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Abstract. Motivated by the descent equation in string theory, we give a new 
interpretation for the action of  the symmetry charges on the BRST cohomology in 
terms of what we call the Gerstenhaber bracket. This bracket is compatible with the 
graded commutative product in cohomology, and hence gives rise to a new class of 
examples of what mathematicians call a Gerstenhaber algebra. The latter structure 
was first discussed in the context of Hochschild cohomology theory [11]. Off-shell 
in the (chiral) BRST complex, all the identities of a Gerstenhaber algebra hold up 
to homotopy. Applying our theory to the c = 1 model, we give a precise conceptual 
description of the BRST-Gerstenhaber algebra of this model. We are led to a direct 
connection between the bracket structure here and the anti-bracket formalism in BV 
theory [29]. We then discuss the bracket in string backgrounds with both the left 
and the right movers. We suggest that the homotopy Lie algebra arising from our 
Gerstenhaber bracket is closely related to the HLA recently constructed by Witten- 
Zwiebach. Finally, we show that our constructions generalize to any topological 
conformal field theory. 

1. Introduction 

One of the many successes of string theory is to provide a testing ground for new ideas 
in physics as well as in mathematics. Often times, a success story begins with the 
study of a certain concrete model in string theory (or the cousins thereof). A proper 
understanding of a special case leads to generalizations that often go far beyond the 
original context. In this paper, we hope to illustrate yet another such episode of the 
evolution of string theory. 

The enormous success of  the matrix model may be credited for the recent revival of 
string theory. This second coming of  string theory marks yet another exciting moment 
in math/physics. It is perhaps too soon to give a historical review of  this development, 
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for we are still in the midst of it. We will however focus on one particular aspect of  
string theory - the BRST structure. 

Given a conformal field theory of central charge c, one may obtain a consistent 
string background by coupling the conformal theory to both the Liouville theory, with 
central charge 26 - c, and to the conformal ghost system, with central charge - 2 6 .  
The background so obtained may then be studied using CFT techniques, barring some 
subtleties coming from the Liouville sector. The simplest of such backgrounds is the 
two dimensional string theory, a.k.a, the c = 1 model, in which a single free boson 
is coupled to the Liouville field and the ghosts. 

It is useful to think of  a string background from a slightly more abstract point of  
view. Namely, we can regard a string background as having the form 

CFT | ghosts. (1.1) 

The CFT here is a conformal field theory with central charge 26. In the case of  the 
c = 1 model, the CFT may now be viewed as a two dimensional target spacetime 
for the string. The symmetry of the target can be exploited to study the background. 
For example, this symmetry alone plays a crucial role in our calculation of the BRST 
cohomology of the c = 1 model [20]. [Other methods have also been used to study 
this problem [1].) This indicates that some of  the detailed structures of  the individual 
constituents of the CFT in (1.1) may be spared when one is interested just in the 
BRST structures of  the background. 

The second advantage of considering (1.1) abstractly is that it is easier to pose 
the question: what are the generic structures of  all string backgrounds? The abstract 
setting frees us from some of  the special features and the subtleties of  the conformal 
theory which one couples to the Liouville field and the ghosts. Having said that, we 
will, from now on consider the string backgrounds of the form (1.1). Later in the 
paper we will return to the c = 1 model. 

The goal of  this paper is to show that for every string background, the BRST 
cohomology has, intrinsically, the algebraic structure known as a Gerstenhaber 
algebra. In the case of  the c = 1 model, an important realization of this algebra 
is implicit in the work of  Witten and Zwiebach [31]. Recently Wu and Zhu have 
reanalysed the same realization in detail [32]. 

In Sect. 1.1, we discuss some basic definitions and results in the theory of  super 
chiral algebras. In Sect. 2, we present the general construction of  the Gerstenhaber 
bracket on the BRST cohomology, and discuss some fundamental properties of  the 
bracket. 

Let the dot product, u .  v, be defined by Eq. (2.11). Let the bracket product, {u, v}, 
be defined by Eq. (2.19). Let lul be the ghost number of  u. Let b 0 be the zero mode 
of  the anti-ghost field. 

Theorem 2.2. On the chiral cohomology H*, we have 
(a) u �9 v = (_1)1~1 Ivlv. u, 
(b) (u .  v) .  t~= u .  (v .  t), 
(c) {u, v} = -(-1)(rul-1)(Ivr-1){v, u}, 
(d) (--1)(luP-1)(ItJ-1){u, {v, t}} 

+(--1)(Itl-l)(Ivl-l){t,  {u, v}} + (-- 1)(l~/-1)(J~l-1){v, (t,  u}} = O, 

(e) {u,v.  t }  = { u , v } .  t + ( -1)( l~P-l )d~lv  �9 { u , t } ,  
(f) bo{u,v} = {bou, v } + (-1)lul-l{u,  bov}, 
(g) { , } : H  p •  p+q-1. 
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Definition 1.1. An abstract Gerstenhaber algebra G* is a Z-graded vector space 
equipped with two bilinear multiplication operations, denoted by u �9 v and {u, v} 
respectively, and satisfying the following assumptions: 
(i) If u and v are homogeneous elements of degree lul and Ivl respectively, then u-v  

is homogenous of degree lul + Ivl and {u, v} is homogeneous of degree lul + Ivl - 1. 
(ii) Identities (a) through (e) from Theorem 2.2 above hold for any triple of homo- 
geneous elements u, v, and t in G*. 

In Sect. 3, we apply our general theory to the c = 1 model. We give a characteri- 
zation of the full cohomology algebra. 

Let H* be the chiral cohomology of the e = 1 model. Let H * ( + )  be subspaces 
of H* defined by Eq. (3.16). 

Theorem 3.2. Let H* be the chiral cohomology of the c = 1 model. Let .~* be the 
Gerstenhaber algebra C[x, y, Ox, Oy] (see Apendix B). Then the following holds: 
(a) There is an exact sequence of Gerstenhaber algebras 

0 ---, H ( - )  ~ H ~ . ~  ~ O, 

where H ( - )  is an ideal in which both products are identically zero. 
(b) H * ( + )  is closed under the dot product, and it is canonically isomorphic to • * ,  
as an associative algebra. 
(c) Let H(+) ~ be the restricted dual of H(+) defined by the e-algebra anti-involution 
cr (Sect. 3.5). Then the ideal H ( - )  is isomorphic, as module over H(+),  to H(+)  ~. 
(d) H* (§ is not closed under the bracket product. The sequence in (a) does not split 
as an exact sequence of graded Lie algebras. (For more details on the bracket, see 
Sect. 3.6.) 
(e) The projection map H ~ . ~  intertwines - b  o on H and the differential operator 

0 0 0 0 
A -  - - +  

Ox Ox* Oy Oy* 

on ~ where x* = 05 , y* = Oy. 

The main purpose of Appendix A is to show that H*  is generated, as a Gersten- 
haber algebra, by four generators x, y, Ox, Oy. Moreover, we describe a basis of H ( - ) ,  
which is dual and complementary to the basis of H ( §  given in (3.26), and hence 
show that H ( - )  is an ideal with one generator {05, Oy}. The pairing between the two 
bases is s/2 invariant. We show, as a consequence, that H ( - )  is subalgebra of H with 
the zero product. This last assertion can also be drawn from [32], where the product is 
explicitly computed. We also describe the action of bo, x, 9, Ox, 0y on H ( - )  in terms 
of the above dual basis. 

In Appendix B, we briefly review some classical examples of Gerstenhaber brack- 
ets and algebras. We also attempt to clarify the relationship between Gerstenhaber 
brackets and Batalin-Vilkovisky anti-brackets. 

1.1. Chiral Algebras: Review 

In this section, we discuss the definition and some basic properties of the super chiral 
algebra (a.k.a. vertex operator algebra in the math literature), which are relevant to 
our later discussion. We refer the readers to the original papers for more extensive 
discussions on the subject. The following definition can be found in [9]. It is a 
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refinement of  the definition of [2, 3, 22]. In the context of  closed string theory, one 
should think of a chiral algebra as a substructure of  the full state space of a conformal 
string background. In most cases, the full state space is larger than the chiral algebra 
itself. 

Definition 1.2. A super chiral algebra consists of  the following data: a vector space 
V graded by the conformal weight A and the fermion number ]. I, two distinguished 
elements 1 (the vacuum) and L (the Virasoro element), and a one-to-one linear map 

r H r = ~ Cnz-n-~*,  

where Cn is a linear operator in V of weight - n ,  such that the product, r162 is a 
Laurent series with coefficients in V. The data satisfy the :following further conditions: 
(a) (Canchy-Jacobi identity) Any two fields r r  satisfy 

Res~ Resz_~( r  - w)r  (w ) f ( z ,  w) 

= Res z Res w r 1 6 2  w) - ( -  1) Ir Res z ~ ( w ) r  w) ,  

where f is any Laurent polynomial in z, w, z - w. Note that the three residues above 
are taken around the contours with Iwl > I z - w l ,  Iz$ > Iwl, and [wl > Izl respectively. 
(b) The vacuum corresponds to the identity operator; 
(c) The field L(z)  has the OPE 

c/2  2L(w) OL(w) 
L ( z ) L ( w )  ,-~ - -  + - -  + - -  

( Z - -  W) 4 ( Z - -  W) 2 Z -- W 

and (L_ a r 0r The scalar c is called the central charge of the chiral algebra. 

Note. Typically physicists denote the operation Resw(.) by f dw(.), where C o is a 
Co 

simple contour surrounding the point 0. 
There are many identities that follow from the above definition. Some may be 

found in [9, 10[. Others can be found in [33, 18]. Most of  the results that we need 
here will be derived directly from the Cauchy-Jacobi identity. For example, if we let 
f be an arbitrary Laurent polynomial of just w, and r be a current of  weight 1, 
then the Cauchy-Jacobi identity immediately implies 

L e m m a  1.3. The charge r = Resz r is a derivation o f  the product ~ (w)x ,  i.e. 

r162 - ( -  1) Ir rr (r = (r (w)x .  

Another immediate consequence of the Cauchy-Jacobi identity is obtained if we set 
r = 1 and f ( z ,  w) = (z - w) lg(w), where g(w) is an arbitrary Laurent polynomial. 
In this case, we get ( r  (w) - r = 0. Since r H r is injective, it follows 

that 
r162 = r  (1.2) 

Similarly we have, for n > - -Ar  

r 1 = O. (1.3) 

Notations. We wite A for the state corresponding to the field A(z), whatever the form 

of A(z) .  Thus 0r  and ee'J2C(z) mean the states corresponding to the fields Or and 
e(z) e ' / ~ ( z )  respectively. 
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2. BRST Cohomology and the Gerstenhaber Bracket 

In this section, we construct the Gerstenhaber bracket on the chiral BRST complex 
(1.1). We show that there is a canonical Lie algebra homomorphism from the space 
of old physical states to the ghost number one BRST cohomology. 

