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Abstract: It is shown that graphs that generalize the ADE Dynkin diagrams and 
have appeared in various contexts of  two-dimensional field theory may be regarded 
in a natural way as encoding the geometry of a root system. After recalling what 
are the conditions satisfied by these graphs, we define a bilinear form on a root 
system in terms of the adjacency matrices of these graphs and undertake the study of 
the group generated by the reflections in the hyperplanes orthogonal to these roots. 
Some "non-integrally laced" graphs are shown to be associated with subgroups of 
these reflection groups. The empirical relevance of these graphs in the classification 
of conformal field theories or in the construction of integrable lattice models is 
recalled, and the connections with recent developments in the context of ~A# = 2 
supersymmetric theories and topological field theories are discussed. 

A, Claude 

1. Introduction 

Similar features have appeared recently in various problems of two-dimensional field 
theory and statistical mechanics. In the simplest case based on the su(2) algebra, the 
classification of ordinary conformal field theories (cft's), of  JV = 2 superconformal 
field theories or of  the corresponding topological field theories, and the construction 
of integrable lattice face models have all been found to have their solutions labelled 
by the simply laced ADE Dynkin diagrams. This is quite remarkable in view of the 
fact that the setting of the problem and the techniques of  analysis are in each case 
quite different (see [1] or Sect. 6 below for a short review and a list of  references). 
Although our understanding of the same problems in cases of higher rank su(N) 
is much poorer, there is some evidence that important data are again provided by 
a set of  graphs. It is the purpose of this paper to show that these graphs may be 
given a geometrical interpretation as encoding the geometry (the scalar products) 
of  a system of vectors - the "roots" - and thus enable one to construct the group 
generated by the reflections in the hyperplanes orthogonal to these roots. 

After recalling some basic facts and introducing notations concerning reflection 
groups, I shall define the class of  graphs that we are interested in (Sect. 2). These 
graphs are a natural generalization of the situation encountered with the ADE 
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diagrams on the one hand, and with the fusion graphs of the affine algebra ~ff(N) 
on the other. In Sect. 3, the adjacency matrix of such a graph is used to define a 
scalar product on a root system and thus a reflection group. Some general proper- 
ties of  these groups are proved, in particular those cases that lead to finite groups 
are identified; also an analogue of the Coxeter element is defined and shown to 
have interesting properties. In Sect. 4, some other identifications and isomorphisms 
of groups are derived or conjectured on the basis of  several explicit cases. Sect. 5 
discusses the eases of  "non-integrally laced graphs" and their connections with sub- 
algebras of  the "Pasquier algebra." Finally in Sect. 6, I turn to the discussion of the 
physical relevance of these graphs and groups in the various contexts mentioned 
above. The case of A/" = 2 superconformal theories and of topological field theo- 
ries seems the most natural setting for that interpretation and we shall see that the 
graphs and groups discussed here are actual realizations of  general results of  Cecotti 
and Vafa, and of Dubrovin. 

A short account of  this work has been presented in [1]. 
Let us start with some generalities on reflection groups. Let V denote a vector 

space of dimension n over R with a given basis {~a}. Let ( , )  be a symmetric 
bilinear foma on V. We denote 

gab = (O~a,~b) (1.1) 

and assume that (c~a, ~a) = 2. This allows one to define the linear transformation Sa 

Sa : x ~ x' = x - (CCa,X)~a (1.2) 

or in terms of the components Xb : x = ~bX6eb, 

x'o = - E g o c X c ,  
c * a  (1.3) 

X~b=Xb i f  b * a .  

The following properties are easily established: 

(i) & is involutive: S 2 = K, and preserves the bilinear form: (Sax, Say) = (X, y). 
This is in fact the reflection in the ( n -  1)-dimensional hyperplane orthogonal to 
the vector ~a. 

(ii) I f  the ab entry gab = 0, then Sa and Sb commute and the product SaSh is 
of  order 2 

(&Sb)2 = n .  

(iii) I f  the entry gab = 1, then S , &  is of  order 3; more generally, if  gab = 
2 cos ~q_e, with p and q coprime integers, the restriction of  g to the 2-plane spanned 
by ~a, cob endows it with a structure of Euclidean space: the two unit vectors ~a 
and C~b make an angle ~ ,  hence the product SaSh is a rotation of angle L~e, and 
S~Sb is of  order q. 

Let F be the group generated by the reflections S~, a = 1, . . . ,n.  We call roots the 
vectors ~a and root system the set of  images of  the roots under the action of F. 

An important issue is to know if the group F is of  finite or infinite order. One 
proves [2] that the group is finite if  and only if the bilinear form ( ,)  is positive 
definite. At the end of the discussion, one finds that finite reflection groups are clas- 
sified [3]: beside the Weyl groups of the simple Lie algebras, Ap,Bp, Cp, (the two 
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latter groups being isomorphic), Dp, E6 ,ET,Es ,F4  and G2, there are the symmetry 
groups//3 and H4 of the regular icosahedron and of a regular 4-dimensional poly- 
tope, and the infinite series I2(k) of the symmetry groups of the regular k-gones 
in the plane. If  one uses as a basis a system of simple roots, then (~a, ab) < 0 
if a 4=b [2], and the bilinear form 9,b of (1.1) is the so-called Coxeter matrix 
Fab, 

I'C 

Oab = (0~a, ~b} = - 2  cos - -  =: l a b ,  (1.4) 
m a b  

where the integer mab = moa is the order of the product SaSb, (S~Sb) m"b = I ,  
maa = 1. Note that for the groups of Weyl type, one usually takes roots c2 nor- 
malized differently, with the longest having (~, ~2) = 2 and the Cartan matrix with 
integral entries 

( ~ a , ~ b )  
Cab = 2 ,-7-=---7-r~ , E 2g " ' (1.5) 

then F~b is the s y m m e t r i z e d  form of the Cartan matrix 

I al r 
Cab = [-~b[lab , (1.6) 

^ ^ 1 
with [o2[ := ((e, e))~. For future reference, also note that the adjacency matrix G of 
the Coxeter-Dynkin diagram is related to the Cartan matrix by 

laal  Cab = 26ab -- Gab = --2, .--'g-7 COS . (1.7) 
m a b  

2. Graphs 

The construction of graphs proceeds through generalization of two cases under con- 
trol, namely the ordinary ADE Dynkin diagrams on the one hand and the fusion 
graphs of ~'~(N)k on the other. I briefly review well known facts about these two 
cases.  

2.1. The  A D E  D y n k i n  Diagrams.  The ADE Dynkin diagrams are unoriented graphs 
that have the property that their adjacency matrix has a spectrum of eigenvalues 
satisfying 

< 2 .  (2.1) 

In fact they are, together with the orbifolds A2n/TZ2, the only unoriented connected 
graphs with that property [4]. (The latter orbifold graphs will be discarded in the 
following: from the point of view of  lattice models, they are uninteresting as they 
produce no new model; from a different viewpoint, more relevant here, they are not 
2-colourable, see below.) Furthermore their eigenvalues take the form 

= 2 cos ~ , (2.2) ~(~) 

where h is the Coxeter number, and the integer 2 takes r (=  rank of the ADE 
algebra) values between (and including) 1 and h -  1, with possible multiplicities. 

Note that the ADE graphs are tree graphs and may therefore be bi-coloured. 
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Fig.  1. The  g raph  d (6) 

One may also relax the condition that the entries of the matrix under consider- 
ation are integers and consider the class of symmetric matrices whose elements are 
of the form 

G~ = 0 ,  
rc (2.3) 

Gab = 2 c o s - -  a4=b 
mab 

for a set of integers m,b = mb~ > 2. (The case considered above was thus m = 2 or 
3.) One may represent such a matrix by a graph with the edge a - b decorated by 
the integer mab. The matrix is called indecomposable if the graph is connected. One 
proves [2] that the only indecomposable matrices (2.3) that satisfy (2.1) are the 
symmetrized forms of the adjacency matrices G of the Coxeter-Dynkin diagrams 
of all the finite groups A - I  discussed in the introduction, 

I~bl "~ (2.4) Gab = [~a-~lt-rab . 

