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Summary. Bisphosphoimidazolides of 2'-deoxy- 
cytidine and of its acyclic analog C can be oligo- 
merized in aqueous solution in the presence of  
Mn(II). Under certain conditions, a range of  prod- 
ucts extending to at least the 20mer can be obtained. 
These products are of interest as possible templates 
for oligomerization of  the complementary mono- 
mers. 
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Introduction 

Polyribonucleotides have been prepared in aqueous 
solution by using enzymatically synthesized poly- 
nucleotides as templates for the oligomerization of 
nucleoside phosphoimidazolides such as 2-Me- 
ImpG (Joyce et al. 1984). Pyrophosphate-linked 
polynucleotide analogs have similarly been synthe- 
sized by the oligomerization ofbisphosphoimidazo- 
lides of 2'-deoxyribonucleosides or of  acyclic nu- 
cleoside analogs on polynucleot ide templates 
(Schwartz and Orgel 1985; Visscher and Schwartz 
1988). Recently, a pyrophosphate-linked analog, 
oligo(pdCp), has been chemically synthesized and 
shown to catalyze the oligomerization of the com- 

Abbreviations: C, 1 -[(1,3-dihydroxy-2-propoxy)methyl]cytosine; 
pCp, the bisphosphate of C; dN (N = C, T, G, or A), the 2'- 
deoxynucleoside of cytosine, thymine, guanine, or adenine; pdNp, 
the 3',5'-bisphosphate of dN; ImpdNplm, the 3',5'-bisphos- 
phoimidazolide of dN; oligo(pdCp), 3'-5'-linked oligomers of 
pdCp; 2-MelmpG, the 5'-phospho-2-methylimidazolide of G; 
EDTA, ethylenediamine tetraacetic acid; Tris, tris(hydroxy- 
methyl)aminomethane; Bis-Tris, bis(2-hydroxyethyl)imino- 
tris(hydroxymethyl)methane 
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plementary monomer (Visscher et al. 1989a). These 
studies have been undertaken as part of a program 
to develop models for primitive self-replicating sys- 
tems. An obvious question to be answered is how 
the first templates for any such system might have 
arisen spontaneously. Pyrophosphate-linked poly- 
nucleotide analogs are also synthesized, albeit less 
efficiently, by oligomerization of bisphosphoimid- 
azolides in the absence of  a template (Schwartz et 
al. 1987). A limitation in these studies, however, 
has been the observation that only the purine-con- 
raining analogs produce long oligomers in aqueous 
solution. Because oligomers containing largely pu- 
fines are not capable of  serving as templates in either 
of  the systems that have been studied to date, the 
question arises as to how the first pyrimidine-rich 
templates might have formed. Sawai (1988) has re- 
ported that the oligomerization of lmpC in aqueous 
solution is catalyzed by Pb(II). Under these condi- 
tions, 2'-5'-phosphodiester-linked oligomers are 
produced up to about the hexamer. It is not known 
whether 2'-5'-linked oligonucleotides have template 
activity. In the pyrophosphate-linked system, we 
have found that manganese ions are more effective 
than magnesium in catalyzing the oligomerization 
of purine-containing analogs in aqueous solution 
(Visscher and Schwartz 1989). We now report that 
the oligomerization of pyrimidine-containing ana- 
logs is also much improved in the presence of man- 
ganese, and that under certain conditions, oligomers 
as long as the 20mer are formed. 

Materials and Methods 

The preparation of C was accomplished by condensation ofsilyl- 
ated cytosine (Ogilvie et al. 1984) with 1,3-dibenzyloxy-2-chlo- 



romethoxypropane and a catalytic amount of tetra-n-butylam- 
monium iodide in dry acetonitrile as described for the preparation 
of l-[(1,3-dibenzyloxy-2-propoxy)methyl]guanine (Ogilvie et al. 
1982). The protecting benzyl groups were removed by treating 
1-[(1,3-dibenzyloxy-2-propoxy)methyl]cytosine with BC13 as de- 
scribed in Ogilvie et al. (1984). 

was bisphosphorylated as described in Visscher and Schwartz 
(1988). The 3',5'-bisphosphate of 2'-deoxycytidine was prepared 
as described for the preparation of 2'-deoxyadenosine-Y,5'-bis- 
phosphate (Schwartz et al. 1987). pdTp was a gift ofC.G. Bakker. 

