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Abstract. We show that the entire cyclic cohomology class given by the Jaffe- 
Lesniewski-Osterwalder formula is the same as the class we had constructed 
earlier as the Chern character of 0-summable Fredholm modules. 

1. Introduction 

Cyclic cohomology replaces de Rham homology in the set up of non-commutative 
differential geometry ([1, 2]). In particular it is a natural receptacle for the Chern 
character in K-homology ([1]) so that to each K homology cycle of finite 
dimension, on an algebra A, there corresponds a stable cyclic cohomology class. 
This class reduces to the index class ([1, 2]) for the K-homology cycle associated to 
an elliptic differential operator on a manifold M, (where A = C~176 is the algebra 
of smooth functions on M). One of the distinctive features of cyclic cohomology is 
that it fits naturally not only with the non-commutative case but also with the 
infinite dimensional situation. Indeed, stable (or periodised) cyclic cohomology is 
the cohomology of cochains with finite support in the (b, B) bicomplex of the 
algebra A ([1]) and by imposing a suitable growth condition on cochains with 
infinite support, we introduced in [3] the cohomology of A, which is relevant for 
the infinite dimensional situation. 

In particular it allows to extend the Chern character in K-homology to 
K-homology cycles (~, D) on the algebra A (cf. [3]), where the operator D is no 
longer finitely summable (i.e. Tr(D-P) < ~ for some p < oo) but is only 0-summable: 
Tr(e-po2) < oo. Our original construction ([3]) of this Chern character was based 
on the correspondence between cocycles with infinite support and traces on the 
algebras QA, ~A of Cuntz and Zekri [5, 9]. The algebra eA is an essential ideal in 
the free product A * IF~(Z/2) of A by the group ring of the group Z/27Z. The growth 
condition of entire cocycles corresponds to the vanishing of the spectral radius of all 
elements of eA for the trace given by the cocycle. Thus any homomorphism 
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rc: eA ~ B  from eA to a quasinilpotent algebra B with a trace z, gives rise to an entire 
cocycle q~ on A, by the formula: ([3]) 

q9 2n( a 0 . . . .  , a 2n) = 2n'C o r~( F, a~ F, a l ] . . . [ F, a2"]) 

(where a i �9 A, F is the canonical generator of IF~(Z/2), F 2 = 1, and 2, is a numerical 
normalisation, 2, = 2-2"(n!) - 1 (we use the (b, B) bicomplex)). 

In the original construction ([3]) we took, for the quasi-nilpotent algebra B, an 
extension ~o of the algebra ~r of convolution of operator valued distributions on 
the interval [0, + oo [ C R.  Elements T of Lf are distributions with value operators 
in the Hilbert space ~4 and are assumed to be holomorphic in the parameter s > 0 
and such that T(s) is an operator of trace class for s > 0. The algebra B = ~o is 
obtained by formally adjoining to ~e a square root of the distribution 6;, the 
derivative of the dirac mass at the origin (times the identity operator in ~). The 
trace z was essentially T~Trace(T(1)), the usual trace of the operator T(1). 

Our first point in this paper will be to clarify the nature of this algebra ~ ,  using 
the Hopf algebra of the supergroup R(a' ~) 

Our second point will be to show that the later formula I-6] ofJaffe, Lesniewski, 
and Osterwalder (in the context of "Quantum algebras") gives in fact the same 
cohomology class: 

Ch(~, O) ~ HC,(A)  

as our previous formula. 
The main advantage of the J.L.O. formula is that it is simpler than ours, and has 

a clear conceptual meaning in the algebra of cochains introduced by Quillen ([8]). 
The advantage of our formula is that it yields a normalized cocycle so that the 
algebraic machinery of eA, QA and traces is available. It is thus relevant that the 
two formulae in fact are cohomologous. 

2. The Algebra ~ and the Supergroup ~(z '  ~) 

In this section we shall relate the quasinilpotent algebra ~ used for technical 
reasons in [3] with the Hopf algebra of the supergroup R o ,  i). 