Hence they are related to the Coxeter matrices of (1.4) by 

Fab = 23~b - Gab �9 (2.5) 

2.2. The ~ ( N ) k  Fusion Graphs. Let A 1 . . . . .  A N - 1  be the fundamental weights of 
su (N) .  Let p = A1 + �9 . .  + AN-~ be the sum of these fundamental weights. I recall 
that the set of integrable weights (shifted by p) of the affine algebra ~'~(N)k is 

~(k+U) { Z = 2 1 A I + . . . + 2 N _ I A N _ l l 2 i  > 1, 21 + ' ' ' 2N- -1  < k + N - 1 } .  + +  = = = 

(2.6) 

This set of (k+U-1) weights is a finite subset, the so-called Weyl alcove, of the 
( N -  1)-dimensional weight lattice. We may represent it by the graph obtained by 
drawing edges between neighbouring points on this lattice, and orienting them along 
the weights of the standard N-dimensional representation of s u ( N ) ,  i.e. along the 
N (linearly dependent) vectors ei 

el = Aa, ei  = A i  - A i - 1 ,  i = 2 . . . . .  N - 1, e N  = - - A N - 1  �9 (2.7) 

This graph will be denoted by ,r and the subscript N will be omitted whenever ~ N  
it causes no ambiguity. It is exemplified in Fig. 1 by the case of ~'ff(3) at level 3. 
Recall that the Killing bilinear form is such that (ei, e j )  = ~Sij 1 N '  
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This graph may also be regarded as the fusion graph of the representation of 
weight A1, i.e. the graph whose adjacency matrix is NA1 --Nn. By the Verlinde 
formula [5], we know how to express its eigenvalues in terms of the unitary matrix 
S of modular transformations of the characters of the affine algebra ~ ' (N)k,  and 
these expressions may be recast as 

N --2ire 
y('~) = ~ exp ~ - - ~ ( e i ,  2 ) ,  (2.8) 

i=1 

~(~+U) (Since (el, 2) C ~v Z, this reduces to (2.2) with 2 running over the same set _++ . 
for N = 2.) From now on, we shall write 

h = k + N .  (2.9) 

Note that the weights of su(N) come naturally with a 7] u grading, ~(.), the 
"N-ality," 

N--1 
"C(2)-: ~'-~j2j m o d N ,  (2.10) 

j=l 

and that the only non-vanishing entries of the adjacency matrix G~ are between 
points of successive N-alities 

(G1)ab+O only if z(b) = z ( a ) +  1 m o d N .  (2.11) 

The reason why the adjacency matrix has been labelled with a 1 is that, when 
working with su(N), we may, and in fact we must, generalize this setting and 
consider the graphs associated with the fusion by all the fundamental representations: 

The matrix considered above is thus G1 = Nn, and more generally, for the ease of 
notation, we write 

Gp : N.n 1 1 <  p < N - 1 .  (2.12) 
p 

Again by the Verlinde formula, we know that all these matrices are simultaneously 
diagonalized by the unitary matrix S. The expressions of  their eigenvalues read 

N 2i~. ~. 
7~ ~) = ~ exp - -~- (e i ,  z) = )~l(M) 

i=1 

(~) 2i72 
72 = ~ exp ---ff-((ei + ej), 2) = z2(M) 

1 ~i<j<=N 

: : : (2.13) 

2ix 
e x p - ~ - ( ( e i l  + . . .  + e/N_1),2 ) 

1 <=i I < . . . i N _  1 < N  

7~)_1 = 

= Z N - I ( M ) .  
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These eigenvalues may be expressed in terms of  ordinary SU(N) characters 
Zp for the pth fimdamental representation evaluated at the SU(N) matrix M = 
diag(exp-2in(ei,2)/h) 1. The 7 are pairwise complex conjugate, 7p = ( T U - p ) * ,  
since ~-~i ei = 0, which reflects the fact that the matrices Gp are pairwise transposed 
of  one another: 

Gp = GN-p . (2.14) 

For example, in the case of  su(3), the graphs pertaining to the two fundamental 
representations are obtained from one another by reversing all the orientations o f  
edges. 

Finally, we recall the property that the set o f  7~ ), for all p = 1,. . .  , N -  1, 

characterizes the weight 2 in ~(h) .  ~ + + .  

if  for all p = l  . . . . .  N - 1  7~ ) = 7 ~  ) then 2 = # .  (2.15) 

This follows from the fact that the fusion ring of  ~'~(N) is polynomially generated 
by the fundamental representations [7]. Thus under the conditions of  (2.15), the 
fusion matrices of  2 and p are identical, which suffices to identify 2 and #. 

2.3. Generalized Graphs. Building upon the two particular cases discussed above, 
it seems natural to introduce a class of  generalized graphs satisfying the following 
properties: 

1) We are given a finite set ~ of  n vertices, that are denoted a, b . . . . .  In the set 
acts an involution a ~ ~i (a generalization of  the conjugation of  representations). 

When working with su(N), we assume that a 2~N valued grading ~ is assigned to 
these vertices, such that z(~i)= - ~ ( a )  m o d N .  

2) We are also given a set o f  N - 1 commuting n • n matrices, labelled by 
the fundamental representations of  su(N) and, like in (2.12) above, denoted Gp, 
1 < p < N - 1. These matrices have entries that are non-negative integers and 
may thus be regarded as the adjacency matrices of  N -  1 graphs f#p. Contrary to 
the cases encountered above, some of  the edges (ab) may be multiple, i.e. have 
(Gp)ab > 1. For the sake of  irreducibility, we have also to assume some property 
of  connectivity of  the set ~/'. There is no partition ~U = ~//~t U ~U" such that 

VaC~/F', VbE~tF', V p =  l . . . . .  N - l ,  (Gp)ab=O. 

Remark. In the same way as in (2.3), it is natural to extend slightly the previous 
condition and to allow non-integer G. As we shall see in Sect. 5 below, (Gp)ab of  
the specific form 

( G p ) a b = 0  or ~p(N) 2COS~ (2.16a) 

o r  

(ap)ab = 2 COS - -  ( 2 . 1 6 b )  
mab 

seem to be natural choices, with h and mab integers and ~(pN)(x) a certain poly- 
nomial o f  x (Eqs. (5.4-5.5)).  By a slight abuse of  language, we still call G the 
adjacency matrix of  a graph, whose edges are decorated by the integers m~b or h. 

1 An intriguing observation is that these special matrices M are in one-to-one correspondence 
with the conjugacy classes of elements of finite order in the group SU(N) [6]. I am indebted to 
J. Patera for this remark. 
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The considerations that follow (until Sect. 5) do not depend on the integrality of 
the matrix elements. 

3) The edges of the graphs ffp are compatible with the 7Z N grading z in the 
sense that 

(Gp)abq=O only if z ( b ) =  z ( a ) +  p m o d N .  (2.17) 

Thus for p4= N, the edges are oriented: (Gp)~b :4=0 => (Gp)b~ = 0. Also, for a given 
pair (a,b) there is at most one matrix Cap with a non-vanishing entry (Gp)~b. 

4) The matrices Gp are pairwise transposed of one another: 

G; = a N _  p . ( 2 . 1 8 )  

Moreover each graph is invariant under the involution in the sense that 

(Gp)a a = (Gp)ba. (2.19) 

5) Since the matrices G commute among themselves, they commute with their 
transpose, ("normal matrices"), hence they are diagonalizable in a common orthonor- 
mal basis if(2); we assume that these eigenvectors are labelled by integrable weights 
2 of ~"d(N) and that the corresponding eigenvalues of G1, G2 . . . .  , GN-1 read as in 

~(h). (2.14), for some h and 2 E ~++, some of these 2 may occur with multiplicities 
larger than one. 

6) We assume that p = (1 ,1 , . . . ,1 )  is among these 2, with multiplicity l: it 
corresponds to the eigenvector of largest eigenvalue, the so-called Perron-Frobenius 
eigenvector. 

By extension of the ADE case, we call "exponents" these weights 2 (with their 
multiplicities) and denote their set by Exp. Let 0" be the automorphism of the Weyl 
alcove ~(h) ~ + + ,  

2 = ( 2 1 , . . . , ~ N - - 1 )  ~ 0"(2)  = ( h  - 21 . . . . .  2 N _ l , / ~ l ,  2 2 , . . . ,  2 N _ 2 )  . (2.20) 

One checks that 

2/~ 
e ~ 

2i• 
exp ---T-(ei, a(2)) = exp --h-(<_l, ;t), n 

(2.21) 

and thus, using (2.13), 
p 

(p~ = e N v( ) (2.22) (2)) 2 i ~ - -  2 
- / p  �9 

a~(h)" the conjugation cg of There is of course another automorphism acting on ~++. 
representations 

�9 (;0 = (7p(2)), (2.23) under (g 2 ~ 2  yp 

Now consider 2 C Exp ~,(2) a corresponding eigenvector. Define ~(2)= ' a 

e2irc~(--~ d.(2) q,a �9 Then property 3) implies that ~(2) is an eigenvector of Gp of eigen- 

value 9~p ~) 2izt p---- (4) = ~)(a(2)). = e N yp Thus (using (2.15)), we conclude that if 2 is an 
exponent, so is a(2). On the other hand, the real matrices Gp have eigenvalues 
that come in complex conjugate pairs; thus the exponents also come in complex 
conjugate pairs. 
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Proposition 1. The set Exp is invariant under the action o f  cr and cg. Moreover 
one may choose 

'F~ : 

(2.24) 
I]/(a(2)) = e~(a )Oa(2 )  " 

In [8] we presented lists of  solutions to these requirements in the case N = 3. 