The bisphosphoimidazolide of dT was prepared as described 
in Schwartz et al. (1987). The bisphosphoimidazolides ofdC or 

were prepared using a modification of the procedure described 
for the preparation of 5'-phosphoimidazolides of nucleotides by 
Joyce et al. (1984). The bisphosphates (70 ~tmol) of C or dC were 
suspended in 1 ml of tetrahydrofuran plus 0.5 ml of triethyl- 
amine. To this suspension was added a solution containing 250 
t~mol of imidazole, 250 ~mol of triphcnylphosphine, 250 ~tmol 
of 2',2'-dithiodipyridine, and 500 ~1 of triethylamine in 2 ml of 
tetrahydrofuran. After 24 h at room temperature, the product was 
precipitated by treating with 100 ~1 of NaCIO,-saturated acetone 
and 100 ml acetone--diethylether (1:4). After washing the sus- 
pension five times with acetone--diethylether (1:4), the product 
was stored under vacuum over P20~ and KOH. 

Oligomerizations were carried out as described in Schwartz 
and Orgel (1985). The conditions are given in the tables. 

After a reaction period of 2 or 4 weeks at 0~ the reaction 
mixtures were quenched by adding 9 #1 of EDTA (1.0 M, pH 9) 
and water to a total volume of 50/zl. Storage was at -25"C. Prior 
to analysis any surviving imidazolides were hydrolyzed overnight 
at room temperature by adding 2--4 ~tl of the quenched reaction 
mixture to 100/A of sodium acetate (0.1 M, pH 4.0). 

Analyses were performed by HPLC on RPC-5 (Joyce et al. 
1984) in 0.02 M NaOH with a linear gradient of NaC104 (0.0- 
0.04 M over 60 rain) at a flow rate of 1.0 ml/min. Peak detection 
was by absorbance monitoring at 254 nm. The cyclic-monomers, 
cyclic-dimers, and the pentamer of pdCp were verified by iso- 
lating these products from the RPC-5 column and treating with 
alkaline phosphatase and phosphodiesterase from venom, as de- 
scribed in Visscher and Schwartz (1988) and Schwartz et al. 
(1987). 

Resu l t s  and D i s c u s s i o n  

T h e  m e c h a n i s m  o f  o l i g o m e r i z a t i o n  o f  b i s p h o s -  
p h o i m i d a z o l i d e s  a t  p H  6.5 p r o b a b l y  i n v o l v e s  a 
g radua l  hyd ro ly s i s  to p r o d u c e  free p h o s p h a t e  groups ,  
w h i c h  t hen  a t t a c k  a n e i g h b o r i n g  p h o s p h o i m i d a z o -  
l ide ,  p r o d u c i n g  e i t he r  an  i n t e r n u c l e o t i d e  o r  a n  in -  
t e rna l  p y r o p h o s p h a t e  b o n d .  W e  h a v e  p r e v i o u s l y  re-  
p o r t e d  t ha t  M n ( I I )  c a t a lyzes  the  o l i g o m e r i z a t i o n  o f  
I m p d G p I m  a n d  I m p d A p l m  a t  p H  6.5 m o r e  effec- 
t i v e l y  t h a n  Mg(II ) ,  p r o b a b l y  d u e  to  an  i n h i b i t i o n  o f  
i n t e r n a l  c y c l i z a t i o n  o f  t he  m o n o m e r  (Vi s sche r  a n d  
S c h w a r t z  1989). T a b l e  1 c o m p a r e s  t he  resu l t s  for  
I m p d T p l m  a n d  I m p d C p I m  a t  p H  6.5 w i t h  t hose  
p r e v i o u s l y  o b t a i n e d  for  I m p d A p l m  a n d  I m p d -  
G p l m .  A l t h o u g h  the  t o t a l  y i e l d  o f  o l i g o m e r s  p r o -  
d u c e d  f r o m  b o t h  p y r i m i d i n e s  is  n e a r l y  d o u b l e d  in  
t he  p r e s e n c e  o f  Mn( I I ) ,  t h e r e  is no  r e d u c t i o n  in  t h e  
e x t e n t  o f  cyc l i za t i on .  T h i s  b e h a v i o r  can  be  co r re -  
l a t e d  to  s o m e  e x t e n t  w i th  r e p o r t e d  d i f fe rences  in  t he  
s t ruc tu re s  o f  t he  M n ( I I )  c o m p l e x e s  o f  p u r i n e  a n d  

