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Abstract: We study the well-known problem of 1-d quantum scattering by a poten- 
tial barrier in the semiclassical limit. Using the so-called exact WKB method and 
semiclassical microlocal analysis techniques, we get a very precise and complete de- 
scription of the scattering matrix, in particular when the energy is very close to a 
unique, quadratic maximum of the potential. In our one-dimensional setting, we also 
recover the Bohr-Sommerfeld quantizafion condition for the resonances generated by 
such a maximum. 

1. Introduction 

This paper is devoted to the semiclassical study of quantum scattering by a potential 
barrier in dimension 1, in particular in the transition regime where the energy is 
very close to the top of the barrier. Many articles have been written since the 30's 
dealing with the computation of the transmission coefficient through a barrier, and this 
problem is one of the starting points for the development of what is nowadays called 
JWKB method. The exponential decay of the transmission coefficient (cf. Theorem 
1 below) has been known since the first papers by R.E.Langer and H.Jeffreys (see 
e.g. [La] and [Je]), by the use of the famous connection formulae. Other techniques 
have been developed during the 60's, in particular by N.FrOman and P.O.Fr6man (see 
[Fr-Fr]), M.V.Fedoryuk (see [FeD and F.WJ.Olver (see [Oll]). Their works were 
based on a JWKB-like approximation method for the solutions of a 1-dimensional 
Schr6dinger equation in the complex plane, often known as phase integral method, 
which has been recently improved by J.Ecalle and A.Voros (cf. [Ec, Vo]) and used 
in a new formalism by A.Grigis for the study of Hill's equation (cf. [Gr]). The new 
fact in what is now usually called exact-WKB analysis is that it provides, rather than 
approximate solutions with error bounds, exact solutions with a complete asymptotic 
expansion with respect to the semiclassical parameter h for example, with a priori 
estimates on the coefficients. A huge amount of papers has been written on this 
subject, and it is a difficult job to identify even the main contributions. We think that 
we have not forgoten too many important names, but the reader should refer to the 
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books [Hd, Fr-Fr, O12], where he would find many references as well as detailed and 
interesting historical discussions. 

We have written in the first part of this article the exact-WKB analysis for the 
1-dimensional scattering SchrSdinger operator, and obtained results which, at least in 
the barrier-penetration case, are very familiar (see for example Eq. (10.17) in [O12], 
Eq. (9.12) in [Fr-Fr] or Eq. (1.15) in [Fe]). The method also looks very much like the 
one developed in Chap. 13, Part 15 of [O12] or the general theory developed in [Ev- 
Fe], but there is something new in our results even in that case: we show a complete 
asymptotic expansion with a priori estimates on the coefficients. In the second part 
we have studied the semiclassical behavior of the scattering matrix for energies which 
are very near (in the semiclassical sense) to the critical value of a unique quadratic 
maximum of the potential. It has been already noticed that the exact-WKB method 
does not give good enough estimates to treat the case where two simple turning points 
coalesce as h goes to 0 (see [Ge-Gr]). We used here, together with the exact-WKB 
constructions, microlocal techniques which have been introduced by B.Helffer and 
J.Sj6strand for the study of Harper's equation (see in particular [He-Sj]). In particular 
we performed as in [M~i] and [Ra] a microlocal reduction to a branching operator 
which is closely related to Weber's equation. Such techniques have also been used 
in a ~ o  setting in [Sj3], and also in [Co-Pa] where a more geometrical discussion 
can be found. As also noticed in [As-Du] or [Na], the point is that a tunnel effect in 
the phase-space occurs, which can be described analytically for the branching model. 
We have obtained that way a very precise description of the scattering matrix at the 
critical energy level which is new as far as we know. Thanks to its sharpness, we also 
recover a result about quantization of the resonances lying near a quadratic maximum 
which have been proven independently in the n-dimensional case by J.Sj6strand (see 
[Sjl]) and P.Briet, J.-M.Combes and P.Duclos (see [Br-Co-Du]). We shall come back 
in forthcoming papers with S.Fujiie to a more global study of resonances in these 
settings. 

Let us describe now the scattering problem briefly. We denote by P(x, hD) = 
hZD 2 + V(x)  the 1-dimensional SchrSdinger operator (with D = -iOn), where the 
potential V(x) is smooth and goes to 0 sufficiently fast as x goes to infinity. Because 
of this fall-off at infinity, the solutions of the Schr6dinger equation 

where E is a real parameter, should behave as x ---+ •  like 

l r h)ei~,/~z/h a~: (E, + aZff (E, h)e - ~ / h ,  

where l and r stand for left and right and correspond respectively to x --+ - o c  
and x --+ +oc. The four Jost solutions fz,T are the solutions which behave exactly 

as e i ~ x / h  or e -~'/N~/h as x --+ +c~. The reflection or scattering problem is the 
following: what are the components of a solution u of the SchrSdinger equation in 
the basis (f~, fz_) of the outgoing Jost solutions, knowing its components in the basis 
(f+z, f~_) of the incoming Jost solutions. The 2 by 2 matrix relating these coefficients 
is called the scattering matrix and we will denote it by 

(slls21  22s12) 
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The reflection and transmission coefficients R(E, h) and T(E,  h) are by definition the 
square of the modulus of the coefficients s21 and s~l respectively. They correspond 
to the probability for a purely incoming-from-the-left particle (1.f+ 1 + 0.f_r... ) to be 
reflected to the left or transmitted to the right (= 821f l  -I- 811f+ ). We shall study the 
behavior of these quantities in different regions of the (h, E)-plane as h -+ 0, under 
the following general hypothesis on the potential V: 

(A) The function V is real on the real axis, analytic in the sector 

J = {z ~ c ,  l imzl < 61Rezl + W} 

for some ~5, ~7 > O, and satisfies the following estimates: 

1 
v(z) = o(72 ~) 

for some r > 1 as Ir goes to infinity in ~q~. 

We will show that under this assumption the Jost solutions exist (see discussion at the 
end of Sect. 3 for the long-range case, that is when r ~]0, 1]). Because V is real on 
the real axis, we have (f+lm), = f ~  where u*(x) = u(~), and the scattering matrix 
5(E, h) is unitary. We also have the following relations between the coefficients of 
5(E, h): 

h" 811(E' h) 
s l t (E ,h )=  s22(E,h) and s12(E,h)=-g21(E, ) ~ h ) '  

so that sit and sat determine completely the scattering matrix. We also have the 
well-known relation R(E,  h) + T(E,  h) = 1. 

We have first studied the case where the energy level E is far below the extrema 
of V on the real axis, that is the distance between E and any extrema does not vanish 
as h does. We have obtained the following 

Theorem 1. Transmission through a barrier. Suppose the potential V satisfies as- 
sumptions (A). Let V,~ be the lowest local extremum of V on the real axis. Suppose 
C < E < V m -  C for some constant C > 0 independent of h, and let a(E) < b(E)be 
the only two real zeros of V(x) - E (see Fig. 1). If these zeros are simple, there exists 
two classical analytic symbols el(h) and r of non-negative order (see Definition 
1 below) such that 

S(E) exp i s l l ( E ' h ) = ( l + h O l ( h ) ) e x p { -  h } { ~ - - ~ }  

s2s(E, h) = i(1 + hr exp (t, E) dr) , 

where S(E) is the classical action between the two turning points a(E) and b(E) 

rb( E) 
S ( E )  -- Ja(E) V/V(X) -- E dx. 

We have also written Q(t, E) = ~ - V(t) - v /E for t < a(E) and 

f + 7  Q ,s-oor<~(~) T ( E ) = - - V ~ b  ( ) - a ( E ) ) +  ( t ,E)  d t + l Q ( t , E ) d t .  
(E 
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a(E) b(E) a(E) 

Fig. 1. Transmission through a barrier 

k 

y=E 

b(E) 

We have studied more closely what happens in the neighborhood of a maximum 
of the potential under the following assumption on V: 

(B) The function V has a unique maximum on the real axis at x = 0 with V(O) = Vo 
and V"(0) = - k  2 for a real strictly positive h. 

When V satisfies assumptions (A) and (B), and for energies E close enough to 
V0, there exist in a complex neighborhood of 0 exactly two simple turning points 
which are real and of opposite sign for E < Vo, close to • ~ v/2(V0 - E). They are 

complex-conjugate for E > V0, close to -4--~ V/21V0 - E I. We define then the classical 
action S(E)  by 

S(E)  = -~ (V(x) - E)  1/2 dx, (1) 

where 7 is the boundary (oriented counterclockwise) of a disk in ~ which contains 
the turning points. The determination of the square root is fixed so that (V(x) - E) 1/2 
belongs to iR + for the real positive x on 7. Notice that we have 

Fb(E ) 
]~ ~ - E dt when E < V0 

i Ja(Z) X/lV(t) -- E[ dt when E > V0 

and that S(E)  is real, positive when E < V0 and negative for E > V0. We shall also 
use the following notations: 

fa(E) +co 
v / E ( a ( E ) - b ( E ) ) +  ] Q ( t , E ) d t +  f Q ( t , E ) d t  for E < V0 

J -  d b(E) 
T(E)  = f+oc f b(E)T r 

J-[ Q ( t , E ) d t  +i l t v ( t ) -  E)  '~2dr f o r E > V 0  
J a(E) 

and 

fa(E) 
v /Ea(E)  + ] _ ~  Q(t, E)  dt for E < Vo 

T_ (E) = o f~(E) 
Q(t, t?,) dt - i ./o (V(t) - E)  ~/2 dt for E > V0 

(2O 

with Q(t, E)  = v ~ - V(t) - ~ for real, large enough t. We can state now our main 
result: 
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Theorem 2. Scattering at the top of a barrier. There exist a constant C > 0 in- 
dependent of h, three classical analytic symbols ml (E ,  h), mz(E, h), m3(E,  h) of 
non-negative order, and a strictly positive real number c such that for any E E 
]Vo - C, Vo + C[, we have 