Remarks.  

1) For some purposes, in particular for the construction of lattice integrable 
models based on the graphs, it seems necessary to impose the further constraint 
that the graph of G1, say, has an "extremal point," i.e. a vertex on which only one 
edge is ending and from which only one edge is starting. This constraint will not 
play any role in the following and may thus be omitted. 

2) It may be more economic to consider a single matrix G 

G = G I  + G2 + " " + G N - 1 .  (2.25) 

The edges of  the graph f# it encodes connect only vertices of  different r. Conversely 
if the graph f# is given, and if the grading of the vertices is known, each matrix Gp 
may be identified as the adjacency matrix of  the subgraph joining pairs of vertices 
of  r differing by p. 

For later use, I now introduce an explicit parametrization of the matrices Gp. I 
assume that the vertices of  ~ have been ordered according to increasing ~: first the 
vertices with ~ = 0, then z = 1, etc. Then the matrices Gp are N • N block-matrices 
of  the form 

G1 "~ 

A 1 2 0  0) 
0 A23 . . .  0 

. .  �9 

0 �9 "" 0 A N _ I  N 

A N 1  0 �9 �9 �9 0 

G~ = 

0 " ' "  A l p + l  "- .  0 "~ 

/ 0 ". 

0 0 �9 �9 �9 0 A N _ p N  . . .  

A N _ p + l l  0 �9 ' '  0 ' 

", 0 ", 

0 . . .  Aup 0 

(2.26) 

with the matrices Agj satisfying 

A~j = Aji (2.27) 

as a consequence of (2.18). (The matrices Aij are of  course subject to further con- 
straints expressing the commutation of the matrices G, etc.) Later, we shall also 
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encounter the matrix 2 

273 

(i A12 A13 ....  IN) 1 -A23 �9 -" eA2N 

T = 0 "'. , (2.28) 

0 1 - -AN-  1 N 

0 "'" 0 1 

where e = ( - 1 )  u.  It may be written as a product o f  upper triangular matrices in 
the two following ways: /1 o )/1A12A131 o .... 1)o 

T =  ".. " '" "'. 0 

0 1 --AN-1N 0 1 0 

1 1 

= ".. " . . .  ".. , (2.29) 

o 1 --AAr--IN|  0 1 

which allows to write its inverse and its transpose as 

T - i =  

1 A12 -A13 ..  " eA1N / 

1 0 0 

" .  0 " ' "  

0 1 

1 

1 
1 

and 

0 ) 
�9 .. (2.30) 

1 AN-1N 

1 

( 1 0  i)(1 ) -A21 1 0 1 0 

T t  ~ . .  �9 . .  . .  

0 1 0 1 

- - & 4 N I  e A N 2  . . . .  AN N-- 1 1 
(2.31) 

Let us finally introduce the matrix J 

J --  diag (1, gl,  1, e l  . . . .  ,1 )  . 

These expressions will be useful soon. 

(2.32) 

2 Here and in the following, by a small abuse of notations, 1 denotes a unit matrix, whose 
dimension is fixed by the context. 
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3. New Reflection Groups 

3.1. Definition and First Properties. I now show that with these data, one may 
associate a reflection group in a natural way. 

Let as above V be a n-dimensional space over IR, with a basis {~a} labelled 
by the points a o f  the set ~//-. We then introduce a bilinear form defined by the 
following expression, that depends on whether N is even or odd 

gab -~- ( O~a, O~b ) = 2Dab -[- ((--1)N-1GI q'- G2 + (--1)N-1G3 + " "  ~- ( - - 1 ) N - - 1 G N - -  I )ab , 
(3.1) 

(or gab = 2(~ab + (--1)(N--1)(r(a)--r(b))Gab in terms of  the single matrix G of  (2.25)). 
An alternative expression is 

g = J (T  + T t ) j  -1 (3.2) 

in terms of  the matrices introduced at the end of  Sect. 2.3. We then consider the 
group F generated by the reflections S,. In the case N = 2, one recovers the ex- 
pressions (1 .4)- (2 .3) .  We shall see below what are the virtues of  the choice of  
signs in (3.1). 

Note that the groups are generated by the reflections Sa and that these generators 
satisfy the relations S 2 = 1I, as well as (SaSh) q = 1I under the conditions mentioned 
in Sect. 1. Generically, they satisfy also other relations (see examples below in 
Sect. 4.1), and thus the group cannot be called a "Coxeter  group." We shall rather 
use the denomination "reflection group." 

Since we know by hypothesis all the eigenvalues of  the Gp, those of  the metric 
g read 

N 
gO) ~ p .(.~) = ( - e )  yp , 2 E E x p ,  (3.3) 

p=0 

where we have extended the formulae (2.13) to y~2)= 7 9 ) =  1 and as before, 
e = ( -1 )N .  It will be very useful to use a multiplicative form of  this eigenvalue 

N 
g(Z) = 1-[ (1 - ~,e -L~(ei'2)) (3.4) 

i=l 

that follows from (2.13). 
For N = 2, as recalled above, all the graphs that satisfy the previous constraints 

lead to a finite reflection group. For N > 3, on the contrary, the group is generically 
o f  infinite order. More precisely, 

Proposit ion 2. The form ( , )  o f  Eq. (3.1) is definite positive if  and only if 

N = 2  V h > 3 ,  

N =  3 h = 4 , 5 ,  

N >  3 h = N + l  . 

(3.5) 

To prove this, we shall exhibit a non-positive eigenvalue of  the matrix g when- 
ever the conditions of  (3.5) are not fulfilled. According to Proposition 1, all the im- 
ages o f  p under the action o f  a are always exponents. For the exponent 2t := al(p), 
l = 0 . . . . .  N - 1, one may  compute the eigenvalue of  g using (3.4) and (2.21). One 
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finds, with ~ = exp 2irc/N and q = exp in/h, 

g(,~l) = (1 + ( - - 1 ) N -  l ~l q l - N  )(1 § ( - -1)N--  l ~l q3--N ) . " " 

(1 § (--1)N--l~lqN--1). (3.6) 

We now choose to look at the eigenvalue corresponding to l = 1 for N odd, and 
to l = N/2 - l for N even. In both cases, the resulting value of g (xt) reads 

O(z,)= NI-]12cos(N + 1 - N + 2 j ' ]  
j=0 2h ] ~z . (3.7) 

It is finally a simple matter to check that all the arguments of  the cosine are between 
-~-2 and ~, and thus 9 O~) =< 0, f o r N = 3 ,  h => 6 or f o r N  => 4, h = > N + 2 .  

It remains to examine the cases of  (3.5). Leaving aside the case N = 2 which is 
well known, let us consider first the cases N > 3, h = N + 1. Then the exponents 
take their values among the integrable weights (shifted by p) of ~ - (N) I ,  and again 
by Proposition 1, these values are all reached. For these exponents p and at(p)= 
p + A1, l = 1 , . . . , N -  1, the direct calculation shows that the possible eigenvalues 
of  the metric g are either (N + 1) or 1, all positive. Finally, for the last case of  
(3.5), N = 3, h = 5, the possible exponents are among the six integrable weights 
of  ~-u(3)2 and one checks the positivity of  the eigenvalues of  g for each of them. 
This establishes (3.5). 

What are the graphs satisfying (3.5)? We leave again aside the case N = 2, 
which has already been discussed in the Introduction. In the case N => 3, h = N + 1, 
we have seen that all the weights of  level 1 appear in the spectrum of exponents. 
The ~ff(N)l fusion graphs are solutions, and it is not difficult to prove that there 
is no isospectral graph satisfying properties 1)-6) of  Sect. 2.3. Finally, for N = 3, 
h = 5, if one takes only p and its orbit under a as exponents, the only graph with 3 
vertices and that spectrum is the oriented triangle graph ~(5)  of  Fig. 2 with G01 = 
G12 = G20 = 2cos~;  if  one takes as exponents all the six integrable weights of  
~"ff(3)2, i.e. the a-orbit of  p and the a-orbit of 2p, the only graph with a matrix of  
entries integral or of  the form (2.16) is the fusion graph ~r of  s'u(3)2 (Fig. 2). 
It is very likely that one cannot take the second triplet of  exponents (the orbit of  
2p) with a multiplicity different from zero or one, as will follow from a conjecture 
discussed below in Sect. 4.3. I f  so, this completes the list of  graphs that lead to a 
positive definite form g- 

For all these cases, the groups are of  finite order, thus in the list discussed in 
the Introduction. We shall identify them below. 