p y r i m i d i n e  nuc l e o t i de s .  I n  t h e  case  o f  p u r i n e  nu-  
c leot ides ,  Mn( I I )  can  in te rac t  w i th  a p h o s p h a t e  g roup  
as  wel l  as  w i th  the  p u r i n e  r ing  s y s t e m  o f  the  s a m e  
m o l e c u l e  ( P e z z a n o  a n d  P o d o  1980). T h i s  i n t e r a c t i o n  
p r o b a b l y  has  the  effect o f  r e s t r i c t i ng  the  f r e e d o m  o f  
m o t i o n  o f  one  o f  t he  two  p h o s p h a t e s ,  r e d u c i n g  the  
ra te  o f  the  c y c l i z a t i o n  r eac t ion ,  a n d  t h e r e b y  f a v o r i n g  
i n t e r m o l e c u l a r  c o n d e n s a t i o n .  A d i f fe ren t  s i t u a t i o n  
exis t s  w i th  r e g a r d  to  the  p y r i m i d i n e s ,  for  w h i c h  
M n ( I I )  can  i n t e r a c t  w i t h  the  p y r i m i d i n e  r ing,  b u t  
n o t  s i m u l t a n e o u s l y  w i t h  a p h o s p h a t e  g r o u p  o f  t he  
s a m e  m o l e c u l e  ( P e z z a n o  a n d  P o d o  1980). I t  is n o t  
c lear ,  h o w e v e r ,  w h y  the  o l i g o m e r i z a t i o n  y ie lds  a re  
i n c r e a s e d  in  the  p r e s e n c e  o f  Mn( I I ) .  O f  p o s s i b l e  re l -  
e v a n c e  is t he  d e s c r i p t i o n  o f  a 1:1 c o m p l e x  o f  M n ( I I )  
w i t h  c y t i d i n e  5 ' - p h o s p h a t e  in  t he  s o l i d  s ta te  ( A o k i  
1976). In  th i s  s t ruc tu re ,  p h o s p h a t e  g r o u p s  o f  ne igh-  
b o r i n g  m o l e c u l e s  a re  c lose ly  c o o r d i n a t e d  w i th  each  
o t h e r  to  f o r m  a t h r e e - d i m e n s i o n a l  n e t w o r k .  C o n -  
ce ivab ly ,  an  i n t e r a c t i o n  o f  th i s  k i n d  m a y  p r o v i d e  a 
m o r e  f a v o r a b l e  e n v i r o n m e n t  for  i n t e r n u c l e o t i d e  
c o n d e n s a t i o n  t h a n  the  Mg(I I )  c o m p l e x .  

I t  is  t h e  h y d r o l y s i s  o f  one  o f  the  two  p h o s p h o i m -  
i d a z o l i d e  g r o u p s  o f  e ach  m o l e c u l e  t h a t  p r o v i d e s  a n  
o p p o r t u n i t y  for  cyc l i za t ion .  Thus ,  we  h a v e  a lso  
s t u d i e d  the  o l i g o m e r i z a t i o n  o f  e q u i m o l a r  m i x t u r e s  
o f  the  b i s p h o s p h o i m i d a z o l i d e s  a n d  b i s p h o s p h a t e s  
o f  d C  a n d  C a t  p H  8.0, a p H  a t  w h i c h  the  r a t e  o f  
h y d r o l y s i s  is m u c h  r e d u c e d  ( K a n a v a r i o t i  1986). 
T h e s e  resu l t s  a re  p r e s e n t e d  in  T a b l e  2 a n d  Figs.  1 
a n d  2. By i n c r e a s i n g  the  c o n c e n t r a t i o n s  to  0 .2  M,  
we  were  ab l e  to  i nc rea se  t he  t o t a l  y i e l d  o f  o l i g o m e r s  
fo r  d C  to  57%. T h e  resu l t s  w i t h  C are  less  spec t ac -  
u lar ,  a l t h o u g h  o l i g o m e r s  l onge r  t h a n  the  d e c a m e r  

can  be  d e t e c t e d  in  the  c h r o m a t o g r a m .  T h e  13% y i e l d  
o f o l i g o m e r s  w i t h  c h a i n  l eng ths  o f  10 o r  m o r e  (23% 
o f  al l  o l i g o m e r s )  p r o d u c e d  w i t h  d C  is p a r t i c u l a r l y  
i n t e r e s t i n g  as  these  a re  p o t e n t i a l  t e m p l a t e s  for  t h e  
o l i g o m e r i z a t i o n  o f  I m p d G p l m .  T h i s  f r a c t i o n  a p -  

