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Abstract. In this paper we classify all the irreducible super-unitary representations
of su(p,q/n), which can be integrated up to a unitary representation of
S(U(p,q) x U(n)), a Lie group corresponding to the even part of su(p, g/n). Note
that a real form of the Lie superalgebra sl{m/n; €) which has non-trivial super-
unitary representations is of the form su(p, g/n)(p+g=m) or su(m/r,s)(r+s=n).
Moreover, we give an explicit realization for each irreducible super-unitary
representation, using the oscillator representation of an orthosymplectic Lie
superalgebra.

Introduction

The theory of Lie superalgebras and their representations have come to play an
important role in physics in recent years. They appear in several fields of physics
such as elementary particle physics, nuclear physics, theory of supergravity and
so on (cf. [20]).

Much fundamental work regarding basic classical Lie superalgebras and their
finite dimensional representations has been produced by V. G. Kac ([16-18]),
who classified all the finite dimensional simple Lie superalgebras. Thereafter, in
mathematics, many interesting papers on these algebras and their representations
have appeared.

In the early stages, mainly finite dimensional representations were studied.
Irreducible representations of simple Lie superalgebras are divided into typical
and atypical ones according to their central character ([18]). Finite-dimensional
typical irreducible representations have many properties in common with the finite
dimensional irreducible representations of simple Lie algebras ([1, Chap. I1.5;
16, 18]). But atypical representations are not so easy to treat even if they are finite
dimensional. Properties of atypical (finite dimensional) representations have not
been studied sufficiently (cf. [7]).
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In due time, infimite dimensional representations of simple Lie superalgebras
become more important (e.g., [3]). At the same time, there appeared many
papers on super-unitarity of the representations. It is worth noting that
whether a representation is typical or atypical has little to do with its super-
unitarity.

In the last few years, super-unitary representations have been studied extensively
in several different ways. For example they were studied from a general point of
view in [4] and explicit cases such as orthosymplectic algebras were treated in
[3,9,10,23], etc.

Classification of the irreducible super-unitary representations was made for
some basic classical Lie superalgebras which have low ranks. For sl(2/1; C) and
its real forms sl(2/1;R), su(2/1) and su(l,1/1), classification of the irreducible
supér-unitary representations was made in [5] and [6]. Also, classification of
0sp(2/1;R) of type B(0, 1) was completed ([6]). In [12], irreducible super-unitary
lowest weight modules of osp(4/1) were classified.

Furthermore, all the irreducible super-unitary representations were classified
for su(n/1) in [81, and for su(n/m) in [13]. In a sense, these special super-unitary
algebras su(m/n) correspond to compact Lie groups. So their irreducible super-
unitary representations are all finite dimensional. For general orthosymplectic
algebras osp(2n/m; R), a large number of irreducible super-unitary representations
were realized in explicit forms in [23]. It seems that these representations exhaust
almost all of the irreducible super-unitary representations of osp(2n/m;R). For
generic super-unitary representations called “discrete series,” their (super-)
characters were also obtained in [21].

Recently, the authors received a preprint [14], which classifies super-unitary
highest weight representations of basic classical Lie superalgebras. The method of
classification in Jakobsen’s paper uses Kac’s determinant formula and resembles
a method used in the case of semisimple Lie algebra of the Hermitian symmetric
type. However, his method is completely different from ours.

Super-unitary (or star) representations of Lie superalgebras have also often
been discussed in papers of mathematical physics ([9, 15, 193). The notion of
“super-unitarity” was defined under several different names and in different ways
in those papers.

Here, in this paper, we study the irreducible super-unitary representations of
a real form of a compiex Lie superalgebra sl(m/n; C) of type A(m —1,n—1) (for
the notations, see Sect. 2). The Lie superalgebra sl(m/n; €) has two types of real
forms sl{m/n;R) and su(p, q/r, s) (p + ¢ = m,r + s = n). However, sl(m/n; €) itself and
sl(m/n;IR) have no irreducible super-unitary representation except trivial ones. The
real form su(p, g/r, s) also has no irreducible super-unitary representation but trivial
ones if p,q,r and s are all positive at the same time. So the only real forms which
have non-trivial super-unitary representations are su(p,q/n)(p+q=m) and
su(m/r,s)(r + s=n). This fact seems well-known among experts (e.g., [3, 14]).
However, since we cannot find any available proof in the literature, we have given
a short proof (Proposition 2.2).

The main result presented in this paper is a classification of all the irreducible
super-unitary representations of su(p,q/n), which can be integrated up to
representations of S(U(p, q) x U(n)), a Lie group corresponding to the even part
(Theorem 5.3). Let us explain the method of the classification. At first, note that
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integrability implies they are admissible (see Lemma 1.4). Then Proposition 2.2
tells us they must be lowest or highest weight representations. So what we have
to do is to determine which highest weight modules or lowest weight modules are
super-unitarizable.

We imbed su(p, g/n) into an orthosymplectic algebra osp(2(p + g)N/2nN;R)
(N = 1). Note that we indicate by osp(2m/2n;R) the orthosymplectic algebra of
type D(n,m), whose even part is isomorphic to sp(2m;R)@® so(2n). Since an
orthosymplectic algebra has a special super-unitary representation called oscillator
representation ([22]), we get a super-unitary representation of su(p, g¢/n) through
the above imbedding. By decomposing it, we can obtain a variety of irreducible
super-unitary representations. In this paper, complete decomposition is not carried
out. Instead, we construct a number of primitive vectors for su(p, g/n) in explicit
forms. Then their weights are lowest weights of irreducible super-unitary
representations. The explicit forms of primitive vectors seem to be interesting for
combinatorics theory.

Finally, using the necessary conditions for super-unitarizability, we prove that
the obtained super-unitarity representations indeed exhaust all.of the irreducible
super-unitary representations.

Our method of classification is completely different from that in [14] and we
think ours is simpler. However, note that we only treat integrable super-unitary
representations, while Jakobsen classifies all the irreducible super-unitary highest
weight modules in [14]. Our method has one more advantage, namely it produces
realizations of the representations naturally.

Let us explain each section briefly. We introduce the notion of “super-unitarity”
in Sect. 1. Super-unitarity for representations of a Lie superalgebra is considered
also in [6, 24, 27], etc. We also define the “admissibility” for representations in
Sect. 1 and clarify the relation between integrability and admissibility.

In Sect. 2, we obtain a necessary condition for super-unitary admissible
representations of su(p, g/n). This condition is a very weak one and requires that
all the weights of a super-unitary representation satisfy the same kind of inequality
(Proposition 2.2). Roughly speaking, this inequality requires that the weights of
the su(n)-part are to be distributed between those of the su(p)- and su(q)-parts of
the su(p, g)-part. From this inequality, it follows that an irreducible super-unitary
representation must be a lowest or highest weight representation. The standard
positive root system A of su(p, g/n) is also introduced in Sect. 2.

In Sect. 3, we imbed su(p, g/n) into osp(2(p + ¢)/2n;R) in explicit forms and
introduce another positive system ¥* of su(p,q/n). This is called the twisted
positive system and its image, caused by the above imbedding, is the standard
positive system for osp(2m/2n; R).

Further, in Sect. 4.1, we explain the oscillator representation of osp(2mN/2nN;R)
which is a super-unitary lowest weight representation. An imbedding of su(p, g/n)
into osp(2mN/2nN;R) is introduced in Sect. 4.2 and operators in the above
representations for the root vectors of su(p, g/n) are shown in Sect. 4.3. We construct
a number of primitive vectors for ¥~ in the representation space. Then each of
these vectors generates the irreducible super-unitary ¥ *-lowest weight
representations (see Proposition 4.3). Thereafter we transform those ¥ ~-primitive
vectors into primitive vectors for the standard positive system A~. So we produce
realizations of irreducible super-unitary A*-lowest weight representations as
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subrepresentations of oscillator representations (Proposition 4.5). This proposition
gives a sufficient condition for super-unitarizability.