Recall from [3] that, given an infinite dimensional Hilbert space ~, we defined 
an algebra s for the convolution product: 

(T 1 * T2)(s) = i Tt(u)T2(s-  u)du, 
o 

and whose elements T � 9  ~a are distributions on R,  (with values in the Banach space 
~(~)  of operators in d) which satisfy the following two conditions: 
(1) Support T C R  + = [0, + oo[. 
(2) There exists r > 0 and an analytic operator valued function t(z), z �9 C = U sD,, 
where D r = {z �9 •, [ z -  I I < r}, with s> o 
(a) t(s)= T(s) on ]0, + oo[, 
(b) the function h(p) = sup 1[ t(z) l[p, P �9  1, + oo [ is majorised by a polynomial in p 
for p ~  oo. ze 1/po~ 

The condition (2) essentially means that T takes its values in operators of 
suitable Schatten class so that the quantity Trace T(1) is well defined. 

All operator valued distributions on R with support {0} belong to ~ and so do 
the products 6o x id, 6~ x id of the Dirac mass at 0, or of its derivative, by the 
identity operator in ,~. To lighten the notation we shall simply write 60, 6~). 
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The algebra ~ is obtained from s by formally adjoining a square root 21/2 of 
2 = 6~. Thus, elements of ~ are given by pairs: (To, Tx) of elements of s with the 
product: 

(To, T0* (So, SO = (To * So + , ~  * T, �9 Sl, To * Sl + 7"1 �9 So), (3) 

where * denotes the convolution product, which gives ~ its algebraic structure. 
On the other hand, let us recall that the Hopf algebra H of smooth functions on 

the super group R(I. 1) is given as follows: as an algebra one has: 

i_i = co~(R~, 1) = COO(R)@ ^ (R),  

the tensor product of the algebra of smooth functions on R by the exterior algebra 
^ (R) of a one dimensional vector space. Thus every element of H is given by a sum 

f+g~ ,  where fgeC~176 ~2=0. The interesting structure comes from the 
coproduct A : H ~ H |  which corresponds to the super group structure; being an 
algebra morphism it is fully specified by its value on C~ C H and by A(0 = ~| 1 
+1 |  one has: 

(A f) = A o(f) + A o(f')~ | ~, where f '  = ~ f(s) and, 
( 3 8  

is the usual coproduct, 

Ao : c~(R)-~c|174 

A o(f) (s, t) =f(s + O. (4) 

Equivalently, the (topological) dual H* of H is endowed with a product which 
we can now describe. Every element of H* is uniquely of the form (To, T1), where 
To, T1 e Co oo(R) are distributions with compact support on R,  and: 

( f +  gr (To, T1)) = To(f) + T,(g). (5) 

The product * on H* dual to the coproduct A is given by: 

((T o, T,) * (So, S0, f +  g~) = ((To, T,)| $1), A( f+ gO).  (6) 

Lemma 1. The product * on H* is given by: 

(To, TO*(So, S~)=(To * So +6'o * rl *$1, To * SI + T~ *So). 

Using ~2 =0  this follows from formula (4). Thus we see that the algebra ~P is 
really a convolution algebra of operator valued distributions on the supergroup 
R(1,1), thus clarifying the relations between our formulae ([3]) and super- 
symmetry. 

3. The Normalised Cocycle Associated to a 0-Summable Fredholm Module 

We recall in this section the construction of the Chern character of 0-summable 
Fredholm modules. 

Let A be a unital Banach algebra over (E, the (b, B) bicomplex of cyclic 
cohomology ([1]) is given by the two differentials b:C"~C"+I; B:C"~C"-I ,  
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where Cn= Cn(A, A*) is the space of continuous n + 1 linear forms on A and: 
n 

(bq~) (a~ ..., a n + 1) = ~ ( _  1)Jq~(a ~ . . . . .  aJa j + 1,... ,  a n + 1) 
0 

+ ( -- 1)" + 1 q~(a n +, a o . . . . .  an), (7) 

(Bqg)=ABot p,  where (Boqg)(a~ ~ . . . . .  a " - l ) - ( - - 1 )  n, (8) 

~o(a o ....  , a n- 1, 1) and A is the cyclic antisymmetrisation. 
An even (respectively odd) cocycle is given by a sequence ~o = (q~2n) (respectively 

(q~2,+ l)n~) such that: 

bq~2n-bB~2n+2=O (respectivelybq~2,_l+Bq~2n+x=0) V n e N .  (9) 

Such a cocycle is normalized when for any n ~ N ,  the functional Boq)2n 
(respectively BotP2n+l) is already cyclic: 

