly, if j > b, then we get 

- - = b  - S b  = O. 

~Zk,2j- 1 (~Zk,2j 

Next let us show that  the operator  (I) kills the vectors in the lemma. For  
j =< min {a, N - c} = min {a, c, N -- a, N - c}, we have 

( ~ z i , ~ 2 j _ l r l ' 2 j - x ( l + ~ l ' 2 j - 1 ) + ~ r t 2 j ( l + ~  A a R c O z l , 2  j ' 

-- ~ Aa'rt,2j(1 + ~ 1 2 j ) R c + ~ A a ' r ,  ej(1 +~, ,2 j )Rc=0,  (4.6) 
~zl,2j " aZi,zj ' 
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from Eqs. (4.1) and (4.3). For  j > m i n { a , N - c } ,  we get 

0~Aa=0  or r ( l + e ) R  c=0 ,  

in the same way as above. Here we denote by O/Oz or r(1 +c~) an operator which 
appears in (4.6). 

For operator (II), we can use Eqs. (4.2) and (4.4) instead of (4.1) and (4.3). 
Lastly we consider operator (VI). Note that the operators 

rl,2j_l(lq-O~l,Zj_l) and rk,2j_l(l--O~k,Zj_l) 

are anti-commutative. Then Eqs. (4.3) and (4.4) tell us that the vectors are killed 
by the operator. Q.E.D. 

A Young diagram Y = (~1,~2,...,a/) is a decreasing sequence of finite non- 
l 

negative integers. We put [Y[ = ~ ~i, depth(Y) = max{r[~, r 0}, ht(Y)  = cq, and 
i = 1  

call them length, depth and height of Y respectively. Let 'Y = (il, i 2 , . - . ,  it,) be the 
transposed Young diagram of Y. Namely 

ik = # {j]o~j>= k}, 

where #S means the cardinality of the set S. Note that the operation t(.) is involutive: 
'('Y) = Y. Let ~ be the set of all the Young diagrams. Define a subset f ( N )  in 
the direct product ~ x ~ x ~ as 

J - ( N )  = {(YA, Yu, Z)[ z = ( c l , c 2  . . . . .  c,), 

ht(YA) < min {p - 1, U - e 1 }, ht(YB) < min {q -- 1, c, } }. 

We associate vectors vr and Or in F with an element T = ( Y A ,  YB, Z ) e Y - ( N )  as 
follows. For  YA = (Cq, ~2 , . . . ,  at,), YB = (ill ,  f12, ' . . ,  ill2), put I A = tYA, I B = tY  8. Write 
14 = ( i l ,  i z . . . .  , ip_ 1), 1~ = (Jl,  J2 . . . . .  Jq-  1) and 'Z = (Sl, s2 . . . .  ). Then the vectors vr 
and f r e F  are given by 

tl n 

RT = [-[ R/,N-r R r  = 1-[ RI,N-c,, 
l = 1  l = 1  

11 /2 11 12 

vr = 1-I A,,  ]-I ~ a / ' R r  and Or= I-[ A,, l~ ~w&'/~r- 
- i = 1  j = l  i = 1  j = l  

Lemma 4.2. We have for  t <_ k <- l <- n, 

N 
~', rk,sr1,s(1 -- Ctk,S)(1 + ~t,j)Rr = 0, 

j = l  

N 

rk,jr/,J( 1 - C~k,j)(1 + a/, j)Rr = O. 
j = l  

Proof. To prove the above, we shall show that 

{rg,2J-lr/,zJ - 1( 1 - O~k,2j-1)( 1 + ~l,2j-1) + rk.zjr/,zj(1 -- C~k,Zj)(1 + ~Z,2./)}RT = 0 

for any j. We gather all the terms in the product expression of RT which concern 
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e i ther  rk,2j_ 1, rk,2j or r l , 2 j _  1, ?'l,2j. Then  R T can  be writ ten as 

R T = +_ R(k, l, j) .R'r,  

where R(k, l, j)  is one of the following forms: 

"1~ 

rl ,2j-  lrl,2j,  

R(k, l, j)  = rk'2i- lrk'zjrl'2J- lrhzJ' 

(rt,zj- 1 + rhzj), 

(rk,zj- 1 + rk,2j)(rt,zj- 1 + rl,zj), 

(rk ,2j-  1 3t- rk,2j)rl ,2j-  1 rl,2j" 

N o w  the explicit calculations show that  

{rk,2j- 1 rl,2j- 1( 1 - ak,2j- 1 )(1 + al,Zj _ 1) + rk,2jrl,2j(1 -- ak,2#)( 1 + at,2j) } R(k, l, j)  = 0 

in all cases. Q.E.D. 