In Sect. 5, as the first step, we introduce the triplets of Young diagrams each
of which represents a weight satisfying the necessary condition in Sect. 2. Then,
as the second step, we translate the obtained super-unitarizable lowest weights in
Proposition 4.5 into simpler forms by means of the above triplets of Young
diagrams. After that, we show that these weights indeed exhaust all of the super-
unitarizable lowest weights. Thus we obtain the complete list of super-unitarizable
lowest weight representations in Theorem 5.3. Furthermore we produce their
realizations by the imbedding su(p, g/n) = 0sp(2(p + ¢9)N/2nN;R) and oscillator
representations of the latter.

For highest weight representations, we can get a result in a similar way as in
the case of lowest weight representations (Theorem 5.5).

1. Definitions of Super-Unitary Representations

1.1. A Definition of Super-Unitarity. There are different ways of defining
super-unitary representations of a Lie superalgebra ([6, 22, 24]). They appear
different, however their essence is the same.

Let (L, E) be a representation of a real Lie superalgebra g = g5 ® g1.

Definition 1.1 ([6, Sect. 1.3]). (L, E) is called super-unitary if there exists a positive
definite Hermitian form {-,") on E = E5@® E; such that

(1) <Eg,Er>=0,

(1) \/—:IL(x) (xeqp) is symmetric with respect to (-, ), i.e., (PL(x)v,w) =
v, \/TIL(x)w> (v,weE).

(iii) There is a constant ¢ = + 1 depending only on (L, E) such that, if one chooses
a square root j of 8\/——7, then jL{y) (yegz) becomes symmetric with respect to {-," >,
i.e., (JL(yw, w) = {v,jL{y)w) (v,weE).

We call this constant ¢ an associated constant.
The notation j sometimes leads to misunderstandings because there often
appear many different j’s. In this definition, we respect the notation as used in the

original paper. However, later on we prefer the notation {/—1 rather than j.

In the above definition, the choice of j=%/—1 seems superfluous because
super-unitarity only depends on the choice of ¢ = + 1. So there must be a definition
only using the constant .

We call a form (-, -) on E x E super-Hermitian if it satisfies

(a’ b) — (_)degadegb(b’ a)

for homogeneous elements a and b in E. Here dega means the degree of a. A
super-Hermitian form is said to be homogeneous of degree zero if (Eg, Ef) =0.

In [22, Definition 5.2], [24], a representation (L, E) of Lie superalgebra g with
the following properties is introduced. There is a super-Hermitian form (:,-),
homogeneous of degree zero, on E which satisfies

@ (-,-) is e-positive definite on E, i.e., (*,*)|g; is positive definite and there is a
constant ¢= +1 depending only on (L, E) such that &,/ —1(:,")lg, is positive
definite.
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(ii) The form (-,") is invariant under L, ie.,
(L(xJv, w) + (— &> 82 (y, L(x)w) = 0 for homogeneous xeg and v, wek.

This representation is also called super-unitary. In fact it is easy to see that they
determine the same class of representations.

1.2. Integrability and Admissibility. In this subsection, we gather some practical
terms and notions for super-unitary representations, which mainly concern
integrability of representations. The first statement is about a Lie superalgebra g
itself.

Definition 1.2. ([17, Sect. 2]). A complex Lie superalgebra g€ = gg:ék)g}t is called
classical if it is simple and the adjoint representation of gg: on g'l—D is completely
reducible. A real Lie superalgebra g is called classical if its complexification is
classical.

In this article we only treat classical Lie superalgebras and thier super-unitary
representations. If g is a real Lie superalgebra which is classical, then gg is reductive
Lie algebra ([17, Theorem 2]). Let f be a maximal compact Lie algebra in 95.
Here we say T is compact if exp(adf) is compact in exp(ad g5). So by definition,
f contains the center of gg.

Definition 1.3. Let (L, E) be a representation of §. Then we say (L, E) is admissible
if its restriction (L|s, E) to T is decomposed into a direct sum of finite dimensional
irreducible representation of T with finite multiplicity.

This definition assures that an irreducible admissible super-unitary representa-
tion can be integrated at least up to exp(gs) (see [26, Theorem 0.3.10}, for
example). Conversely, we have

Lemma 1.4 ([11, Theorem 6]). Take an irreducible super-unitary representation
(L, E) of g. If (Llgs, E) is obtained by the differentiation of a unitary representation
of a reductive Lie group Gg with the Lie algebra g, then it is admissible.

Hence, in the following, we can assume all the super-unitary representations are
admissible.

Lemma 1.5. Let g be a classical Lie superalgebra and (L,E) its admissible
representation. Then (L, E) has a weight space decomposition with respect to a Cartan
subalgebra of .

Proof. Since (L, E) is admissible, it is a direct sum of finite dimensional irreducible
representations of f and each of them has a weight space decomposition according
to an elementary theory of Lie algebras. Therefore (L, E) itself has a weight space
decomposition if we sum up weight spaces in each irreducible component of
. QED.

2. A Weight Condition for Unitarizable Lowest Weight Modules of su(p, g/n)

Let V= V5;® V; be a superspace of dimension (m/n) over C, that is, V5 and V;
are complex vector spaces of dimension m and n respectively. We often denote V
by €™". We define a super-Hermitian form hipgrs('»’) o0 V using the matrix
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Jopars 0T ptq=mandr+s=n:
| 1

4

-1

4

‘I(p.q/r,S) = l \/___1 1,

J 11,

and for v, we@C™",

(U’ w) = th(p,q/r,S)w’

h(p,q/r,S)
where we consider an element in €™" a column vector. Let us define a Lie

superalgebra which leaves h(-,) =h,, , (-,) invariant. For ke{0,1}, we put

u(p, q/r, ), = {Aeglim/n; ©), | (Av, w) + (— ) *#@h(v, Aw) = 0 for v, weV},

and §=u(p, q/r,s)=u(p,q/r,s)s @ u(p, q/r, s)1. A subalgebra su(p, g/r,s)=u(p,q/r,s)n
sl(m/n; C), denoted by g, is a real form of sl(m/n; C). The sets of all diagonal matrices
of these Lie superalgebras become Cartan subalgebras and we write them as b
and b respectively. Let H, ;= E,, + E;,eb® for 1 £k <m<I<m+n, where E,
is a matrix of M(m + n; €) with (k, })-element 1 and elsewhere 0.

Now we study the unitary representations of su(p, q/r, s). However, in almost
all the cases the only irreducible unitary representation is the trivial one. In fact,
we have

Lemma 2.1 (cf. [5, Proposition 2.2}). Let (r, V) be an irreducible admissible super-
unitary representation of g = su(p, q/r,s) with associated constant ¢ = +1 and A be
any weight of V, then

1£kLp,m<IE

eM(H, ) <0 for SK=pm =m+r or

: p<kEmm+r<li<m+n,

and

12k=p, <l

eM(H, )20 for SKkspm+r<i=m-+n or
’ p<kZmm<lZm+r.

Proof. Let (-,-> be a Hermitian form on V which makes n super-unitary. From
the definition of unitarity, we have

/= DX XD, v, 2 0,
where Xegr and v, is a non-zero weight vector with weight A. To get the first
condition, we put X = E; ;+ \/——lEl,kegf. Then it holds that 2n(X)? =n([X, X ])=
n(y/ —1H, ) and we get
—eMH, ) 2 0.
The second condition can be obtained in the same way. Q.E.D

From the above lemma, we can easily see that, if V is not trivial, then either
p=0,morr=0,n. Infact, let us consider a weight Ae(h®)* of V, and put 4, = cA(E, ;)
for1<k<mand = —eAE, 1+ ) for 1 £1<n. Then from the lemma, we get

A=y for the first condition,
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and
4 < A, for the second condition.
Therefore if p #0,m and r # 0, r it holds that
S S A S s,

for 1fa<p<c<m and 1<b<r<d<n Thus A, =y, for all kI, and the
restriction of A to b is trivial.