1 ~ S(E) +~T-t~c2"T(E)~" l .,,.S(~E) 
S l l ( f , h )  - , 9/5.j e x p t -  --~--ff- + i  (1 +h2mi(h))) 

e x p { - @ ( l n  IS(E)[ 1)}(1 + hm2(h)) + O(e -` /h)  
~h 

i ~ S(E) ~. T_ (E) ~ ... 1 S(_~E) 
- + 2 z ~ - - ~ z t ~  + i J ~ n  (1 + heml(h))) s2t(E, h) V ~  expt  2 - i f -  

e x p { - - - ~ ( l n  Is(E)I 1)}(1 + hm3(h)) + O(e-~/h). 
7rh 

It is interesting to compare this theorem with the first one. We show below that 
for V0 - E small enough 

71" 
s(E) ~ - ~ ( v o  - E), 

so that ]S(E)/hl --+ cc provided IV0 - EI/h  --+ co. Thus we shall use Stirling's 
formula in the complex plane (see [O12] Chap. 8, Part 4), which can be written as 

F(z) = ~ e x p { - z  + (z - 1/2) ln(z) + f ( z )  }, (2) 
z 

where f ( z )  is analytic and bounded function in the domain {z E C, lz] > R, ]argz I < 
7r - 5} for any large enough R and any ~ > O. If we notice that for any real M,  

ln(1 .Tr i 1 2 + iM)  = ln(lM l) + z~ sgn(M) - ~ + ( ~ )  g(1/M), 

where 9 is analytic near the origin, Eq. (2) gives, for some analytic and bounded 
function k, 

+iM) = v/2-~exp{-Trl2MI +iM(lnlMI 1)+ik(1 /M)} 'M (3) 

Under assumption (B) and for energies E such that C < E < V0 and (V0 - E) /h  
+oe as h ~ 0, Theorem 2 and Eq. (3) with M = S(E)/Trh give exactly the formulas 
of Theorem 1. 

Equation (3) and Theorem 2 give also an interesting result in the case where 
C > E > V0 and (V0 - E ) / h  ---, +oe as h ~ 0. Then S(E) is negative and we have 

Theorem 3. Reflection over a potential barrier. We suppose the potential V satisfies 
assumptions (A) and (B). We also suppose that Vo + C1 < E < C for some constant 
C1 > 0 independent of h. Then there exists two classical analytic symbols St(h) and 
r of non-negative order (see Definition 1 below) such that 

Sll(E,  h) = (1 + hr  h Q(t, E) dr} 
O<9 

f ) Q  f0b(i )g s2 , (E,h)=i(1  + hr e x p { ~  (t,E) dt+ 2 (t)-- E) ' /2dt} ,  

where we have written again Q(t, E) = VfE - V(t) - v/E. 
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/ \  
y=E 

Fig. 2. Reflection over a barrier 

Notice that we have not written here the exponentially small error term which 
should come from Theorem 2. In fact we have proven this more precise result in 
Sect. 4 by the mean of the exact WKB approach, and we have shown there that this 
theorem is still true under a more general hypothesis: the important point is that the 
geometrical configuration of  the Stokes lines for the E we consider should be the 
same as in the case where assumption (B) holds (see Proposition 7). 

Concerning the resonances generated by a quadratic maximum, our microlocal 
constructions give also 

Theorem 4. Bohr-Sommerfeld quantization condition for the resonances generated 
by a quadratic maximum. Suppose V satisfies assumptions (A) and (B). There exists 
a constant C > 0 depending only on the potential such that we have the following 
quantization condition for the resonant energies lying in the half-disk {IV0 - El < 
Ch} N { I m E  < 0}: 

S(E) = i(2k + 1 ) ~  + O(h2), k E N, 

where S(E) is the analytic continuation of the classical action defined by Eq. (1) to 
this half disk. 

This paper is organized as follows: Pa r t  1 is this introduction. We recall in the 
Second pa r t  how the exact-WKB method permits to construct exact solutions of  the 
Schr/Sdinger equation and give their asymptotic expansions in bounded domains of  
• .  In the Thi rd  pa r t  we adapt this method in order to obtain the Jost solutions and 
their asymptotic expansions as h --+ 0. Pa r t  4 is devoted to the proof of  the first 
theorem using the constructions of Part 3. We also mention other results concerning 
the over-barrier case. In Pa r t  5 we construct microlocal solutions near a quadratic 
maximum of the potential, recalling first the reduction theorem and studying precisely 
the branching model. The Sixth pa r t  ends the proof of  the last results, connecting the 
Jost solutions of Part 2 and the microlocal solutions of Part 5. At last we have put 
together in a brief Appendix the minimal set of notions in semiclassical microlocal 
analysis that we hope makes this text understandable (one may find more details in 
[Sj2], [He-Sj], or [Del). 

Acknowledgement. It is a real pleasure for the author to have the opportunity to thank A.Grigis, A.Martinez 
and S.Fujiie for the many fruitful discussions we had about this work. 
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2. Exact WKB Constructions 

We construct here solutions of the Schr6dinger equation 

- h2u" + V(x)u  = Eu  (4) 

in bounded domains of the sector ~ using the exact WKB method. First of all we 
make the change of variables x ~ z given by 

x F-~ z(x, x0, E) = f (V(t) - E)l/2dt. 
Jr (xo,x) 

One of our tasks will be of course to study the subsets of 5T where this function is 
well-defined, but let's work formally for a while. Writing a solution u(x, E,  h) as 

u(x, E,  h) = (V(x) - E) - l /4  g(z(x, x0, E), E,  h), 

we obtain the following equation for g(z): 

- g "  + (H  2 - H '  + ~2)g = O, 

where H(z) is given by 

1 V'(x(z,  E)) 
H(z)  = - ~  (V(x(z,  E)) - E )  3/2 --= ( V ( x )  - E ) - l / 4 O x ( V ( x )  - E )  -1/4  (5) 

as soon as x(z, E) is well-defined in X?(E). Now we put 

g• E, h) = e• E,  h) 

and obtain 
9 

(H 2 - H')W• = •  + w 2 .  

One then sees easily that the series W• = ~n_>O W,~,• given by 

W0,• = 1 

(Oz • = - H W 2 ;  • ~)w~;+t,• 

O~W2p,• = - H W 2 p - t , •  

(6) 

(7) 

One immediately gets the corresponding integral equations 

Wn,• h, 2) = 0, n > 1. 

is a formal solution of Eq. (6). So we investigate the solutions of this system. Suppose 
is an open simply-connected domain of the z-plane, where z ~-+ H(z)  is well- 

defined and analytic. Then Eq. (7) defines a sequence (Wn,§ of analytic functions in 
which is unique up to some arbitrary constants. We fix these constants choosing a 

base point 2 in ~ and consider the sequence (Wn,• h, 2)) satisfying Eq. (7) and 
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Wo,• = 1 IF 

W2p+l,• h,  2,) = - e• 
(~,z) 

W 2 p , •  h ,  2,) -= - f F  H ( O W 2 p - I ' •  
(~,z) 

where F(2,, z) is any path in S) beginning at 2, and ending at z. The solutions of this 
system can be written as (for p _> 1) 

Wzp- l ( z, h, 2,) = 

-- J l~2~/-l(~'z)e•162162162 z) /h  H ( ~ l )  " " H(r . . .  d~2p-1 (8) 

and 

W2p( z, h, 2,) = 

/r~ ei2(r162162162 " H(~2p)d~l  . . . d~2p, (9) 
(~,z) 

where F~(2,, z) is the set of n-tuples of points (r  ~ )  put in increasing order on 
the path El(2,, z). The corresponding series 

W i ( z ,  h, 2) = ~_, W~, i ( z ,  h, 2,) 
n>_O 

will converge in X) provided for example that for all z E ~Q there exits a path P• z) 
of finite length L and a constant A• > 0 such that 

sup ]e2r <_ A i ( h )  and sup le-2r162 <_ A+(h) 
CEF• CEF• 

because the Volterra equations above will then give, for n _> 1, 

( A •  
Iw~,• _< 

n! 

In particular one sees that the convergence is uniform in ~ when this set is bounded. 
In that case we can obtain asymptotic expansions in h for the functions W,~4- inside 
D. We recall first the following 

Definition 1. A function f (z ,  h) defined in Ux]0, h0[, where U is an open set in C 
and ho a real strictly positive number, is called a classical analytic symbol (CAS) of 
order m E H in h if f is an analytic function of z in U and if there exists a sequence 
(aj(z)) of analytic functions in U such that 

- For all compact set I (  C U, there exists C > 0 such that, for all z in t( ,  one has 
laj(z)l <_ CJ+ijJ. 

- For all z 6 U, f (z ,  h) admits the series ~-~j>o aJ( z)hm+j as asymptotic expansion 
as h goes to zero. 
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We reproduce now without proof a result that can be found in [Ge-Gr] (see Prop. 
1.2 there). The reader should also look at Proposition 2 below where the same kind 
of result is proven in the case of a particular choice of base points. 

Proposition 1. Let ~2 be an open simply-connected bounded domain in C. where the 
function H(z)  is analytic, 5 a fixed point of {2 and D+(5) = X) N {Re z > Re 5}, 
~ - ( 5 )  = g) N {Rez < ReS}. The functions W,~,+(z, h, 2) and W,~ _(z,  h, 5) are clas- 
sical analytic symbols of order n+l [-g-] in ~2+(5) and g)-(5) respectively. Moreover the 
functions W~ven(z, h, 2) and w~dd(z, h, z) given by 

4- W T ~ ( z ,  h, 2) = Z W ~ ( z ,  h, 2) and w~dd(z, h, 2) = Z Wzn+t(z' h, 2) 
n>O n>_O 

are classical analytic symbols of order 0 and 1 in f?+ ( 5) and f ) -  ( 5) respectively. 