1 ( 1 A B o q 9 2 n + l )  " B~ = 2n AB~ respectively Boq~zn + 1 - 2n + 1 

It is called entire when the radius of convergence of the series Z n!zn]lq~znll is 
infinity (respectively of Y,n!znll~o2n+all). (We took here the (b,B) differentials 
instead of (d~, d2) of [3]). By [3] Proposition 3, normalized even cocycles on A 
correspond to traces on the algebra gA, odd cocycles to traces on QA. Here QA, (cf. 
[5]) is the free product of A by itself, and g A  is the free product of A by the group 
ring IF_.(Z/2) of the group with two elements; 1, F with F 2 = 1. By [9], gA is the 
crossed product algebra QA x , Z / 2  of QA by the involution a ~ Aut(QA) which 
exchanges the two copies of A in the free product. Thus by duality for crossed 
products we see that QA | Mz(IE ) is the crossed product ~A = gA x ~E/2 of gA by 
the involution # dual to tr. 

By construction o~A is generated by a subalgebra isomorphic to A, and a pair of 
elements F, ~ such that: 

F 2 = ~ 2 = 1 ,  F T = - T F  , ya=a7  V a ~ A .  (10) 

Thus a homomorphism r c : ~ A ~ B  from ~A to an algebra B is given by a 
homomorphism from A to B and a pair of elements F, y ~ B verifying the conditions 
(10). Since traces on M2(QA) correspond bijectively to traces on QA, we get: 

Lemma 2. Let  B be an algebra, n : A ~ B a homomorphism and F, 7 ~ B be such that 
F 2 = 7 2 = 1 ,  F T = - 7 F  and 7rc(a)=n(a)7 for any a e A .  Then the following func- 
tionals ((P2,+ 1) are the components of  an odd cocycle on A, given any trace z on B: 

tp2n+l(a ~ .. . .  ,a2n+l)=2nz(TFa~ 1] ... [F, a2n+l]) V a i ~ A ,  

where 

{1"~ n§ 1 

2, = i ~ i )  (2n + i) (2n-- 1)... 3 .1"  

We used this lemma in [3] for the even case to associate an entire cyclic cocycle 
on A to any 0-summable Fredholm module over A. Thus for a change we shall here 
give the details in the odd case. 
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An odd 0-summable Fredholm module over the Banach algebra A is given by a 
pair of: 

a) A representation Q of A in a Hilbert space b, 
b) An unbounded selfadjoint operator D in b, 

such that [D, Q(a)] is bounded (..by C II all) for any a e A and that e-  ao2 is a trace class 
operator for any fl> 0. Let ~ be the algebra of operator valued distributions 
defined in Sect. 3 for the Hilbert space I- 

We take for B the algebra M2(~) of 2 x 2 matrices of elements of .~  and define 
the homomorphism rc by: 

rc(a)=IQ~a) Q(o)O] ~~ ratA. (11) 

We define similarly the element 7 ~ B by 7 = I10 ?11  ~o. Ifwe follow exactly what 

we did in [3], Theorem 2, p. 543 for the odd case, we should take for the operator F, 
F 2 = 1, F e B the formula: 

[0U, UO 1 D+i2u2 (12) F o = , U = 1 ~ '  

where 21/2 is the adjoined square root of 2 = ~;. However, to get simpler formulae (I 
am indebted to A. Jaffe for this point) one should replace Fo by its double 

[ 0 U21 uz-D+i21/2 (13) 
F =  U,  2 0 ' D-i21/2" 

The homotopy invariance formula ([3], Proposition 3, p. 545) and the natural 
homotopy between the matrices 

I U2 ~] and [ U  O] 

show that the entire cocycle on A given by F is homotopic to twice the entire 
cocycle associated to Fo. In the next section we shall show that the entire cocycle 
on A associated to F is cohomologous to twice the J.L.O. cocycle; this 
computation is more tricky than what would appear at first sight and is the main 
content of this paper. 

4. The Two Chern Character Cocycles are Cohomologous 

As above, we let A be a Banach algebra and (I), D) an odd 0-summable Fredholm 
module over A. We now compute our cocycle, obtained with the operator F given 
by formula (13), and with the trace z on the algebra B=M2(~  ~ given by: 

z(~ Tll TI2]~=zl(Tll)+zl(T22 ) for T i j ~ ,  
LLT2~ T22J,/ 

with: 

zl((T, S)) = Trace(S0)) for (T, S) = T+ 21/2S ~ ~.  (14) 
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We then have (Lemma 2): 

q~2n+l(a ~ . . . . .  a2n+x)=,~nz(yFa~ al]... [F, a2n+x]) VaieA. (15) 

On the other  hand the J.L.O. cocycle 0P2n+ 1) is given by the following formula 1 
([63) 