Since su(p, g/n,0), su(p,q/0,n), su(n,0/p,q) and su(0,n/p, q) are all isomorphic
to each other, hereafter we only consider the algebra g = su(p, g/n, 0). Mainly we
will write su(p, g/n) = su(p, q/n, 0). Let us list a basis for su(p, g/n).

a) Basis for su(p, g/n)s:

v —UE;—E;;) (i<jandijel,={1,...,p}orijel,={p+1,...,m}),

m+n

V/—1C, where C=nY E,,+m Y E,
i=1

i=m+1
\/——I(Ei,j +E;), E;—E;;
(i<jandijel, ori,jel ori,jel,={m+1,...,m+n}),
V-UE;—E;), Ej+E; (iel,jel,).
b) Basis for su(p, q/n);:
E; ;+ \/—_IEN (iel,, jel, or iel,, jel,),

E,;—\/—1E;; (iel,, jel, or iel,, jel,).

We describe a positive system in the root system of su(p, g/n). Let {e.} be a
basis of (hT)* such that ex(Ey ;) = J;,;, then one of the positive systems is given by

AY ={ex—elk <l kIel, or k,Iel, or k,lel,}
:the set of positive compact roots,

Al ={e,—elkel,, lel,} :the set of positive non-compact roots,
A7 =41 o4’ :the set of positive even roots,

Af ={e,—elkel,ul, lel,} :thesetofpositive odd roots,

AT =A5 047 :the set of positive roots.

Let us call the positive system standard (see Sect. 3.2 bis) and the terms highest
or lowest refer to this particular positive system A*. Sometimes we use the notation
fi (< n) instead of ¢, ,,. If Ac(5O)* is expressed as

=3 ke~ Y wfy @.1)
1<i<m 12i<n
then we write A= (;,45,-.., 4,/ls, s, ..., ) and call it a coordinate expression
of 4. Note that the coordinate expression has ambiguity because it is a restriction
of an element in (hT)* to b.

Proposition 2.2. Let (n,V) be an irreducible admissible unitary representation of
g = su(p, g/r, s) with associated constant s = +1,
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() If p#£0,m and r +# O, n, then (z, V) is trivial.

(2) For g =su(p,q/n)=su(p,q/n,0), there are two possibilities.

(2a) Ife=1, then (n, V) is a highest weight representation and its highest weight
A satisfies

A’p%—l2—"'glmg#ng”'gﬂlgilg”'gir

(2b) Ife= —1, then (rn, V) is a lowest weight representation and its lowest weight
A satisfies

Apr1 S Sy Sp, S Sy SAH S LA,

Proof. (1) was proved and now we show (2a).
Since V is admissible, V has a weight space decomposition. Let v be a non-zero

weight vector. From the irreducibility of V, we get V = U(g®)v, where U(g?) is
the universal enveloping algebra of g€. Denote

95.,= P 6, gi= @ g5 and g5, =HD Py,

tacAl tpea;t acde

where g, or g, is a root space of g€ of root « or B respectively. Then 95, is the
complexification of a maximal compact subalgebra f of g5. According to Poincaré—
Birkhoff-Witt theorem, it can be written as

V=U@g%=(Agr)(Aa])U(gf.

We write W = U(g%)v, then from Lemma 2.1 any weight A of W will satisfy the
foliowing condition:

A‘ié:ukélﬁ

for 1Si<p<j<m and 1 <k<n Therefore there exists a A'-highest weight
vector in W. In fact, from the above condition, there exists a non-negative integer
t(1,p+1) such that (E, ,, J"*" Yo #0 and (E, ,, J"?"P* 1o =0. There also
exists a non-negative integer #(1, p + 2) such that

(El,p+ JEPEDE L O %0 and (E, )P TPY 1(El,p+ JEP Uy =0,
and so on. Then the vector
{(Ep’p+q)t(p.p+q) .- (Ep‘p+ z)t(p‘p+ 2)(Ep.p+ l)t(p,p+ 1)}
“{(El,p+q)t(1’p+q)’"(Ex,p+2)z{1’p+2)(E1,p+1)t(l’p+U}”
is A'-highest. We again denote this vector by veW. Since v generates a finite
dimensional representation for the compact subalgebra g ., there exists an
XeU(gg,) such that Xv becomes a A -highest weight vector. The vector w = Xv

is also a A7 -highest welght vector because of the relation [g3,,85 .1 < 83,
Ify, and Y, are in g5, then we have

Y, Yo dw=(Y; Y, + Y Y w=0,

since [gf,97 ] < a5, " Therefore we can conclude that the action of Agf on wis
well- deﬁned Take p*e /\ g; with the highest weight among the elements which
satisfy p*w #0. Then p*w becomes a A*-highest weight vector because:
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(i) If Y is a root vector in g7, then Yp*e Agf has a weight larger than that
of p*. So by the above definition of p*, we have Yp*w =0.

(i) If Y is in gg,, then it holds that Yp*w=p* Yw =0, since [g{,g83,] = (0).

(iii) Assume that Y is a root vector in g7 .. We can write

Ypr*w=p*Yw+[Y,pTlw=[Y,p" Iw.

Since [g4,,87 ] < g7, we can conclude that [Y,p*]e Ag;, which has a higher
weight than that of p*. Hence we have Yp*w=[Y,p"Jw=0 by the above
definition of p™.

Thus p*w becomes a A*-highest weight vector, and V is a highest weight
representation. The proof for (2b) is similar. Q.E.D.

Corollary 2.3. Let (n, V) be an irreducible super-unitary representation of g =su(p, q/n).
If (7, V) can be integrated up to a representation of S(U(p,q) x U(n)), then (n,V)is a
highest or lowest weight representation with integral weights.

Proof. From Lemma 1.4, (=, V} is admissible. Then it is a highest or lowest weight
representation. Since the weights are obtained by the differentiation of a
representation of a maximal torusin S(U(p, g) x U(n)), they areintegral. Q.E.D.

3. Canonical Imbedding of Super-Unitary-Algebras
into Orthosymplectic Algebras

3.1. Abstract Imbedding. Let V = V5@ V; be a complex superspace with super-
Hermitian form h(,,"). We assume that h is of degree zero, ie., (Vs Vi) =
h(Vy, V) = 0. Then by u(h) we denote a super-unitary algebra consisting of elements
which leave h(-,") invariant:

u(h) = {xegl(V)| h(xv, w) + (—)*2*%5h(p, xw) = 0}.
Consider V as a real superspace and put

b(v, w) = Im h(v, w)

1
————{h(v, w) + (—)*2" %" h(w,0)} (v, weV).
2. /-1
Then b(-,-) is a super-skew symmetric real linear form on V,

Lemma 3.1. Every element xeu(h) belongs to osp(b) if it is considered as a real
linear transformation on V.

Proof. Infact, since x leaves A(-, -) invariant, it leaves Im h(-, ) invariant. Q.E.D.
Note that b(-,-) is non-degenerate if h(-,-) is non-degenerate.

3.2. Explicit Imbedding. Let us consider the following normal form of (") (cf.
Sect. 2). Put dimg V = (m/n). We arrange first a basis for V5 then one for Vi and
get the basis for V= ™" Using this basis, we define h(, )=hggrs (") by the
matrix J, ., o(p +g=m,r+ s=n) as in Sect. 2.

We write u(h) = u(p, q/r,s) and call it a super-unitary algebra of type (p,q/r, s).
Let sl(V) be a Lie superalgebra consisting of all the super-traceless matrices. Then
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a special super-unitary algebra su(p,q/r,s) defined in Sect. 2 is equal to
u(p, g/r,s)nsl(V). If m # n then the center of u(p, g/r, s) is isomorphic to u(1) and
we have a decomposition

u(p, q/r,s) = u(l) @ su(p, q/r,s).