5 _- 

F i g .  2. Three SU(3) graphs yielding a finite group 
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3.2. The Coxeter Element. We now come to a non-trivial property of the groups 
generated by this procedure, that depends crucially on the assumptions made in 
Sect. 2 and on the choice of signs in (3.1). I first recall that in the case of  finite 
reflection groups, the product of  all generators pertaining to a set of  simple roots 

R=ITS , 
a 

called the Coxeter element, has two remarkable properties: 

i) it is independent, up to conjugation, of the simple set and of the order of  the 
factors; 

ii) its spectrum of eigenvalues is given again by the exponents 2 in the form 

e i g e n v a l u e s o f R = { e x p - ~ / ~ 2 }  . (3.8) 

A weaker version of that property is still true for the groups introduced in this 
paper�9 

Let R stand for 

R = 1-I Sa l-I Sb""  1-I SU, (3.9) 
z(a)=0 z(b)=l z(f)=N--1 

i.e. the product of  the blocks of  reflections of given N-ality. Then 

Proposition 3. The element R is independent of the order of the S within each 
block; it is conjugate in the linear group GL(n) to the product - T - ~ T  t of the 
matrices defined in (2.30), (2.31), and its spectrum is of the form 

- 2 i n  
(--1)NexpN----7---(ej,2), 2 E Exp, j fixed: 1 < j < N .  (3�9 

n 

In particular this set of eigenvalues is independent of j = 1 . . . . .  N. 

That the S may be permuted within each block follows from the fact that with 
the above assumptions, if ~(a) = z(b), then gab = 0, hence Sa and Sb commute�9 

The proof of  (3.10) relies on a simple extension of the original proof by Coxeter 
of  the analogous statement for finite reflection groups [9]�9 We make use of  the 
notations introduced in (2.26), (2�9 to write the successive blocks of (3�9 as 

S[0] := 

- 1  

I l S a =  . 
z(a)=O 

0 

1 /3A12 -A13 

1 0 

, � 9  

/3A12 -A13 . . .  F.A1N" ~ 
1 0 . . .  

�9 .. 1 0 
�9 � 9 1 4 9 1 7 6  

0 l) =: BoCo 
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S[1] : =  H Sb = 
z(b)=l 

H s j=  
'r(f )=N - 1 

1 cA23 --A24 

1 

0 ". 

1 

,~A21 - 1  

1 

0 

1 ) 
1 

F~N1 --AN2 �9 �9 �9 ~e~NN_ 1 --1 

1 

= :  B 1 C1 

= :  CN_ 1 . (3.11) 

The matrices Bp and Cq just introduced are such that Bp commutes with all Cq, 
for q < p. This allows one to rewrite 

R = S[0]S[1 ] . . .  S[N-1] = BoCoB1CI . "  CN-1 

= BoB1 "'" BN-2CoC1 "'" CN- I  �9 (3.12) 

Then it is readily seen that the product BoB1 . . .  BN-2 is conjugate to the matrix T -1 
written in (2.30), and likewise, that C o C 1 . . .  CN-1 is conjugate to - T  t of (2.31), 

J B o B I "  " B N - z J  -1 = T -1 , (3.13) 

JCoCI " "  C N - 1 J  -1 = - T t , 

where the matrix J has been introduced in (2.32). Thus we have shown that our 
putative "Coxeter element" R is conjugate to - T - 1 T  t. 

On the other hand, let us form the polynomial A ( z )  that admits the roots 
/3~.2) := e x p - L ~ ( e j , 2 ) ,  

N 
A(z) = 17 H (z 

j = l  2EExp 

= det(zN1 - gN-1G1 + z N - 2 G  2 + . . .  + (--1)N--lzGN_I + (--1)N1) 

I (Z N -Jc- ~)1 - -zN-1A12 zN-2AI3 . . . .  ~,ZA1N \ 
--zsA21 (z N "Jw /3)1 --zN-IA23 

= det . ". , 

--zN--1AN1 zN--2AN2 "'" (Z N +/3)1 ,] 

(3.14) 

where the second expression is obtained using the formulae (2.13); in the third 
line, we have used the block decomposition (2.26) of  the Gp matrices. I f  we now 
multiply the i tn row of  blocks by z -i+1 and the j th column by z j - ~ ,  which does not 
affect the determinant, the result depends only on z N and is expressed in terms of  
the matrix T defined in (2.28), 

A ( z )  = det(zNT + ( - - 1 ) N T  t) = det(zN1 + ( - 1 ) N T - 1 T  t) . (3.15) 
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Fig. 3. Two SU(3) orbifold graphs 

Then the "Coxeter element" R of (3.9) which is conjugate to - T - 1 T  t has by 
the previous discussion the spectrum {(--e(~))N}, which completes the proof of the 
proposition. In this last assertion, we have dropped the index j on (-e(~))  N to 
emphasize the fact that this set of N th powers of the e~ ~) does not depend on j .  
This follows from the consistency of the argument, but is also a direct consequence 
of (2.21). 

Remarks.  Note that if we order the product in (3.9) in the reverse way, as each 
block has square one, one gets the inverse of R. The latter, however, is also con- 
jugate to R, since any e (~) comes along with its complex conjugate e (~)* in the 
spectrum. In the special case N : 3, one can do a little more and prove the inde- 
pendence of S (up to conjugacy in the group) with respect to the order of the three 
blocks. This follows once again from the fact that the three blocks in (3.9) have 
square one. 

Note also that the "Coxeter element" R is of finite order, equal at most to h 
if Nh is even and to 2h if Nh is odd. (The order may be smaller, e.g. for the 
graphs @(6) and 9 (9) of Fig. 3 it is 2 resp. 6, while the value of h is given by the 
superscript. ) 

4. Identification of Some Groups 

In this section, we shall identify some of the groups introduced above, and establish 
a certain number of isomorphisms between pairs of such groups. Given two groups 
F and F' generated by the reflections relative to two root bases {~} and {a'}, the 
strategy for establishing the isomorphism F ~ F'  is to prove that the basis {~'~} is 

is obtained by a finite found within the root system of the {~b}, i.e. that each ~a 
number of reflections of F acting on some ~b- This will be referred to as a "change 
of  basis within the root system." 

4.1. Finite Groups. According to the discussion of Sect. 2.1, the group F generated 
by the Sa is finite for N = 3 and h < 6, and must therefore identify with one of the 
well known finite reflection groups. The groups associated with the graphs d (4), 
~,(5) and ~(5)  of Fig. 2 coincide indeed respectively with the finite groups A3, 
D6 and Ha of orders 24, 256! and 120. This is proved by finding a different basis 
{fli} of the space V within the root system a such that the fl are simple positive 
roots of the finite Coxeter group and that their scalar product is thus encoded in 
the conventional Dynkin diagram. The change of  basis in the last two cases is as 
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follows (Fig. 4) 

~r _ D6 

279 

fll = ~1, r2 =S1~2,  r3 =S2~3,  r4 = S 2 ~ 4 ,  

r5 ~-S3S4~5,  r6 = $ 3 S 2 S 5 ~ 6 ,  

fll = ~ 1 ,  f12 = --~2, f13 =8281~3 �9 

The discussion of the case of ,Sff '(4) may be extended to that of the group asso- 
ciated with the graph of weights of s-u(N)l, which is nothing else than the finite 
Coxeter-Weyl group AN. For N odd, (~a, eb) = (lab + 1), and the fl defined by 

fll = ~ 1 ,  fla = S a - l ~ a  = ~ a - ~ a - 1 ,  a = 2  . . . .  , N  (4.1) 

satisfy (fla, fla> ~-2, <fla, fla+l> =--1, and all the other scalar products vanish. 
The fl are thus identified with the simple positive roots of  AN.  For N even, 
(aa, ab) = ( - -1)a-b(1  + 6ab). Then i f  one takes 

fll = 0~1 f12 = 0~2 fla = Sa-2Na ~- ~a - O~a-2, a = 3 . . . . .  N ,  (4.2) 

one finds again that the fl are the simple positive roots of AN with a peculiar 
labelling 

N--I 3 1 2 4 N 
�9 . . . . . .  �9 �9 �9 �9 . . . . . .  �9 . 