Proposit ion 4.3. For T ~ Y ( N ) ,  vectors v T and ~T are primitive for ~ - ,  i.e., killed 
by the operators {fi(X,)la~ T - } .  Weights o f  v r and ~T are the same and given by 
2 = (21,1~2 . . . . .  2rn/]A1, ]A2 . . . . .  ]An) w i th  

N 
2k=ip -k+ l  + ~  (1 <=k<=p), 

N 
2k = -- Jm - k + 1 - -  (P < k ~ m) ,  

2 

N 
Pl = cl - - -  (1 ~ t ~ n). 

2 

Remark. For  the coordinate  expression of 2, see (2.1). 

Proof. The essential pa r t  of  the p roof  is given in L e m m a s  4.1 and 4.2. No te  that  
opera tors  ~(X,)  are first order  differential opera tors  except the two which are type 
(V) and (VI). F o r  these opera to r s  we have 

fi(X~)VT = Y', L,b(Z, r ) f i (X:)(A,~bRr) ,  
a,b 

where fa,b(Z, r) is a vector  in F. 
If the reader  uses L e m m a  4.1 and calculates carefully, then the reader  can 

conclude tha t  either 

~(X~)(A,~,bRT) really vanishes of  f~,b(z, r ) =  0 

holds. Thus  v r is killed by fi(X~). 
Fo r  the type (V) operator ,  the si tuat ion is similar because indices i and k of  

the part ial  differentials are divided into two which cor respond  to A, and ~b 
respectively. So they are essentially first order  differential operators .  

F o r  the type (VI) operators ,  L e m m a  4.2 tells you that  vr  and vr are killed by 
them. 
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Next we calculate the weights of v T and UT" Note that elements in the Cartan 
subalgebra ~) of n(p, q/n) are represented by the operators as follows: 

0 
Z k j - - +  (1-<k-<m), 

j: [ ' Ozk,j 

t3(~--lE. ,+l , , .+,)= ~ j~lch,j (l __<-/ < n), 

where sgn (k) is defined as in Sect. 3.2 and cq,j is the automorphism of F given in 
Sect. 4.1. 

Since ~(X/Z1Ek,k)  (1 < k < m) are only the Euler's degree operators up to 
constant multiple, the results are easy to get. 

For 13(x/- 1E,,+z,,,+l) (1 < l < n), note that 

(O~l,2j- 1 -[- Ctl,zj)RT = O, 

if j < ct c, < -~ or j <= N - c l c, > . O n t h e o t h e r h a n d ,  wehave 

( O~t,jRT=RT if c l < N a n d j > 2 c t  

N 
oh,jR T= - R  T if c ~ > ~ a n d j > 2 N - 2 %  

The above three formulas prove the result for t~(x/Z- 1 E,,+~.,, +~). 
The proof for VT is similar. Q.E.D. 

4.5. Description of  Primitive Vectors for the Standard System. In this subsection, 
we give typical primitive vectors for the standard negative system A- of ~n(p, q/n). 
Primitive vectors for A- are to be killed by the type (I-VI) operators in Sect. 4.3. 
As in the former subsection, we put 

12 b = det ( Z k , 2 j _  1 "j- Zk,2j[  Z k , N - b  + j)p<k<=p+b, 
1 <-j<_b 

Ob = det (Zk.2j_ 1 -- Zk.2jlZk,N-b+ j), <kz, +b. 
l<_j~b 

For the notation in the above equations, see Sect. 4.4. Since the type (II) operators 
play a decisive role in the following, we have given an extra notation: 