Let {v;]1 i< m+ n} be a standard basis for V = C™", whose i'" element is 1
and the others are all zero. Now we want to have a matrix B for super-skew
symmetric form b(:,") = Imh(-,-). Let V® be a real form of V spanned by the basis
mentioned above. Then, as a real vector space, V has the following basis:

{«/—lvl,...,«/—1vp,vp+1,...,up+q,v1,...,vp,\/—:lupﬂ,...,,/—lvp+q;
Um+17"‘>vm+r’\/ _lvm+r+19""\/ __lvm+r+s’
vV _lvm+19~--,\/ _lvm+r9vm+r+1a'"avm+r+s}'
Put
VR =<(vy,...,0,)/R, VR =CUpr1,ees Uprgd/R,
V']'R___: <Um+15~~~5vm+r>/]R’ V.:R= <Dm+r+1""9vm+r+s>/]R'
Then the above basis is arranged in the following order:
R R R R R R R R
NSV VAV =1V VA =1V =1V SV

For this basis the matrix B for b(:,-) is expressed as follows:

l 12r
- 12s
and
b(v,w)y="vBw (v,weV).
We denote the orthosymplectic algebra osp(b) for the above b by osp(2m/2r, 2s; R)
or simply osp(2m/2r, 2s).
The above results are summarized in

Proposition 3.2. A super-unitary algebra u(p, /v, s) can be canonically imbedded into
osp(2(p + q)/2r, 2s;IR). With respect to this imbedding, the commutant of u(p,q/r,s)
in 0sp(2(p+q)/2r,2s;R) is the center u(l) of u(p,q/r,s) itself under the condition
pt+g#r+s.

Proof. Take X in osp(2(p+4q)/2r,2s;R). Since u(1) and a Cartan subalgebra of
su(p, g/r,s) together generate a Cartan subalgebra of osp(2(p+q)/2r, 25;R), if X
commutes with both u(1) and su(p, g/r, 5) then X commutes with the whole Cartan
subalgebra. According to the definition of Cartan subalgebra, X belongs to the
Cartan subalgebra of osp(2(p + q)/2r,25;R). So X can be expressed as

X=H,+H,, (H,cu(l),H,eCartan algebra of su(p, q/r,s)).

The component H,, commutes with su(p,q/r,s). Since su(p, g/r,s) is simple, it
must be zero. Now we can conclude that Xeu(l). Q.E.D.
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In the following, we only consider the super-unitary algebra u(p, g/n, 0)=u(p, g/n)
and the orthosymplectic algebra osp(2m/2n,0; R) = osp(2m/2n; R).

To exhibit the correspondence of the roots of u(p, g¢/n) and osp(2(p + ¢)/2n;IR),
we first prepare the notations for orthosymplectic algebras. The elements in
osp(2(p + q)/2n;R) are matrices of the form

A B P
4
ERE)

where Aegl(m;R) (m = p+q), B and C are symmetric, P and Q are m x 2n-matrices,
and D belongs to so(2n). This algebra has a compact Cartan subalgebra t:

0 4
0
i)

t= h=\\ . ‘0 3 A =diag(a,a,,...,a,),

—B 0
B =diag(b,,b,,...,b,),a;, bjeR}. 3.1
We define ¢;e(t€)* (1 <i<m) and d;e(t®)* (1 < j<n) by putting
) =/~1a, dh)=/—1b,
for het of the form in (3.1). Then roots are given as
Sr={o—¢llSi<jsmiu{ditdl1Si<j<n}
: the set of positive compact roots,
Zr={c,+c J1Sigjs m} : the set of positive non-compact roots,
Zr=Xrux’ : the set of positive even roots,
Xi={axd]1<i<m1<j<n} : the set of positive odd roots,
Tr=Xxrux{ : the set of positive roots.
If Ae(t®)* is of the form
A=Y ket Y wd,

1<ism 1<isn

then we write A = (4, A5,..., A,./tt1, fa, - - ., ) and call it a coordinate expression of .
Take h in a compact Cartan subalgebra b of su(p, g/n):

\/TIAI’
RSN B
L )

h=

where
A,=diag(ay,a,...,a,), A,;=diag(a,,,0,42,...,0,+,), B=diag(b,,b,,...,b,).
Then, if we denote the imbedding described above (cf. Proposition 3.2) by
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U, ¥ (Weosp(2m/2m;R) is of the following form:

r Ap ) =
0
—A
Y(h) = 1 et.
_Ap 0
Aq

B

L -B ]
Now it is easy to see that ¥ maps roots
'ei_ej’ ei_fj and fi'_fj

of su(p, q/n) (see Sect. 2) to the roots
sgn(i)c; —sgn(j)c;, sgn(i)c;—d; and d,—d;
of osp(2m/2n;IR) respectively, where sgn(i)is lif | Si<pand —1lifp+1<ZiZ<p+g.
We define a positive system ¥~ for su(p, g/n) as
¥ = (wedlY(@eZ ),

and call it the twisted positive system (or compatible positive system for osp).
Recall that we called the positive system A for su(p, q/n) standard.

4. Primitive Vectors in the Oscillator Representation
for a Special Unitary Algebra

4.1. Review of Oscillator Representations. In [22], we defined a super-unitary
representation for osp(2m/2n; R) called the oscillator representation. Let us review
the construction of it briefly.

First we give the representation space of the oscillator representation p. Let
C%r,|1 £1<n) be a Clifford algebra over € generated by {r;|1 <I<n} with
relations

=1, rrj+rr=0 (15i#j<n).

We denote by CE(r,|1 <1< n) a subalgebra of CT(r;|1 <1< n) generated by even
products of ;s and by C?(r,[l <[ < n) a subspace generated by odd products of
r;’s. Then clearly we have
Cr12isn)=CLr |1 SISm@®CEriL<I<n)
and C%(r,|1 <1< n) becomes a superalgebra with this Z,-grading.
For the representation space F = F5g@® Fj of p, we take as follows:
F=F;®Fj,
Fo=Clz/1<k<m]®CE(r|1 £1<n),
Fi=Cz]1sk<sm]®CE(r|1<1<n),
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where €[z, |1 < k <m] means a polynomial algebra generated by {z,|1 <k <m}.

Second, we give the operations of osp(2m/2m;IR) on F. Let V=V5&® Vi be a
superspace of dimension (2m/2n) on which osp(2m/2n; R) naturally acts. We denote
a super-skew symmetric form on V by b and consider that osp(2m/2n;IR) = osp(b).
Choose the basis {p;,q,|1 <k <m} for Vj such that

b(p;,q;) = —blg;,p;)) = 0;5, b(pi»p;) =b(q:1,9;) =0,

and an orthogonal basis {r,,s,|1 <1< n} for V7 with respect to b with length \/5

Then there exists a superalgebra C®(V;b) over R which is generated by
{Po-qell £k <m}u{r,s|1 <1< n} with relations

pipj—q;P; =0, 1:S;+sy; =0, rritrr;=20 855+ 8;5,=20
and all the other pairs of p,q,7,s commute with each other. CR(V;b) can be
considered as a Lie superalgebra in a standard way (cf. [17, Sect. 1.1]), and
osp(2m/2n;IR) can be realized as a sub-Lie superalgebra in CR(V;b) (cf. [25]). Let
L be a subspace generated by second degree elements of the following form:

{xy+ (=) st yx|x, ye{po gl Sk smpu{n,s |1 SI<n}}.

Then L becomes a sub-Lie superalgebra. An operator ad(xy+(—)dce*deeyyx)
preserves V < C®(V;b) and the bilinear form b, and this gives an isomorphism
between L and osp(2m/2n; R). From now on, we will identify L and osp(2m/2n;R)
with each other.

The oscillator representation p is actually a representation of the superalgebra
CR(V;b) given by

_v-lvel @_1( ‘3)®1 1 <k<m)

p(pe) = ﬁ Zk_a_Zk
4 _
p(qk)='\/;<zk+£>®1 (1£k=m),
k
plr)=1®r, (1=l<n),
pls)=1®/—1ry (Isi<n),

where «, is an automorphism of the Clifford algebra C®(r,|1 <1< n) which sends
re to (=), (1<k<n). If we restrict p to the sub-Lic superalgebra
osp(2m/2m;R) = CR(V;b), then p gives a super-unitary representation for
osp(2m/2n;IR). For more information on p, see [22] and [23].