2.1. Setting 

Consider the chiral algebra of the BRST complex: 

C* = V | A*,  (2.1) 

where V is the chiral algebra of a conformal field theory with central charge 26, and 
A* denotes the chiral conformal ghost system. This space has two standard integral 
gradings given by the ghost number (fermion number) and the conformal weight. The 
subspace of elements with ghost number n is denoted C n. We write the ghost number 
of an element a as lal. Every element a of C* with weight A corresponds uniquely 
to a field operator 

a ~-+ a(z) = X,--" a z - n - A  (2.2) 

where a n is a linear operator on C* and a n lowers the weight by n. 
The chiral algebra A* is generated by a pair of fields (b(z), c(z)) of weight (2, - 1 )  

and with OPE 
1 

b(z)c(w) ~ - - .  (2.3) 
Z - - W  

The stress-energy of this system is given by 

LZ(z )  = 20b(z)c(z) + b(z)Oc(z).  (2.4) 

Here we follow the usual physics convention that whenever two fields with the same 
formal variable z are multiplied, the product actually denotes the normal ordered 
product. Since V itself is a chiral algebra, it also has a stress-energy field which we 
denote LV (z). 

The (chiral) BRST current is a primary field of weight 1 given by 

1 LA(z))c(z)  + 3 02e(z).  (2.5) J(z )  = (LV(z)  + -~ 

We denote the BRST charge J0 by Q. The (chiral) BRST cohomology is denoted 
H*.  

The integral gradings on C* are rather special. The ghost number is given by the 
eigenvalues of the charge F 0 of the ghost number current 

F(z )  = c(z)b(z) .  (2.6) 

The conformal weight is given by the eigenvalues of L 0, the zero mode of the total 
stress energy field 

L(z)  = LV(z )  § LA( z ) .  (2.7) 

This field is Q-exact because 

[Q, b(z)] = L(z ) .  (2.8) 

In particular, we have [Q, b0] = L 0, which implies that a BRST invariant state is 
Q-exact unless it has weight zero. 
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Throughout this paper, [, ] will always mean the graded commutator in some Z 
graded associative algebra ..~. Thus if u, v are homogeneous elements of ~ ,  we have 

[u, v] = uv - ( -1 )  M IVlvu . (2.9) 

The vacuum of a chiral algebra will be denoted 1. 

2.2. The Multiplicative Structure 

Since Q is the charge of a current, it acts on the chiral algebra C* by derivation 
(Lemma 1.3), i.e. for any two homogeneous elements u and v in C*, 

O(u(z)v) = (Ou) (z)v + ( -1 )Mu(z)  (Or).  (2.10) 

In particular, the bilinear operation which we call the dot ( .)  product: 

d e f ~  U(Z)V U(Z)V(W)I 
u .  v= Ke G - Res z Res~ (2.1 l) 

Z ZW 

satisfies 
Q(u . v) = (Qu) . v q- (-1)Julu �9 (Qv) . (2.12) 

Thus, the dot product induces a product on the BRST cohomology. By Eql (1.2), we 
have u. 1 = u = 1. u. Thus 1 is the identity with respect to the dot product. We claim 
that Eq. (2.1 l) defines a homotopy graded commutative associative algebra off-shell, 
i.e. on the complex C*. This implies in particular that the product induces a graded 
commutative associative product on-shell, i.e. on H*.  The notion of an algebraic 
identity holding only up to homotopy is discussed in some work of Stasheff [26, 27] 
(see also [16]). 

By the Cauchy-Jacobi identity and Eq. (2.11), we have 

( u ( z  - w ) v )  (w)l 
u .  v - ( -1 )  M Ivlv. u = Res w Resz_ w (1 + ( z -  w) /w)w 2 

i = Z ( _ I  ) Res~Resz-~ (u(z w)v) (w) l  
( z  - w ) - i w  i+2 

i>O 

( u ( z  - w ) v )  (w)l 
= E  (-1)ii+1 Res~Resz-~ L - I  ( z - w ) - i w  i+1 

i>0 

(integration by parts) 

= Z (-1)ii + 1 Res~ Resz_ ~ (Qb-1 + (zb-aQ)- w ) - i w  i+l(u(z - w)v) (w)l 
i>0 

= Qm(u, v) + m(Qu, v) + ( - 1 ) M m ( u ,  Qv),  (2.13) 

where m is a bilinear operation defined by 

( -1) i  Res~ ~ Resz_ w m ( u , v ) =  E i + l 
i>_O 

b_i(u(z - w)v) (w)l 
(Z -- w ) - - i w  i+l 

(2.14) 

Equation (2.13) says precisely that the dot product is homotopy graded commutative. 
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Now consider 

( u . v ) . t -  u . ( v . t )  = 
(u(z - w)v) (w)t u(z)v(w)t 

Res~Resz_ ~ (z w)w - Res zRes~ 
- -  Z W  

U(Z)V(W)t 
= Res z Res w 

(1 - w/z)zw 
v(w)u(z)t 

+ (_l)lul Ivl Resw Resz (1 - z / w ) w  2 

u(z)v(w)t 
- Res z Res w 

ZW 

u(z)v(w)t 
= 2.  Resz Resw zi+lw--i+l 

i > 0  

+ (_l)n~l Ivl E R e s  ~ Resz v(w)u(z)t  
z--iwi+2 

i>o 
1 (L_lU) (z)v(w)t 

= Resz Res  
zi-t-lw-i 

i>o 
1 (L_lv) (w)u(z)t  

+ (_l)l~l I'l E / - ~  Res~ Res z �9 z--iwi+l 
i>_o 

(integration by parts) 

1 ((Qb l + b  1Q)u)(z)v(w)t 
= ~ ~ Res z Res~ - zi-+lw_ i 

i>_o 

1 Res w Resz ((Qb-1 + b-lQ)V) (w)u(z)t  (-1)lul I~1 3-" + 
i + 1 z - iw  i+1 

i_>o 

= Qn(u, v, t) + n(Qu, v, t) + (-1)luln(u, Qv, t) 

+ (-1)lul+i~ln(u, v, Qt),  (2.15) 

where n is a trilinear operation defined by 

1 (b lU )(z)v(w)t 
n(u, v, t) = Z ~ Resz Res~o z i+ lw- i  

i>_o 

1 (b_lV) (w)u(z)t  (2.16) 
+ (-1)l~h I~l E /---~ Res~ Res z z_iwi+l 

i>_0 

Equation (2.15) says that the dot product is homotopy associative. This proves our 
claim. 

2.3. The Bracket Structure 

Let's motivate the following construction by something well-known - the descent 
equations. Let u(z) be a BRST invariant field of weight 0. Since L_ a = [Q, b_l], it 
follows that 

Ou(z) = (L_lU) (z) = (Qb_]u) (z) = [Q, (b_lU) (z)]. (2.17) 
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This is an example of a descent equation. Since the left-hand side is a derivative, the 
coefficient of  z -1 is zero on both sides. Thus we have a current ( b l U )  (z) whose 
charge 

(b_ lu)0 = Resz (b_ lu) (z) (2.18) 

is BRST invariant. So if v is a BRST invariant state, then so is (b_lu)ov. In the case 
of  the c = 1 model, the formulas for this operation of the BRST invariant charges on 
the BRST invariant states have been worked out in detail [31]. 

However, we would like to understand this operation at a more conceptual level. 
The operation (b lU)0 v is clearly linear in both u and v. What is this bilinear operation 
on the BRST invariant states? What does it tell us about the cohomology? What if 
we extend the operation off-shell? These are the motivating questions that lead us to 
study the bilinear operation. We will introduce the notation 

{u, v} = ( - 1 )  I~J Resz(b lU ) (z)v = ( - 1 )  p~*l Res w Resz_w(b(z  - w)u)  (w)v (2.19) 

for all u, v in C*.  Note that this operation decreases the net ghost number by one, 
i.e: { , } : C  p x C q -+ C p+q-1. The sign ( - 1 )  [ul is to make the bracket conform to 
the convention in [4]. We claim that 

(i) Q acts by derivation on {,  }; 
(ii) {,  } satisfies skew commutativity and the Jacobi identity, up to homotopy; 

(iii) this bracket is a biderivation on the dot product, up to homotopy. Thus the 
bracket, together with the dot product, defines a Gerstenhaber algebra structure on 
the BRST cohomology H* ;  
(iv) b 0 acts b y  derivation on {,  }. Thus the relative BRST cohomology is closed 
under Gerstenhaber bracket. 

Let 's  compute the action of Q on the bracket: 

Q{u,  v} = ( - 1 )  lur Resz[Q, (b_lU) (z)]v + ( - 1 ) l ~ l ( - 1 )  lur-1 Resz(b_ lu  ) ( z )Qv  

= ( - 1 )  I~p Resz (Qb_au) ( z )v  - ( - 1 ) l ~ r ( - 1 )  I~1 Resz(b_~u)(z)Qv 

~--- ( - -  1 )[u 1-1 Res~ (b_ l Qu) (z)v + ( -  1 )P~ I Res~ (L_ 1 u) (z)v 

+ ( - 1 ) l u l - l ( - 1 ) l u l  Resz (b_ lu ) ( z )Qv  

= {Qu,  v} + ( - 1 ) l u l - l { u ,  Q v } .  (2.20) 

Note that we have used the fact that (L lU ) (z) is a total derivative, and hence has 
zero residue. This proves (i). 

Now consider the (graded) skew commutativity property of {, }. From Eq. (2.19), 
it is unclear how this property holds. What we need is the following elementary but 
crucial result. 

L e m m a  2.1. The following identity holds 

( -1) lut{u,  v} = bo(u. v) - (bou) . v - ( -1) luru  �9 (boY). 

A remark about the identity: the right-hand side clearly measures the failure of  b 0 to 
be a derivation of the dot product. The same idea first appears in the "anti-bracket" 
formalism, but in a seemingly different context. In [29], Witten showed that the 
Batalin-Vilkovisky equation can be formulated using a certain fundamental differential 
operator A in field space, together with an anti-bracket which measures the failure of 
A to be a derivation of an operator product. The b 0 operator here plays the role of 
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A! We will, in Theorem 3.2, make a precise connection between these two operators 
in the context of the c = 1 model. 