N 

Xk, l = ~ Zk,jrl,j(1 + oh,j). 
j = l  

Now take T=(Ya ,  YB, Z)eC-(N)  and define I A and 1 B as in Sect. 4.4, For Z =  
(cl, c2 . . . . .  c,3, put 

n m l 

m ~ = m i n { m , p + c ~ ) ( l < l < n ) ,  and X r = I - [  I ]  Xk,~. (4.7) 
l : l k : p + l  

Let us consider the following vectors w r and #r:  
ll 12 1l 12 

WT = 1--[ A~, I ]  {'2t~/Rr and w r = l-I A~, [ I  ~aj 'RT.  
i = 1  j = l  i = i  j = l  
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Lemma 4.4. The vectors X T W  r and X r f f  r are non-zero and killed by X~, t (p < s < m, 
l < t < n ) .  

Proof. Let us show that  X r w  T is non-zero at first. To prove this, it is enough  to 
see that  XTR T ~ O. Assume that  m is sufficiently large. If  we expand R T into the 
monomials  in ri,j, then every monomia l  has degree 

n 

E (N - c,). 
I = 1  

n 

Note  that the degree of X T is ~ cz because we assume m is sufficiently large. 
I = 1  

Since the opera tor  r~,j(1 + ~,j) acts on every monomia l  as zero if it contains 
rz, j and as 2 otherwise, it is easy to see that, after applying X T to every monomial ,  
the result is of  the f o r m  

f ( z)" l-[ r i,j. 
1 ~i~n,1 <j<N 

Here f ( z ) d o e s  not  vanish. Infact,  i f w e p u t d = # ( l l c l > N } , t h e n ,  for example, 
the coefficient of 

I-I  k j ~ l  Zp+j,2j H Zp+j .N-cl+j  X 
l= 1 j=N--ct+ 1 l=d+ 1 \ j =  ~. 

in f ( z )  is _ 2 a~gxT. The sign ___ depends on the order  of  the arrangements  of firs. 
If  m is relatively small, then you  can consider ideal operators  Xk, l (m + 1 < k < m') 

with ideal symbols {Zk,j lm+l<k<--m',  1 < j < N )  for a sufficiently large m'. 
Consider XT for this m' and write it as X T. Then according to the above discussion, 
we have X'rR r ~ O. O n  the other  hand, we can write X~ = X r "X r with superfluous 
par t  X T. Since XTR r # O, we see that  X T R r  ~ O. 

Next  we show that  X s tXTRT = 0. If  Xs t appears as a member  of the produc t  
for X r, then the equat ion 'holds  because X~, t = 0. Thus assume that  X~, t does not  
appear  in X T. Then we have s > m r + 1 and m t = p + ct < m (1 < t < n). Fix t and 
consider monomials  in R T which contain {rtj I 1 < j  < N}. Then their degrees with 
respect to {rtjl 1 < j  < N} a~'e the same, i.e. N -- ct (1 < t < n). O n  the other  hand, 
the degree of  XT with respect to (Xk,t[P < k < m} is m t -  P = ct. So we get 

d e g X  T + d e g R  T = N 

for any t. This means that  the monomia ls  which appear  in XTR T necessarily 
N 

contain the product  [-I rt,J. Since it is easy to see 
j = l  

N 

Xs,t H rt,J = o, 
j = l  

we have X~,tXTRT = 0 .  Q.E.D. 

Proposition 4.5. For T~9-- (N) vectors XTW T and X].~ T are non-zero and primitive 
for A - ,  i.e., killed by the operators { ~ ( X ~ ) I ~ A - ) .  Weights Of XTW T and XT~ r are 



Irreducible Super-Unitary Representations of ~u(p, q/n) 495 

the same and given by 2 = (21, •2 . . . . .  2m/#l , I~ 2 . . . . .  #,)  with 

N 
~.k: ip_k+l  -I- 2 (1 <k<-_p), 

N 
2k = --Jk- , -- Sk- p 2 (P < k <= m), 

N 
2z = cl - ml + p - (I <= I < n), 

2 

where {mz} are given in (4.7). 