4.2. Imbedding of su(p,q/n) into vsp(2mN/2nN;R). As in [23], we consider the
following imbeddings:

lZ:SU(p, q/n) i, osp(2m/2n; R) <;l_, osp(2mN/2nN; R).

Here 1 is given as follows. Let ¥V = V5@ V7 be the superspace with the super-skew
symmetric bilinear form b = b, as above and W = W be a usual N-dimensional
vector space with a positive definite inner product by. Then a superspace
VOW=VQ W5+ Vi ® Wj is endowed with a super-skew symmetric bilinear
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form by gw = b, @ by If we consider

osp(by) = 0sp(2m/2n; R)
and
0sp(by gw) = 0sp(2mN/2nN; R),

tis given by i{A) = A ® 1y, for Aeosp(2m/2n; R). In the matrix form, this only means

agly apply
WA)={axly axply | for A=(a;)

Since su(p, g/n) is imbedded into osp(2m/2n;R) by ¥ as in Sect. 3.2, su(p, q/nj is
now imbedded into osp(2mN/2nN;R). We denote this imbedding by .
Let (p, F) be the oscillator representation of osp(2mN/2nN;IR) so that

F=Clz;)1Lism1ZjENIQCryl1 £k<n 1 SIS N).

The successive application of i then p gives a super-unitary representation j = pe
of su(p, g/n). In the following subsections, we try to decompose this super-unitary
representation g of su(p,q/n). Since the associated constant of p is ¢= —1, an
irreducible super-unitary representation for su(p, g/n) which appears in (3, F) is a
lowest weight module. Therefore what we have to do is to find all the primitive
vectors for p.

4.3. Operators for Root Vectors. Let X, (xe4) be a non-zero root vector for a root
o of su(p, g/n). Then up to a non-zero constant multiple, operators g(X,) are given
as follows.
Root vectors for aeA™:
N

0
M) a=—(e,—fH1sk=p1=lsny z aArl,j(l_{'al,j)a
i=10Z,j
N

) o= —(e,— f)p<k=m1=<I<n) Z Zk,j"z,j(l +al,j)a
j=1

(D o= —(e;— )1 i<k =p);

~

(V) a= —(e;—e)(p <i<k =m);

[
N
<
D
N
x
.
-

z (M= 1=
QO

0o 0
V) a=—(e,—e)(1 <i<p<ksm) S,
j=1 aZi,j aZk,j

(VD) a= —(f,— )1 sk<l=n) .;1 rk,j"t,j(l - ‘xk,j)(l + al,j)a

where o, ; is an automorphism of C Cryl1 <k <n 1 <1< N)such that

) r if i#k or j#1
o {(Te,1) ={ Kl

—r,; if i=k and j=|

for1£k<n 1IN,
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Root vectors for aeA™;

(I+) a=e¢— fi(1£k<p,1<I<n) Zk,jrl,j(l _O‘t,j),

.

~

N
Y.
=1
Noa
(IT+) a=e,— filp<kEm, 1 <1< n); Z P z,(l o),
i=1 52,(,]
N d
(IlI+) a=e;—g(lSi<k=p) Z Zija
j=1 aZk,j
y 0
(AV+) a=e;—e(p<i<k<m) Yz i
=10z
N
(V+) a=e,~e (1 Lisp<k<m) D Z; jZx,js
=1
N
>
=1

(VI+) a=fi— fil£k<I<n) rk,jrl,j(l + O‘k,j)(l - al,j)-

~

Since the calculations are easy and elementary, we omitted them.

4.4. Description of Primitive Vectors for the Twisted Systems. At first, we consider
the twisted positive system ¥ (see Sect. 3.2). Then primitive vectors for ¥~ must
be killed by the operators of type (I), (IT+), (IIT), IV +),(V) and (VI) in Sect. 4.3.

N .
Forléaémin{p,z} and 1 <b <min Ly , put

= det (Zk2] 1+zk21)p a<k<p) Aa de t(zk2] 1 Zk,zj)p—a<k§p,
£jZa J

<p det(ZkZ_] 1+Zk21)p+q b<kSp+q5 5b=det(zk,2j 1 Zk2])p+q b<k§p+q

For — <a<min{p, N} we replace the element z, ,;_, +z,,; (N—a< j<a)in A,

|z

- . N .
and A, by z, y_,4; Similarly, for 3 <b<min{q, N}, we replace the clement
Zk2j-1 T 2k,2;(N —b < j< b)in §,and &, by z, y_,, ;. We denote this situation by

—det(ZkZJ 1+Zk2_]|ZkN a+])p a<k<p’

for example. We put, fora=0o0r b=0, Ay =A, =5, =5, =1.
For 0= c £ N, we define
Rc = H Rl,u Ec = l_[ Rl,w
=1 =1
where R, and R, are given by
‘ N
Rlc=n(”1,2j—1 +725) if 1§c§5,
j=1

N-c¢

R, .= n (rz,z;—1 +"z,2j) ._ H

j=1
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and
- N
H (r2j—1—"1,25) if 1gegs—,
ji=1 2
N- N N
1_[ (ri,2j—1—"125) H r; if —<c=ZN.
i= j=2N-2¢+1 2

Here we consider R, o = R,,O = 1. Note that they are vectors in the representation
space F =C€[z;[1<i<m 1 < jEN]®C(ry|l £k <n,1 < N) of the oscillator
representation p.

Lemma 4.1. Let integers a,b and c satisfy the condition a<c <N —b. Then the
vectors A,E,R, and A,Z,R, are primitive for ¥~.

Proof. One can easily check that the vectors in the lemma are killed by the
operators of type (II) and (IV+). For the other operators, we note that the
following equations hold:

0 0
A= A, (jE<min{a, N —a}), @.1n
0Zy 251 0zy »;
0 = 0 = .__.
Z,=— E, (jSmin{b,N —b}), 4.2)
02251 02y 2
Fraj-1(+ ;- )R = =1l +a )R (= min{c, N — c}), (4.3)
Frajm1(l—aya;- )R, =71 — a5 )R, (j<min{c,N —c}). 4.4)

First consider an operator of type (V). It kills the vectors in the lemma. In fact,
for j <min{a, b}, we have

B F - 8 8 8 o =
( 0,9 >AE,,=— Ap—— B+~ A,— 5, =0,

a
azi,Zj—l aZk,zj—1 6Zi,2j aZk,zj 52121 aZk,zj 5212] azk.Zj
4.5)

from Egs. (4.1) and (4.2). For j > min{a, b}, one of the factors dA,/dz and 35, /0z
vanishes, where 6/0z represents an operator which appears in Eq. (4.5). More
precisely, if j > a, then we get
0 5]
A —

.=
azi,Zj—l azi,Zj

A,=0.

a

Similarly, if j > b, then we get
é ]

aZk,2j— 1

Next let us show that the operator (I) kills the vectors in the lemma. For
j<min{a,N — ¢} =min{a,c, N —a, N — c}, we have

a 0
(7—71,21‘— (L4 1)+ a——"z,z,'(l + al,Zj)>AaRc

i,2j—1 i,2j

i} 9
= - Aprpa(l+ oy )R+ — P Agry (140 ,;)R =0, (4.6)

0z; 5 Zi2j
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from Egs. (4.1) and (4.3). For j > min{a, N — ¢}, we get
0

—A,=0 or r(l+ax)R, =0,
0z

in the same way as above. Here we denote by §/0z or (1 +a) an operator which
appears in (4.6).
For operator (I), we can use Eqs. (4.2) and (4.4) instead of (4.1) and (4.3).
Lastly we consider operator (VI). Note that the operators

Fraj-1(L+o;-0) and 1 (1 —0y 5;-4)

are anti-commutative. Then Eqs. (4.3) and (4.4) tell us that the vectors are killed
by the operator. Q.E.D.