/P2n+ 1( a0  . . . . .  a2n+ a) = S d s o " "  ds2n Trace(  a~ -s~176 D, a l ]  
~ S i  = 1, Si >--. 0 

x e-~lo2[O, a2] ... e-'2"O~[D, a 2n+ 1]e-~-+ ~02). (16) 

Our  aim is to show that  cp is cohomologous  to 21p. Since formula 16 is the 
evaluat ion at s = 1 of  a convolut ion  of  opera to r  valued distr ibutions T~ e 5e we can 
easily rewrite it in our  language as follows: 

v22,+l(a0, ,a2,+1)_zo(a o 1 D a 1 1 a2,+ 1 1 "~ 
... - D ~ - - ~ [  , ]Dz--+2 ... [O, ] D - - T ~ ) ,  (17) 

where zo(T) for T e  ~e is the trace of T(1). In this formula 2 is the element 6~ of  s 
but  it is convenient  to think of it as the free variable of  Laplace transforms, which 
converts  the convolut ion  produc t  of  ~e into the ord inary  pointwise product  of 
opera to r  valued functions of the real positive variable 2. 2 

The cocycle proper ty  of~p : blP2 n _ 1 + BlP2n § 1 = 0 (cf. [6]) can be checked directly 
using the following straightforward equalities: 

(b~P2.- 1)( a~ ..... a2n) 

( D 2 ~  - -  a 2 n ] l ~  1 IV, (18) = - %  [D,a  ~ [D, al]...D2+2 D2+2] ' 

(Bo~~ 1) ( a~ .... , a2n) 

=ZO((D21+2)z[D,a~ al]...D21+2 [D, a2"])  . (19) 

One gets indeed that:  

0 2n  
{ 

(B~pz,,_t)(a ..... a )=Zo~-~T), blP2,,_ 1 = z o ( T  ) 

1 ... [D, a 2"] D2 ~ of the algebra ~ ,  so that  the for  the element T =  - [D, a ~ Dz + 2 

cocycle proper ty  follows from: 

z o ( ~ T ) = - - z o ( T )  VTE~.  (20) 

Let  us now compute  the cocycle r 

1 In fact the set of Quantum Algebras is more restrictive than ours since it requires that multiple 
commutators [D, [D .... [D,a] ...] be bounded, which we do not want to assume 

z One cannot however permute the Laplace transform with the trace, since an operator like 

D 2 ~  2+1 1 a ~ ID, al l . . .  [-D, a " ] ~ is in general not of trace class for 2 a scalar, when D is only 

0-summable 
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Lemma 3. One has, for any a~ a zn § l e A, 

(to2" + a(a o .. . . .  a2n + 1) = _ i2,zo((42), + 1H2" + 1 + 4n + 12"R2, + 1), 

where 

o 1 1 1 
H2n+I = a  D---T-~[D,a ]D2~_ 2 ... [D, a2"+ l ]D2-~-e&~ 

and 

177 

D2• 1 . . . [D, a2"+l] 1 _ _ ~  
R2n+1=Da ~ [D, a l ] D 2 + ~  D 2 + 2  ~ -  

Proof Computing in the algebra M2(-~) one gets, for a e A, 

F O, 2i2U2(O --i21/2)- 110, a] (D -- i21/2)-1 ] ,  
I f ,  a] = L-  2i21/2( 0 + i21/2)- i [O, a] (O + i21/2)- 1, O] 

IF, ak-I IF, a k+ 1] 
. o  V(D - -  i21/2 ) - i[-D, a k] (D 2 q- 2) -  l ID, a k + 1] (O + i21/2) - 1, 01 

= 4Z [0, (D + i21/2 ) - 1 [-D, a k] (D 2 + 2)- 11-O, a k + 1] (D -- i21/2 ) - 13 ' 

[F, a2,+ l]yF= _ 2i21/2 [~D(Di21/2)-11-D, a2"+ t] (D + i21/2)- 1, 0 ]  
+ i2a/2)- *[D ' aZ, + 1] (D -- i21/2)- 1]. 