Proof. As in the proof of Proposition 4.3, it can be proved similarly that the 
vectors WT and # r  are killed by the operators of type (I, III, IV, V) and (VI). 

Since operators (I) and (III) commutes with {Xk,l}, they kill XTWT and XT#T.  
Lemma 4.4 tells us that operators (II) kill them. 

Since XTW r and XT# r can be treated in the same way, we only concern 
ourselves with XTW r in the following. 

Let us consider an operator Y of type (IV). Y satisfies either [Y, Xk,~] = 0 or 
[Y, Xk,l] = Xj, l for j < k. Considering these two equations, one can conclude that 
Y commutes with X r. Hence operators (IV) kill XTW r and X T #  r. 

For  an operator Z of type (V), we should note [Z, Xk,z] = 0 or [Z, Xk,~] is of 
type (I). Hence Z commutes with X r or [Z, X r ]  = ~ X ' r Z '  using operators {Z'} 
of type (I). Now it can be easily seen that z, 

[ X T Z W T = O  if [Z, XT] = 0, 

ZXTWT = ~ X T Z w  T ~- E XTZtWT = 0 otherwise.  
z" 

Finally, consider an operator W of type (VI). Since [W,,Xk,l]=0 or 
[W, Xk,~]=Xk, t  for l < t ,  [W, XT]  is a linear combination of the operators 
Xk,,XT(k, 1), where Xr(k , l )  denotes the operator obtained by eliminating X k j  in 
X T. Note that l e t .  Careful check of the proof of Lemma 4.4 leads to 
Xk,tXT(k, 1)w r = 0 for l r 0 for I r t. Now we have [W, X T ' ] W  T = 0 and 

WXTWT = X T W W T  + [W, XT]W r = 0. 

Since the weight of Xk. ~ is e k --f~, it is easy to calculate the weights of XTW T and 
XT#T, using weight operators in the proof of Proposition 4.3. Q.E.D. 

5. Determination of the Unitarizable Lowest Weight Modules for ~u(p, q/n) 

In this section we investigate a necessary condition for the unitarizability of 
irreducible lowest weight representations of ~u(p, q/n) with respect to A +. It turns 
out that the unitarizable lowest weight modules obtained in Sect. 4 exhaust all 
the irreducible unitary representations of ~u(p,q/n) (Theorem 5.3). 

Definition 5.1. For the weight 2 of  the form in Proposition 2.2(2b), we define three 
Young diagrams Y~, Y~2 and Y~: 
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Y~ = (,tp -- )~1, ~-p- 1 -- 21 . . . . .  2z -- 21,0), 

Y~ = (2,. -- 2p+a, 2,. -- 2p+ 2 . . . .  ,2 m - 2,._ 1,0), 

Y~ = ( # 1  - m ,  ~ 2  - ~ . . . . . .  ~ . -  1 - ~ . ,  0).  

We put d i = depth(Y~) for 1 < i < 3, and 91 = #,  - 2,., 92 = 21 - #1, g3 = 21 - 2m" 

F rom the result of [2, Theorem 7.4], we get 

Proposition 5.2. With notations as above, the lowest weight 2 of an irreducible 
super-unitary representation satisfies 

93 > dl + d2. 

Proof. If(Tr, V) is an irreducible super-unitary representat ion with the lowest weight 
2, then (re, V) contains a uni tary representat ion of ~u(p ,q)=  ~u(p,q/n)o with the 
lowest weight (21,22 . . . . .  2m). Therefore  an irreducible representat ion of ~u(p,q) 
with the lowest weight (21,22 . . . . .  2m) is unitarizable. Let  us convert  the condit ion 
in [-2, Theorem 7.4] to the condit ion of the representations of the lowest weight 
type and apply that condit ion to the above weight. Then we get the inequality of 
this proposit ion.  Q.E.D. 

Now we are ready to state our  main theorem. 

Theorem5.3.  Let (re, V) be an irreducible A+-Iowest weight representation of 
~u(p, q/n) with the integral lowest weight 2~(I)~) *. Conditions (I) and (II) are necessary 
and sufficient for (re, V) to be super-unitary. 