The identity above is proved by the following calculation: 

bo(u . v) - (bou) . v - ( -1) lu lu  �9 (boy) 

= Res z Res~ b(z)u(w)v ( - 1 )  I~b Res~ Res~ u(w)b(z)v 
z - - l w  z - - l w  

(b(z - w)u)  (w)v  
- Res w Resz_ w 

(z  - w ) - l w  

(b(z - w ) u )  ( w ) v  
= ReswResz w 

- z- lw 
(b(z - w)u) (w)v 

- Res~ Resz_ ~ (z - w ) - l w  (Cauchy-Jacobi) 

= Res w Resz_~(b(z  - w)u)  (w)v 

= ( - 1 ) l ~ l { u ,  v } .  ( 2 . 2 1 )  

The skew commutativity property of {, } now becomes immediately obvious 
following Lemma 2.1, at least on-shell. Let 's consider the bracket off-shell. A simple 
calculation gives us 

{u, v} q- (--1)(iul-1)(Ivl-1){v, u} 

= (-1)l~L-](Qrn'(u,  v) - m ' (Qu ,  v) - ( -  1)lUim'(u, Qv)) ,  (2.22) 

where rn' is yet another bilinear operation defined by 

rn' (u, v) = born(u, v) + rn(bou , v) + ( -  1)l~tm(u, bov) . (2.23) 

Thus off-shell, the bracket {, } satisfies graded skew commutativity up to homotopy. 
We now consider the graded Jacobi identity. Once again, it is an easy exercise to 

show that 

{{U, v}, t} -- {U, {v, t}} -t- (--1)(]u]-l)(lvl-1){v, {U, t}} 

= (-1)(Ivl-1)(Qn'(u,  v, t) + n ' (Qu,  v, t) + (-1)tUln'(u,  Qv, t) 

+ (-1)n~l+lvln'(u, v, Qt)) ,  (2.24) 

where n '  is a trilinear operation defined by 

n'(u,  v, t) = Resz z(Res~ b_l(b2_1 u) (w)v) (z ) t .  (2.25) 

Since b2_1 = 0, it follows that n '  is identically zero, i.e. the graded Jacobi identity 
holds exactly. This completes the proof of (ii). 

Consider now the derivation property of the bracket. 

(b_lu) ( z )v(w) t  
{u, v .  t} = ( - 1 )  I~1 Res z Res w 

W 

((b_,u) (z - w)v)  (w)t  
= ( - 1 )  I~1Res~ Resz_ w 

W 

v(w)  (b_lU) (z)t  
+ (_  1)luh(_ 1)(l~j-])hvl Res~ Res z 

W 

= {U,V}" t -I- ( - 1 ) ( l u l - 1 ) l v l v  " { u , t } .  (2.26) 
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This proves that each {u, .}  is a graded derivation of  the dot product. A similar 
statement is true for {. ,  t} but only up to homotopy. More precisely, we have 

{~. v , t }  - u .  { v , t }  - (_ l ) ( l~ t -1 )  Jvl{u, t }  .~ 
---- ( - l )PUl+lvl- l (Qnt t (u ,  v, t) - n l t (Qu,  v, t) 

- ( -1) luFn"(u ,  Qv ,  t) - (-1)lul+r~ln"(~,  v, Q t ) ) ,  (2.27) 

where n"  is a trilinear operation defined by 

n"(u,  v, t) = u .  m~(v, t) - m~(u �9 v, t) + ( - 1 )  Itl I~[m~(u, t) �9 v.  (2.28) 

This proves (iii). 
Finally, we consider the action of  b 0 on the bracket. Using Lemma 2.1 and the fact 

that b~ = 0, we have 

bo{u, v }  = {bou, v}  + (-1)lu'-l{~t, boy } . (2.29) 

This proves (iv). Let 's summarize all the on-shell algebraic identities we have derived. 

Theorem 2.2. On the cohomology H * ,  we have 
(a) u .  v = (_l)l~r Iv[ v . u, 
(b) (u .  v) .  t = u .  (v .  t), 
(C) {U, V} = -(-1)(lu[-1)(lvl-l){v, ~}, 
(d) (-1)(Pul-1)(ltl-1){u, {% t}} 

+(-1)(Itl-1)(r~l-1){t, {u, v}} + (-1)(l~F-1)(l~l-1){v, {t, u}} = 0, 
(e) {~t,v. t} = { u , v } -  t + (-1)(lup-1)lvlv �9 {~,t},  

(f) bo{u , v }  = {b0u, v } + ( - l ) l ~ r - l { u ,  bov}, 
(g) { , } : H  p • H q --+ Hp+q- l .  

Some remarks about these results. The space H ~ is a strict commutative algebra - 
a well-known fact. Note that H 1 is closed under the bracket and hence is an ordinary 
Lie algebra. Moreover, every H q is a module over H 1 via the map (9) in the case 
p = 1. If  one further restricts to the case q = 0, one sees that the Lie algebra H 1 acts, 
by derivations, on the commutative algebra H ~ This crucial fact has been implicitly 
used in an effective way to determine the structure of  H ~ in the c = 1 model [28]. 

Note also that {, } may be viewed as a super Lie bracket because it is compatible 
with the grading "ghost number - 1." In particular, we have { H  ~+1 , H s+l } C H ~+s+l. 
The map u ~ {u, *}, which essentially assigns to each BRST invariant state of weight 
zero the corresponding charge Resz(b_lU) (z), realizes the adjoint representation of the 
above super Lie algebra. This realization is never faithful because {1, *} is identically 
zero. 

2.4. The Old Physical  States 

We now relate the Lie algebra structure on the old physical states to that of  H 1. 
Once again let V be a chiral algebra with central charge c = 26. The space P (V)  

of  the old physical states is the subspace of  Virasoro primary states of  weight 1, 
modulo the states of  the form Lnv ,  n < 0. More precisely, 

P ( V )  = V [ 1 ] W + / N ( V ) ,  
(2.30) 

N ( V )  = (Vir_ V) rq V[1] vir+ . 
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Let r be any primary field of weight 1. This means, in particular, that the charge 
r is Vir invariant: 

[LV(z), r = 0. (2.31) 

It follows that one has a well-defined bilinear operation 

{, }:V[1] Vir+ x V[1] vir+ --~ V[1] vir+ , (r ~) ~ -qS0~. (2.32) 

Let's consider the properties of this operation. Applying the Cauchy-Jacobi 
identity, we get 

r  
{r r = - Resw Res~ 

Z 

( r  - w)r (w)l ~(z)r 
= Res  Res _  (;-- - Resz Resw z 

i (Res~ r  = 0) (2.33) = ~ ( - 1 )  Res~ ( ~ r  
wi+l 

i>_O 

Now note that the i ---- 0 term in the last sum is equal to - { ~ ,  r Thus we have 

(r162 (w)l 
{r ~} + {r r = ~ ( - 1 )  ~ Res~ ~ + 1  

i > 0  

= L - 1  Z ( - i  1)i Res~ (~db)w i(w)l (integration by parts) . (2.34) 
i > 0  

This implies that {, } is skew-symmetric modulo N(V). Similarly, it is also easy to 
check that the bilinear operation factors through N(V), and that it satisfies the Lie 
algebra Jacobi identity modulo N(V). Thus {, } is a Lie bracket on the space P(V). 
This Lie algebra structure is already known: see [7] and references therein. 

It is well-known that there are two natural maps 

/"1,/J2:V[1] vir+ ---+ HI,  H2 (2.35) 

which send a field q~(z) to c(z)O(z) and Oc(z)e(z)r respectively. Let's assume that 
V, as a Virasoro representation, has an invariant bilinear pairing such that the induced 
pairing on H* is non-degenerate. Then we have a pairing preserving map 

1 
u:V[1] vir+ --+H 1 q~H 2 , r ~ (ulqSq) u2r (2.36) 

Since N(V) lies in the kernel of the pairing on V, under the map u, the space N(V) 
must be sent to zero. Thus the map u and hence u 1 factors through N(V). So we 
have the map 

v 1 : P(V) --+ H 1. (2.37) 

We claim that this is a Lie algebra homomorhism. By definition (2.19), we have 

{b'l(/)  , / J l ~ ) }  ---~ - -  Resz(b lU1r ) (Z)Ulr 

= - R e s z ( b  lC1r )(z)cl~b 
= - Resz c1r r 

= u1{r r  (2.38) 
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which proves the claim. In case the map //1 is injective [which happens whenever 
N ( V )  coincides with the kernel of  the pairing on V], such as in the case of the 26 
dimensional bosonic string theory, we have a concrete realization of  the Lie subalgebra 
P(V)  of H 1. 

3. The c = 1 Model 

In this section, we will apply the machinery of the last section to obtain a 
characterization of  the cohomology algebra of  the c = 1 model. 

Let 's  first review the operator formalism of the c = 1 model. The model may be 
described as a theory in which a single free boson X is coupled to the Liouville field 
r and the conformal ghosts (b, c). As we did in [21], we consider the case in which 
the cosmological constant is zero. For now, we restrict ourselves to the holomorphic 
part of  the theory. 

3.1. What's Known 

The free boson sector can be simply described by the field X(z )  with the OPE, 

X ( z ) X ( w )  ~ - ln(z - w).  (3.1) 

The operators in this sector are linear combinations of  

P(X)e~pX(z) ,  (3.2) 

where the P ( X )  are polynomials in the derivatives of X(z) ,  and p is the momentum 
of the operator (3.2). The corresponding state space is a direct sum of highest weight 
representations F(p) of  the Heisenberg algebra: 

[ten, Cem] = n(Sn+m,O , (3.3) 

where iOX(z)  = ~ c~nz - n - 1 .  The stress-energy field is 

1 (OX(z))2. (3.4) LX(z )  = - ~  

The Liouville sector can be described in a similar way - with X replaced by r 
everywhere - except that the stress-energy of this vector is given by 

l Lr = ~ (0r 2 --~ V~02q}(z). (3.5) 

We write iO0(z) = }-~,jnz - n - l ,  where the Jn represent a Heisenberg algebra just 
as the c~n do. Anticipating that we eventually will deal only with pure imaginary 
Liouville momenta, we denote the Liouville state space by F(- icO.  The c~ will be 
restricted to real later. But for now, c~ is arbitrary. 

The ghost sector A* has already been described, so we won' t  repeat it here. Now 
the BRST operator Q acts on the spaces 

C*(p, oO = F(p) | F( - ioO | A* , 

Q : C~(p, oO --~ cn+l (p ,  c0.  (3.6) 

Thus we have one cochain complex for every pair of  momenta p, c~. Later we will 
restrict the momenta to lie in a certain two dimensional even lattice. This restriction 
will land us back in the framework we considered in Sect. 2. 
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The cohomology of the complexes C*(p, a)  was first studied by us, in connection 
with the e < 1 models [19, 17]. This cohomology problem has a number of 
other interesting applications. In [20], we applied the results to the e = 1 model. 
(Subsequently, other methods were also used to analyze the cohomology of the e < 1 
models [1,23].) Our cohomology results have also led to some later work [8] which 
gains new insights into the structure theory of the Feigin-Fuchs representations of the 
Virasoro algebra. 

Our results on the c = 1 model have recently been given an interesting physical 
interpretation [28] in connection with the matrix model. The object that plays a key 
role in this interpretation is what's called "the ground ring." This is the subalgebra H ~ 
of the associative algebra H*.  The main tool that was used to determine the structure 
of the ground ring was the action coming from the tachyon fields. (Actually, this is 
secretly a part of the action of H ~ on H ~ via the Gerstenhaber bracket, as we shall 
see.) The symmetry of the c = 1 model has been better understood by means of the 
ground ring. More recently, the role of the symmetry has been further clarified in the 
context of closed string theory [31]. 

Let's now return to the cohomology problem (see [20, 1] and references therein). 