A Young diagram Y =(ay,a,,...,,) is a decreasing sequence of finite non-
!
negative integers. We put |Y|= Y «,depth(Y)=max{r|a, #0}, ht(Y)=a,, and
i=1
call them length, depth and height of Y respectively. Let 'Y = (i1, i,,...,i;) be the
transposed Young diagram of Y. Namely

b= #{j1o; 2 k),

where #S means the cardinality of the set S. Note that the operation (- is involutive:
‘(Y)=7Y. Let % be the set of all the Young diagrams. Define a subset 7 (N) in
the direct product # x % x ¥ as

g.(N) = {(YA7 YB’Z)[Z :(017023-~-5cn)3
ht(Y,) <min{p — 1, N —c, }, ht(Yg) Smin{q — 1,¢,} }.

We associate vectors vy and oy in F with an element T =(Y,, Y3, Z)e 7 (N) as
follows. For Y, = (a1, 05,...,0;,), Yo =(B1, Ba,- .-, B1,), put I, ="Y ,, Iz ="Y,. Write
ILy=0y0 i, 1), Ig = (j1, jas---» jg~1) @aNd "Z = (sy,s,,...). Then the vectors vy
and ¥, eF are given by

n n
RT: H RI,N—CU RT= H Rl,N—cn
1=1 1=1

It Iz
Up = H Aai l_[ Eﬂ':RT and ET = A . EB.'RT.
i=1 i=1 {

J

Lemma 4.2. We have for 1 <k <I1<n,
N
2 Tl = o Y1 + oy YRy =0,
i=1

N
Y el — oy (1 4o, )Ry =0.
ji=1

Proof. To prove the above, we shall show that

{rk2j—1riz5-1(1— -1 )+ oy ;- 4) + Trait2f{l — o 2)(1+ oy 55) Ry =0

for any j. We gather all the terms in the product expression of R; which concern
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either 7y 5;_ 1,7 25 OF 71251, 2;. Then Ry can be written as
Ry = £ Rk, j) R,

where R(k, 1, j) is one of the following forms:

1,

Fraj—1F1,2

Pr2j—1Tk,2i%,25- 171,25

(rl,zj—l + rl,2j)7

(e 2j—1 F T2 25-1 + T 2))s

(rk,z;‘—1 + rk,Zj)rl,Zj—lrl,Zj'

Rk, 1, j)=

Now the explicit calculations show that

{resi-1rzj—1(0 =042 YA F0y 55— 1) + 72712/ (1— 04 25)(1 +0y,;) Rk, j)=0
in all cases. Q.E.D.

Proposition 4.3. For TeZ (N), vectors vy and 0y are primitive for ¥, ie., killed
by the operators {p(X,)|ae ¥~ }. Weights of vy and by are the same and given by
’1:(’113/123”-a}'m/ulnub---a,u'n) With

N

)'kzip—k+1+5 (1=k<p),

. N
’1k=_]m—k+1_5 (p<k=m),

N
m=a—> (=i=n.

Remark. For the coordinate expression of 4, see (2.1).

Proof. The essential part of the proof is given in Lemmas 4.1 and 4.2. Note that
operators j(X,) are first order differential operators except the two which are type
(V) and (V). For these operators we have

P(X Jor= Z fa,b(za r)ﬁ(Xa)(AaébRT),

where f, ,(z,7) is a vector in F.
If the reader uses Lemma 4.1 and calculates carefully, then the reader can
conclude that either

(X )(A, 5, Ry) really vanishes of f,,(z,r)=0

holds. Thus vy is killed by g(X,).

For the type (V) operator, the situation is similar because indices i and k of
the partial differentials are divided into two which correspond to A, and A
respectively. So they are essentially first order differential operators.

For the type (VI) operators, Lemma 4.2 tells you that vy and 7, are killed by
them.
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Next we calculate the weights of v; and #;. Note that elements in the Cartan
subalgebra b of u(p, g/n) are represented by the operators as follows:

P/ —1E. ;) =sgn(k)/—1 Z {Zua %} (I1=sk=m),
Zk,j
/1 ¥
P —1Epiime)) = ——— 2 a; (1=1<n),

where sgn (k) is defined as in Sect. 3.2 and ¢, ; is the automorphism of F given in
Sect. 4.1,

Since ﬁ(\/lek’k) (1£k<m) are only the Euler’s degree operators up to
constant multiple, the results are easy to get.
For p(\/ —1E, ;1 m+1) (1 £1< 1), note that

(0,25-1 + 2 2)Ry =0,

. N N
ifjigeq (c, s 5) orjESN—¢ (c, >E) On the other hand, we have
. N :
o ;Rr =Ry if ¢ gEand] >2¢

N
OCURT= _‘RT if C1>5211’1d].>2N—2Cl.

The above three formulas prove the result for 5(\/ —1E,, 4} +1)-
The proof for 77 is similar. Q.E.D.

4.5. Description of Primitive Vectors for the Standard System. In this subsection,
we give typical primitive vectors for the standard negative system A~ of su(p, g/n).
Primitive vectors for A~ are to be killed by the type (I-VI) operators in Sect. 4.3.
As in the former subsection, we put

O, =det(zy 55— 1+ 2k 2jl Ze N b+ p<resp o
L£jsb
Q,=det(z, ;-1 — Zk,2j|zk,N—b+j)117<k§:+b-
sis

For the notation in the above equations, see Sect. 4.4. Since the type (II) operators
play a decisive role in the following, we have given an extra notation:
N

Xei= Y zr(L+oy).
j=1

Now take T =(Y,, Y5,Z)eJ (N) and define I, and I, as in Sect. 4.4, For Z =
(¢1,€2,-..,0,), put

m=min{m,p+cj(1=<I<n), and X,=[] [] X.. 4.7

I=lk=p+1
Let us consider the following vectors w; and W
1 1] L 3

wr=[] A, [] 2Ry and wr=T] A, [] 2, R;.

i=1 i=1 i=1 j=1
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Lemma 4.4. The vectors X ywy and X ;W are non-zero and killed by X, (p<s=<m,
1<t<n).

Proof. Let us show that X ;wy is non-zero at first. To prove this, it is enough to
see that X Ry # 0. Assume that m is sufficiently large. If we expand R into the
monomials in r; ;, then every monomial has degree

z; (N —cp).

n

Note that the degree of X is Y ¢, because we assume m is sufficiently large.
i=1
Since the operator r, ;(1 + a; ;) acts on every monomial as zero if it contains
r,;and as 2 otherwise, it is easy to see that, after applying Xy to every monomial,
the result is of the form

f(2) I rij-

. . N
Here f(z) does not vanish. In fact, if we put d = #{l le, g—}, then, for example,
the coefficient of 2

d N—q c1 n 1

[1 ( I1 Zp+i2j I] Zp+j,N—q+j) x 1 (H Zp+j,2j)
=1\ j=1 j=N—eg+1 {=d+1 \j=1

in f(z)is +£2%#*7. Thesign + depends on the order of the arrangements of 7, /’s.

If m is relatively small, then you can consider ideal operators X, (m+ 1 Sk <m')
with ideal symbols {z, jim+1sk<m, 1<j<N } for a sufficiently large m'.
Consider X ; for this m’ and write it as X’,.. Then according to the above discussion,
we have X, Ry # 0. On the other hand, we can write X, = X7.- X ; with superfluous
part X7. Since X7Ry #0, we see that X Ry #0.

Next we show that X, X Ry =0. If X, appears as a member of the product
for X, then the equation holds because X2, =0. Thus assume that X, does not
appear in X ;. Then we have s=m,+ 1 and m,=p+c,<m (1 £t <n). Fix t and
consider monomials in Ry which contain {r, ;|1 £j < N}. Then their degrees with
respect to {r, ;|1 <j < N} are the same, i.e. N —¢, (1 £t <n). On the other hand,
the degree of X5 with respect to {X, |p <k <m} is m,— p=c,. So we get

degXr+degR;=N
for any t. This means that the monomials which appear in X Ry, necessarily

N
contain the product [] r,;. Since it is easy to see
: =

N
Xs,r 1_[ i= 0’
j=1

we have X X, R;=0. QE.D.