(I) The lowest weight 2 satisfies 

2p+ 1 < "" < 2 " < # ,  < . . - < / q  <21  < ' ' "  <2p.  (5.1) 

(II) With notations given in Definition 5.1, 2 satisfies condition (5.2) or (5.3): 

9z > dl + q and 91 > d3, (5.2) 

g2 ~ dt + dz and gl = d3 = 0. (5.3) 

Remark 1. The above theorem, together with the highest weight version Theorem 5.5, 
classifies all the irreducible super-unitary representat ions which can be integrated 
up to the representations of S(U(p,q)x  U(n)), a Lie group corresponding to the 
even part  ~u(p, q/n)6. In fact, Corol lary  2.3 tells us that  the representat ion is a 
highest or lowest weight module  with integral weights. All such representat ions 
are classified by Theorem 5.3. 
Remark 2. If n = 0 then the conditions in this theorem become 

(I) 2p+l'~'" ~2m~)~l ~-~'" <~ 21a, (II) Oa>=dl +d2. 

Condit ion (II) above is just the condit ion given in Proposi t ion 5.2, which is derived 
from [2, Theorem 7.4]. 

If q = 0 then the condit ions become 

(I) /An~...~#l~_~,,~l~__...~__,~,., (II) 2 1 - # 1 > d ~ ,  

and if p = 0 then the condit ions become 

(I) 2 ~ < . . . < 2 " N #  < . . . < # ~ ,  (II) / ~ , - 2 m > d 3 .  



Irreducible Super-Unitary Representations of ~u(p, q/n) 497 

Proof. First of  all, we will show that these condit ions are sufficient. Let 2 satisfy 
condit ions (I) and (II) of  the theorem and define Y~, di and gi according to 
Definition 5.1. To prove the sufficiency, it is enough to show 2 is the A+-lowest 
weight for a super-unitary representat ion obtained in Sect. 4.5. We put  YA = 
t Y1 = (ax, 12 , . . . ,  al t) in the nota t ion  of  Sect. 4.4. Note  that  depth (Y~) -- dl = al = 
ht(Ya) holds. We divide the p roof  into three cases according to the value of  91. 

(i) The case where 91 > n. In  this case, we put  

N = g a - n ,  Y B = t Y ~  and Z = Y ~ + [ ] ( n , q + g l - n ) ,  

where Y1 -+ Yz = (al _+ bl ,a2  _+ b2 . . . .  ) for two Young  diagrams Y1 = (11, a2 . . . .  ), 
Yz = (bi,b2 . . . .  ) and E3(k,1)= (1, l . . . .  , l) is a box type Young  diagram with depth 
k. Put  T = ( Y A ,  YB, Z). Then T belongs to J ( N ) .  In fact, we have 

cn = q + g l  - -  n ~ q > d 2 = b I = ht(YB) 
and 

N -  c 1 = ( g a -  n ) - ( g a - g 2  + q -  n) = - g 2 -  q--> dl -- al = ht(YA). 

From the definition, we have 

t/l, i2 . . . .  , i p_  1)  = t Y A  = Y12 = (/]-p - -  "~1, ] ~ p - 1  - -  ~ ' 1 , " " " ,  '~2 - -  ~ 1 )  

(Jl,J2 . . . .  ,Jq- 1) = tYB = Y 2 

(cl, c2 . . . . .  c,) = Z = Y~ + [] (n, q + 91 -- n) 

= (]21 - -  •m + q -- n, ]22 -- 2,~ + q -- n . . . .  , ]2, -- 2,~ + q -- n), 

because it holds that  p ~ -  ]2, + gl = ]2 j -  2,,. Since ga is greater than or equal to 
n, we obtain  q + 91 - n > q, so we get c~ > q for all I and every m~ in (4.7) is equal 
to m. Therefore we get 

(Sl, s2 . . . .  ,Sq . . . .  ) = tZ = (n,n . . . .  ,n . . . .  ). 
q 

N o w  we apply these values to Proposi t ion  4.5 and get the weight of  the vector 
XTWT. Since we have 