We go back to the x-plane and use the discussion above to construct solutions of 
our equation in bounded domains of the sector 2W. Let /2(E) be an open, simply- 
connected set of ~ with no turning point. We fix a determination of t ~ ( V ( t ) - E )  1/4 
in that set and define the function z(x, xo, E) as 

fx x x ~ z(z,  xo, E) = (V(t)  - E)l/2dt, 
o 

where zo is some point of f2(E) and the integration is performed along any curve 
in f2(E) going from x0 to x. We introduce now the notions of canonical path and 
canonical set for the function x ~ z: 

Definition 2. Let Yc and x be points in YS(E). We say that a path 7(:~, x) in Y2(E), 
starting at ~c and finishing at x is a canonical path of type + /f the function t ~-+ 
4-Re z($, Xo, E,) is strictly increasing along "7(5% x). We also define the canonical set 
X?4-(Yc) of type 4- as the subset of X?(E) for all points of which there exists a canonical 
path of type -4- going from Yc to it. 

It seems useful to mention here that the notion of canonical path, that we have 
borrowed in [Ev-Fe] and [Fe], corresponds to the one of progressive path used by 
most of the authors. Our canonical set is the complementary of what is sometimes 
called a shadow zone (see [O12], Chap. 6, Part 11.4). 

Let 2 be a point in X?(E). For all x in the corresponding canonical set ~2+(2) one 
can find a canonical path 7(2, x) and consider its image I'(2, z) by x H z. Denoting 
by g)--(2) the image of f2• by x ~ z, we see that we can perfectly define the 
sequence of function (W~,+) in that set using Eq. (8) and Eq. (9), where the integrals 
are performed along /"(2, z). Using these notations, we state the main result of this 
section: 

Proposition 2. The function w4- defined in f)• by 

w•  E, h; zo, Y:) = 
(V(x)  - E)-U4e 4-~(x'~~ ~ > 0  Wn,~(z(x,  xo, E), h, z(Sc, xo, E)) 

is the solution of the following Cauchy problem: 
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-h2u ' + V(x)u = Eu 

w• E, h; xo, :~) = (V(~c) - E) - l /4e  •176 

Oxw• E, h; xo, Y:) = -t- ~(V(~) - E)l/4e +Z(cLx~ 

Moreover the functions 

w~= ~'~ = ~ w2~,• ( z( x, xo, E), h, z( S:, xo, E) ) 
n>O 

and 
W~ dd = ~ W2n+~,• xo, E), h, z(~, xo, E)) 

n>_O 

are classical analytic symbols in 27• of order 0 and 1 respectively. 

Proof This result is almost a direct consequence of Proposition 1, noticing that the 
function H(z) is well-defined and analytic in ~--(2). The only remaining thing to do 
is to compute the value of Oxw+ at ~. Using logarithmic derivatives, one can easily 
see that 

w~(x, E, h, Xo, ~) = 

- - I ( v ( x )  - E) i /4e: l :z~  h, z,) - w~_dd(zo(X), h,  ~)}, (10) 

where zo(x) stands for z(x, xo, E)  and 2 for z(2, x0, E), and this ends the proof. 

One of the main features of this construction is that the wronskians of two solutions 
can be easily calculated. We just recall that the wronskian ~ ( u ,  v)(x) = u'(x)v(x) - 
u(x)v'(x) of two solutions u and v of Eq. (4) doesn't depend on x and is zero if and 
only if u and v are proportional. An obvious computation using Eq. (10) gives, with 
the same notations 

Proposition 3. Let xo and Xl be two points in ~?(E). If  for given x+ and x_ the 
canonical sets ~2+(x+) and f2- (x_)  have a non-empty intersection, then for any x E 
/?+(x+) A ~?-(x_) one has 

Y///(w+(., h, E; xo, x+), w_(., h, E; Xl, x_ ))(x) = 

h ez~ { w ~ ( z o ( x ) ,  h, z+)We_ven(z l (x ) ,  h,  z _  ) - 

w+nn(zo(x), h, z+ )w~ (x), h, z_)}. (11) 

I f  for given x+ and Yc+ the canonical sets f2+(z+) and (2-(Y:+) have a non-empty 
intersection, then for any x C D+(x+) A f2+(Y~+) one has 

~/(w+(. ,  h, E; xo, x+ ), w+(., h, E; x~ , 2+ ) )(x) = 

h e(~~ { w ~ ( z o ( x ) ,  h, z+)w+dd(zl(x), h, 2+) - 

w~dd(zo(X), h, z+)W[~n(z1(x), h, 2+)}. (12) 
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Notice that this proposition gives an equivalent for the wronskian of two solutions 
of different type (a w+ and a w_) which is of the form ea/h(1 + O(h)). In the case 
of two solutions of the same type (a w+ and a z~+), we only have an upper bound for 
their wronskians, which reads O(he a/h)  for some constant A. 

We end this section with a remark concerning the case where E depends on h. 
Our constructions for the solutions are still valid, but the functions W ~ and W ~ 
may not be CAS in h anymore. In particular one may have (see [Ge-Gr], Prop. 2.4) 

~ ( w + ,  w_)  = 1 + O ( h / ( E  - Vo)) 

so that Proposition 3 above is worthless when E - Vo = O(h). 

3. Jost Solutions and Their Asymptotic Expansion as h --~ 0 

We construct here the Jost solutions copying the procedure described in Sect. 2, the 
new point here being that the solutions we seek are normalized at infinity. In all this 
section we will work in two unbounded, simply-connected domains ~z(E) and ~ ( E ) ,  
where IV(x)[ < E and which coincide with ~ for - R e  x and Re x sufficiently large 
respectively. The existence of such domains is of course an easy consequence of the 
behavior of V at infinity in , ~  (see assumption (A)). In these two sets we choose 
the determination of t ~-~ (V(t)  - E)  1/4 which belongs to ei~/4R+ for real t so that 

~ (V(t )  - E)  1/2 belongs to i~  + for real t. To obtain the correct behavior for the 
phase we will use the obvious identity 

(V( t )  - E) 1/2 - i E  1/2 = V( t )  
( V ( t )  --  E )  I/2 + i E  1/2 (13) 

and define, with the determination chosen above 

J f  V ( t ) tit. z~'l(x, E )  = i V ~ x  + (14) 
(V(t)  - E)I/2 + i x / ~  

For real x in ~U,I(E), we shall also write this definition as 

z~'t(x, E )  = i v ~ x  + i { v / IV( t )  - El  - v ~ }  dr, (15) 
O 0  

which shows that zr't(x, E)  is then purely imaginary. Notice that zr'Z(x, E) is a 

primitive of (V( t )  - E)  1/2 and that we have for any x~ 'z 6 ~U'I(E), 

r l v,1 r,l zr't(x,  E )  = z ( x , x  o' , E)  + z (x o , E).  (16) 

To make the coming ideas clearer, we also introduce the following 

Definition 3. Let x be a point in (fl,~(E). The set o f  points y in ~z '~(E) for  which 
Re zl,~(x, E)  = Re zt,~(y, E)  is called the Stokes line passing through x. 

The point is that the condition for a path to be canonical (see Definition 2) is of 
course that it intersects transversally the Stokes line it meets. Thanks to the absence 
of turning point or singularity of V, the local structure of the Stokes line in ~fl,~(E) 
is particularly simple as shown by the 
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Lemma 1. Let D be a bounded, simply-connected domain in g?z'~(E). The function 
x ~-+ z z'~ is an analytic diffeomorphismfrom D to z(D) that maps the Stokes lines in 
D onto the vertical lines Re ~ = C st. 

Proof The only non-trivial part is to show injectivity of the functions z zm. For x 5~ y 
one has with Eq. (14), using IV(t)l < E in Y2Zm(E), 

E )  - zZ, (y, E )  - i (x - Y)I < v lx - y l ,  

which shows that z(x) = z(y) only for x = y. 

We consider now the global situation. With our choice for z z,~ and the behavior 
of V at infinity in ~ we have immediately the following 

Lemma  2. The Stokes lines in ~fl'r(E) are asymptotic to the horizontal lines I m x  = 
C st. Moreover for ix[ big enough, the function Re z(x) is increasing as Im x decreases, 
and Im z(x) increases as Re x does. 

8+l(x) ~ 

-%\ - 

z / Re 

Fig. 3. Integration paths in the z-plane 

Im x 

J 
S 

Y 

Re x 

With these two lemmas, one sees that for all x in Y2l(E), there exists an infinite 
path ending at x, @(x) ,  parameterized on t E [0, +co[, asymptotic to the line Im~ = 
qz tRe (  as R e (  ~ - o o  and such that ( ~ + R e z (  O is strictly increasing along 
it (see Fig. 3). For x in f2~(E) we define the same way the paths 7~_(x) Which are 
asymptotic to the lines Im ~ = +6 Re ~ as Re ( ~ +oo. 

We also denote by P~f(z) the infinite oriented paths zZ,~(7~'(x)) ending at 
zZm(z, E), and remark that F~(z) and P~(z) are asymptotic to the line Imr  = ~-Rer 
as Re~ ~ Too respectively, and that Ft_(z) and El(z)  are asymptotic to the line 
Im ~ = - �89 Re ~ as Re ~ --+ -4-oo respectively. 

We define now four particular WKB solutions of the Schrtdinger equation in 
f2~(E) and f2Z(E). We will use Eq. (8) and Eq. (9) where the integrals are now 
performed along the paths Pz,?(z). 

Proposition 4. Let F ~  (z) be the path defined above. The system of recurrence equa- 
tions 



Semiclassical Study of Quantum Scattering on the Line 233 

Wo;• h) = 1 

" 1,~ _ e•162 W~p+~,• h) = ~(~) 

- 1 , r  ] F ~  H ~ l r  
- (r177162162 

define a sequence of  classical analytic symbols of  order n+l [~-] in f2<~(E). Their sum 

~V~:l~ r ~ tx, ~, z )  : ~ ~v~'L(;,~(~, E), h) 
n>O 

is an analytic function in this set. Moreover the functions 

~el~ r W~,~(z  (z, E), h) 
n > 0  

and 

n>O 

are dassical  analytic symbols in ~fl,~ ( E) of  order 0 and I respectively. 