As we shall see below, the groups have a natural interpretation in the context o f  
Y -- 2 superconformal field theories. The first two identifications could thus have 

2 

A i 2 3 

i ~ 3  I ~/[5)_ 5 H 3 : 
2 

2 3 

~(5) = I ~  5 D6 _- _~ I 2 3 

Fig. 4. Labelling of vertices of two pairs of graphs leading to isomorphic groups. Beware that 
the left one is regarded as a su(3) graph (in which the orientations have been removed) whereas 
the right one is a su(2) one; the prescription for the scalar products of roots varies according to 
Eq. (3.1) 
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been anticipated from identifications between coset realizations of Y = 2 supercon- 
formal theories [10]. Indeed (see for instance [11]) 

SU(3)I SU(2)2 
SU(2)z • U(1) U(1) ' 

SU(3)2 [SU(2)8] 

SU(2)3 • U(1) = L u - - U ~ j  "D6,, 

(4.3) 

The identification of the group associated with the graph of weights of ~ff(N)l 
with the finite reflection group AN reflects also an identification of .At _-- 2 coset 
superconformal theories, namely 

SU(2)N-1 SU(N)I 
------ (4.4) 

U(1) S U ( N -  1)1 x U(1) " 

An alternative description of these groups is by a presentation by generators 
and relations [12]. One may check for example that the group associated with the 
graph ~r is generated by the three generators S1, $2, $3 subject to 

: : : H , 

(8182)  3 : (8283) 3 : (8381)3 : l [ ,  (4 .5)  

s1s2s3s2s1 = $3S2S3. 

The last relation (or any permutation thereof) is an example of these non-trivial 
relations satisfied generically by the reflections Sa of  our root systems. Likewise, 
the group associated with the graph ~(5) above (Fig. 2) is generated by the three 
generators S1, $2, $3 subject to 

= : : , 

(SaSb ) 2 = ScSagcSbSc  , (4 .6)  

( SaSbgc ) 2 = SbScgaSb , 

with a:~b+c:~a in the last two relations. Equations (4.6) imply (SaSh) 5 = II as 
expected, and (SaSbSc)5 = ~. 

4.2. Generalities on the Infinite Cases. When the conditions (3.5) are not fulfilled, 
the bilinear form 9 is non-definite positive, but one may still assert that the numbers 
of negative eigenvalues and of zeros are even. Consider an eigenvalue 9 (~) of 9 
associated with an exponent 2. Proposition 1 tells us that the conjugate ,T is also an 

exponent. If 2=~,~, as gX = (ga)., (see (2.23)), and are both real as eigenvalues of 
a real symmetric form, they give equal contributions to the signature of 9. If ,~ = 2, 
a close look at the expression (3.4) of 9 (~) shows that its factors come in complex 
conjugate pairs, that it is thus non-negative and that in fact it cannot vanish. We 
thus conclude that the signature of 9 contains an even number of zeros and an even 
number of minus signs. Note that the form is degenerate only at specific values 
of h (for example h = 6,8,10,. . .  for N = 3) whereas the existence of negative 
eigenvalues is the generic situation according to Proposition 2. 
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4.3. Identification of  Some Infinite Cases. In this section, we shall identify some 
of  the groups of  infinite order associated with graphs and propose some conjectures. 

The identity (4.4) is a particular case of  a more general one that states that the 
Jff = 2 theory based on 

SU(n ,1, m)k 
SU(n)k+m • SU(m)k+n • U ( I )  

(4.7) 

is independent o f  permutations of  the three integers m,n,k; in particular, taking 
m~l~ 

SU(n + 1)k 
SU(n)k+l • U(1)  

which suggests the following 

SU(k "1" 1)n 
~-~ SU(k)n+l )< U(1)  ' (4.8) 

Conjecture 1. The reflection groups associated with the graphs of integrable 
weights of "s'ff(n + 1)k and ~'~(k + 1)n are isomorphic. 

Both graphs have (k+n) vertices, and there is a one-to-one bijection between 
these vertices (i.e. weights) provided by the reflection of  the corresponding Young 
tableaux along their diagonal. 3 

This conjecture may be verified in the case of  s'u(4)2 ~ s'ff(3)3, for which the 
following change of  basis within the root system maps the graphs on one another 
(the fl 's refer to ~ ' (4 )2 ,  the 5 's  to ~ ' (3 )3 ) :  

fll = 51 f12 = 5 2 - - 5 1  f13 = 54 -- 52 "§ 51 r4 ~ -53 - -51  

f l 6 = 5 5  -- 54--53"1"52 r7 = 5 8  --57-1-1-56--255"1"54 

r 9  =510"1"59--358"1"57--356"1"455"1"53 - -352 .1 .51 ,  

f l 1 0 = 5 9 § 2 4 7 2 4 7 2 4 7  �9 

r5 ~ 56 -- 55 

r8 -~ 57 

(4.9) 

We shall see below that the conjecture is also consistent with further data and 
conjectures. 

Since this duality maps the representations of  ~ff(n + 1)k onto those of  ~'~ 
(k .1. 1)n by just reversing the Young tableaux it is clear that the number of  repre- 
sentations with a given number of  boxes is the same in both: 

{ ,-rn(k+n+l)z z n / 
card 2 E ~'++ tsutn + 1)), ~ (2i - 1)i = l 

i=1 

= card /t C ~(+k+n+ll(su(k "1" 1 ) ) , ~ ( # i  - -  1)i = l . (4.10) 
i=1 

This leads to the observation that the spectra of  their "Coxeter elements" computed 
according to (3.10) coincide. Indeed the spectrum of  R for ~"~(n + 1)k is 

exp -ire (n + 1)(k + 1) 2i7"c 
n + k + 1 exp n + k + l  ~i" i(}~i - -  1) , (4.11 ) 

3 Note that the relations between these two situations is not what is referred to as level-rank 
duality in the literature [13], which compares s"ff(n)~ and s-ffu(k)n. 
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I 

~ 7  

sRq, 

.,'* 9 �9 

~" EP 

1 5 

2 I::D 

Fig. 5. Labelling of vertices (hence of roots) of the two graphs of ~u(3)3 and -~u(4)2. In the 
former, edges code scalar products equal to +1. The latter graph is the graph of matrix (2.25), 
with the edges of G2 that give rise to scalar products = § indicated by broken lines, those of 
G1 + G3 (solid lines) coding scalar products = -1.  (For clarity, the Young tableau corresponding 
to vertex 10 has not been depicted: it is made of three rows of two boxes) 

and is by (4.10) the same as that o f  ~"~(k + 1)n. The same property may be checked 
in the other cases where we have established the isomorphism of  two reflection 

~ r  N odd or groups F and U .  Moreover, in the cases //3 = ~vf(5), AN ~-~N , 
N = 4, one checks explicitly that the two elements R(F) and R(U) are conjugate 
in the group. This leads to the conjecture that the "Coxeter element" R has (up 
to conjugation) a more intrinsic nature than suggested by the special presentation 
(3.9). More precisely 

Conjecture 2. For two groups F and U associated by the previous construction 
with two graphs ~ and fr of su(N), resp. su(Nt), the isomorphism F -~ U implies 
that the Coxeter elements R and R ~ are conjugate in the group. 

Remark. Returning to the discussion at the end of  Sect. 3.1, we thus see that a 
graph with a spectrum given by the a-orbit  of  p, and the a-orbit  o f  2p with a 
multiplicity larger than 1 could not match the spectrum of  the Coxeter element of  
any of  the finite Coxeter groups. 

In the rest of  this section, we shall see that some groups of  infinite order asso- 
ciated with graphs may be identified with groups encountered in singularity theory. 

This is the case of  the group associated with the graph corresponding to the 
weight lattice of  ~-ff(3) at level 3. At level 3, (i.e. h = 6), the graph depicted on 
Fig. 1 has 10 vertices. By a suitable change of  basis o f  the c~'s within the root 
system, it is seen that the group is isomorphic to the monodromy group of  the 
singulari tyX6 + y3 4_ aX2y2 tabulated as -/lo in [14]. This may not be obvious on 
the apl~earance of  the generalized Dynkin diagram describing the intersection form 
of  the vanishing cycles of  the J10 singularity (Fig. 6). 

J1o 1 2 3 4 5 6 7 8 

~ ) J O  

Fig. 6. The Dynkin diagram of the ./10 singularity. Here the double broken line is coding a scalar 
product equal to +2, the solid ones a scalar product equal to -1  
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Note that this singularity is also often associated with the Dynkin diagram of 
the affine algebra/~8. (The apparent mismatch between the rank 9 of E8 and the 
number 10 of vertices of ./10 reflects the extension of the Cartan algebra of the 
former by an additional independent generator dual to the central element.) 