N N 
ip+l_k + ~ = 2 k - - 2 1  +--2 (1 <k<=p), 

N N 
- -Jk -p- -Sk-p  2 - -  ( 2 ~ - - 2 k ) - - n - -  ( p < k < m ) ,  

2 

N N 
c t - - m t + p - - ~ = ( ] 2 t - - 2 r , + q - n ) - m + p - - ~  (1 < l < n ) ,  

the weight is 

(21 + t, )~2 + t , . . . ,  2p + t, 2p + 1 + t, 2 t + 2 + t , . . . ,  2 m + t/]21 + t, ]22 -~ t , . . . ,  ]An 2i- t) ,  

N N 
where t = - -  - 21 - 2~ -- n. This is a translation of  2 by t, hence its restriction 

2 2 
to I) ~ coincides with that of  2. Thus  we prove that  the lowest weight module  with 
the lowest weight 2 in this case is super-unitarizable. 
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(ii) T h e  case  w h e r e  0 < 91 < n. In  this case, we put  s j =  m i n { n , t , - 2 p + j }  for 
1 < j  < q and  denote  the Young d iagram (s l , s2 , . . . , s~)  by S. We also put  

N - - - 9 3 - 9 1 ,  Y B = t ( Y ~  + U ] ( q , 9 0 - - S )  and Z =  Y~ + t S .  

We claim that  T = (YA, Y~, Z )  is in ~-(N). Since we have 

Y~+[](q, gl)--(2,"-2p+l ..... 2~ 2,"_l ,0)+(tn-2," , . . . , tn-2," , t , -2 ,")  

= ( i n  - 2p + I . . . . .  t .  - 2 . ,_  i ,  t .  - 2m), 

t t t Z " if we put  (b' z, b 2 . . . . .  b . . . . .  ) - (Y2 + [~(q, gl))  then we have bj = # { k i t  n - 2p+ k > j } .  
No te  tha t  tS = (b'l, b2 , . . . ,  b'n). Therefore  it holds tha t  

c , = # { k l S k > n } - - - - # { k l t n - - 2 p + k  > n }  =b~.  

Similarly we get 

bl = #{k i th  - 2p+k --  Sk > 1} = # { k i t ,  - 2 ,+k  > n -t- 1} = b'n+ 1. 

So T satisfies 

c ,  = b'n > b'n+ l = b l  = h t (YB) .  

For  the other  condi t ion N - ca > h t (Ya ) ,  we calculate as follows: 

N - - c 1  = 9 3 - - 9 1  - - c l  
t 

= g3 --  91 --  ( h t ( Y ~ )  + q) (because b 1 = q) 

= g 2  - -  q >--- d l  = al  = h t (YA) .  

N o w  we proceed in the same way as in case (i). We note  that  

(il, i2 . . . .  , ip_ 1) = tYA = Y~ = (2p -- 21, 2p_ 1 - 21 . . . . .  42 - -  4 1 ) '  

(Jl ,J2 . . . .  ,Jq-  1) = tYB = Y~2 + F-q(q, 91) - S 

= ( t n  - -  2 p +  1 - -  S l '  t n  - -  2 p +  2 - -  S 2 ' ' ' ' '  t n  - -  2 m -  1 - -  S q _  1 ) '  

(Cl, c2 . . . . .  c ,)  = Z -- Y~  + tS = ( t l  - t o  + b'l, t 2  - t ,  + b'2 . . . . .  t ,  - t ,  + b'n). 

F r o m  the definition we get b' 1 . . . . .  b'o~ -- q >- b'o~ + 1. O n  the other  hand,  it holds 
that  t k - - t . =  0 for any  d3 + 1 < k < n .  Thus,  f rom the condi t ion 01 > d a ,  we 
get 

( C l , C 2 , . . . , c n ) = ( t l  - t n  + q, t z -  t n  + q , . . . , t o ,  - t ,  + q, b'o~+ l . . . .  :,b',). 