Proof We write the proof only for 17d+ l, the other cases could be treated along the 
same lines. We first prove convergence of the integrals above by induction. Suppose 
ITd21~,+ is bounded and analytic in X2Z(E). Using Cauchy's formula and the direction 
of the path F+l(z) at infinity we get 

lZV~p+l,+(z , h) = - fai(z) e2(r z)/h H(C)l~V~2P'+(r 

where the integration is now performed along the straight line Al+(z) ending at z 
given by lm(~ - z) = �89 Re(r - z). We obtain 

.~+~ i i l~V~p+l,+(z , h) = - e-2(l+~)u/h(HkV12p,+)(z - (1 + ~)u)(1 + ~)du, (17) 

where u = - Re(r - z), and this shows uniform convergence of the integral defining 
lY~p+l,+ using the definition of H and the behavior of V' at infinity in :,~ given by 

assumption (A) and Cauchy's inequalities. This expression also shows that 17d2lp+l,+ 
is a bounded and analytic function in Qz(E). Now we have 

17d~p+2,+(z, h) = - [ .  H(C)IY~p+I,+(~)d~, (18) 
J r :  (z) 

where H is obviously in Ll(Fl+(z)) and this answers the question of convergence of 
the above integrals and definition of the 17d~,+. We look now for asymptotic expansions 
of these functions. We perform the change of variables s = u / h  in Eq. (17) and get 

+~ i ~ )hds. 17d~p+l,+(z , h) = - e-2(a+~)~(HlTd~p,+)(z - (1 + ~)hs)(1 + 
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Using Taylor expansion for HITV2~,,+ at z we obtain, for any N E I~, 

f 0  

~ e_2(l+~)s [(1 + WlY2/p+i,+(z, h) = ~ J '  
j=o 

and a direct computation gives 

N 

h)= Z '+w+' + 
j=0 

(19) 

and 

Lemma 3. Suppose f is a function in L2(]O, +oc[) and define, for  all n > 1, 

I2n( f )= ~-2(l+i/6)(sl-sa+"'-s2'd/h f ( s l ) f ( 8 2 ) .  . . f (S2n)dSlds2 . . ,  ds2n 
a+oo>st>s2>,..>szn>O 

f 
I 2 n - l ( f ) =  le -2(l+i/6)(sl-~2+'''+s2~-])/h f ( s l )  . . . f ( s2n-1)ds lds2  . . . ds2n 1. 

J+ +oo>sl  >s2> . ,  .> s2n-~ >0 

Then we have 

I.r (f)l <_ ( )E( +l)/2allfll 2. 
This lermna and the expressions Eq. (9) mad Eq. (8) for the ~ t W~,+, where the path 

of integration is now F+t(z), gives uniform convergence of the series, noticing that H 
is in L2(.Ft+(z)) thanks to the hypothesis (A) on V. 

We write now the corresponding WKB solutions as 

~l:r~ rn W• iX, ~ ,  h) = (V(x )  - E)-l/4eZt:zt'~(z'E)/hlTvl'r(x, h, E) ,  (20) 

and we see immediately, using uniform convergence of the integral in Eq. (17) and 
Eq. (18), that for n 5/0, 

~ I t  lira W~' , t ( x  , h, E) = 0, (21) 
x ----+ :J2 oo 

so that we have immediately the 

Proposition 5. The functions ~ ~'~ w •  are solutions of  the SchrOdinger equation Eq. (4) 
in a21,~ ( E)  respectively, and we have 

{ x lima (x) = 
li_.moo eTiV~x/h~:(X ) = ( - -E) •  

Moreover (~z+, ~z ) (resp. (go~, ~ ) )  is a basis o f  the space of  solutions of  Eq. (4) in 
~z(E) (resp. O'~(E)). 

This shows immediately that 17V~p+l,+(z , h) is a classical analytic symbol of order p+ 1 

when % , +  is a classical analytic symbol of order p. Using Eq. (18), we see that 

17V~p+2,+(z, h) is then also a CAS of order p + 1. 

The last thing to prove is the convergence of the sum ~ n > o  17V~z ,+ �9 We recall the 
following easy result (see [Gr], Lemma 3.2) 
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This last proposition shows that the z? z'7, are proportional (with the same coefficient 

( - E )  -J /4)  to the Jost solutions and that the scattering matrix $(E,  h) can be computed 
in the corresponding two basis, provided these solutions are defined in a shared 
domain. However  it will be convenient in the sequel to work with other choices for 
the normalization of the phase. All we have written in Sect. 3 can still be read with 

l 7, i x  x z ( x ,  x o' , E )  = ( V ( t )  - E )  1/2 dt 

1 r 1,7, instead of z ,  , where x 0 are fixed points in ~l '~(E) .  We shall write the corresponding 
solutions as 

I r 7, 1 r l , r  w\- - l / 4  •  xo' E ) / h T ~ r l  / ~ l , r .  
w:i- (x ,  E ,  h; x o ) = ( V ( x )  - r~) e ' ~ ' w~= tx ,  n, E ,  x o ) (22) 

and we have the 

Proposition 6. The func t ions  wl, "7, are solutions o f  the SchrOdinger equation (4) in 

(21,7, ( E )  respectively,  and we  have 

- - l  7" Z l ' r  X l'~" 1~7, 
wT: (x,  E ,  h) = e • ( o ,~)wZ,,~(x, E ,  h; x o ). 

P r o o f  We compute the wronskian of wl+ and @z+ at x in X)Z(E) using Eq. (10). Then 
letting x --~ - o o  and considering Eq. (21) which is true both for w and ~5, we see 
that this wronskian is 0, so that these solutions are proportional. But we have 

lira v3Z+(x' E ,  h) _ ( - E )  5/4 
z - - + - c c  e ~ , f l N z / h  

and, with Eq. (16), 

lira eZ~(Z~'E)w~+(x' E,  h;x~) = ( _ E ) _ l / 4 .  
x ~ - e o  e i . j E x / h  

The same arguments lead to the three other equalities. 

We end this section with a remark concerning the so-called long range case, where 
V goes to zero at infinity like Ix[-7, with 0 < r _< 1. Then, as shown by Eq. (14) 
the primitives of  (V - E )  1/2 do no longer behave at infinity like i x / ~ x  + C st, so one 
has to define Jost solutions another way. The good one (see for instance lAg-K1]) is 
to consider the solutions which behave at infinity like e •176 for some natural 
choice of  x0, and there is no problem to adapt what we are doing in Sect. 4 below 
and obtain the corresponding results in the long range case. 

4. Scattering for Energies Far Away From the Extrema of the Potential 

We shall use in this section the notations introduced in Part 3 and compute some of 
the elements of  the scattering matrix ~(E,  h) that we may write as 

s~t(E, h) = ~ p . ( ~ ,  z~/_ ) and SZl(E, h) - ~7/y'(~/+, ~ )  ~y(~_, ~ )  



As mentioned at the end of Sect. 3 it will be more convenient to work with other 
1 r . l ,r  E, h, x o ) ones solutions than the ~. Denoting by w2 (x, the defined by Eq. (22), we 

get easily with Proposition 6 the following useful formulas: 

and 

72 

s l l ( E ,  h) = e (zz (x~'z)- z~ ( ~ ' z ) V  h cT/P" ( wl+ ' wz- ) 
~/ / /  ( w ~ , w l_ ) 

(23) 

~q21(E, h )  --= - e  2zz ( z~ 'E) /h  ~ ' ( w Z + '  w+ ) 
~7///'(w~, w z_ )" (24) 

These expressions are of course formal  in the sense that they may involve solutions 
which are not defined in a shared domain. We shall now extend these functions in 
order that Eq. (23) and Eq. (24) make sense. 

4.1. Transmission through a barrier 

We suppose here that V satisfies assumption (A) and that V~ - C > E > C for a 
constant C > 0 independent of h, where V~ is the lowest local extremum of V on 
the real axis (see Fig. 1). There exists then only two real turning points a(E) < b(E),  
and we suppose that they are simple. In that case the Stokes lines are as shown in 
Fig. 4. 
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Fig. 4. Continuations of the solutions in .Y: real turning points 

We first compute S l l ( E  , h) using Eq. (23). We recall that 

2 ~(~+, e~) = g, 

so the only remaining quantity is the wronskian of ~ and ~z_ or equivalently 
W ( w 2 ,  wZ_). We have to extend the function w~, which is defined in Y2r(E), into 
Y21(E). We recall that we have chosen the determination of t ~-+ (V ( t )  - E) 1/4 which 
belongs to ei~/4~ + for real t in Y2~(E). Then we define the function z in Y2~(E), by 

/fz) (V(t) z(x, b(E), E) = - E) t /2d t .  
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Thanks to the structure of the Stokes lines between atE) and b(E), we can find a path 
71 from +oct1 + i6) to - o c t 1  + i6) transverse to the Stokes lines, cutting the real axis 
at x = 0 and along which we can propagate this determination for (V(t) - E)  1/4 (see 
Fig. 4). The determination we obtain that way in g2t(E) is such that (V(t) - E)  t/4 
belongs again to ei~r/4II~ + for real t. Notice that between atE) and b(E) on the real 
axis, where V(t) > E, we have 

( v ( t )  - E )  1/2 = - V x / W ~  - E .  (25 )  

We shall denote by tw+, the extension of w~(x, E, h; b(E)) along 71 and compute the 
wronskian of the solutions tw+r and w z_ = w z_(x,E,h;a(E)) at y. With Eq. (11) we 
get 

~//~( w+, wl_)(9) = e (z(y'b(E)'E) z(Y'a(E)'E))/h(1 + h~(h)) 

and with Eq. (25) 

2 eS(E)/h( 1 + h~(h)), (26) 

where ~(h)  is a classical analytic symbol of positive order. Equation (23) gives 

i E , s n ( E , h ) = ( l + h ~ l ( h ) ) e x p { - ~ } e x p { ~ S o ~ (  )}  

where r again is a CAS of non-negative order, and where we have written 

S~(E)  = zZ(a(E), E) - z~(b(E), E) 

that is precisely 

S~(E)  = -x/-E(b(E) - atE)) + E) dt + ] _ ~  Q(t, E) dt 

with Q(t, E) = ~/E - V(t) - v ~ .  
Let 's  compute now 822 with Eq. (24), where only ~/r w_~) is not known. If  

we used the same extension of w~ into X?Z(E) as for the computation of  s n ,  we would 
only obtain an upper bound for s21 (see discussion after Proposition 3). Instead we 
choose a point y ~ s and a canonical path 72(Y) going from +oct1 + i6) to y, 
which stays above the turning points (see Fig. 4), and we extend the solution w~. along 

2 r 0/2. I f  we denote this extension by w+, we obtain in ~ l (E) :  

awl(y, E, h;b(E)) --ieS(E)/h(V(y) E)- l /4e-Z(Y'a(E) 'E) /h  E 2w'r " " 
= - ~ , + t Y ) ,  

n>_O 

where the determination of (V(y) - E)  1/4 is the one we have fixed at the beginning 
of this section, and we see that 2 ,- is of the type --ieS(E)/hw_ for a solution w_ W+ 
defined in s . 