That this graph has to do with this singularity is no surprise, as the polynomial 
X6q_ y3q_ aX2Y2 is (for a specific value of the coefficient a) the homogeneous 
part of the fusion polynomial of ~'~(3) at level 3 [7]. This leads to the natural 

Conjecture 3. The group associated with the graph of weights of  ~-g(N)k is 
the monodromy group of the singularity described by the homogeneous part of 
the fusion polynomial, i.e. the terms of  degree k + N in t in the expansion of 
ln(1 -- t X 1 q- t2X2 + . . .  q- (--t)N-1XN_I ). 

This conjecture may be established for N = 3, because for polynomials in only 
two variables, one can make use of the method of A'Campo [15] which simplifies 
greatly the determination of the monodromy group whenever one has a resolution 
of the singularity such that: i) all critical points are real, ii) all the saddle point 
values vanish. As shown by Warner [16], one may find such a resolution of the 
homogeneous part of the fusion potential of ~'~(3) at all levels. Then the method of 
A'Campo provides us with a description of the monodromy group by a generalized 
Dynkin diagram which upon a change of basis within the root system may be recast 
in the form of the weight lattice of s'ff(3)k [16] (Fig. 7). 

This conjecture may be shown to be consistent with the previous one on the 
rank-level duality. Consider the pair 

"s-u (N)N-2, "s-ff (N - 1)N--1 �9 

Although the fusion potential of s'u(N)N-2 has one more variable than the one of 
k"g(N - 1), the extra variable XN-1 appears at most quadratically in it and does not 
affect the singularity theory. The two monodromy groups must thus be isomorphic, 
which agrees with Conjecture 1. 

5. Non Integrally Laced Graphs 

This section is devoted to a closer study of the situation where we allow some 
of the matrices Gp to have non-integral entries. This is a generalization of what 
was encountered with the classical finite groups not of ADE type, see the end of 
Sect. 2.1. It must be stressed that all the considerations of this section are based on 
empiric observations, a good understanding of which is still missing. 

Fig. 7. A generalized Dynkin diagram equivalent to the graphs of Figs. 5 and 6. Same convention 
as in Fig. 5 
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We shall first recall an observation made in [17] where it was shown that the 
non-ADE Coxeter-Dynkin diagrams appear in the discussion of algebras associated 
with the ADE ones. Let us return to the normal matrices (Gp)ab satisfying the prop- 
erties listed in Sect. 2.3 and assumed to have integral entries, and let us introduce 
their orthonormal eigenvectors Oa (~). We use these eigenvectors to construct the two 
following sets of numbers: 

M~, = ~r ~9a(p) , (5.1a) 

,/,(.0,/,(-~),/,(.0 * 

NaCb = E wa 't'b v-c (5.1b) 
2EExp I/t~ 2) ' 

where we have assumed the existence of a selected vertex denoted 1 such that none 
of  the components ~p~) vanishes. These two sets of numbers may be regarded as 
structure constants of  two commutative associative algebras attached to the graph 
f#. For the graphs of type ~r (the trtmcated weight lattices), these two algebras are 
isomorphic and reduce to the fusion algebra. I call the first algebra M the Pasquier 
algebra [18]. Now, in all cases, we may regard the numbers N~b as the entries of 
matrices NCb = (N~)~, and write 

V2 E Exp, Vp = 1 . . . . .  N - 1 ~-~(Gp)la~ (2) = v (2)d'O') 
~ p  "e'l 

a 

i.e. 

and hence 

~ )  

qJl 

Op = ~ (Cp)laNo. (5.2) 
a 

Thus the matrices Gp are linear combinations of the N, 's with non-negative integral 
coefficients. In fact in many cases, the vertex "1" is connected (in the sense of G1) 
to a single vertex a and hence Gl = Na. In those cases, the matrices N of (5.1b) 
provide an actual realization of an idea of Ocneanu and Pasquier [19, 18] to look 
at the associative algebra attached to the vertices of the graph and generated by G1. 

Now, start from a graph f#, compute its M algebra and look for possible sub- 
algebras of the latter consistent with the requirements of Sect. 2.4. In other words, 
we look for a subset Exp of the set Exp of exponents such that 

2 , # c E x p ,  M ~ = 0  = ~ v E E x p ,  (5.3) 

and we demand that the set Exp satisfies the same properties as Exp, namely that 
it is stable under the action of a and cg and contains the weight p of the identity 
representation. Call M~ the new structure constants obtained by restricting M~, to 
2, ~t, v E Exp. It is easily seen that they are diagonalized by a set of  ~a, 

~(~)_ ~a (~) 
a , / V '  a 
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for a subset of a E ~ and a suitable normalization ~A/'a. Use these ~ to construct the 
dual algebra of matrices N~. In general, the entries of the N~ are irrationals. In [17] 
it was noticed that when this procedure is applied to the ADE Dynkin diagrams, 
among these matrices N, one at least, call it G, has non-negative entries of the 
form G~ = 2 cos ~-~, m~/~ c {2, 3 . . . . .  }, and in fact is the symmetrized form (2.4) 

of the adjacency matrices of a non-ADE Coxeter-Dynkin diagram! In that way, the 
Dynkin diagram Bn is obtained from A2n-l, Cn from Dn+1, F4 from Er, G2 from 
D4, H3 from D6 and H4 from E8. The only exception is the case of I2(k), where 
the N algebra is generated by the two-by-two matrices 

~ - 1 = ~ =  ( ~  0)1 and N2 = (01 1 )  

whereas the Coxeter matrix (2.3) is (2cos ~)N2.4 
Remarkably, the same procedure applies to the known solutions with integral 

(Gp)ab to the conditions of Sect. 2.4, that have a set of non-negative structure con- 
stants of the M and N algebras. It produces more solutions with non-integral en- 
tries and manufactures subgroups out of the original groups. We may call these 
new solutions "non-integrally laced" graphs resp. groups, to refer to the generic 
non-integrality of the entries of the matrices. As in the case N = 2, two classes 
of solutions emerge. In the first class, among the matrices N of the dual sub- 
algebra, one can find at least N - 1 matrices that have non-negative entries of the 
form 2 cos ~-~, m,~ C {2, 3 , . . . ,  ec}. Moreover these matrices (or linear combina- 

tions with integral coefficients thereof) qualify as possible matrices Gp, i.e. satisfy 
the conditions of Sect. 2.3 (cp. (5.2)). This is exemplified on three cases on Fig. 8 
using three graphs found in [8]. These graphs were shown to be associated with 
modular invariants coming from conformal embeddings of ~ '(3)k in a larger algebra 
(resp. sff(3)5 C s-u(6)1, ~ '(3)9 C (e6)l, and s"U(3)21 C (e7)l)  [21]; the subalgebra 
of the Pasquier algebra is labelled by the weights belonging to the block of the 
identity. 

The second class of solutions is a simple generalization of the situation discussed 
above with the Coxeter graph I2(k). For any graph relative to N > 2, the Pasquier 
M algebra admits a subalgebra whose generators are labelled by the a-orbit of 
p: Mp, Mop .... ,M~N-lp. This is in fact the smallest subalgebra consistent with our 
requirements. In that case, the procedure of considering the dual subalgebra does 
not produce the right adjacency matrices but rather the adjacency matrices Gp of 
~ff(N)t. Those have a spectrum of eigenvalues equal to N th roots of unity, ~lp, 

:= exp 2ig ~-, l = 0 . . . . .  N - 1, instead of the eigenvalues 7(P)~ tp, which follow from 
(2.13). The correct adjacency matrices are thus of  the form 

(Gp)ab ~" t~a+p, bmodN~ (p), a,b = 0 . . . .  , N  - 1, (5.4) 

where V(pP) may be expressed as a q-deformed binomial coefficient, q = e gg/h, 

7~ ) ( N )  s in-~ " " " sin g(N-p+l) 
= = ~ ( 5 . 5 )  

P q sin ~ sin ~ - . .  sin 

4 As shown by Shcherbak, Moody and Patera [20], there is a simple way to see how the Coxeter 
groups of type B ~ C, F, G, H or 1 appear as subgroups of some ADE Coxeter group and how an 
appropriate folding of the ADE Dynkin diagram gives rise to the Coxeter-Dynkin diagram of the 
subgroup. The two previous constructions are not independent, as will be explained elsewhere. 
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/a" 
"a,. 

Fig. 8. Three graphs of su(3) (on the left) having a M-subalgebra that leads to new graphs (on 
the right). The dotted line denotes an edge carrying vCJ = 2 cos ~, and the double lines are indeed 
edges with Gab = 2 

One may prove that the latter expression is a polynomial of  degree p ( N -  p)  
in 2 cos ~. An example Of this class is provided by the graph ~/g(5) exhibited in 
Fig. 2 for which the non-vanishing entries of  the adjacency matrix G1 are (G1)01 = 
(G1)12 = (G1)20 = 1 + 2cos-~ = 4cos 2 ~ - 1 ( :  2cos ~). 