Therefore  we have m~ = m for 1 _< l < 0~ and  m~ = b' z + p for 01 < l < n (see Eq. (4.7)). 
N o w  we apply  these values to Propos i t ion  4.5. Then  we get the weight of  the vector  
X T W  T. First  note  that,  for 91 < l < n, it holds that  

cz + P --  mz - N / 2  = b'~ + p - (b' t + p) - N / 2  

= - N / 2  = Ih - t .  - N / 2  (because t t  = t . ) .  

The other  coordinates  of  the weight of  X r w  r can be calculated similarly. So we 
conclude tha t  

(41 + t,22 + t . . . . .  2p + t ,2p+ 1 + t,2t+ 2 + t . . . . .  2, .  + t / #  1 + t, t 2  + t . . . . .  t .  + t) 
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N 
is the weight of XTWT, where t = N _  2 1 _  #,. Thus we proved that the 

2 2 
lowest weight module with the lowest weight 2 in this case is also super-unitarizable. 

(iii) The case where 91 = 0. We keep the notations used above. Then N, YB 
and Z used above become 

N = 9 3  = g 2 ,  Ys = t ( Y ~  2 - -  S )  and Z = iS, 

because of the condition gl = 0. It can be similarly proved that T = (YA, YB, Z) is 
in Y-(N) and the weight of XrWT is equal to 2 as an element in (be) *. 

Thus we proved that a lowest weight module with the lowest weight 2, where 
2 satisfies conditions (I) and (II), is super-unitarizable. 

To prove the necessary condition, we consider two cases where ~1 - 2,. is zero 
or not. 

When #~ - 2,. is zero, we must have 91 = 0 and 92 = ga- Then, from Proposition 
5.2, 2 satisfies condition (5.3) of Theorem 5.3. For  the case where #1 -'~m is not 
zero, we prove the necessarity in the next lemma. Q.E.D. 

Lemma 5.4. I f  #1 # 2,. then the condition in Theorem 5.3 is a necessary condition 
for (~, V) to be super-unitary. 

Proof. Let v~ be a lowest weight vector in V and put 

Vk=~(E,.,,.+k)."~(E,.,m+I)V x for 1 < k < _ n -  1. 

We claim that Vk is equal to zero if and only if n(Em+l,,,)..-~(Em+k,,,)v k is equal 
to zero. In fact, the following three statements are equivalent: 

(i) 7r(E,,+ l,,,)...g(Em+k,,,)v k #0 ,  
(ii) v~ # 0, 
(iii) vz~U(gr . 
It is clear that (i) implies (ii). Since V is irreducible, (iii) follows from (ii). 
So let us show that (iii) implies (i). According to the Poincar6-Birkhoff-Witt  

theorem, it can be written as 

U(gr = u(go)(/~ g~-)(/~ g}-)U(go)U(br 
where 

g o  = | 
+~z~ 

Since /)k is a A~--lowest weight vector, we can omit the term U(go)U(b r without 
loss of generality. Thus we assume that vz is of the form 

V2 = Z ujXj YjVk, 
J 

where uj~U(go) , Xj~ A g~- and YjE A g}-. If ujXj is not scalar, then the weight of 
YjVk is lower than 2, thus the vector YjVk vanishes. Therefore we get 

J 
If we consider the difference between the weights of Vk and v2 carefully, we see 
that Y~ is of the form: 

Yj = s~(E"+ 1,")... ~(E" +k,m), 
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where s is a constant .  Therefore  we have 

va = src(Em+ 1,m)'" lr(Em+a,m)Vk, 

hence s is no t  zero. N o w  s ta tement  (i) holds.  
An easy ca lcula t ion  tells us 

k 

7r(Em+ l,")'"~z(Em+k,m)Vk = ]-I (i'm -- #j + J -- 1)VZ" 
j=l 

So we conclude  tha t  Vk = 0 if and  only i f# j  - 2" C j  - 1 for a n y j  satisfying 1 < j  < k. 
If Vk is not  zero, then its weight  2 + k e " - ( f l  + "'" + fk)  must  satisfy 

cond i t ion  (2b) of  P ropos i t i on  2.2. C o m p a r i n g  the mth c o m p o n e n t  and  the (m + n) th 
c o m p o n e n t  of  the weight,  we get 91 = #,  - 2m > k. 