Theorem 3.1. The cohomology H*  (p, a) o f  the complex C* (p, a)  is given as follows: 
(a) H*(p, a) is nontrivial iff either (i) (19, a)  lies in one of  the two complex lines defined 
by (a - x/~ + p) (a - x/~ - p) = O; or (ii) (19, a)  lies in the intersection of  the even 
lattice S and the past-future cone ~ in the real pa-plane. Here ~ and ~ are defined 
by (Fig. 1): 

U~ 

�9 �9 future �9 

�9 , �9 �9 �9 , �9 

. 

~ - ~ / 2 -  p = 0 past  e~-~/2+ p = 0 

I 

Fig. 1. The lattice S and the past-future cone 

s =  )lp - - v z, p , .  

= {(p, ~) C R2I either (a - v ~  + p) and (o~ - ~/2 - p) 

both greater than zero(future), or both less than zero(past)}. 

(b) The dimensions of  the H*(p,  a)  in case (i) are 

d i m H n ( P ' a ) = { ;  otherwiseif n =  l ' 2  
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In case (ii) (hence (p, c~) lies in 5Y), we have Hn(p,  ~) = 0 unless 0 < n < 3, and 

1 i f  (p, (~) in the past cone 
dimH~ = 0 i f(p,(~) in the future cone ' 

dim H 1 (p, c0 = { 2 i f  (p, ~) in the past cone 
1 if(p,c~) in the future cone ' 

1 i f  (p, ~)  in the past cone 
dim HZ(p, c0 = 2 i f  (p, ~) in the future cone ' 

dim H3(p, o~) = { 0 if (p, c~) in the past cone 
1 if  (p, ~) in the future cone " 

The states in case (i) are basically the tachyon states (and their duals). 

3.2. Witten's Ground Ring 

To return to the framework of Sect. 2, we will restrict the momentum values (p, a)  to 
the lattice Y .  It is known that the space 

V = @ F ( p ) |  (3.7) 
(p,a)~.~ 

together with the grading coming from the spectrum of L o = L X + Lo ~, forms a chiral 
algebra. Thus the super chiral algebra 

C* = V | A* (3.8) 

is an example of the situation we considered in Sect. 2. In particular, the BRST 
cohomology H *  of the complex C* has all the structures stated in Theorem 2.2. In 
particular, H ~ is a commutative algebra. 

Witten proves that H ~ is a polynomial algebra with two generators, which are 
represented by 

01/2,1/2 = (cb + -~(OX - iOr (iX-r , 
(3.9) 

~ / 2 _ l / 2 = ( c b - ~ 2 ( O X + i O r  

Let's briefly recap his argument. First it is shown that there are two special derivations, 
which we denote ~• acting on the ground ring. In particular, they act on (Yi/2,• 
by 

5 • 1 7 7  : 1 , 5• = 0.  (3.10) 

This immediately implies that all the monomials generated by ~/2,•  are nec- 
essarily nonzero. Moreover, it is easy to see that all such monomials have distinct 
momenta. Specifically, the monomials ~)2,1/2 " O '~ , -1 /2  have momenta (p, a)  = 

~/~- , ~/~ . Thus they must be linearly independent. Now by Theorem 3.1 

part (b), case (ii), we see that the momenta are multiplicity free in ghost number zero. 
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This proves that the above monomials exhaust all of H ~ To summarize, we have an 
isomorphism of commutative algebras 

~ ) : H  0 ~ C [ x , y ]  ~ i /2 ,1 /2 ,  ( '~i/2,_1/2 ~ x , y .  (3.11) 

O~ 

~ - ~ 2 - -  p = 0 

>p 

0~-~/2-+ p = 0 

Fig. 2. The state (Y'~,~ in H ~ has momenta (p, c0 = (,r 

In a more recent paper of Witten and Zwiebach [31], the structure of the 
cohomology algebra H *  has become better understood. For example, it has been 
indicated that H *  contains a subalgebra which is isomorphic to the polynomial super 
algebra 

./~ = C[x, y, Ox, Oy], (3.12) 

where x, y are bosonic and Ox, 0 v are fermionic. What can we say about the dot and 

bracket products on the full cohomology space H * ?  This is the subject of the next 
discussion. It is also one of the main applications of our theory in Sect. 2. 

3.3. Extending the Map 

The polynomial super algebra ~ above may be thought of  as a space of polyvector 
fields on the xy-plane. It was known to Schouten [24] that the space of polyvector 
fields admits a bracket operation {, } which extends the Lie bracket on 1-vector fields, 
and extends the action of the 1-vector fields on the algebra of functions (0-vector 
fields). In the case of  the graded algebra J~, this bracket is uniquely characterized by 
the identities (see also Appendix B): 

(i) Ixl = lYl = O; I0~1 = IOvl = 1, 
(ii) {x, y} = {0x, y} = {Oy, x}  = O, 

(iii) (0x, x} = {0 x, y} = 1, 
(iv) {u, v} = -(-1)(lul-1)(Iv]-l){v, ~t}, 
(v) { u , v - t }  = { u , v } .  t + ( - 1 )  (q~l-~)l~iv. {u, t} ,  

where u, v, t are any polyvector fields. Thus, .J~ becomes a Gerstenhaber algebra. We 
denote by .~P the subspace of p-vector fields. 



628 B.H. Lian and G.J. Zuckerman 

Note that every 1-vector field is uniquely determined by a derivation on the algebra 
of 0-vector fields ~ 0 .  Similarly, every 2-vector field f .  0 x �9 0 u is determined by the 
operation 

{ f .  Ox .Or, ,} :./go __~ . ~ 1  (3.13) 

Recall the homomorphism ~b [see (3.11)]. The crucial things to notice are that ~b is an 
isomorphism, and that both H* and .~* have a bracket structure. We can therefore 
extend ~b in such a way that makes the two brackets compatible, as follows. 

Given a ghost number 1 class u in H 1, we let ~u  be the 1-vector field satisfying 

{~u, f}  = ~b{u, ~b-lf}, f is any polynomial function. (3.14) 

Note that the bracket on the left-hand side is for ~ * ,  while the one on the right is 
for H*. Because {u, ~b-lf} is in H ~ the right-hand side is well-defined. The map 
has now been extended to ~b:H 1 --+ j~l .  

Similarly, given a ghost number 2 class v, we let ~bv be the 2-vector field satisfying 

{~v, f}  = ~ ) { v , r  (3.15) 

Since ~b is well-defined on /_/I, the right-hand side of Eq. (3.15) makes sense. Now 
since there is no ~ 3 ,  we set ~bH 3 = 0. Therefore, ~b is now defined on all of H*. 
Note that ~b obviously preserves the ghost number. 

Since ./go is generated by x, y, the value of ~bu is determined by the cases f = x, y 
in Eq. (3.14). The same is true for ~bv in Eq. (3.15). We now use this observation 
together with Theorem 3.1 to understand the kernel and the cokernel of ~b. 

3.4. The Structure of ~b 

Let's first introduce some notation. For every real number a o, we denote by 
H~(a > %) the sum of all H~(p, a) with (p, a) in the lattice ~ and a > c~ o. 
Similarly for H'~(a < C~o), etc. We also write 

H(+)  = H~  _< 0) | H l ( a  < x/-2/2) ~ H2(c~ _< x/2), 
(3.16) 

H(-)  = H3(a > 2v/2) @ H2(~ > 3x/~/2) | Hl(a > x/~). 

The space H ( + ) ( H ( - ) )  is what Witten-Zwiebach called the plus (minus) states [31]. 
Note that by Theorem 3.1, (see also Fig. 2) H~  > 0) and H3(o~ < 2v~) are both 
zero. Thus H ( i )  are actually two complementary subspaces of H. 

We claim that r is a Gerstenhaber algebra homomorphism, and that 

ker~ = H ( - ) ,  (3.17) 
im r = .• ~ H(+ )  as e-algebras. 

We prove these results in stages: 
(i) ~bHl(a _ x/2) = ~bHZ(c~ _> 3x/2/2) = 0; 

(ii) ~b(u. v) = ~b(u). ~b(v); 
(iii) ~b{u, v} = {~bu, Cv}; 
(iv) ~b is onto, and when restricted to H(+) ,  is a .-algebra isomorphism. 

Because CH 3 = 0 by definition, part (i) proves H ( - )  C ker~b. Since H (+ )  is 
a complementary subspace of H ( - )  in H,  (iv) proves Eq. (3.17). Parts (ii) and (iii) 
prove that r is a Gerstenhaber algebra homomorphism. 
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Recall that the states ~/2,J:1/2 have Liouville momenta  a = - x / ~ / 2 .  By definition 
(3.14) and by momentum conservation, we have 

{ ~ H I ( ~  > V/2),x or y} 

= ~b{Hl(a > V~), ~1/24-1/2} C ~3H~ > v/2/2) �9 (3.18) 

The last space is zero as noted earlier. The condition (3.18) implies that ~pHl(a > 
v ~ )  = 0. Similarly, we have 

{~bH2(a > 3x/2/2),  x or y} = ~b{H2(a >_ 3x/~/2),  ~ / 2 , i l / 2 }  

C ~Hl(c~ >_ x/2) 

= 0.  (3.19) 

This implies that ~)HZ(ct > 3x/2/2)  = 0, and hence completes the proof of  part (i). 
To prove part (ii), we need to check that it holds for u E H ~, v E H ~ for any 

0 _< r, s <_ 3. But note that (ii) trivially holds whenever r + s _ 3, for then ./gr+s = 0 
and ~ H  ~+s = 0. It holds for r = 0, s = 0 because ~ restricted to H ~ is a o-algebra 
isomorphism. Let consider the first nontrivial case u E H ~ v E H 1. 

{~ (u .  v), f }  = r  . v ,  ~-lf} 
= r  {v, C - l  f } )  ( { H  o, H o} = 0) 

= ~b(u) �9 ~{v ,  r  (by the case r = 0, s = 0) 

= ~ ( u ) .  {r  f}  (by definition of r on H 1) 

= {r  �9 r  f }  ( { ~ o ,  ~ 0 }  = 0).  (3.20) 

This implies that r  v) = r  r  Now all the remaining cases can be handled 
the same way. This proves part (ii). 

Since { H " , H  s } C H ~+~-l, part (iii) holds trivially in the case r + s > 4 or 
the case r + s < 0. In the case r = 0, s = l, part (iii) follows directly from the 
definition of r in Eq. (3.14). In the case r = 0, s = 3, it holds for the following 
reason. By momentum conservation, { H  3, ~1/2,-4-1/2} C H2(oz > 3X/2/2). But the 

right-hand side gets sent to zero by part (i). This implies that ~ { H  3, G1/2,+1/2 } = 0, 

hence ~ { H  3, H ~ = 0. Since ~ H  3 = 0, it follows that both sides of  part (iii) are 
zero. 