Clearly a systematic analysis and classification of the possible solutions would 
be highly desirable. We shall see below how these Pasquier algebra and subalgebras 
appear in the context of  conformal field theories. 

6. Physical Interpretation of the Graphs and Reflection Groups 

6.1. In Conformal Field Theories or Lattice Models. It has been mentioned in the 
Introduction that there are empirical relations between our graphs and the classifica- 
tion of su(N) integrable lattice models and of su(N) WZW or coset conformal field 
theories. Recall that in the context of lattice models one looks for solutions of  the 
Yang-Baxter equation based on the quantum group ~llq(sl(N)). One finds classes 
of solutions indexed by graphs of  the type discussed above [22, 8, 23]. The r61e 
of the graph fr is to specify what are the allowed configurations of the degrees 
of  freedom (or "heights"). The Boltzmann weights of  the model are obtained by 
finding a representation of a quotient of the Hecke algebra (a deformation of the 
algebra of the symmetric group) on the space of paths on the graph f#l. In the 
context of  eft's, the r61e of the graph is more indirect. The partition functions of 
these theories on a torus are sesquilinear forms in characters X~ of the affine algebra 
~'~(N)k indexed by integrable weights 2. The constraint of modular invariance and 
of non-negativity of  the coefficients restricts enormously the possible expressions 
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S]~,~,,V N,~,VZ,~Z~,. It turns out that in many instances, diagonal terms in these expres- 
sions are labelled by 2 running over one of the sets of "exponents" encountered 
above in the spectrum of integrally laced graphs. This correspondence is known 
to be one-to-one for ~'ff(2) theories, for which all the modular invariants may be 
labelled by an ADE Dynkin diagram [24]. For ~ - (N)  theories, N > 2, however, 
some modular invariants exhibit diagonal terms that do not satisfy the property of 
invariance of the set Exp under a that followed from condition 3) imposed in 
Sect. 2.3 on the graphs [25-26]. It seems, however, that these cases may always be 
recovered from the others by a twist of the right sector with respect to the left one 
by an automorphism of the fusion algebra. Another observation is that there is a 
class of modular invariants relative to the coset theories 

SU(N)k_ 1 x SU(N)I 
SU(N)k 

the "minimal WN models," for which the problem does not seem to occur: see [27] 
for a further discussion. 

Conversely, it has been known for some time that some graphs satisfying the 
conditions of Sect. 2.3 are irrelevant for the classification of modular invariants and 
do not seem to support an integrable lattice model. Indeed in [23], some graphs had 
to be discarded. It thus appears that we are still missing some further restriction on 
the graphs. 

These little discrepancies notwithstanding, it seems that there is a hidden con- 
nection between the problems of classification of graphs, of cft's and of integrable 
lattice models. At this point, it may be useful to recall that the manifestation of this 
connection goes beyond the mere coincidence of spectra of "exponents" of graphs 
with the diagonal terms of modular invariants and involves the Pasquier algebras 
introduced in Sect. 5. First there is an empirical correspondence between the graphs 
that have a pair of non-negative M and N algebras and the cft's whose partition 
function is a sum of squares of combinations of characters. Moreover there is some 
evidence that the pattern of algebras and subalgebras of  type M is connected with 
the structure of the operator product algebra (OPA) of  conformal field theories and 
lattice models. It is in fact in that context that these algebras were first introduced 
[18], and the quantitative role of the M algebra in the determination of the structure 
constants of su(2) conformal theories has been clarified recently [28]. In a more 
recent work [27], the extension of these considerations to higher rank cases is dis- 
cussed: it is shown that the vanishing of the matrix elements of the M algebra 
implies that of the OPA structure constants. Therefore a subalgebra of the Pasquier 
algebra signals a subalgebra of the OPA. 

A few more facts are known about the association between a cft and a graph. 
Starting from a graph with non-negative M and N algebras, an empirical recon- 
struction of the modular invariant using the theory of  "c-algebras" [29] has been 
developed in [23]. It is also believed that the non-simply (or "non-integrally") laced 
graphs do not lead to an acceptable modular invariant partition function, but rather 
to an invariant under a subgroup of the modular group [ 17]. Reciprocally, in a vari- 
ety of cases of cft's, (typically orbifolds or conformal embeddings), considerations 
on the OPA that generalize those of [28] enable one to determine an appropriate 
graph [27]. 

In yet another approach, these graphs have been used in a recent work to con- 
struct invariants of three-manifolds, /~ la Turaev-Viro [30]. 
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In view of these connections of  graphs with cfl 's and lattice models, it is nat- 
ural to wonder whether the reflection groups constructed in this work manifest 
themselves in those physical contexts. I have unfortunately no definite answer to 
that question. The previous discussion suggests that the reflection group might be 
hidden in some features of the OPA. 

As already mentioned in [1], this suggests a programme based on the assumption 
that the previous observations are of general validity. I f  one could ascertain the 
connection between the consistent subalgebras of  the OPA and reflection groups, 
one might consider classifying the relevant reflection groups, find their presentation 
by generators subject to the conditions of  Sect. 2, and reconstruct the graph; one 
would then discard the cases of  non-integrally laced graphs, that correspond to 
theories that are inconsistent at higher genus. This would yield a set of admissible 
graphs, and with the methods of c-algebras or of counting of "essential paths" [30], 
one would reconstruct the modular invariant partition functions. It remains to see 
how realistic this programme is ...  

6.2. In ~Ar = 2 Superconformal Theories and Topological FieM Theories. The con- 
text of  ~/" = 2 superconformal theories and of topological field theories (fit 's) seems 
the most relevant one for the interpretation of the reflection groups. We first recall 
that there is a large class of JV = 2 theories amenable to a description by an effec- 
tive Landau-Ginsburg (LG) superpotential [31]. The latter is a quasihomogeneous 
polynomial W in some chiral superfields X/, i = 1, . . . ,n,  with an isolated critical 
point at the origin in field space. In the simplest cases, it is thus to be found in 
the lists of  singularities [14]. This is in particular the case of  the so-called minimal 
~42 = 2 theories, based on sl(2), that are all described in that way and for which 
the relevant singularity i s  a simple one (with no modulus), i.e. falls once again in 
an ADE classification [14]. 

In all cases, the elements of  the chiral ring ~ are in one-to-one correspondence 
with those of  the local ring of the singularity, i.e. the polynomial ring 112[X1,... ,Am] 
quotiented by the ideal generated by the derivatives OW/OXi. The U(1) charges qj 
of the chiral fields are proportional to the homogeneity degrees of  the elements of  
a basis of  the local ring, with the proportionality factor fixed by the requirement 
that q(W) = 1. I f  c denotes the central charge (of the Virasoro algebra), the U(1) 
charges of the Ramond ground states a r e  q~Ramond) = _(chiral) c On . . . . . .  qj ~.  me omer nano, 
it is a standard practice in singularity theory to look at deformations of the polyno- 
mial that resolve the singularity and to study the intersection form of the vanishing 
cycles and the monodromy group of these cycles when the deformation parameters 
are changed along loops. For n, the number of  variables, even, the intersection form 
is encoded in a generalized Dynkin diagram. Cecotti and Vafa [32] have shown that 
this intersection form counts the (signed) number of  solitons Aab interpolating be- 
tween the vacua of the dU = 2 supersymmetric theory obtained by perturbing the 
original ~/" = 2 superconformal theory. For a special choice of  deformation and of 
labelling, the matrix A may be taken upper triangular. The monodromy operator is 
the form H = SS -t (with the notations of  [32]), with S = R - A ,  and its eigenvalues 

A. - ,~_:  ~(Ramond) 
are CXlO ~.a, a l j  

This applies in particular to the Y = 2 theories based on the cosets 

SU(N)k 
(6.1) 

S U ( N -  1)k+l • U(1) 
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(cp. (4.8)). There the LG potential W is the quasihomogeneous part of the fusion 
potential of ~-ff(N)k; as already discussed in Sect. 4, it is a polynomial of degree 
h = k § N in X1 . . . . .  XN-1 of respective degrees 1,... , N -  1. The chiral fields may 

~(k+N) be labelled by integrable weights 2 E ~++ (cp. (2.6)). Their U(1) charges are 
thus 

1N--1 
q ~ = ~  ~ i ( 2 i - 1 )  with ~ 2 i  < h - 1  2i > 1, (6.2) 

i=1 i 

with h = k § N .  The central charge c of the JV" = 2 theories under discussion is 

c ---- 3 ( N - 1 )  ( 1 -  N )  , (6.3) 

thus 
~(Ramond) C 1 N--1 1 N ( N -  1) 

- -  ~ i(,'~i - -  1 ) - ~ ( N  - 1 ) + ( 6 . 4 )  
q2 = qz 6 h /=1 2h 

One thus sees that the eigenvalues of the monodromy operator H coincide with 
those of the opposite - R  ~ T-1T t of the "Coxeter" operator of the present paper, 
(Proposition 3), given by (4.ll):  

Eigenvalues of ( - R )  = (--1)N-lexp{#c N ( N -  1) + ~2i~ x'-7"1i~_" 1 i ( ) ~ i -  1)} 

2i~z (Ramond) 
= e q2 . (6.5) 

In fact, the upper triangular S of [32] identifies with the conjugate by J (Eq. (3.11)) 
of our T of (2.28), S ---- JTJ -1, so that our operator - R  identifies (up to conjugation 
by J )  with the transpose H t of their monodromy operator. 