If  91 > n - -  1, then the second half  of cond i t ion  (5.2) is obvious.  So we can 
assume 1 < gl  < n - 2. The above  a rgumen t  tells us tha t  if gl  < k then Vk vanishes. 
In  par t icular ,  we have %1 + 1 = 0. Then  there exists an integer  1 =<j _< 91 + 1 such that  

# j - -  2m = j - -  l ( ~ g O .  

Since # j -  )',. ->__ #,  - 2,. = 91, the above  j mus t  be g l + l .  Thus  we get 
#0l + 1 - )',, -- gl  = #,  - 2,. so #gl + 1 = #, .  This  means  d 3 =< 01 and  we show tha t  the 
second half  of cond i t ion  (5.2) in Theorem 5.3. 

Nex t  we pu t  

Wk=~(Em_k+l,~+l)'"~r(E,,,m+l)VZ for l < _ k < _ m - - 1 .  

Then we can prove  as above  tha t  Wk ~ 0 holds  if and  only if 2 j -  #1 ~ m - j  for 
any j satisfying m - k + 1 < j  < m. This cond i t ion  is t r ivial  for p + 1 < m, so we 
have w k ~ 0 for 1 _< k < q. N o t e  tha t  the weight  of w k is 2 + (e m_ k + ~ + " "  + e,,)-- k f l .  
If  Wk does not  vanish then 92 = )'1 - -  #1  ~ k accord ing  to a rguments  s imilar  to 
those above.  Therefore  g2 ~ q holds  and  if 92 is greater  than  rn - 2, the cond i t ion  
g2 ~ d~ + q is obvious.  So we can assume q < g2 ~ m - -  2 wi thout  loss of generali ty.  
The same a rguments  as above  lead us to equa t ion  2re_o= )'1. F r o m  this it follows 
that  d 1 < g2 - q and this is the first half  of condi t ion  (5.2) in T he o re m 5.3. Q.E.D. 

We get s imilar  results for the highest  weight representat ions .  Let  2 =  
021 . . . . .  2,./#1 . . . . .  #,)  be an e lement  of (b~:)* satisfying the cond i t ion  

) ' p + l  ~ " "  ~" ) ' m ~ # n ~  "'" ~-~#1 ~ 21 ~ ""2p. 

We define three Young  d i ag rams  Y~, Y~ and Y~: 

Y~ = (21 - 2p, )'1 - ) 'p-  1 . . . .  ,21 - )'2, 0), 

Y~ = (2p+1 --  )',., ) ' p + 2  - -  ) '  . . . . . .  2 m - 1  - -  2m, 0),  

Y~ = ( # . -  # ~ , # . -  #2 . . . .  , # . -  # ._1,0) .  

We put  dl = depth(Y{) for 1 < i < 3, and  gx = )',. - # , ,g2  = #1 - 21,g3 = )'m -- )'1" 
Then  we have 

Theorem 5.5. Let  (Tz, V) be an irreducible A+-highest weight representation of  
~u(p., q/n) with the highest weight 2E(1)r *. Conditions (I) and (II) are necessary and 
sufficient for  (Tr, V) to be super-unitary. 
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(I) The lowest weight 2 satisfies 

2p+1 > - - .  > 2,. > # .  > - - - > ~ 1  >,11 > ... > ) t , .  (5.4) 

(II) 2 satisfies condition (5.5) or (5.6): 

92 > d l  + q and 91 >= d3, (5.5) 

92 > dl + d2 and 0 1 = d 3 = 0 ,  (5.6) 

Proof. We can cons t ruc t  the osc i l la tor  represen ta t ions  with the associa ted  cons tan t  
e =  1 in the same way as in [22]. No te  tha t  these osc i l la tor  represen ta t ions  are  
highest  weight  modules .  Then the sufficient cond i t ion  follows f rom a rguments  
s imilar  to those  used in the case of  the lowest  weight  representa t ions .  O n  the o ther  
hand,  we can ob ta in  the necessary cond i t ion  in a way s imilar  to those used in the 
p r o o f  of  L e m m a  5.4. Q.E.D. 
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