There are three remaining nontrivial cases to check: (r, s) = (1, 1), (0, 2), (1,2). 
We will do the first one, while the rest are similar. Let u, v c H 1. Then {u, v E H 1. 
Thus we have 

{~b{u, v}, f }  -- r  v}, ~-lf} 
= ~{u,  {v, ~ - l f } }  _ ~b{v, {u, ~b- l f}}  (by Jacobi identity for H * )  

= {~u,  ~{v ,  9 - 1 f }  _ {~v,  ~{u,  ~ - l f }  (by the case r = 0, s = 1) 

-- {~u,  {~v,  f }  - {~v,  {~u,  f }  (by definition of ~ on H l) 

= {{~u,  ~bv}, f }  (by Jacobi id for . /d*).  (3.21) 

This completes the proof of part (iii). 
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To prove the first half of part (iv), it is enough to show that the fermionic generators 
Ox, 0 v of ~ are in the image of ~. This has basically been done already in [28, 31]. 
Consider the following BRST invariant states: 

Y1-~2,::1:1/2 = -ee(:t:-ix+r (3.22) 

Let's compute r 

{~bY~2,1/2, y} = ga Resz(blce(iX+r (z)~/2,_l/2 

= ~ Res~ e(iX+r 

= 1, (3.23) 

{~)rlq]2,1/2 , x}  = ~/) Res z e(iX+r 

~ 0 .  

Therefore, we have 

Similarly, 

~bYl~2,1/2 = Oy. (3.24) 

~Y~2,-~/2 = Oz" 

This proves that ~b maps onto Jg. 
It is now clear that under ~b, the monomials 

(~l/2,1/2)n'(~>l/2,-1/2)m'(Yl~2,_l/2)u" (Ylff2,1/2 )# 

are sent to 

(3.25) 

(3.26) 

x '~. y '~ .  0~ .0~ (3.27) 

in ~ ,  where n, m are nonnegative integers and u,/z are 0 or 1. Now by momentum 
counting and the multiplicity results in Theorem 3.1, we see that the monomials (3.26) 
form a basis of H(+) .  In particular, as a graded *-algebra, H ( + )  is isomorphic to Jg. 

This completes the proof of all of our claims. To summarize, we have an exact 
sequence of Gerstenhaber algebras." 

0 ~ H * ( - )  ~ H* r ~ *  -+ 0. (3.28) 

Moreover, there is a splitting isomorphism ./~*--Z~H* (+), as associative algebras. 
To simplify notations, we denote 

X = (~11/2,I/2 ' 

Y = ~1/2,-1/2, (3.29) 

Ox -= Y~/2,- 1/2 

Oy = Yi+/2,1/2. 

It should become clear from the context when we write x, y, Ox, Oy, whether they live 
in H ( + )  or in ~ .  
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3.5. The Structure of the Dot Product 

The original goal of  this chapter was to apply Sect. 2 to understand the structure of  
the Gerstenhaber algebra H*.  This means that we must at least know how to describe 
the operations o, {, } : H x H ~ H in simple terms. We will first focus on the dot 
product. 

We have already fully understood 

* : H ( + )  x H ( + )  ---* H ( + ) .  (3.30) 

Since we have established that H ( - )  is an ideal in H,  the problem is further reduced 
to studying 

. : H  • H ( - )  --* H ( - ) ,  (3.31) 

i.e. studying H ( - )  as a module over the algebra H.  In the appendix, we show that 

H ( - ) .  H ( - )  = 0.  (3.32) 

To understand the dot product, it remains to study H ( - )  as a module over the e- 
algebra H(+) .  

Since H ( §  is a polynomial algebra, it is graded by the degree. The subspace 
H ( §  In] of  polynomials of  a fixed degree n is of  course finite dimensional. Let 

H ( + ) '  = |  [n]'  (3.33) 

be the restricted dual of H(+) .  
by 

~(x) = - x ,  

a(y) = - y ,  

~(0~) = o~ ,  

~ ( u .  v) = ~ ( v ) - ~ ( u ) ,  

Let ~r be the linear anti-involution of H ( §  defined 

for all u, v .  

(3.34) 

Then we can define an H(+)-module  structure on H ( + )  t as follows: for any linear 
functional A E H ( + y ,  and any u, v E H ( + ) ,  we let 

(u. A)(v) = A(a(u). v). (3.35) 

We denote this dual module by H ( + ) %  We claim that H ( - )  is isomorphic to H ( + )  ~ 
as H(+)-modules.  

First recall that on the BRST complex, there is a non-degenerate bilinear pairing 

( , )  :Cr(p, ct) • C3-r( -p ,  2v/-2 - c0 ~ C (3.36) 

which satisfies 
(1, 02cOcee 2v~) = 2. (3.37) 

In terms of Fig. 1, each point (p, c~) of  the lattice S is paired with its image 
( - p ,  2v/2 - c~) under the reflection through the point (0, v~) .  With respect to this 
pairing, we have 

J~ = - J - n  - 2iv/25~,0, (3.38) 

C~n ~ C  n~ 

b~ b_ n . 
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This implies that the BRST operator Q is self-adjoint, and hence there is an induced 
nondegenerate pairing on the cohomology: 

( , )  :Hr(p,  c~) • H 3 - r ( - p ,  2x/2 - c~) ~ C .  (3.39) 

Notice that by definition (3.16), H ( + )  pairs with H ( - )  in a natural way. Thus we 
simply define the isomorphism 

H ( - )  ---+ H ( + ) ' ,  A ~ (A, }. (3.40) 

The question is: does this map respect the action of H ( + ) ?  I.e. do we get, for any 
u, v in H ( + ) ,  

(u .  A, v) = (A, c~(u) �9 v) ? (3.41) 

To answer, it is enough to check this for the generators of  H ( + ) :  u = x, y, Ox, Oy. 
We illustrate this in the simplest case u = Oy, the rest being similar but more tedious. 

By definition of the dot product (2.11), we have 

(Oy. A, v) = Resz(-Ce(iX+r v) 1 
z 

= - ~ (c_Ae"x+r  v) 
n 

= _ ~ (.~, (e(~X+r 
n 

= (A, 0 u �9 v). (3.42) 

But because cr(Ou) = Oy, we see that Eq. (3.41) indeed checks out for u = 0y. The 
other cases are done in a similar way. Thus we have 

g ( - )  -~ g ( + )  ~ . (3.43) 

3.6. The Bracket Structure 

To understand the bracket structure, let 's  consider the exact sequence of graded Lie 
algebras: 

0 ~ H ( - )  ~ H r ,~/~ ---+ 0.  (3.44) 

We would like to describe H as an extension of the (graded) Lie algebra ./~, by a 
(graded) module H ( - ) .  [The bracket on H ( - )  is zero by Appendix A.] 

The first ingredient for describing the extension is the two-cocycle 5' corresponding 
to the sequence (3.44). This is a bilinear map 7 : J ~  • ~ -+ H ( - )  which can be 
computed quite easily. We will give the formula without going into the details. In 
terms of the canonical basis x n �9 y ~  �9 6~ �9 0~ of .•, we have 

-y(x ~ �9 y '~ .  o~.  o~, x ~' �9 ~ '~ ' .  o~ ' .  o~' 

= 5~,OSm,OS,~,oSn, o{O~'O ~ , 0 ; "  0uu' } �9 (3.45) 

Note that the bracket on the right-hand side is defined on H .  The right-hand side is not 
identically zero because {0x, 0u} is a non-zero element of H ( - )  (see Appendix A). 
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We now describe the module H ( - ) .  Since r : H --~ J~ is a projection map, every 
element in J~  has the form Cu, for some cohomology class u in H(+) .  The action 
of  J~  on the module H ( - )  is then defined by 

(r  = {u, A}, (3.46) 

where A is in H ( - ) .  We claim that H ( - )  is isomorphic to the restricted dual module 
~ o ~  defined as follows. Let ~ be the twisted adjoint representation given by 

7r(a)b = ( -1 ) l a l - l ({a ,  b} - 2(Aa)  �9 b) (3.47) 

for a, b in ~ .  Here A is defined by Eq. (3.59). Then . / ~ ~  is defined to be the e-dual 
of  . J ~ .  That is, ~ is the underlying space of ~Z~~ and an element a of J~  acts 
on an element X of j~t  by 

(ax, b) = (X, 7r o ~r(a)b). (3.48) 

To prove the claim, define the linear isomorphism 

r  ~ ~ '~~ = J ~ ' ,  A ~-+ ()~,r  (3.49) 

Note that r is independent of the choice of  the "inverse." We need to check that 
CaA = aCA, for all a in . ~  and A in H ( - ) .  Equivalently, we can check that for all 
u, v in H ( + ) ,  

(r162 Cv) = (r (Tr o ~( r162 (3.50) 

It turns out that all we need to use is Lemma 2.1, the fact that under the pairing on 

H,  b~ = b o, and that the map r intertwines b o with - A  (see Sect. 3.8): 

<r162 Cv> = <{u, ;~}, v) 

= (A, ( -1 ) l~ l - l ({u t ,  v} + 2(bout) �9 v)) 

= (A, ( - 1 ) l r 1 6 2 1 6 2  Cv} - 2 (Aa( r  �9 Cv)) 

---- (A, r O O' ( r162 

= (CA, (~r o ~ ( r 1 6 2  (3 .51)  

This proves our claim. 
Thus we have shown that H, as a graded Lie algebra, is an extension of the Lie 

algebra of polyvector fields ~/~ by the dual module S ~~ Moreover, this extension is 
characterized by the two-cocycle 7 above. 

3.7. The b o Operator 

By virtue of  Lemma 2.1, studying the operator 

b 0 : H n ~ H '~-I (3.52) 

should allow us to better understand the bracket product. Let 's  first focus on H(+) .  
Since there are no states of ghost number - 1 ,  any polynomial f in H ~ satisfies 

bof = O. (3.53) 

Similarly, we have for any two polynomials f ,  9, 

{f ,  9} = 0.  (3.54) 
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By direct calculation using Eq. (3.29), we also have 

{Ox,X} = {Oy,y} = 1, 

{Ox, y} = {oy, x}  = o,  (3.55) 

boo x = boOy = O. 

Thus by Lemma 2.l, we have 

Oxf = { Ox, f }  = -bo(  f �9 Ox) , (3.56) 
Ovf = { Ov, f }  = -bo(  f .Or).  

That is, b 0 acts on the 1-vector fields H i ( + )  by - div. 
Finally, since b 0 kills both 0z, Oy, we have (Lemma 2.1) 

{ Ox, = - b o @  . Oy) 

= - b o ( - O c  ce v~r 

= ce "/~r . (3.57) 

On the 2-vector fields H2(+) ,  we have 

bo( f . (9 . Oy) = ( f , O ~  . Oy) + f . bo(O ~ . Oy) 

= Oy f .  O x - O z f .  O u - f .  {Ox,Oy}. (3.58) 

This completes the description of  the b o operator on H(+) .  
Note that because {Oz, Oy} E H ( - ) ,  neither the b o operator nor the bracket 

stabilizes H(+) .  However, since b 0 carries zero momenta, the definition (3.16) of  
H ( - )  shows that b 0 preserves H ( - ) .  Now because the dot product restricted to 
H ( - )  is zero (see Appendix A), it follows that the bracket restricted to H ( - )  is also 
zero. 

Since b0 t = b 0 under the pairing between H ( + )  and H ( - ) ,  we have (boa , v} = 
(A, boy ) for all ~ in H ( - )  and v in H(+) .  