The previous discussion has been implicitly dealing with the graph d E  +N) and 
the corresponding group. To make the connection with the preceding section, we 
have been considering a JV" = 2 superconformal theory (and its deformation) whose 
genus-one partition function is constructed out of the diagonal modular invariant 
of ~-ff(N)k. One may also consider other, non-diagonal, modular invariants, and 
the resulting JV = 2 coset theory. In many cases, however, for N > 2, the theory 
does not possess a LG superpotential. The simplest example is provided by the 
SU(3)3/(SU(2)4 • U(1)) coset theory in which one chooses the orbifold modular 
invariant for the numerator. Correspondingly, we take the graph 9 (6) of Fig. 3. 
Then the counting of chiral fields as exposed by the partition fi.mction, or the U(1 ) 
charges (6.2) computed from the exponents of that graph, are incompatible with the 
Poincar6 polynomial that would follow from a LG superpotential. 

Cecotti and Vafa, however, have been able to extend their discussion to cases 
where the LG picture does not apply. The same results hold true: the operator H is 
the monodromy matrix around the origin of the solution to a linear system, whose 
consistency equations are the tt* equations [33], and S is its Stokes matrix. Also 
they considered the matrix B = S § S t and prove (under some assumptions) that 
the number r (resp. s) of positive (resp. negative) eigenvalues of B is 

r = # { 2 p  1 < q(Ramond) < 2 p +  1} 

(6.6) 
S=#{Zp§ <q(Ramond) < 2 p §  . 
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In view of the previous identification, their matrix B is nothing else than our 
metric g (cp. Eq. (3.2)), 

B = S + S t = J ( T  + T t ) J  - !  = g . (6.7) 

Thus Eq. (6.6) is a statement on the signature of our metric, which may be verified 
on the expression on (6.4) for graphs with low values of N and k. 

To summarize, we have found that the graphs discussed in this paper yield 
actual realizations of those discussed by Cecotti and Vafa, in the specific case of 
the JV" = 2 theories (6.1). It is most likely that they describe the pattern of solitons 
that arise when the theory is perturbed by the least relevant operator: this is the 
Chebishev perturbation, so called because in the simplest case of SU(2) theories of 
An type, it changes the homogeneous superpotential into the Chebishev polynomial 
Tn+I(X) [34]. It is indeed known that for that perturbation, the pattern of solitons 
reproduces the classical Dynkin diagrams or their generalizations [35, 11]. 

The situation is quite parallel in the case of the topological field theories. Those 
may be obtained by the "twisting" of Y = 2 theories but may also be defined 
and studied for their own sake. Then the defining equations in genus zero are the 
so-called Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations [36]. Recently, 
Dubrovin has been able to reformulate these equations in a coordinate independent 
way, as expressing the existence of  a geometrical structure on the moduli space of 
these theories. First he proved that he could associate such a structure, i.e. a solution 
to the WDVV equations with the space of orbits of any finite Coxeter group [37]. 
This accounts for all the "simple" topological theories, i.e. with a central charge of 
the corresponding JV" = 2 theory c < 3, or alternatively, such that all U(1) charges 
of moduli be positive. In that way, he recovered not only the A D E  solutions once 
again, but also others associated with the non-simply laced Coxeter matrices. (The 
consistency of the latter theories at higher genus when coupled to gravity has been 
questioned recently [38].) Dubrovin also showed the existence of two independent 
flat metrics on the moduli space of tft's, and, in a subsequent work, he studied the 
differential equations that express the flat coordinates for the first metric in terms of 
those of the second one [39]. He proved that this differential system has a non-trivial 
monodromy, which under certain assumptions, is generated by reflections. 

In the special cases of tfl's described by a LG potential [40], this monodromy 
group is the monodromy group of  the singularity. We have seen that this is also 
the case with the groups studied here (Conjecture 3). It is thus a very natural 
conjecture that the groups studied in the present paper are actual realizations of the 
considerations of Dubrovin for those fit's that emanate from s u ( N )  ~ = 2 theories. 

7. Discussion and Conclusion 

In this paper I have shown that graphs that have appeared recently in various 
contexts of mathematical physics have the natural interpretation of encoding the 
geometry of a root system and allow one to construct reflection groups. 

From the mathematical point of  view, in addition to all the conjectures that have 
been proposed, this paper has left many questions unanswered. To quote a few: 

�9 We have found a certain number of isomorphisms of reflection groups. Under 
which conditions on two graphs does one get two isomorphic groups? 
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�9 In the finite cases like the graphs d (4) or ~r of su(3), what is the specific 
property of the choice of roots ~ within the root system of the A3 or D6 
Coxeter groups? 

�9 Given a reflection group, when can we assign it to a su(N) graph? If  the 
Coxeter element has an intrinsic meaning, (as suggested in Conjecture 2), 
and may be identified in the group, it gives some information about the spec- 
trum Exp of the graph, but it remains to reconstruct the graphs with a given 
spectrum. 

�9 Can one classify these groups/graphs? 
�9 What can one say about the nature of the possible invariants of these groups? 

Does the set Exp encode any information about those, as it does in the su(2) 
cases? 

Another problem deserves special mention. For each of the graphs considered in 
this paper there exists a family of matrices V~ intertwining its adjacency matrices 
Gp with those - denoted here Ap - of the basic fusion graph of Sect. 2.2 with the 
same value of h, i.e. satisfying 

(Ap)2~ V~ab "~ = Vac(Gp)cb (7.1) 

(with summation over repeated indices). In fact an explicit formula may be given 
for a class of V: 

~.(~) 
Va~b = g-~ V~ ,/,(U),/,(U)* (7.2) _ ( # )  "t'a V'b �9 

/~EExp (pp 

Here the q5 denote the eigenvectors of the Ap matrices. Equation (7.1) may be recast 
as recursive equations for the V's which show that these coefficients are integers. 
The surprise, however, is that they are non-negative integers. This was checked 
case by case in [8], and then Dorey, in the su(2) cases, was able to derive it from 
properties of the root system of the ADE algebras [41]. It would be interesting 
to see if these considerations extend to su(N), N > 2 using the root systems of 
the present paper. (For a physical interpretation of these coefficients in terms of 
boundary conditions see [8, 41].) 

From the physical point of view, there are still several missing links. 

1) In spite of many hints, we have no general proof that the graphs that satisfy 
the constraints of Sect. 2.3, possibly supplemented by some additional conditions, 
encode the data relative to modular invariants. 

2) In spite of many hints, we have no general proof either that the graphs 
that satisfy the constraints of Sect. 2.3, possibly supplemented by some additional 
conditions, support a representation of the appropriate Hecke algebra and thus yield 
an integrable lattice model. 

3) In both contexts, the rrle of the reflection group has remained elusive, al- 
though there is a suggestive matching of these groups and their subgroups with 
the algebras and subalgebras of Pasquier type, that are known to be related to the 
structure of the Operator Product Algebra. 

4) In the contexts of ~# = 2 and topological field theories, there are many indi- 
cations but no general proof that the graphs are a particular case of those introduced 
by Cecotti and Vafa, and that the groups are those considered by these authors and 
Dubrovin in the study of monodromy problems. 
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Another  interest ing quest ion is to extend what  has been  done here for su(N) 
algebras to other s imple algebras. On the one hand, it is known  that appropriate 
graphs are again closely related to modular  invariants  and should permit  the con- 
struction o f  lattice models.  See for example  some graphs relevant  for G2 in [23]. 
On the other hand,  not  all s imple algebras give rise to Y = 2 superconformal  field 
theories [10]. It is thus l ikely that the interpretat ion in terms of  reflections groups 
is less developed in those latter cases. 
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