Now we compute ~fJ(wt+, 2w~_) at y and obtain, for a CAS x(h) of non-negative 
order 

= -- ieS(Z)/h~/ /J(u ' l ,  w_)(y) = - - h e S ( E ) / h ( 1  + x(h)) Y/// ( w l+ , 2w~_)(y) 

so that, with Eq. (26), 

S21(E, h) = ie2ZZ(a(E)'E)/h(1 + hr 

This ends the proof of  Theorem 1. 
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4.2. Over-barrier reflection 

We suppose now that the energy level E is above the maximum value V0 of  the 
potential V on the real axis. More precisely we have to suppose here that E - V0 > 
C > 0 for a constant C independent of  h. If  we did not make any further assumption 
on V, we could take the same domain for s and s and compute the different 
wronskians in that set. As we have already noticed above, we would obtain that way 
an upper bound for the reflection coefficient. Because we want to compare the results 
of this section with the one of  Sect. 6, we prefer to suppose that for these E,  the 
domain ~ contains two complex-conjugate simple turning points and we denote them 
by a(E) and b(E) with Im a(E) < 0 < I m  b(E). We also have to state a geometrical 
hypothesis on the structure of  the Stokes lines, which should be as in Fig. 5. Notice 
first that x H z(x,  0) is an analytical diffeomorphism from the real x-axis to the 
imaginary z-axis. The function z -1 extends to a strip in the z-plane whose image by 
z -1 is bounded by two Stokes lines. Our assumption is that each of  these Stokes lines 
contains no turning points but exactly one among a(E) and b(E). Notice that this is 
true when E is close enough to a quadratic maximum of V. 

J 
l 
o 

Fig. 5. Continuations of the solutions in .9~: two complex turning points 

In ~ l (E) ,  which is also ~2~(E), we choose the determination of  (V(x)  - E )  1/4 
which belongs to ei~/4]~ + for real x and we define as in Sect. 3 the two solutions 
wZ_ ( x ) = wl ( x, E,  h; a( E)  ) and w~. ( x ) = w + ( x, E,  h; b( E)  ). Notice that, with the same 

notations as in Sect. 4.1, w~(x) can be written as lw~(x) for a path 71 which stays in 
~Z(E) (see Fig. 5). Equation (11) gives first 

~/ / / ' (w~,wt)  = ~ e x p  - f ( V ( t ) -  E)  1/ad~ (1 +h2~l(h) ) ,  
J a(E) 

where ~l(h)  is a CAS of non-negative order. We use then Eq. (23) and get, for another 
CAS r 

sll = (1 + h2r exp (zl(a(E), E ) -  z~(b(E), E)  + EOv(t) - E)  1/a dr) 
g a(E) 

that is finally, with Q(t, E)  = i v / ~  - V(t)  - i v ~  for real t, 

} sI1 = (1 + h2q51(h)) exp Q(t, E) dt . 
O O  
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Next we have to compute ~Y(wZ+, w~). We use the same idea as in Sect. 4.1 and 
extend the solution w~ along a path % which comes from +eo(1 +i6) and stays above 
the turning points (see Fig. 5). The corresponding solution is denoted by 2w2 and we 
have 

2wr. . v "  iWr  ( "  +tY) = - i (V (y )  - E ) - l / 4 e  - z (y 'b (E) 'E) /h  ~ n,+ Y), 
n>_O 

where the determination of (V(y) - E) t/4 is the one we have chosen above. Again 
with Eq. ( l l )  we get 

~/Y(wZ+, 2w~) = - ~-(1 + h2~b2(h)) exp (V(t) - E) I/2 dt 

and with Eq. (24) 

g2(fb<z>J.(E, } s2i = i(1 + h2r exp [ (V(O - E) 1/2 dt + zZ(a(E), E)) 

so that at last 

{20r ,,-, } 
= i(1 + h2r exp ~ ( j _ ~  Q(t, E) dt + Jo (V(t) - E) 1/2 dt 821 i 

We have proven the following 

Proposition 7. Suppose that V satisfies assumption (A). We also suppose that 17, > 17o 
is fixed and that the hypothesis at the beginning of this section are satisfied for this E. 
Then we have 

S l l = ( l + h Z r  Q(t, E)  d~} 

f0b(E~(v(0 s21 = i(1 + h2r _(  o Q(t ,E)  dt + - E) t/2 at 
tz J - o o  

The reader may notice that these formula are precisely those of Theorem 3. 

5. Microlocal Study Near a Quadratic Maximum 

In this section we study precisely what happens when the energy E is very close 
to the maximum V0 of the potential V on the real axis, under the assumption that 
this maximum is of quadratic type. We suppose V satisfies assumptions (A) and (B), 
which permits us to control the location and the nature of the turning points. We recall 
that there exists a constant C > 0 depending only on the potential V such that if 
IV0 - E  I < C, there exist in a complex neighborhood of 0 exactly two simple turning 
points which are real and of opposite sign for E < V0 and complex-conjugate for 
E > V0, close to ~: ~ v/2(V0 - E). The difficulties come from the fact that these two 
turning points coalesce when E goes to V0 as h vanishes. 
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5.1. Reduction to a normal form 

We use here as in [M~i] and [Ra] some techniques which have been introduced by 
J.Sj6strand and B.Helffer (see [He-Sj]) and that we have briefly described in the 
appendix. The initial remark is that the Schrtdinger equation (4) may be written as 

P(x,  hD)u = #u (27) 

h2 D 2 v(x)-Vo E-Vo Then we notice that with P(x,  hD) = ~ + Vo(x), Vo(x) - k2 and p = k2 �9 

the h-symbol of this operator is close to the symbol associated to Weber's equation 
(~2 _ x2)/2 for x close to 0, and is mapped into a symbol close to q(x, ~) = x~ by 
the rotation by 7r/4. The following theorem (see [He-Sj] App. b) allows us to work 
microlocally in that direction: 

Proposition 8. (B.Helffer, J.SjOstrand) There exists a real-analytic canonical trans- 
formation ~, defined in a neighborhood of (O,O) with values' in a real neighborhood of 
(0, 0) and a real-analytic function fo defined near 0 such that: 

1. fo(0)= 0, f~(0)= 1. 
2. t~(O, O) = (0, 0), dry(O, O) = ~ /4 ,  where I~7r/4 is the rotation by 7r/4 around (0,0) in 

T*ItL 
3. f o o p o ~ = q .  

Moreover there exists a unitary Fourier Integral Operator U, with canonical transfor- 
mation ~ and a real-valued classical analytic symbol F(t,  h) of order 0 whose principal 
symbol is fo such that: 

4. U* F(P,  h)U = Q microlocally near (0,0), where Q = �89 + hDx). 

5. FU = UA, where 1 ~ is the complex conjugation operator and A = F ~  -1 = ~ F .  

In particular the point (4) of this proposition gives 

Corollary 1. Let # be a small enough real number. The equation Qu = #tu is mi- 
crolocally in a neighborhood of (0,0) equivalent to the equation P U u  = #Uu with 
#' = F(# ,  h). 

In the sequel of this section, we will study more closely the F.I.O. U and the 
symbol F (see also [M~]). Most of the following results are consequences of the 
symmetry imposed to U by the identity (5) above. Because we are interested only on 
its principal symbol we write formally U as 

Uu(x) = e ic/h ei~(x'Y)/hc~(x, y, h)u(y) ~ ,  

where c~(x, y, h) = Cto(X, y) + hc~l(x, y) + . . .  is a CAS, and ~(x, y) the phase function 
defined in a neighborhood of (0,0) by 

~(y, -0yr y)) = (x, Oxr y)). (28) 
In fact we should have written 

dO 
Uu(x, h) = f f eig(~'Y'~ ~(x, y, O, h)u(y, h ) ~ d y ,  

where the integration is performed along a good contour 7(Y, O) (cf. [Sj2], Chap.4 or 
[De], Chap. 1), and the expression above is obtained with a stationary phase expansion. 
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Proposi t ion 9. For any (x, y) near (0, O) one has 

X 2 _ _  y~- 
1. r  y) = ~o(X, y) + O((x, y)3), where Co(X, y) = - 7 + v/2xy T is the phase 

associated to the canonical transformation e; �88 
2. y = aye(X,  Ovr , y)) and O~r y) = -O~r  aye(X,  y)). 
3. We can choose C = 0 and then Ozo(O, O) = 21/4ei~/8. Defining the CAS cr = cr o + 

her1 + . .  by ~(x, y, h) = ~(x,y,h) �9 ~0(0,0) ' we get ~o(0, O) = 1 and 

~o(x, y) Go(X, Oyr y)) 
IO r  )11/4 IO r v))11/4 

Proof (1) is a direct consequence of relation (2) in Proposition 8, and computing 
~0(x, y) is straightforward. We examine now the second point. Point (5) of Proposition 
8 gives 

where I~ A ( X , ~ ) -= ( - - ~  , - -  X ) and ~ r (  x, ~) = ( x, --~ ) are the canonical transformations 
for the F.I.O. A and F respectively. Thus for ( y , - ~ )  close enough to (0,0) and 
defining ix, ~) = h i - r / ,  y), we have ix, - ~ )  = t~iy, -r]) .  With Eq. (28), we then get 

{ ~ = o~r ~) = - o ~ ( z ,  y) 
y = aye (x ,  ~) 

= o~r y) 
and this gives the two identities of  (2). For the last point one notices that for a(x, h) = 

e -~2/2h we have Aa  = a, and again with relation (5) of Proposition 8 we obtain 
F U a  = Ua that is 

f 2 2 dy eiC/h e~r y, l~)e-V / h 2~/~h - - C R .  