3.8. Relation between b o and A 

As remarked in Sect. 2, b 0 plays a role analogous to that of certain differential operator, 
A, in the anti-bracket formalism (see [29]). If  we now consider the latter in the case 
where the field space is the xy-plane, then A is acting in a certain algebra of polyvector 
fields on the plane. Here we take the algebra to be ~ ----- C[x, y, 0~, 0y]. Then we 
have 

O 0 0 0 
A = - - -  + - - -  (3.59) 

Ox Ox* Oy Oy*' 

where x '~ = (9, y* = 0 v. We claim that the homomorphism 10 of  Gerstenhaber 
algebras intertwines between b 0 and - A ,  i.e. for every BRST class u, we have 

10(bou) = - A ( r  . (3.60) 

Since b 0 stabilizes H ( - ) ,  which is the kernel of  10, Eq. (3.60) holds trivially when 
u is in H ( - ) .  So let's focus on H(+) .  As before, b 0 kills H ~ On the other hand, A 
kills ./#0. On H i ( + ) ,  - b  0 acts as the divergence operator (3.56). But so does A on 



BRST-Algebraic Structure of String Theory 635 

.Xfl. Finally, b 0 acts on H2(+)  by Eq. (3.58). Since {0~, 0v} of H gets sent to zero 
by ~, we have 

~bo( f . 0 x �9 Oy) = Oyf . x* - O~f . y* (3.61) 

But the right-hand side coincides with - A ( f  �9 x* �9 y*). This completes the proof of 
Eq. (3.60). 

To summarize our application of  Sect. 2 to the c = 1 model, we have 

Theorem 3.2. Let H*  be the chiral cohomology of  the c = 1 model. Let L/~* be the 
Gerstenhaber algebra C[x, y, Oz, Oy] (see Appendix B). Then the following holds: 
(a) There is an exact sequence of  Gerstenhaber algebras 

0 ---+ H ( - )  ~ H --~ . ~  --+ O, 

where H ( - )  is an ideal in which both products are identically zero. 
(b) H * ( + )  is closed under the dot product, and it is canonically isomorphic to ~/~*, 
as an associative algebra. 
(c) Let H ( + ) ~ be the restricted dual o f  H(+)  defined by the e-algebra anti-involution 
cT (Sect. 3.5). Then the ideal H ( - )  is isomorphic, as module over H(+) ,  to H ( + )  ~. 
(d) H*  (+)  is not closed under the bracket product. The sequence in (a) does not split 
as an exact sequence of  graded Lie algebras (for more details on the bracket, see 
Sect. 3.6). 
(e) The projection map H --+ ~ intertwines - b  o on H and the differential operator 

0 0 0 0 
A - -  + - - - -  

Ox Ox* Oy Oy* 

on , ~  where x* = 0~, y* = Oy. 

3.9. Discussion 

3.9.1. Additional Examples o f  String Backgrounds. So far we have discussed in detail 
the algebraic structure of the c = 1 model. We will now make some remarks about 
the 26 dimensional bosonic string background. 

In [7], the authors consider the string background consisting of  26 bosons 
compactified on a torus. This may be viewed as a chiral algebra constructed from 
a 26 dimensional Lorentzian lattice. The chiral BRST cohomology H in this case 
has the following structure: the ground ring H ~ consists of only the identity operator. 
It is also known that the space P of  old physical states is isomorphic to H 1. We 
show, in Sect. 2.4, that this isomorphism is in fact at the level of  Lie algebras, i.e. 
the Lie bracket on P is compatible with the Gerstenhaber bracket on H 1. The ghost 
number two cohomology H 2 is a module over H 1. Since { H  2, H a} C H 3 and H 3 is 
one-dimensional, the bracket provides a bilinear form on H 2 which is invariant under 
the H l-action. We believe that this new structure is worthy of further study. 

In [19], we studied the backgrounds in Which the c < 1 minimal models are coupled 
to the Liouville field from the BRST point of view. Since then, many physicists have 
studied the dot product structure of  the BRST cohomology. But we will not attempt 
to review the recent development (see for example [14, 15] for references). The full 
structure of the Gerstenhaber algebras for c < 1 has not been worked out. Note that 
we will need some modification to our theory to take into account the operators with 
non-integral dimension in the c < 1 theories. 
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3.9.2. Deformation ofa Chiral Algebra? In a recent discussion with Greg Moore, we 
have learned that deformations of a conformal field theory ought to be connected 
to BRST invariant operators. The so-called marginal operators correspond to first 
order deformations (perturbations) of a fixed CFT. The so-called exactly marginal 
operators give rise to deformations to all orders of the CFT. These deformations 
occur in the context of a full two-sided CFT. We propose that one should also consider 
deformations of the corresponding chiral theory. 

Given a fixed chiral algebra V and a dimension zero BRST invariant operator 
r we should consider the associated current (b_lr The first measure for 
the failure of (b_lr to be "marginal" should be indicated by the OPE with 
itself. Specifically, the first order pole in (b_1r162 should represent an 
obstruction for (b_10)(z) to be marginal. 

Proposition 3.3. The first order pole of the OPE (b_ 1r (z) (b 10) (w) vanishes if and 
only if the Gerstenhaber bracket {r q~} vanishes. 

The above necessary and sufficient condition is very reminiscent of the classical BV 
equation (on the physical side) [29], and the condition for second order deformation 
of an associative algebra (on the mathematical side) [12]. It also reminds us of the 
existence condition for a Poisson structure on a manfold (see Proposition 5.2). 

In the c = 1 model, let's try to solve the equation 

{0, 0} = 0. (3.62) 

We focus on q~ E H*(+).  First observe that by graded skew symmetry of the bracket, 
the solution set of Eq. (3.62) is invariant under the translation by any BRST class 
with odd ghost number. That is, if 0 is a solution then so is q~ + ~. Since nontrivial 
states in the c = 1 model only have ghost number zero through three, it is enough to 
consider solutions involving ghost number zero and two: 

= f +9" Ox" 0 u, (3.63) 

where f, 9 are polynomial functions to be determined. It is easy to see that Eq. (3.62) 
is now equivalent to the following two equations: 

{f, 9 . 0  x .Or} = 0 ,  
(3.64) {g.0x 0y,g-0x oy}=0. 

Both equations are easy to solve. The most general solution to Eq. (3.62) in H*(+)  
is of one of the following two types (up to translation by odd ghost number state): 
(i) 0 = f for any polynomial function f ;  

(ii) r = const +9 �9 0x �9 0 v for any polynomial function 9 with zero constant term. 

3.9.3. Modules over the BRST Algebra. As in the case of Hochschild cohomology 
[12], our theory of Gerstenhaber algebra can be generalized to the case of modules. 
More precisely, given a chiral algebra V and a V-module M (for definition, see [10]), 
we can form the corresponding BRST complex: 

M | A*. (3.65) 

It can be shown that the corresponding cohomology H*(M) is a module over the 
Gerstenhaber algebra H* (V). This is analogous to the situation in Hochschild theory. 

When we pass to the BRST cohomology, the space of intertwiners of V-modules 
descends to a space of intertwiners of H*(V)-modules. 
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3.9.4. Topological Chiral Algebras. We can significantly generalize the notion of 
a string background to the notion of a topological conformal field theory (see for 
example [5, 6] and references therein). 

Definition 3.4. A topological chiral algebra (TCA) consists of the following data: 
a super chiral algebra C*, a weight one even current F(z) whose charge F 0 is the 
fermion number operator, a weight one odd primary field J(z) having fermion number 
one and having a square zero charge Q, and a weight two odd primary field G(z) 
having fermion number - 1 and satisfying [Q, G(z)] = L(z), where L(z) is the stress- 
energy field. We denote the cohomology of the complex (C*, Q) by H*(C). 

Remarkably, all of the structures of our theory generalize to the case of topological 
chiral algebras. In particular, if we replace the BRST complex by a general TCA C*, 
the ghost number current e(z)b(z) by F(z), the BRST current by J(z), the BRST 
operator by the charge Q of J(z), and the anti-ghost b(z) by G(z), then the exact 
translation of Theorem 2.2 holds for H*(C). Moreover, the appropriate translations 
of all the statements in Sect. 2.1-2.3 hold true in this general context. In particular, 
we have a coboundary Gerstenhaber algebra on H*(C) (see Definition 5.3), and up 
to homotopy on C*. 

Our generalization incorporates many interesting examples. The so-called N = 2 
twisted super conformal field theories are known to give rise to examples of 
TCA's (see for example [5, 6]). It can be shown that in these examples, the G o 
operator acts by zero on cohomology provided the N = 2 theory is unitary. As a 
consequence, by (translation of) Lemma 2.1, the Gerstenhaber bracket is identically 
zero in cohomology. 

Even in the general context of TCA's, the question we raise in Sect. 3.9.2 still 
makes sense. In particular, what is the relation between the equation {qS, qS} = 0 
and deformations of C*? More generally, if h is the parameter, what is the meaning 
(physical and mathematical) of the "quantum BV" equation: 

hGor + {r r = 0 ? (3.66) 

3.9.5. Closed String (Field) Theory. Up to now, we have restricted our discussion 
to chiral field theories. In the case of string theory, chiral theories alone are not 
adequate for describing closed strings [31, 35]. At the algebraic level, there are at 
least two additional things we must do. 

First we must tensor the left and the right moving BRST complexes: 

C* | C* . (3.67) 

We observe that this double complex admits all the interesting algebraic structures that 
the chiral sectors have. However, while the Gerstenhaber bracket on each of the chiral 
sectors satisfies the Jacobi identity off-shell, the bracket on the double complex does 
so only up to homotopy. Anyway, the cohomology of the double complex is again a 
coboundary Gerstenhaber algebra (CGA) (Definition 5.3) which is the tensor product 
of the left and the right CGA's. The "coboundary operator" is given by A = b 0 + b 0. 
Off-shell, the double complex is a CGA up to homotopy. 

However, it seems that the proper counterpart of the b 0 operator is not b 0 + b0 in 
closed string theory [31], but rather it should be b o = b 0 - b0. This means that we 
should also twist the Gerstenhaber algebra structure on the double complex above by 
replacing b 0 + b0 by b 0 - b0. This is equivalent to twisting the Gerstenhaber bracket 
on G'* by a minus sign. Thus on the double complex, the twisted bracket is given by 

(-1)l~l{u, v} -- bo(u. v) - (bou). v - ( -1)b ' lu  �9 (boY) , (3.68) 
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where u, v are elements of the double complex. Note that the dot product on the 
double complex remains compatible with this new bracket. 

The notion of a strongly homotopy Lie algebra is well known in mathematics (see 
Lada-Stasheff's recent review [16] for an introduction). Recently, this structure has 
arisen in the context of closed string theory [31]. A similar structure also appears in 
closed string field theory - both on-shell and off-shell [35]. How are the off-shell 
SHLA in [31,35] related to the HLA defined by Eq. (3.68)? Are there any higher 
homotopies (see [16] for definition) in connection with (a)-(e) of our Theorem 2.2? 
Our work searching for such higher homotopies is underway. We remark that Witten- 
Zwiebach's construction of the Lie bracket involves only three-point functions, hence 
may be treated algebraically - just as our construction in Eq. (3.68). However, their 
construction of the higher homotopies requires the consideration of the geometry of 
moduli spaces. It is therefore interesting to find a precise connection between the 
geometric approach and our algebraic approach. 