We thus get: 

z(yFa~ al] ...) l-F, a 2"+ 1]) 

= -- 2izo((42)"((O -- i21/2)a~ + i21/2) -st- (O + i2~/2)a~ - -  i21/2)) 

x (O2 + 2) - 1  [O, a 1] (O2 + 2) -1 . . .  1-0, a2" + t ] (O2 + 2)- x) 

=--izo((42)"+1H2,+l +4"+X2"Rz,+O. [] 

With the notations of Lemma 3 one can rewrite Eq. (17) in the form: 

~P2,+ l(a~ ..., aZn+ 1) = zo(n2, + 1). (17') 

It is then easy to express the term %((42)" + 1(H2, + 1) of Lemma 3 as a function of the 
cocycle ~P2,+t; for this we let vJ2,+l be the J .LO.  cocycle corresponding to the 
operator fl~/2D, (fl real and positive), instead of the original D. 

Lemma 4. One has: for any a ~ . . . , a  2"+1 eA, 

%((42)"+ t(I-I2.+ 0)= 4 ~  (fl"+l/2~p~.+l) at f l = l .  

Proof The element H2. + 1 of ~ is given by the convolution 
2n 

H 2 n + I ( s ) =  I lq ds~a~176176 aX] e-s~~ "'" 1-D, a 2 " + l ]  e - s z " + ' 0 2 "  
~sims,  si>=O 0 

Thus we get: 

v~.+ l(a ~ .. . .  , a2.+ 1)=/~- . -  t/2 Trace(H2.+ l(fl)). (21) 

Hence Lemma 4 follows from the equality 2 = 6b in ~ .  []  
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Now one has: 

4 (fl"+l/zlp~2.+0=4"+' Ck+~ n+ ... k+  flk-~/2 ippZ.+~. 
0 

Combining this with Lemma 4 we get: 

- i2"z~ ~o Ck+l , 31 - -  (k-~).. .~-~kOfl] ~P~2.+~ at f l = l .  

(22) 

The first term in the sum of the right-hand side is just ~P2n+ X, moreover one knows 

([7]) that ~--~P2.+1 is a coboundary. 
#=1 

At this point it would be natural to guess that (22) is the main part of the proof, 
and that the other term Zo((4 "+ 12"R2,+ 1) in Lemma 3 does not contribute to the 
cohomology class of q~. This is however wrong, the next lemma shows that the two 
terms: (42) "+ XH2n + I and 4 "+ 12"R2. + i contribute equally to the cohomology class 
of q~, thus accounting for the coefficient 2 in the relation q~ ~ 2~p. 

Lemma 5. Let for f l>0,  0P2. be the following cochain: 

O~,(a 0 ..... a2.) = fl-~, + 1/2) ~ Ildsi Tr(a~176176 a 1 ] 
Xsi=s, sl>O 

x e-Sl~ a2] ... e-S . . . .  O:[D ' a2,]e-S2.D2), Vai6 A.  

Then the cochain -i2.z0((42) "+ 1H2n+ 1--4 "+ I~,nR2n + 1) is  equal to b(P.O~ fl = 1, 
where P. is the differential operator: 

P. -  c. (k + 9. . .  3�89 

and b is the Hochsehild coboundary. 

Observe the minus sign in the expression 

%((42),+ 1 _ 4 . +  t2,R2. + t) 

instead of the plus sign in the similar expression of Lemma 3. 

Proof As in (21) we get: 

O~,(a o . . . .  , a2,) = fl-(.  + 1/2)Trace(X2.(fl)), (23) 

where X2. is the element of ~r given by: 

D 2 ~  1 1 1 X2n(a O, .... a 2") = a ~ [D, a t ] ~ [D, a2].  .. D2 + 2 [D, a 2"] D2 + 2  " 

Let then a ~ . . . . .  a2n+ x cA,  and define bX2n(a ~ . . . ,a 2n+l) as 

2 .  
E ( -  1)sXE.(a~ .. ., aJaJ+ a,..., a2,+ 1)_ Xa,(a2. + aaO ' a 1 .. . .  , a2,). 
o 
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A direct calculation shows that: 

bX2,(aO,..., a2, + 1) = _ 2a 0 D2 ~ [D, a 1] 

1 1 1 FD a 2n + 13 
x D--T-~[D, a 2 ] . . . D 2 + 2  ~ , ~D2+ 2 

1 [D, a2n]DD2_~[D, a2n+I ] 1 
- a ~  ~ [D, al]  ... D2 + 2  D 2 +2  

D 2 ~  1 [D, a2n]a2n+l 1 
+ a ~ [D, aX] ... D2 + ~  D2 + ~  

D 2 ~  1 [ D, a2n'! 1 - - a 2 n + l a  0 eo, aq . . . D E + , ; ]  ` D 2 + )  " . 