Proposition 4.5. For Te7 (N) vectors X ;wy and X Wy are non-zero and primitive
for A, ie., killed by the operators { p(X )|acA™}. Weights of X ywr and X Wy are
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the same and given by A= (41,45, ..., An/this Hos- 5 ly) With

N
ik=ip_k+1+5 (1=k<p),

. N
A= _Jk—p_sk—p_z (p<k=m),

N
/llzct_mt‘FP_E (I=lgn),

where {m,} are given in (4.7).

Proof. As in the proof of Proposition 4.3, it can be proved similarly that the
vectors wy and wy are killed by the operators of type (I, IIL IV, V) and (VI).

Since operators (I) and (III) commutes with {X, ,}, they kill X ;w; and X ;W.
Lemma 4.4 tells us that operators (IT) kill them.

Since Xrwr and X, w; can be treated in the same way, we only concern
ourselves with X, w, in the following.

Let us consider an operator Y of type (IV). Y satisfies either [¥, X, ,] =0 or
[Y, X, 1= X;, for j < k. Considering these two equations, one can conclude that
Y commutes with X ;. Hence operators (IV) kill X w and X ;w,.

For an operator Z of type (V), we should note [Z, X, ,]=0 or [Z, X, ] is of
type (I). Hence Z commutes with X, or [Z,X ;] =) X, Z using operators {Z'}
of type (I). Now it can be easily seen that z

X, Zwp =0 it [2,X.1=0,
ZXwr= {XTZWT +Y X7 Z'wp=0 otherwise.
'z

Finally, consider an operator W of type (VI). Since [W,X,,]1=0 or
[W. X 1=X,, for I<t, [W,X;] is a linear combination of the operators
Xy X r(k, 1), where X (k,I) denotes the operator obtained by eliminating X, , in
X7. Note that [#¢ Careful check of the proof of Lemma 4.4 leads to
Xy Xp(k,l)wr =0 for 1 #0 for | #¢. Now we have [W, X Jw; =0 and

WXTWT = XTWWT + [V‘/, XT]WT = O.

Since the weight of X, , is e, —f, it is easy to calculate the weights of X ;w, and
X rwr, using weight operators in the proof of Proposition 4.3. Q.E.D.

5. Determination of the Unitarizable Lowest Weight Modules for su(p, q/n)

In this section we investigate a necessary condition for the unitarizability of
irreducible lowest weight representations of su(p, g/n) with respect to A*. It turns
out that the unitarizable lowest weight modules obtained in Sect. 4 exhaust all
the irreducible unitary representations of su(p,q/n) (Theorem 5.3).

Definition 5.1. For the weight A of the form in Proposition 2.2(2b), we define three
Young diagrams Y%,Y% and Y%:
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Yi.=(lp—j-15 ;Lp—l'._}'lo""jq_il’o)’

Y= —2ps 1> Am— Api2sees g — Ay 1,0),
Y’; = (1 = tns B2 — Mus- > iy 1 — I, 0).
We put d;=depth(Y}) for 1 Si<3,and g, =ty — Ay G2 = Ay — fh1 §3 =41 — Ay
From the result of [2, Theorem 7.4], we get

Propeosition 5.2. With notations as above, the lowest weight A of an irreducible
super-unitary representation satisfies

gs=d, +d,.

Proof. If (n, V)is an irreducible super-unitary representation with the lowest weight
4, then (z, V) contains a unitary representation of su(p,q) = su(p, g/n); with the
lowest weight (4,,4,,...,4,,). Therefore an irreducible representation of su(p, q)
with the lowest weight (44, 4,,...,4,,) is unitarizable. Let us convert the condition
in [2, Theorem 7.4] to the condition of the representations of the lowest weight
type and apply that condition to the above weight. Then we get the inequality of
this proposition. Q.E.D.

Now we are ready to state our main theorem.

Theorem 5.3. Let (m, V) be an irreducible A*-lowest weight representation of
su(p, q/n) with the integral lowest weight Ae(bTy*. Conditions (1) and (II) are necessary
and sufficient for (r, V) to be super-unitary.

(I) The lowest weight A satisfies

Apr1 S Sy S, S Sy SA S-S A, (5.1)

(IT) With notations given in Definition 5.1, A satisfies condition (5.2) or (5.3):
go2di+q and g;2ds, (5.2)
g,2d+d, and g,=d;=0. (5.3)

Remark 1. The above theorem, together with the highest weight version Theorem 5.5,
classifies all the irreducible super-unitary representations which can be integrated
up to the representations of S(U(p,q) x U(n)), a Lie group corresponding to the
even part su(p,q/n)s. In fact, Corollary 2.3 tells us that the representation is a
highest or lowest weight module with integral weights. All such representations
are classified by Theorem 5.3.

Remark 2. If n=0 then the conditions in this theorem become

@ Ay S ShSh S-Sk, (D g32d, +d;

Condition (I1) above is just the condition given in Proposition 5.2, which is derived
from [2, Theorem 7.4].
If g =0 then the conditions become
D upsspshs-=2 I Ay —uy 24y,
and if p =0 then the conditions become
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Proof. First of all, we will show that these conditions are sufficient. Let 4 satisfy
conditions (I) and (II) of the theorem and define Y2 d; and g; according to
Definition 5.1. To prove the sufficiency, it is enough to show A is the A*-lowest
weight for a super-unitary representation obtained in Sect. 4.5. We put Y, =
'Y%=(ay,ay,-..,a,) in the notation of Sect. 4.4. Note that depth(Y}) =d, =a, =
ht(Y,) holds. We divide the proof into three cases according to the value of g,.
() The case where g, = n. In this case, we put
N=gys—n, Yg='Y, and Z=Yi+[Onq+g,—n)

where Y, + Y, =(a; £ b,,a, £ b,,...) for two Young diagrams Y, =(a,,q,,...),
Y,=(by,b,,...} and Uk, )=(1,...,1) is a box type Young diagram with depth
k. Put T=(Y,, Y, Z). Then T belongs to 7 (N). In fact, we have
G=q+g —n2q>dy=b;=hi(Yy)
and
N—c,=(g3—n—(gs—g,+tq—n=g,—qzd, =a, =h(Y,).

From the definition, we have

(i15i25"-7ip~1)=tYA = Yiv =(1p—/115}“p—1 —)‘19'”7’12 _Al)

(jl’jZ"'qu—l) =IYB= Y% =(}“m_1p+1alm*1p+25“"lm_lm—l)

(clacza"'5cn)=z= Y§+ D(”,Q+91 _n)
=(ﬂ1—lm+Q“ﬂ, luz_’%m+q_n9"'9#n_lm+q—n)7

because it holds that u; —pu, + g, = u;— A,,. Since g, is greater than or equal to
n, we obtain g + g, —n = q, so we get ¢; 2 q for all [ and every m;, in (4.7) is equal
to m. Therefore we get :
(515825+.58g,...)="Z=(n,m,...,n,...).
q

Now we apply these values to Proposition 4.5 and get the weight of the vector
X rwq. Since we have

. N N
1p+1_k+5=lk—11+5 (1Zk=p),
i N N
—]k_p—sk_p—5=~(/lm—/lk)—n—z (p<k=m),

N N
cl—mz+p—5=(uz—im+q—n)—m+p—5 (1=l<n),

the weight is
(4, oAbl Ayt A, F LA At LU G, E),

N N
where t = 57 A= — 3 An— 1. This is a translation of A by t, hence its restriction

to b coincides with that of 1. Thus we prove that the lowest weight module with
the lowest weight 4 in this case is super-unitarizable.
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(i) The case where 0 < g, <n. In this case, we put s;=min {n,u,—4,,;} for
1 £j<q and denote the Young diagram (s,,s,,...,s;) by S. We also put
N=g3—9¢:, YB=t(Y/21 +0(g,90)—9S) and Z= Yé +S.
We claim that T =(Y,, Yz, Z) is in J(N). Since we have
Y3+ 0490 = (o= Ay soeeshm = Ay 1 0) o+ (b — Ao = Aoy = )
=(Ua— Apr oo esMn— Ay 3> Hn = A,

if we put (b, b’,..., b,,...) = (Y + [1(¢,9,)) then we have b = #{klu, — 4,,, 2j}.
Note that 'S =(b},b),...,b,). Therefore it holds that