4. Appendix A 

The main purpose of this section is to show that H* is generated, as a Gerstenhaber 
algebra, by four generators x, y, 0~, 0~. Moreover, we describe a basis of H ( - ) ,  
which is dual and complementary to the basis of H ( + )  given in (3.26), and hence 
show that H ( - )  is an ideal with one generator {05, Oy}. The pairing between the two 
bases is 812 invariant. We show, as a consequence, that H ( - )  is a subalgebra of H 
with vanishing dot product. This last assertion can also be drawn from [32], where 
the product is explicitly computed. We also describe the action of b0, x, y, 0~, Oy on 
H ( - )  in terms of the above dual basis. 

4.1. The Dual Basis 

Using Eq. (3.22), (3.29), it is easy to get 

{ax, : 

(4.1) 
Ox �9 Oy = - O c  c e  " / ~  . 

With respect to the pairing (3.39), we have 

(0 x �9 Oy, {Ox, 0v) ) = - 1 .  (4.2) 

Since 0~, 0 v are self-adjoint, it follows that the four states {Ox, Or) , 0~. {0~, Or}, Oy. 
{ 0~, Or} and 0 x . Oy . { Ox, Oy} are paired with - 0 5  .0  v, -Or, 0 x, and 1 respectively. 

To simplify notations, we sometimes write {Oxnu to mean applying the bracket of 
0~ with u, n times: {0z , . . .  , {0~, u} . . . } .  Similarly for {Oynu. 

Since H ( - )  is an ideal containing {0~, 0v}, it follows that x .  {Ox, Oy) must lie 

in H ( - ) .  The state x .  {0x, Or} has quantum numbers (p, c~, 9h#) = (V~/2, x/2/2, l). 
According to Eq. (3.16), this state must be zero. Thus we get, for any polynomial f 
without a constant term, 

f . {as, oy} = o. (4.3) 

Expanding 0 = {05, x .  {Ox, Oy}}, we get 

x .  {0~, {Ox, Or} } = -{0~, x } .  {Ox, Or} = -{0~,  Or}. (4.4) 
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Applying the same trick repeatedly, we get 

x . { O x n { O v m { o z ,  Or}  = - n { O x n - l  {Ov '~{Ox ,  0v}. (4.5) 

Similarly, we have 

y" {Oxn{Oym{Ox, Oy} = --Tn{Oxn{Oyrn--l {ox, Oy}. (4.6) 

This shows that the { 0 ~ { 0 v ~ { 0 x ,  0v} are all nonzero because we can hit them with 
x, y repeatedly to get down to a nonzero multiple of {0~, coy}. Moreover, they all have 
distinct quantum numbers, and hence are linearly independent. In fact, by comparing 
them with the quantum number spectrum given by Theorem 3.1, we see that they 
form a basis of H i ( - ) .  

We can repeat the above argument, with {0~,0v} replaced by 0x �9 {0x,0y }, 
0 v �9 {Ox, Oy} or O x . O y .  {cOx, 0v}. Then Eqs. (4.5), (4.6), with the appropriate changes, 

still hold. Again we get some bases for H 2 ( - )  and H3( - ) .  In fact, by comparing 
quantum numbers, one can easily see that the new bases we obtained can be identified 
with the bases introduced in [31]. The identification goes as follows: for nonnegative 
half integer s, and n = - s ,  - s  + 1 , . . . ,  s, 

Y87~ ~ { O x S - ~ { O v ~ + n ( { O z ,  0y}), (4.7) 

ays; n r.~ (8 --n){OzS--n--l{OyS+n(Oz �9 {Ox, Oy}) 

+ (s + n) {0j-n{0Vs+n-l(0U - {0 x, 0U}), (4.8) 

P ,n ~ " O y } )  

- -  { O z S - - n { O y S + n + l ( O x  �9 {Oz ,  O y } ) ,  (4.9) 

aP~ ,  n ~ { O j - n { O y S + n ( O x  �9 Oy" {Ox, Oy}). (4.10) 

This shows that H ( - ) ,  as an ideal of the Gerstenhaber algebra H,  is generated by 
{cOx, cOy}. For completeness, let's write down a basis for H ( + )  as well: 

a y +  ~ x ~ n . y~+n . O~ .COy, (4.11) 

y 2  n ~ cox ( xS -n  . y s + n )  . coy _ coy(XS--n . y S + n )  . Ox ' (4.12) 
a(~,,~ ~ x ~ - ~  . y~+~ . ( x  . O~ + y . COy), (4.13) 

(~8,~ ~ x ~-~ �9 y~+~. (4.14) 

4.2.  The  s l  2 A c t i o n  

What can we say about these bases? Already it has been indicated in [28, 31] that 
for fixed s, each of the multiplets (n = - s , - s  + 1 , . . .  ,s) in Eqs. (4.11)-(4.14) is 
an sl  2 spin s multiptet. One can represent the s l  2 generators simply by {x �9 0y, *}, 
{ x .  0 x - y .  O y , * } ,  and {y .  0x, .} .  Computing the action of these sl  2 generators 
on (4.11)-(4.14) is straightforward, because the relations (3.55), (4.3) suffice. But 
computing the action on those multiplets in Eqs. (4.7)-(4.10) is more difficult because 
the relations (3.55), (4.3) alone are not enough. 

Fortunately, we can once again use the pairing between H ( + )  and H ( - ) .  It is 
easy to check that for any u, v in H,  and any one of the sl 2 generators {X, *} above, 
we have 

( { X , u } , v )  -~ ( u , - { X , v } ) ,  (4.15) 



640 B.H. Lian and G.J. Zuckerman 

i.e. the pairing is sl 2 invariant. To see that each of  the multiplets in the H ( - )  sector - 
Eqs. (4.7)-(4.10) (fixed s and n = - s ,  - s  + 1, . . .~ s) - is indeed an sl 2 spin s 
multiplet, it is enough to show that it pairs with a multiplet of  the same spin in the 
H ( + )  sector. Now using the adjointness property (3.34) of x, y, Oz, Or' and using 
the dot products of x, y with each of  the states in Eqs. (4.7)-(4.10), we obtain the 
orthogonality relations: 

(Xs--n.  yS+n.  Ox " ~ ,  {OxS- -n{~s+n({Ox ,  ~ } ) )  ~. --(8 -- TL)!(8 Av n)! (4.16) 

(Ox(xS--n . yS+n) . Oy _ Oy(xS--n . yS+n) . Ox ' 

( s  - n )  �9 

= - 2 s ( s  - n)!(s + n)! (4.17) 

v �9 o x  + y .  �9 

- 

= (2s + 2)(s  - n)!(s + n)! (4.18) 

(x ~-~.  y~+~, {Ox~-n{Oy~+~(O~ .Oy. {0~, Or}) ) = (s - n)!(s + n)! (4.19) 

All the other inner products are zero. This proves our assertion. 

4.3. The Dot Product in H ( - )  

Since there is no state with ghost number greater than 3, the only possibly nonzero dot 
products that we need to consider are those o n / / 1 ( _ )  x H i ( - )  and H i ( - )  x H 2 ( - ) .  

Consider the product in HI(- - ) ,  which is spanned by the Y~.~. Obviously, the sl 2 
action considered above acts by derivations of  the product. This means that the product 
of  two states Y~.n, Y'~/,n' [see Eq. (4.7)], must lie in the tensor product representation 
of  those two spins. In particular, it must be a linear combination of states with spin 
s"  satisfying I s -  s t ] < s" _ s +  s t. Now with this restriction and by the conservation 
of quantum numbers (i.e. p, a, gh#), we must have 

Ys~n " Y~f,n' = const Ps+s',n+~" (4.20) 

To prove that this is zero, it is enough to show that the inner product of the left-hand 
side with a~'s+~, ~+~, [see Eq. (4.13)] is zero. Consider 

(a~,+,,,n+~,, Y~.~ . Y j ,  n,) ~ (x s + J - n - n ' + l ,  yS+St+n+nt "Ox,Ys .n"  Ystn ,  ) 

+ ( x S + J - n - n  ' ' y ,+d+n+~'+,  . Or, Y*7~' Y]7~,). (4.21) 

Since x, y are anti-selfadjoint, we can bring their monomials to the second slot, with 
only some sign change. Because of  Eq. (4.5) and the fact that s + s  I - n - n ~ +  1 > s - n ,  
we have x 8+s ' -n -n '+ l  �9 YSsn = 0. Similarly, y~+d+~+n'+l �9 Y~7,~, = 0. This shows 

that H i ( - )  �9 H i ( - )  = 0. The argument for H i ( - )  �9 H 2 ( - )  = 0 is the same. 
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4.4. bo, x, y, 0~, 0 u Acting on H ( - )  

Finally, we would like to give a more explicit description of  H ( - )  as a module over 
the Gerstenhaber algebra H.  We should therefore describe - in terms of  a nice basis 
- how the generators x, y, 0~, 0y of  H act on H ( - ) ,  first by the dot product, then by 
the bracket. 

The actions of  x, y on the basis (4.7)-(4.10) of H ( - )  have already been alluded 
to above. We summarize them as follows. Let ,~ be one of  the following four special 
states {0~, Oy}, 0~ . {0~, Or} , Oy . {0~, 0y} or 0~.  Oy . {Ox, Oy}. Then we have 

(4.22) 
y �9 {o2~{o~'~.x = - , ~ { o 2 ' { o j " - b , .  

To work out the action of  0 x, we note for example that 

o~. {o~, ~} = {o~, o~. ;~} - {o~, o~}. 
= {Oy, (;9,. h t . (4.23) 

This holds because {0v, 0=} and ~ are both in H ( - ) ,  and hence have zero dot product. 
Similarly, we have 

Oz. {o~n{o,, '~.x = {o2~{oym(o~ �9 .x), 
(4.24) 

o .  { o j ~ { o  ~) ,  = { o n { o " ( O .  ~,). 
In Sect. 2.3, we proved that b 0 acts as a derivation of  the bracket in H.  Using this 

and the fact that b 0 kills both 0~, Oy, we get 

bo{O2"{o~'~({Ox, o~}) = o ,  

bo {Oxn{O~(O,  �9 {0~, 0~}) 

bo{O2'{O~m(O~ �9 0~. {0~, 0~}) 

.~ _ { 0  x n+l {Oy m ( { o z ,  Oy } ) ,  

= - - { 0 2 ' { 0  '~+' ({O. ,  O~}), 
= --{Ox n+l {Oym(Oy �9 {0~:, Oy}) 

+ {o~n{o~,'+'(Ox'{O~,O~}). 
We can now summarize the bracket operations of z,  y, 0~, 0 v with H ( - ) :  

(o~, ({o~{o~-~)}  = {o~+'{oy-~ ,  

{~, ({oj~{o~"(Ox {o~, o~})) }  

{x, ({o.-{oy~(o~ 
{o~,o~}))} 
{o~,o~}))} 
{o~,o~}))} 
{ox,o~}))} 

= -{o  n{o ~+,~, 

= 0 ~  

= 0 ~  

= - { O x n { O ~ m ( { O x , O y } ) ,  

~0~ 

~0~ 

= - { O x n { O y ~ ( { o ~ , a ~ } ) ,  

= - { o ~ ' X o ~ " ( o ~  �9 {o~, o~}) ,  
{y, ({oxn{o~-'(ox �9 o~ {ox, o~}))} = {Ox.{O~(ox. {ox, o~}), 

where ,k is any one of the four special states. 