Thus using the identity 

I 1 D 2 ~  1 1 a2n+l]D1 a2,+ 1 1 . OED, aZ,+l] ~ + D--~--2 Iv' 
,D2_.}_2 = D2..F ~, 

we see that modulo commutators: 

b X 2 n  = R2n + 1 - 2H2n  + 1. 

Hence for any f l>0  we get that: 

Trace ((2"bX2,) (fl)) = Trace ((2"R2, +1 - 2" + 1H2, +1) (fl))" 

Multiplying both terms by - i 2 , 4  "+1 and using (20) we get the des i red  
equality. [] 

We are now ready to prove: 

Theorem 6. The two Chern character cocycles of [3] and [6] define the same entire 
cyclic cohomology class. 
Proof. With the above notations, it follows from Sect. 3 that our Chern character 
(in the odd case) is cohomologous to xtp. Thus it is enough to show that q is 
cohomologous to 21p. We shall first define a cochain (Ct2n) on A such that for any n 
one has: 

b ~ 2 n  + B~t2n + 2 = ~02n + 1 - -  21P2n + 1 ,  (24) 

and then check that it is indeed an entire cochain. 
Now the homotopy invariance of the J.L.O. cocycle ([7]) gives explicitly -~-~pa 

as a coboundary, one has: u p  

0 # 
- -  ~2n  t ~ ' 2 n + 2 ,  ~-~to2.+ 1 - b ,~p ~ B  ,,p (25) 
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where the eochain 0 ~ is given by: 

2n 
Q .(a ~ . . . .  , a 2") = � 8 9  3/2 l ]  ,ts, 

~,si=#,si>-O 0 

• ( ~  (--1)JTrace(a~ al]e-S~D2 ... e-Sj- ~D2[D, aJ-1-]e-sj- ~D2 

x De-~J~ a J]... e-~e,~ a2n]e-~2,+ ~D~). (26) 
/ 

In other  words  one has 

Qp2,(a 0 . . . .  , a 2.) = �89 f l - , -  3/2 Trace (Y2n(fl)), 

where Y2, is the following element of  the algebra ~ :  

2n 
Y2, = • ( -  l)ia~ D2 + 2)-  1 [O, a l ]  ... (D 2 + 2)-1[D,  a ~- 13 

0 

x (D 2 + 2)-  1D(D2 + 2)-  1 

x [D, aJ] ... (D 2 + 2)-  aID, a 2"] (D 2 + ~)- 1). 

Combining  this with formula  (19) we can write: 

- i2,%((42)" + 1H2, + a) - lP2, + 1 

- ~  ,+ l (k+ �89189  ~-~ (b0~.+Bo{.+2)  at f l - - l .  (27) 

Now,  by L e m m a  3 one has: 

~02n + a = -- 2i2.%((42) "+ 1/-/2. + 1) + i2.%((42) n+ 1H2. + 1 --4n + a2"R2. + 1). 

And by L e m m a  5 we get 

q~2. +1 = - 2i2.%((42)" § 1/-/2. + a ) -  b(PnO~n)p =1" 

Combining  this with (27) we thus get: 

q~2n+l--2~2,+l =2  n+l (k +--f~---~)... ~31 ~ (bO2n+BO2n+2)# # 

o (k+~). . .3 �89 ~-~ bop2" ( a t / / = l ) .  (28) 

Thus  if we let (a2.) be the eoehain:  

" () ~2n-----2Z Cn k+l flk+~ 0 k 
1 31 o ( k + ~ ) . . . ~  0-fl QP2, (at 8 = 1 ) .  

1 /"~k + 1 k We then get, using Ck+ + 1---~. = Cn, that 

~a2. +1 - 2~p2. +1 - b~ - Bo~2. + 2 = bP.(2QP2n - OP2.), (29) 
n /~k+�89 / ~ \ k  

where P,,=~.,Ck,,,. , ~  3 1 ( ~ }  is the differential opera to r  tha t  we used in 
o ~r,,-v~) . . . - ~ ~ \ v p /  

L e m m a  5. 
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But the r ight -hand side of  (29) is a c o b o u n d a r y  since a simple calculat ion shows 
that,  for B = 1, B(2Q~2n- 0~2n) = 0. Applying the technique of  [3], L e m m a  1, p. 532 to 
control  derivatives one checks that  the cochains  (~2~), P,(Q2~-�89 are entire 
cochains  so the conclusion follows. [ ]  
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