Co= #{kls, 2} = #{klu, — A, Zn} = b,
Similarly we get
by=#{klp,— 2, — s 21} =#{klu,— 4, Zn+1}=b,,,.
So T satisfies
c,=b,z2b,, , =b, =ht(Yp)
For the other condition N — ¢, = ht(Y,), we calculate as follows:
N—cy=¢g3—¢,—¢
=g3—g,— (t(Y2)+¢q) (because b} =gq)
=g,—qzdy=a; =hi(Y ).
Now we proceed in the same way as in case (i). We note that
(sigseeesiy ) ="Y = Yi=(y—And, g — A dy — 44),
(Jisdase-sdq-1)="Yp= Yi+ (90— S
= (= A1 = Stolln— Ay = S2e s bn— Ay =8, 1);
(€1:Ca0ee s C)=Z = Y3 +'S =ty — o+ b, fty — g + by ph— iy +B)).

From the definition we get b = ---=b, =q2b] ,,. On the other hand, it holds
that p, —pu,=0 for any dy+1 <k £n. Thus, from the condition g, =d;, we

get
(c15€2s ) =y —pn+ Gl — Pnt Qoo g, — U+ G by g, B)).

Therefore we have m; =mfor 1 <1< g, and m;=b; + p for g, <1 = n(see Eq. 4.7)).
Now we apply these values to Proposition 4.5. Then we get the weight of the vector
X ;wq. First note that, for g, <I=<n, it holds that

+p—m—N/2=b+p—(bj+p)—N/2
= —N/2=p—p,— N/2 (because p; = p,).

The other coordinates of the weight of X ;w; can be calculated similarly. So we
conclude that

(S 20 PO R S S5 A NP S A SO o5 A S 3 7/ THE S T S A T )
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. N N
is the weight of X w;, where t=5—/11 = ~5——u,,. Thus we proved that the

lowest weight module with the lowest weight 4 in this case is also super-unitarizable.
(i) The case where g, =0. We keep the notations used above. Then N, Y,
and Z used above become

N=g;=g,, Yz=%Y:-5) and Z="S,

because of the condition g, = 0. It can be similarly proved that T = (Y, Y, Z) is
in 7 (N) and the weight of X, wy is equal to A as an element in (hT)*.

Thus we proved that a lowest weight module with the lowest weight A, where
4 satisfies conditions (I) and (II), is super-unitarizable.

To prove the necessary condition, we consider two cases where u;, — 4, is zero
or not.

When p, — 4, is zero, we must have g, = 0 and g, = g;. Then, from Proposition
5.2, A satisfies condition (5.3) of Theorem 5.3. For the case where pu; — A, is not
zero, we prove the necessarity in the next lemma. Q.E.D.

Lemma 54. If u, +# A, then the condition in Theorem 5.3 is a necessary condition
Jor (m, V) to be super-unitary.

Proof. Let v, be a lowest weight vector in V and put
Ue=mE,, pii) TE, it Vs for 1Zk<n—1.

We claim that v, is equal to zero if and only if #(E,,,, ,)---®(E,,, «m)Vk 1 equal
to zero. In fact, the following three statements are equivalent:

(1) =(E, . 1,m) e 77-'(Enm.k,,,,)vk #0,

(i) v, #0,

(i) v,eU(gYw,.

It is clear that (i} implies (ii). Since V is irreducible, (iii) follows from (ii).

So let us show that (iii) implies (i). According to the Poincaré—Birkhoff-Witt
theorem, it can be written as

U(g®)w, = Ulgg N A 8 (A 87 )Ua5 UMDy,

3= @D s,

iaeAg

where

Since vy is a AF -lowest weight vector, we can omit the term Ug; YU(BHT) without
loss of generality. Thus we assume that v, is of the form

vl=Zquijvk,
J

where u;eU(gg), X;€ Agf and Y;e Ag;. If u; X, is not scalar, then the weight of
Y,v, is lower than 4, thus the vector Y;v, vanishes. Therefore we get

v, =Z Yv,.
F

If we consider the difference between the weights of v, and v, carefully, we see
that Y; is of the form:

Y_] = Sn(Em+ l,m) e n(Em-f-k,m)’
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where s is a constant. Therefore we have

vl = STC(Em+ l,m) o 7T(Em+k,m)vk’

hence s is not zero. Now statement (i) holds.
An easy calculation tells us
k
n(Em+1,m)"'n(Em+k,m)vk = H1 (j‘m — Hj +] - I)U,l'
i=
So we conclude that v, = Oifand only if yt; — 4,, # j — 1 for any jsatisfying 1 < j < k.
If v, is not zero, then its weight 4+ ke, —(f{+ -+ f,) must satisly
condition (2b) of Proposition 2.2. Comparing the m™ component and the (m + n)'®
component of the weight, we get g, = u,— 1, = k.
If g, 2 n—1, then the second half of condition (5.2) is obvious. So we can
assume 1 < g, <n— 2. The above argument tells us that if g, < k then v, vanishes.
In particular, we have v, , , = 0. Then there exists aninteger 1 <j < g, + 1such that

= Am=j—H(=g1).

Since p;—A,=p,—An=g,, the above j must be g,+1. Thus we get
Bgiv1— Am=g1 =y — An SO it ., = H,. This means d; < g, and we show that the
second half of condition (5.2) in Theorem 5.3.

Next we put

Wi =T(E, _tyimer) TE, vy for 1=<ksm—1

Then we can prove as above that w, #0 holds if and only if 4;— pu;, #m—j for
any j satisfying m —k 4+ 1 <j <m. This condition is trivial for p+1<m, so we
have w, #0for 1 <k < g. Note that the weight of w,is A+ (e,,_, ., + - +e,)—kf;.
If w, does not vanish then g, =1, — u, =k according to arguments similar to
those above. Therefore g, = g holds and if g, is greater than m — 2, the condition
g> = d, + qis obvious. So we can assume g < g, £ m — 2 without loss of generality.
The same arguments as above lead us to equation 4, = 4;. From this it follows
thatd, < g, — q and this s the first half of condition (5.2) in Theorem 5.3. Q.E.D.

We get similar results for the highest weight representations. Let A=
(Ags--vs Am/ly, .- -> 11,) be an element of (hT)* satisfying the condition

App1 Z o 2 A 2, Z 2 2 A 2 A
We define three Young diagrams Y%, Y2 and Y}:
Yi'2(2’1_Ap)ll_A‘p—ln'--aﬂ“l_j“bo):
Y2=()“p+1—’lm"lp+2—j'm"°"j'm—1'—j’mao)a
Yé:(.un—ulaﬂn_—#z’""ﬂnﬂ/”'n—lao)'
We put d; = depth(Y}) for 1<i<3, and g, = Ay — fp g2 = iy — 41,95 = An — Ay
Then we have

Theorem 5.5. Let (n,V) be an irreducible A" -highest weight representation of
su(p, g/n) with the highest weight .e(h%)*. Conditions (1) and (I1) are necessary and
sufficient for (n, V) to be super-unitary.
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(I) The lowest weight A satisfies

Api 1l 2 2 A 2 Z 2y 2 A 2 Z A, (5.4)

(IT) A satisfies condition (5.5) or (5.6):
g22di+q and g,2d;, (5.5)
g, =dy+d, and g,=d;=0, (5.6)

Proof. We can construct the oscillator representations with the associated constant
e=1 in the same way as in [22]. Note that these oscillator representations are
highest weight modules. Then the sufficient condition follows from arguments
similar to those used in the case of the lowest weight representations. On the other
hand, we can obtain the necessary condition in a way similar to those used in the
proof of Lemma 5.4. Q.E.D.
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