(4.25) 

(4.26) 
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5. Appendix B 

In this section, we will make a few introductory comments about the mathematical 
theory of Gerstenhaber algebras; for a more mathematically advanced and complete 
account of the theory see the forthcoming preprint [34]. 

Definition 5.1. A Gerstenhaber algebra G* is a Z-graded vector space equipped with 
two bilinear multiplication operation, denoted by u �9 v and {u, v} respectively, and 
satisfying the following assumptions: 
(i) If u and v are homogeneous elements of degree I~1 and Ivl respectively, then u. v 

is homogeneous of degree I~1 + Ivl and {u, v} is homogeneous of degree lul + I~1-1. 
(ii) Identities (a) through (e) from Theorem 2.2 above hold for any triple of homo- 
geneous elements u, v and t in G*. 

Note. We will call the product u - v the dot product and the product {u, v} the 
Gerstenhaber bracket product. 

Remarks. (i) Physicists will want to call the degree of a homogeneous element the 
ghost number. Mathematicians are primarily familiar with examples in which the 
degree is bounded from above or from below by zero. 
(ii) With respect to the dot product, G* is a Z-graded supercommutative associative 

algebra. 
(iii)Let I ] G *  be the graded vector space defined by I--[G k -- G k-1. Then, with 
respect to the bracket product, I-[ G* is a Z-graded Lie superalgebra. 
(iv) Identity (e) in Theorem 2.2 establishes the crucial link between the two different 
products in G*. 

The following are a few classes of examples of a Gerstenhaber algebra. 
A) The simplest Gerstenhaber algebras are the following: let A* be the Z-graded 
supercommutative algebra generated by n variables x l ,  x 2 , . . .  , xn,  of degree zero, 
and n variables 0x~, 0x2,.. . ,0x,~, of degree one. We refer to an element of this 
algebra as a polyvector field. The elements of degree zero are functions, the elements 
of degree one are vector fields, of degree two are bivector fields, and so on. The dot 
product is simply the graded commutative multiplication of polyvector fields. 

Long ago, Schouten [24] defined a bracket operation on polyvector fields (he 
thought of such fields as antisymmetric contravariant tensor fields.) The Schouten 
bracket is characterized by the following: 

(i) For any two function f and g, {f,  9} = 0. 
(ii) If  f is a function and X is a vector field, {X, f}  = - { f ,  X} = X f ,  i.e. the 

evaluation of the vector field X on the function f .  
(iii) If  X and Y are vector fields, then {X, Y} = [X, Y], the Lie bracket of the 
vector fields. 
(iv) Together, the dot product and the Schouten bracket endow A* with structure of 
a Gerstenhaber algebra. In particular, identity (e) holds. 

Remarks. (i) It is an elementary and useful exercise to write an explicit formula for 
the Schouten bracket of any two polyvector fields. 
(ii) The algebra A* appears in Witten's article [29], where the variables Oxk are 

denoted by x~, k = 1 , . . . , n ,  and the Schouten bracket is defined as a kind of 
Poisson bracket with unusual signs - more precisely, an odd-Poisson bracket. (The 
sign convention we use here differs slightly from the one in [29].) Thus the algebra 
A* arises naturally in the theory of Batalin and Vilkovisky, who employ a field space 
generalization of the algebras A*. We will say more about A* and BV theory below. 
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B) For a different class of  Gerstenhaber algebras, let 9 be any Lie algebra, and let 
A* 9 be the Grassmann algebra generated by g. We can define a bracket {, } on A* 9 
by requiring the following: 

(i) If a and b are scalars, {a, b} = 0. 
(ii) If X is in 9 and a is a scalar, then {X, a} = 0. 

(iii) If  X and Y are in 9, then {X, Y} = IX, Y], the Lie bracket in 9. 
(iv) The wedge product together with the bracket product endow A* 9 with the 
structure of a Gerstenhaber algebra. In particular, identity (e) above holds. 

Remarks. (i) The algebra A* 9 is discussed briefly in Drinfeld's famous article on' 
quantum groups [4]. However, Drinfeld mistakenly implies that if V n is the Lie algebra 
of  polynomial coefficient vector fields in n variables, then A*V n is isomorphic as a 
Gerstenhaber algebra to A*. In fact, there is a Gerstenhaber algebra homomorphism 
from A*V n to A* which is an isomorphism at the degree one level but which clearly 
fails to be an isomorphism at degree zero, since A~ is just one dimensional. 
(ii) It is an elementary exercise to write the explicit bracket of  two exterior forms 

in the algebra A* 9, for arbitrary 9. 
(iii) If 9 is finite dimensional, A* 9 and A*h are isomorphic as Gerstenhaber algebras 
if and only if 9 and h are isomorphic as Lie algebras. 
C) A more sophisticated class of Gerstenhaber algebras arise as follows: Let M be 
a manifold (differentiable, complex, algebraic, etc.). Let F(M) be the commutative 
algebra of functions (of the appropriate type - differentiable, holomorphic, algebraic, 
etc.) on M.  Let G*(M) be the algebra of  polyvector fields on M,  with the operations 
of wedge product and the Schouten bracket, defined by analogy with the bracket in 
A*. Then G*(M) is a Gerstenhaber algebra. 

The algebras G*(M) can be thought of  in the context of BV theory: we can regard 
G*(M) as the commutative superalgebra of functions on HT*M,  the cotangent 
bundle of M with the fibers made into odd supervector spaces. The Gerstenhaber 
bracket in G*(M) is the odd Poisson bracket associated to the canonical odd 
symplectic two-form on HT*M. 

We should mention an important application of  the algebras, G*(M):  Let P be 
a bivector field on M.  We can always construct a bracket operation on the algebra 
F(M) by the formula 

{f,  9}p = ~(P) (df A dg), (5.1) 

where ~(P) denotes contraction of P against a two-form. The question is, when does 
this new bracket {,  }p give rise to a Lie algebra structure on F ( M ) ?  

Proposit ion 5.2. {,  }p satisfies the Jacobi identity if and only if the Schouten bracket 
{P, P}  = o. 

Note that when our bracket on functions satisfies the Jacobi identity, the algebra 
F(M) becomes what is known in mathematical physics as a Poisson algebra (see for 
example [4]). 
D) Let N be a super-manifold with an odd symplectic structure. Then the supercom- 
mutative algebra of  functions F(N) on N has a structure of a Z/2-graded, rather than 
Z-graded Gerstenhaber algebra. We now have the most general context of BV theory, 
as described in [30]. The classical BV master equation reads: {S, S} = 0 for some 
even function S in F(N). We see from Proposition 5.2 that the theory of Poisson 
bracket structures on function algebras bears a close relation to BV theory. 
E) The abstract notion of a Gerstenhaber algebra first arose in work by Gerstenhaber 
on the Hochschild cohomology of an associative algebra [ l l ,  12, 13, 25]. In the 
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very special case that the associative algebra is of the form F(M)  for some smooth 
manifold M, it is a theorem that the Hochschild cohomology of F(M)  is isomorphic 
as a Gerstenhaber to the algebra G*(M) defined in example C) above. However, in 
general the Hochschild cohomology of an associative algebra is known to be non- 
isomorphic to an algebra of type G*(M) (see [13]). 

Important Remark. Just as Poisson algebras are far reaching generalizations of Poisson 
algebra of functions on the phase space of classical mechanics - i.e. symplectic vector 
space - ,  Gerstenhaber algebras are far reaching generalizations of the elementary 
examples in A) through C) above. There is an overlap with BV theory, as we explained 
in the above, but it would be quite misleading to identify Gerstenhaber algebra theory 
with BV theory. 
F) Coboundary Gerstenhaber algebras: in the context of our Theorem 2.2, we have 
proved the following (see Lemma 2.1): 

On the BRST complex, the following identity holds: 

( -1 )  lul {u, v} = bo(u " v) - (bou) �9 v - (-1)l~lu �9 (boY) . 

Thus, the bracket on the BRST complex measures the failure of the operator b 0 to 
be a derivation of the dot product. The above statement is the precise analog of an 
observation made by Witten in the context of BV theory. Consider again the algebra 
A*, and define a differential operator A in An* by the formula: 

0 0 
= Z (5.2) 

i 

Then the Schouten bracket in A* measures the failure of A to be a derivation of the 
dot product in A*. We propose the following abstract definition: 

Definition 5.3. Let G* be a Z-graded Gerstenhaber algebra with a linear operator A 
of degree - 1  such that the following identity holds: 

(-1)l~l{u, v} --= A ( u - v )  -- (Au) .  v - ( -1)lulu �9 (Av).  

Then we call the pair (G*, A) a coboundary Gerstenhaber algebra. 

Remarks. (i) The motivation for our terminology is simple: the above equation 
expresses the fact that (up to certain signs) the bracket, as a bilinear operator, is 
the Hochschild coboundary [12] of the linear operator A. 
(ii) A given Gerstenhaber algebra G* can be a coboundary algebra in more than one 

way: given a A operator as above, we can simply add any derivation of degree - 1 to 
A. Witten analyzes the case of G*(M) when M is a manifold, and observes that any 
volume form Y2 on M gives rise to a natural A(w) operator such that (G*(M), A(co)) 
is a coboundary algebra. It is easy to check that for two different volume forms, the 
corresponding delta operators differ by a derivation of degree - 1 .  
(iii) For any Lie algebra g, the Gerstenhaber algebra A*g is canonically a coboundary 
algebra: for the delta operator we may take the Lie algebra homology differential, 0 
(see [34]). 
(iv) If M is a manifold or variety with singularities, we can still define the 
Gerstenhaber algebra G*(M), but it is not clear under which circumstances G*(M) 
is of coboundary type, since we cannot simply appeal to the existence of a volume 
form. 
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(v) If  N is an odd symplect ic  supermanifold,  it is again not  clear whether we have 
a global delta operator mak ing  F(N) into a coboundary  Z / 2 - g r a d e d  Gers tenhaber  
algebra. BV theory appears to require the existence of  such a delta operator. 
(vi) If  A is an associative algebra, it is not  k n own  under  what condit ions that 
Hochschi ld  cohomology of A is a coboundary  Gers tenhaber  algebra. The theorem 
alluded to in E) tells us that if A is F(M) for a smooth manifo ld  or variety, then the 
Hochschi ld  cohomology is in this case a coboundary  algebra. 
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