In particular for x = 0, there exists a real number ~0 such that 

eiC/h /e-(l+i)v2+~ Y, h) d~Y~ = (~o. 
x/2rch 

With a stationary phase expansion this gives 

~o(0, O) = 21/4e-iC/hei~/8(~ o. 

Last, thanks to the unitarity of  U, we have IUa(O)] = ]a(0)l = 1 and d~0 = •  We 
can choose ~0 = 1 without loss of  generality, and this proves the first part of  (3). 
Let 's  work now with crix, y, h) = aoix, y) + hal ix ,  y) + . . .  defined by or(x, y, h) = 
2-1/4e-i~/So@c, y, h). We do have a0(0, 0) = 1, and relation (5) of Proposition 8 
gives 

21/4e-i~r/8 f 
./e-iW(~'Y)/hcr(x, y, h)fz(y)dy = F U u ( x )  = 

2,/57a 
21/4eirr/8 / 

UAu(x )  = ~ eir y, h)Auiy)dy ,  

where Auiy )  = ~ F u i y ) .  So we have 

(29) 
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e-i~/4 /e-if4z,Y)/ho-(x,y,h)u(y)dy= f f ei(r d--~ dy. 
~/27vh 

One performs now stationary phase expansion to get rid of integration with respect 
to y. Critical points yc(x, ~l) of y ~ g)(x, y) - y~/are given by 7/= Or(x , yc(x, ~/)) and 
with (2) 

yc(x, 7) = O~r 7). 

The corresponding critical value of the phase happens to be f~(x, ~l) = - r  rl) 
because f~(O, O) = 0 and, using again (2), one has 

Oxfc(x, r]) = -Oxr ~7) and Ovfc(x, V) = -07~r ~q). 

Thus Eq. (5.1) gives 

f e ir [e_~(~,~)/h ~ro(x, Ova(x,7)) + O(h) , , , 
= J I o~,~(x, o ,~(z ,  ~))11/2 utwa~ 

and changing notations 

~o(x, y) = ~o(x, 0~r y)) (3o) 
IO~yr o~r y))ll/2 

The last part of (3) is then obtained differentiating (2), that is 

For the symbol F(~, h) we have 

Proposition 10. There exists a real neighborhood w of 0 such that, for all # in w 

fo(#) = - 1 S(#) and fl (#) = O, 
7c 

where S(#) is the classical action between the corresponding two turning points a(#) 
and b(#): 

i b(l~) S(tO = a ~")b(.) 
i Ya<.) {Iv(t) - ~1 dt for # > 0 

Proof. Thanks to the definition of the functional calculus we use (see [He-Sj], App. 
a.3) and in particular because the symbol of (z - P ) -1  is (z - p ( x ,  ~))-1 + O(h2), it is 
clear that denoting by s the symbol of F(P, h), we have s(x, ~) = F(p(x, ~)) + O(h2). 
On the other hand, noticing that one can consider many phases for a h-F.I.O., the 
difference of two of them being of order h, it is easy to see that there exits an h- 
dependent canonical transformation ~ associated to the F.I.O. U such that identity (4) 
of Proposition 8 gives s o ~ = q + O(h2). So we get 

F o p o ,%(X, ~)  = X~ -t- O ( h 2 ) .  (3 1) 

But we also have 
fo o p o ~ = q(x, ~) = x~. (32) 



Semiclassical Study of Quantum Scattering on the Line 243 

Using these two relations and the fact that the canonical transformations ~ and 
preserve oriented area, we compute in two different ways the following action integral 

[p,t* = ~ ~dx, (33) 

where the integration path is a closed complex curve 3  ̀inside p-l( /z) .  With Eq. (31) 
and denoting by ~ the right-hand side of this identity, recalling also that > / =  F(# ,  h), 
we get 

Ip,,  = I~,t,, = ~ ~dx: 
i 

where the integration path 3`' of Io, ~, is such that its image under ~ is 3'. On the other 
hand Eq. (32) gives 

= = ~ ~dx, Ip,t* Iq,#' o g 

where p~ = f0(P) and the image by t~ of % has to be 3`. Let 's compute first the last of 
t 

these integrals. We choose 3`s to be the path {(x(t), ~(t)), x(t) = re it, ~(t) = #o ~--~-/5, t E 
[0, 2re]} with r a fixed positive real number such that the turning points a(p) and b(#) 
are inside the closed curve % for any # small enough. Then we have 

= 2Z~#o .  

When > is small enough so is >~ and the loop 7~ is close to the circle {(re u, 0), t C 
[0, 2rr]}; its image 3  ̀ under a is thus close to {(to eit, roeit): t E [0, 2re]} with r0 = 
r / v ~ .  On 3  ̀we have of course {(t) = [2(> - Vo(x(t))] 1/2, where we have chosen the 
determination of x ~ (> - V0(x))U2 which is real and positive for x = r. Deforming 
the path 3`, and being a little careful with the determinations of the square root as in 
Sect. 4, we get 

rb(~  ) 
- 2 i  / V/2(Vo(x) - >) dx 

]p,# = a a(t*) 
r b(~) 

2 jal(tz ) V/21Vo(x) - ~1) d z  

f o r #  < 0  

f o r # > 0  

and this gives the value of #~. 
We compute now [q,~,, on a path "~(h) which has to be close to {(re it, 0), t 

[0, 27r]}. Thanks to the fact that (1 = q + O(h 2) and using analyticity in Eq. (31), we 
get 

Io#,, = 2ire# I + O(h 2) 

and because lq,~; =Iq,~, 

2irrf0(p) = 2irrF(#, h) + O(h 2) 

so f l  is identically O. 
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5.2. The branching model 

We study here equation Qu = J u  for some real # ' .  It is easy to get two maximal 
solutions for this order one ordinary differential equation and we can consider them 
as distributions in S'r 

u~ #', h) = H(•  i~' Iog Iml/h, 

where H(x)  is the Heaviside function. Thanks to the symmetry of  Q with respect to 
x and ~ we have [ Q , ~ - I F ]  = 0 and we obtain two other solutions in 5; z~, 

These four solutions are not linearly independent as proven by the 

Proposition 11. Let #' be a real number. If  u in I~  ~ is a solution of equation Qu = IZ' U, 
then u is in , ~ '  and there exist four complex numbers o~+, ct_, /3+ and/3_ such that 

and 

where the branching matrix B~, (h) is unitary and given by 

h -i~'/h .1 ./ff e~r~'/2h+iTr/4 e -Tr#'/2h-i~r/4 
B / ( h ) - ~  F ( ~ - ~ ) (  e_~rp,/2h_i~r/4 eTr ,/2h+i~r/4 ) .  

Proof Let u E ~ ' ( I t~)  be a solution of  equation Qu = #'u, u has to be W1 on R+ 
and N*_ (see for instance [H6], Corollary 3.1.5). So there exists two complex numbers 

o~+ and ct_ such that the support of  u - c~+u~ - c~_u ~ _ is {0}, and one sees easily 
that no finite combination of derivatives of  Dirac mass at 0 is a solution of  Eq. (27). 

Writing %o as the boundary value of an analytic function in the upper half-plane, 
namely 

vO(x, #', h) = lira§ f + ~  ei(X+iy)~/h~ - 1 / 2 - i ~ ' / h -  d~ 
y- o Jo vS ' 

and with z = (y - ix)~/h as a new variable, we get 

Iy(X) - ~ ( y  -- ix) 1/2+il{/h e-Zz-1/z-~u'/hdz,  
(v) 

where ~/(y) is the image of  [0, +oc[ under t ~ (y - ix)t /h.  Using Cauchy 's  formula 
we obtain 

v ~  h-W'/h 1 ' 1 
- + Z ( . ' ,  h)  

where E(#',  h) = e i~r /4+l~' Tr /2h. 
We can also write in a similar way v ~ - as a boundary value of an analytic function 

in the lower half-plan and get 
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1 ' 1 h - iu ' /h  F .#  o 

and this gives B(# ' ,  h). That this matrix is unitary is a direct consequence of the 
complement formula 

F ( ~  ' 1 .# '  
- + = 

and this ends the proof. 

7r 2i7r 

cosh(Trp'/h) E 2 - -  E - 2  

We shall need below some knowledge about the microsupport of these distri- 
butions. Looking at the examples given in Appendix A. 1 and using the fact that the 
canonical transformation associated to the F.I.O. ~ - I F  is the rotation by %/2 around 
(0,0), the reader would easily prove this last 

Proposi t ion 12, Let crz,r,~, a be the half-lines in T * N  given by cr z = I ~ -  x { 0 } ,  ~r~ = 

It~ + • {0), ~u = {0} • I~ +, and ~r~ = {0} • a - . T h e n  

- M S ( u ~ )  is a subset o f  a neighborhood ofcr~ U cru U eta 

- M S ( U o )  is a subset o f  a neighborhood ofcrz U cr~ U ~Td 
- M S ( v ~ )  is a subset o f  a neighborhood ofcr u U (7 l U ar 

- M S ( v o )  is a subset o f  a neighborhood of~Te U c~l U cry. 