Table 1. Oligomerizations at pH 6.5 (0.5 M Bis-Tris HC1, 0.1 
M NaC1, 2 weeks at 0~ 

Incorporation of 
monomer into 

oligomers of length 
n(%) 

Monomer MClz CM M 
(0.1 M) (0.1 M) (%) (%) n>-2 n>-4 n -  10 

ImpdTplm Mg 45 30 18 2 -- 
ImpdTplm Mn 50 12 34 3 -- 
ImpdCplm Mg 44 30 27 4 -- 
ImpdCpIm Mn 45 7 49 12 Trace 
ImpdApIm Mg 44 17 35 9 -- 
ImpdApIm Mn 26 11 59 32 6 
ImpdGpIm Mg 53 14 34 13 4 
ImpdGpIm Mn 35 6 56 30 7 

MCI: is the metal chloride, CM is the cyclic pyrophosphate of 
the monomer, and M is unreacted monomer 
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We do  no t  suggest tha t  s t ructures  o f  this type  
necessari ly represent  molecules  tha t  were  a b u n d a n t  
on  the preb io t ic  Earth.  N o  reasonable  preb io t ic  syn-  
thesis has  yet  been  d e m o n s t r a t e d  for  e i ther  C or  dC. 
A l though  m e c h a n i s m s  tha t  cou ld  accoun t  for  bis- 
p h o s p h o r y l a t i o n  are k n o w n  ( L o h r m a n n  and  Orgel  
1971; Schwar tz  et al. 1975), ac t iva t ion  o f  the ana log  
pCp  is p rob lemat ica l  because  o f  the s t rong t endency  
to cyclize. A l though  this m a y  be a fo rmidab le  dif- 
ficulty, it is in m a n y  ways  less serious than  the  ob-  
j ec t ions  to  f l -D-r ibonucleos ides  (Joyce et al. 1984, 
1987). Fu r the rmore ,  recent  w o r k  on  the o l igomer -  
iza t ion  o f  cyclic p y r o p h o s p h a t e s  suggests tha t  cy-  
c l iza t ion can  be reversed (L.E. Orgel, persona l  c o m -  
munica t ion) .  The  studies descr ibed  here m a y  only  
be a first step t oward  deve lop ing  a t ruly plausible  
mode l .  
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Fig. 1. Products of the oligomerization oflmpdCplm + pdCp 
at pH 8.0 (C2 is the cyclic dimer; cyclic monomer is not shown) 
Fig. 2. Products of the oligomerization of ImpCplm + pCp at 
pH 8.0 (C2 is the cyclic dimer; cyclic monomer is not shown) 

pears  to ex tend  b e y o n d  the  2 0 m e r  (Fig. 1). T h e  p rod -  
ucts  u n d o u b t e d l y  con ta in  a mix tu re  o f  3 ' -3 ' ,  3 ' -5 ' ,  
and  5 ' -5 '  l inkages (Visscher  et al. 1989b), a nd  thus ,  
ou r  expec ta t ion  is tha t  their  ac t iv i ty  as t empla tes  
will be less t han  tha t  o f  the 3 ' -5 ' - l i nked  o l igomers  
tha t  we have  recent ly  r epor t ed  on  (Visscher  et al. 
1989a). A different  s i tua t ion  m a y  exist  in  the  case 
o f  o l igomers  o f  the prochi ra l  ana log  p C p  (Fig. 2). 
These  a tact ic  o l igomers  possess  a m u c h  m o r e  reg- 
ular  b a c k b o n e  g e o m e t r y  (Joyce et al. 1987) t han  the 
s t ructural ly  he t e rogeneous  o l igomers  o f  p d C p  and  
m a y  therefore  d i sp lay  t empla te  ac t iv i ty  even  when  
r a n d o m l y  o l igomer ized .  W e  expect  to be able to test  
this suppos i t ion  short ly.  
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