5.3. Microlocal solutions 

Using the solutions for the model and the reduction theorem (Prop. 8), we define 
here microlocal solutions of  Eq. (27) and study their asymptotic expansion as h ---+ 0. 
Because the Fi .O.  U only acts on microlocal distributions defined near (0,0) in T ' a ,  
we have first to microlocalize the four solutions u ~ and v ~ near (0,0) that is to truncate 
them outside a neighborhood of  (0,0) and then to consider them as an equivalence 
class for the relation M S ( u  - v) N V = @, where V = D(0, co) is the neighborhood of 
(0,0) in T*R where the point (4) of Proposition 8 holds. For the sake of simplicity 
we will use the same notations for these microlocal distributions. Now the microlocal 
distributions u•  and v• given by 

u •  = ~ and  v •  = Uv~ 

are microlocal solutions of Eq. (27) in D(0, e0). Using the symmetries of  operator U, 
we see that we have v_ = Fu+ and v+ = F u _  because for example 

so that we can study only u+ and u_.  Their microsupports are given by Proposition 12 
and relation (2) of Proposition 8 concerning the canonical transformation associated 
to U. Denoting by a~  ~ the segments in p - l ( 0 ) N  V given by a~: = {(z, ~) 6 p-~(0)N 
V , x  < 0,4-~ >_ 0} and (75_ = {(x,~) E p-J (0)  n V , x  >_ 0 , •  > 0}, one sees that for 

# small enough MS(u+)  stays in a neighborhood of  ~fl+ U c~_ U ~72 and that M S ( u _ )  

stays in a neighborhood of  cr z U ~r t U cr ~ . + - -  _ 

We are interested here in the (leading term of the) asymptotic expansion of  u+ 
and u_.  We first recall that for # small enough (independently of  h) there exists two 
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turning points near 0, which are real and of opposite sign for # < 0, and complex 
conjugate for # > 0. We denote by a(p) and b(#) these turning points, b(p) being 
the one which is positive when p < 0 and with positive imaginary part when p > 0. 
We will suppose that p is small enough (still independently of h) so that there exists 
q c]0, e0[ such that there are no turning points for q < Ix] < e0, and that the 
components of p - l ( # )  are not connected in the annulus el < ](x, ~)1 < e0 (see Fig. 6 
below). 

X i,,._ 

Fig. 6. The critical energy curves 

Microlocally in D(0, co), and at the level of principal symbols we have 

21/4e i~r/8 fo +~176 u+(x, h) = ~ eir176 h)~7(x, y, h) dy. 

Recalling that # - #~ = O(h 2) we have, again at the level of principal symbols, 

u+(x, h) - 2U4ei~/s~ fo +~176 ei~(x,y,l~)/h v/~'dy 

where ~(x ,  y, #) = ga(x, y) + #~ log y. We will perform a stationary phase expansion 
for this integral. We have first the 

Proposi t ion 13. For x E]el, e0[, the function gt(x, y, I.t) has only one critical point 
yc(x, #) with respect to y satisfying 

yc(x, O) = ~/2x + O(x2). 

The corresponding critical value r #) = ~P(x, yc(x, /~), #) is given by 

r p) = f x  (2(# - ~/()(t))) 1/2 d t  + r p), 
J b(p3 

where 
1 t t r p) = ~Po(l~ Po - 1 + i~r) for p > 0 
1 ! t 2#0(log I#0[ - 1) for p < 0 
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Proof Let x be inside ]el, co[. The critical points of the phase are given by 

0~ r  v) - *~ = 0. 
Y 

For # = 0 one has #~ = 0 and with point (1) of Proposition 9 we see that there 
is only one critical point yr satisfying yr = x/2z + O(x2). Then we apply the 
implicit function theorem to the equation Ovup(x , g, #) = 0 near # = 0 and get a unique 
function yc(x, #) satisfying y~(x, O) = yo(x) and 

-y~(x ,  #)Oyr yc(x, #)) = P~o, 

that is 
q(y~(x, #), -Oy~b(x, yc(x, #))) = #~o. 

Now we have 
Oy~g(X, yc(X, 0))  = O(X2) ,  

so defining r /=  - O r e ( x ,  y d x ,  #)), we see that (y, r/) stays in D(0, e0), and also that 
this point is close to the line ~/= 0 in T*II~. Thanks to the relation (3) of Proposition 
8, we have 

p(x, O~r yAx,  ~), ~)) = ~, 

so that the critical value r #) = UP(x, y~(x, p), #) satisfies the eikonal equation 
p(x, 0~r p)) = p. Moreover ~ = Oxr #) is positive because (x, ~) is the image 
under n of  (y, r/), and n is close to the rotation by 7c/4 around (0, 0). So we can write 

17~) (2(# 
qS+(x,/z) = -- V0(t))) 1/2 dt + r #). 

We compute now r #). Because b(#) is a turning point we have of course 
O~r #) = 0 and, with r/c(#) = -Oy~P(b(#), yc(b(#), #), #), 

y~(b(p), #)tic(p) = q(y~(b(#), #), r/c(#)) = q o ec-l(b(p), O) = fo o p(b(#), O) = #'o. 

On the other hand we have ~v(b(#),  0) = (b(/z), 0) and, using again relation (5) of 
Proposition 8, 

t~(yc, tic) = / ~ / -  o t~(yc, r / t )  = n o tVA(Yc, r/c) = n ( - - r / c ,  --Yc), 

so we get Yc = - r /c  and  finally 

[yc(b(#), ]2)] 2 = - p ; .  

For /z  < 0 this gives ye(b(tt),/~) = [V/~0~, and yc(b(Iz), bO = ix /~o for /z  > 0. 
At last we have 

0•;r #) = log yc(b(tz), #)) 

because OykO(x, yc(x, #), #) = 0 by definition of the Critical point y~, and because 
Ozup(b(#), yc(b(#), #), #) = 0 by definition of the turning point b(#). Together with 
the initial condition UP(b(O), yc(O), O) = ~(0, O) = 0 one gets the value of r #) we 
have announced. 

From this proposition, and also with relation (3) of Proposition 9, we immediately 
T .  get the microlocal value of u+(x, h) near or+. 
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Corollary 2. At the level o f  principal symbols, and microlocally near ~r~, we have for  

~1/4~--i7r/8 
u+(x, h) - ~" " ~ , eir cro(x, y~(x, #)) 

ly~(x, ~)l */2 y~(x, #), #)IU 2 " 

We can study the case of  

21/4ei~/s /o_ e i(~(x'y)-~;l~ lyl)/hly[-1/2~o(x, y) dy 

along the same lines. We have again one negative critical point y~(x ,#)  satisfy- 
ing y~(x ,p)  = v ~ x  + O(x  2) and using the same notations we see that (x,~) = 
~(y~(x, #), rk(x, p)) is near c7~, so that we can write for the corresponding critical 
value 

J~7~,) (2(# 
r  #) = -- - V0(t))) 1/2 dt + r  #) 

when - e l  > x > -e0 .  We also reproduce the same discussion for the computation 
of r  #) and get that 

r  = r (34) 

Then, for any x E] - e0, -c1[ ,  at the level of  principal symbols and microlocally near 
crY_, we have 

,~1/4~--i7r/8 O-o(X, yc(x, ~)) 
u _ ( x , h ) -  ~" ' ~ " e/r 

lye(x, #)la/2 IO  (x, y~(x, #), #)l I/2" 

6. Microlocal Connection Formulas 

The last step of the proof consists in connecting microlocally near (0,0) the microlocal 
solutions u+ and v+ on one hand, and the complex WKB solutions @~r on the other. 

1 r r n  7 l~;~ In fact, as in Sect. 4, we will use the four solutions w~ ~ w:; (x, defined = /5~  tZ; X 0 ) 

lr  by Eq. (22) for suitable choices of x 0' . In order to perform this we only have to 

remark that the functions l,~ w •  though they are defined in/2t ,~(E) can be extended in 
~,~ as analytic functions, solutions of  the SchrSdinger equation. The microsupport of 
these solutions is given by Propositions 15 and 17 and we see that MS(wt+) lies in a 

l r neighborhood of or+ U ~r+ U ~r~, as M S ( w 2 )  lies in a neighborhood of cd+ U cr z_ U cry. The 

microsupports of  w~ and w ~_ are also given by the relations w z'~_ = (wz+'~) * = Fw+'Z~. 
Microtocally near az_ the solutions w l_ and u_  are "proportional" because these 

two functions are WKB solutions of the same equation near a simple characteristic 
(see Proposition 18). More precisely we have 

Lemma 4. Let w t_ (x, E)  = w l_ (x, E ,  h, a( E))  be the solution o f  the SchrSdinger equa- 
tion constructed in Part 3 with xo = a(E)  as origin for  the phase. Then, microlocally 
near crl_, and for  -co  < x < - e l  we have, 

wl_(x, E)  = z_(p, h)u_(x, /~,  h) 
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with 
c~z_(p, h) = A+(p, h)e ir 

where )t+(#, h) is a classical analytic symbol of order 0 whose principal symbol is 
2l/4e~/8/.~/k. 

Proof We only recall that 

w l  (x, E)  = (V(x)  - E ) - l / 4 e -  Z(X'E'aOz))/h(1 + O(h)) 

and that, microlocally near ~rz+, 

21/4 e i~r/8 oir crO(X, yc(X, lz)) + O(h)) 

so the lemma is obvious concerning the phase of c~z_(#, h), and its principal symbol 
is given letting # --+ 0. 

The same arguments lead to the 

L e m m a  5. Let w~ ( x, E) = w~ ( x, E, h, b( E) ) be the solution of the SchrOdinger equa- 
tion constructed in Part 3 with Xo = b(E) as origin for the phase. Then, microlocally 
near c~, and for c1 < x < ~o we have, 

w~ (x, E) = a+(u, h)u+(x, /~, h) 

with 
o~+(#, h) = p+(#, h)e -ir247 

where p+(#, h) is a classical analytic symbol of order 0 whose principal symbol is 
21/4ei~V /8 / v/-k. 

We have now in hands all the bricks that make the computation of  the scattering 
matrix (up to an exponentially small error) an elementary algebraic calculation. In 
fact we can write our three WKB solutions wt+, w t_ and w.[ (defined at the end of 
Sect. 3) in the basis (u+, u_) ,  and then use Proposition 6 to translate the results in 
terms of the Jost solutions z~z+, z~ t_ and ~ .  

To make the ideas clearer we will write the branching matrix as 

B ( p , h ) = (  Bll B 1 2 )  
B21 B22 " 

First we have microlocally near (0,0) 

1 w ~_ = ~+~,+ + c~_u-  = / L v +  +/3 ~ ~ - .  (35) 

In this equality we know c~ z_ by Lemma 4 and, because w z_ and v_ have no micro- 
support near crz+, we also have/3z+ = O. Proposition 11 gives then 

~'+ ), 
so that 
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and finally 

l B12 l fl,_ = 1 l and ( 2 + = -  , (36) 
B 2  ~ (2 _ B22  (2 _ 

w l  B12 l = - -  +0~  l U _ .  
_ B22  C~ _ U+ _ 

We also have wl+ = Fw z_ and Eq. (35) gives, microlocally near (0,0) 

1 7+Vv+ + flz V v _  W+ ~ 

(37) 

m m 

= flz_,~++flz+,~ 

m 

= f lLu++Ou-  

and, at last 

l 1 a l u  + +Ou_. (38) W+ ---- 
B12  

On the other hand, we have microlocally near (0,0) 

r 
w+ ~ = a~+~+ + (2~_ u _  = f l : v+  + f l ~ v _ ,  

= r and v+ have no microsupport is given in Lemma 5 and fl~_ 0 because w+ where (2+ 
near a2 .  We compute the two other coefficients by use of the branching matrix and 
get 

1 ~ and (2~_ = B21 
= I B 1  - ( 2 +  BI~ (2+ 

so that 
/~21 o z r u  w~ = a+u+ + - -  (39) 
B11 - 

Noticing that Bli  = B22 ,  B12  = B21 and d e t B  = B,1 Eq. (37) (38) and (39) together 
B11 ' 

give after an easy computation and modulo an exponentially small error, 

(21 (21 
1 = - -  r _ B 2 1 ~ w / _ .  W+ B l l  (2~- ?.U+ 

Now with Proposition 6 we obtain 

r t 7 
S~l = e (z (b (E) ,E ) - z  (a (E) ,E ) ) /h j~ l l  

o~+ 

71- 
~--2zl(a(E) E ) / h D  a _  

821 - -~  , ~t)21 

(40) 

and the two Lemmas 4 and 5 give modulo exponentially small errors 

1 + hm(h))F(~ i ~ )  8 1 1 =  V / ~ (  1 

e,~W/2h e ~ (2 Re r --/*' log h) e(Z t (a(E), E) -- z r (b(E), E) ) /h  

i + hm'(h))F(~ i ~ )  s21= x/~(1 
e rrl*J/2he~(2Rer176 

(41) 
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where rn(h) and m'(h) are CAS of non-negative order. For shorter notations, we shall 
write 

zZ(a(E),E) z~(b(E),E) = iT(E) and zZ(a(E),E) = iT_(E), 

and we have as in Sect. 4, 

IVy.+2 fa(E) f+cc (E) - b(E)) + I Q(t, E) dt + I Q(t, E) dt 
T(E) = a -oo ab(E) 

ooQ(t, E) dt + i / (V(t) - E) 1/2 dt 
g a( E) 

for E < V0 

for E > V0 

and that 

ra(E) 
x/Ea(E) + J_ T_ (E) = oo Q(t, E) dt for E < Vo 

fo - f ~ ( E )  

Loo  Q(t, E) dt - i ./o (V(t) - E) '/2 dt for Z > V0 

with Q(t, E) = ~ -  V(t) - V ~  for real, large enough t. It is also necessary to 
recall here that # '  = #0 + O(h2) and 

re, 4 s(~) s(E) 
h h h (42) 

where S(#) is defined in Proposition 10 and S(E) in Eq. (1). We also recall that S(E) 
is real for any (small enough) real value of E - 170, positive for E < V0 and negative 
when E > V0. We obtain then Theorem 2 using Prop. 10, 13, Eq. (34) and Eq. (41). 

We are now interested in resonances for our equation, that we may define here as 
poles of the meromorphic continuation of the scattering matrix for complex E. The 
first remark is that if one allows E to have a small imaginary part, that is precisely 
]Im E I < Ch, the solutions for the model operator are still distributions of temperate 
growth with respect to h as h --+ 0, and all we have done in Sect. 5 and Sect. 6 can 
still be read with no change in that case. To get the remaining theorem we only have 
to notice that the scattering matrix may be written as 

S(E, h) = P (~  + i ~ ( 1  + h2m,(h)))A(E, h) + O(e-(/h), 

where the matrix A(E, h) is analytic with respect to E and the error term is uniform 
with respect to E in a complex neighborhood of 1/0. This shows that the poles of the 
meromorphic extension of S are exactly the poles of the gamma function in the first 
term of the above sum, and this is what we claimed in Theorem 4. 
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A. Elements of Semiclassical Microlocal Analysis 

A.1. SjOstrand spaces 

Definition 4. Let ~2 be an open set in C and q5 a continuous function on ~2. The 
SjSstrand space H4(~2) is the space of functions f (z ,  h) analytic with respect to z in 
(2 and such that, for any compact subset of ~, there exists C, c > 0 such that 

s u p { t f ( z  , h)l , z C K }  < Ce (~(~)+~)/h. 

Definition 5. Let f ( z ,  h) and g(z, h) be two functions in H~( ~)  and w a subset of ~. 
We say that f = g in w if, for any compact subset K of w, there exists C, e > 0 such 
that 

sup{ I f ( z ,  h) - g(z, h)l ,z  c K }  <_ Ce (~(~)-e/h. 

We denote by ~ ( $ 2 )  the corresponding quotient space. 

Definition 6. Let (Uh)]0,ho] be a family of compactly supported distributions in U Q R 
whose semi-norms are of order O(h -N)  as h --+ O. The analytic function of z defined 
by 

3"u(z ,  h) = f e-(~-~)2/2hUh(x)dx 

is called the FBI-transformed of (Uh) and is an element of H(I m ~)2/2. 

A.2. Microsupport 

Definition 7. Let (uh)j0,no] be a family of distributions whose semi-norms are of tem- 
perate growth with respect to h as h -+ O. We say that (x0, ~0) in T*R is not in the 
microsupport of ut~ if there exists a complex neighborhood w of zo = Xo - i~o such 
that 3 - u ( z ,  h) is 0 in .~r6(imz)2/z(W ). We denote by MS(Uh) the microsupport of un . 

Proposition 14. Let u be a distribution independent of h. Then the microsupport of u 
is 

MS(u )  = (supp u x {0}) U WFa(u),  

where WFa(u)  is the analytic wavefront set of u. 

Example 1. Let H(x) be the Heavis ide  function given by H(x) = 0 for x < 0 and 
H(x)  = 1 for  x > 0. One  has M S ( H )  = {0} x ~ U I~ + x {0}. 

Proposition 15. Let a(x, h) be a classical analytic symbol on •, whose principal 
symbol does not vanish, and s(x) a real-analytic function with s ' (x)  ~ 0 whenever 
s'(x) = O. Then 

MS(a(x ,  h)d  ~(~)/h) = {(z ,  ~); ~ = s ' (x )} .  

Definition 8. We say that two distributions Uh and vh are microlocally equal near 
(xo, ~o) if there exists a neighborhood V of (xo, ~o) in T*~ such that 

M S ( u  - v)  n V = ~. 
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Defini t ion 9. A microlocal distribution defined near (xo, ~o) is an equivalence class of 
compactly supported near Xo distribution for the microlocal equality near (Xo, ~o). We 
denote by J/~(xo, ~o) the corresponding quotient space, and the notion of microsupport 
is still relevant in that space. 

Propos i t ion  16. Let P(x,  hD) be an h-differential operator with analytic coefficients. 
If  M S( Pu)  = ~, then MS(u )  C Char P, where Char P is the set where the principal 
symbol of P vanishes. 

A.3. Microlocal F.L 0 

We will not develop here all the theory of microlocal F.I.O. and the reader should refer 
to [Sj2] or [De] for a complete description, and to [He-Sj] or [M~i] for an overview. 
The only few things the reader has to know is that one can define operators of  the 
form 

Au(x ,h )= f f e iG(x 'Y '~  

where a(x, y, O, h) is a classical analytic symbol and the integration is performed 
along a suitable contour, acting continuously from one SjSstrand space ~ e  to another 
one. An operator of  this kind is often called a quantized canonical transformation or 
here a microlocal F.I.O. because we regard them as operators acting on microlocal 
distributions. In fact the FBI transformation ~ above is 1 to 1 between ~ and 
the corresponding o~v z,  so possesses a left-inverse ~9 ~, and one identify the quantized 
canonical transformation A with ~ A J ' .  

Defini t ion 10. We say that two microlocal F,I,O. P and Q defined in a neighborhood 
V of (xo, ~o) are microlocally equal if for any microlocal distribution u defined in V 
one has Pu  = Qu in did(V). 

Propos i t ion  17. Let A be a microlocaI F.LO. and ~c its canonical transformation. I f  
u is a microlocal distribution, the microsupport of Au is the image under t~ of the 
microsupport of u. 

Using the well-known fact that an analytic h-differential operator of principal type 
is microlocally equal to hD~ we have finally 

Propos i t ion  18. Let P be an analytic h-differential operator and ~/ a simple charac- 
teristic for P. Let Uh and vh be two microlocal distributions defined near "y such that 
M S ( P u )  = ~), M S ( P v )  = ~ and MS(u )  N ~/ 7 L ~. Then there exists a classical analytic 
symbol c~(h) and a real constant r such that microlocally near ~, v = c~e<~/hu. 
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