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Abstract. We study nonequilibrium steady states in the Lorentz gas of periodic 
scatterers when an electric external field is applied and the particle kinetic energy is 
held fixed by a "thermostat" constructed according to Gauss' principle of least 
constraint (a model problem previously studied numerically by Moran and Hoov- 
er). The resulting dynamics is reversible and deterministic, but does not preserve 
Liouville measure. For a sufficiently small field, we prove the following results: (1) 
existence of a unique stationary, ergodic measure obtained by forward evolution of 
initial absolutely continuous distributions, for which the Pesin entropy formula 
and Young's expression for the fractal dimension are valid; (2) exact identity of the 
steady-state thermodynamic entropy production, the asymptotic decay of the 
Gibbs entropy for the time-evolved distribution, and minus the sum of the 
Lyapunov exponents; (3) an explicit expression for the full nonlinear current 
response (Kawasaki formula); and (4) validity of linear response theory and Ohm's 
transport law, including the Einstein relation between conductivity and diffusion 
matrices. Results (2) and (4) yield also a direct relation between Lyapunov 
exponents and zero-field transport ( = diffusion) coefficients. Although we restrict 
ourselves here to dimension d = 2, the results carry over to higher dimensions 
and to some other physical situations: e.g. with additional external magnetic fields. 
The proofs use a well-developed theory of small perturbations of hyperbolic 
dynamical systems and the method of Markov sieves, an approximation of Markov 
partitions. 

I. Physical Discussion and Statement of Results 

(a) In t roduc t i on .  We consider in this paper a dynamical system which corresponds 
to the motion of a single particle between a finite number of fixed, disjoint, convex 
scatterers in a periodic domain of the plane 11t 2. As in the previous works [2, 3], the 
particle changes its velocity at moments of collision according to the usual law of 
elastic reflection, but, unlike there, the particle motion between collisions is not the 
free one at constant velocity. Instead, the motion between collisions is governed by 
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the following set of first-order equations: 

i~ = p / m  , 

p = E - ~ ' p .  
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(1) 

(2) 

Here, q = (q l, q 2) are the Cartesian coordinates of the particle, and p = (pl, P2) the 
corresponding momenta. E is a constant electric field and the "friction coefficient" 

is chosen as a phase space function so that the kinetic energy (or speed) of the 
particle is conserved: 

( = E" (p/m)/(p2/m).  (3) 

Because of the conservation of kinetic energy, we may consider the reduced phase 
space at each value of the particle speed v, with coordinates X = (ql, q2, 0), where 
0 is the angle of the particle velocity vector with respect to the 1-direction. It is an 
elementrary calculation that 

V x ' 2  = -  ~, (4) 

so that the Liouville measure is not preserved when E * 0. On the other hand, 
observe that Eqs. (1-2) define a flow { S~} on the phase-space, running backward as 
well as forward, and that the inversion X = (qt,q2, O -  "~), corresponding to 
velocity-reversal, has the property that S~()~) = (Sg tX )~ .  

The model under consideration was previously studied theoretically and nu- 
merically in [30]. It is a simple example for a set of new methods in non- 
equilibrium molecular dynamics (NEMD) which has been developed in the past 
decade by W.G. Hoover, D.J. Evans, G.P. Morriss, S. Nos6 and others [12, 20]. 
Unlike a more traditional approach (see, for example [28]) which models interac- 
tions of the physical system with a heat bath by including suitable stochastic 
elements in the dynamics, the new techniques are based upon dynamics which are 
purely deterministic and reversible but for which the Liouville theorem is invalid. 
In one version of the method, which we study, the total kinetic energy of a system of 
particles subjected to a theormodynamic or mechanical driving field is held fixed 
by modifying the dynamics according to a prescription of Gauss, the "principle of 
least constraint" 1-16]. What Gauss proposed was that forces FI c) be added to the 
Newtonian dynamics in such a way that a chosen constraint f(q, Cl, t ) =  0 be 
maintained and the total magnitude of the (Jacobi frame) constraint force, 

N 

Z (r}c))Z/rni, 
i = 1  

be minimized instantaneously. In the space of forces (or accelerations) the con 
straint defines a hyperplane by a linear equation ~ =  1 ni(q, ~1, t)" al = b(q, el, t), 
with ni(q, el, t) = V4,f( q, el, t). Since FI c) oc n~ by Gauss' principle, the final equa- 
tions of motion are of the form: 

mi~]i = Fi - (nl , 

for some (. Obviously, our dynamics is a special case of this general construction. 
For a system of many particles, holding fixed the "peculiar" kinetic energy, 
K = �89 ~ = l  mi( i l i -  u/) 2 (ui is the expected velocity of particle i), should be 
equivalent to holding the temperature fixed, according to the identification 
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K = N" d" k~T/2. In our simple example with N = 1 the identification of "temper- 
ature" is not really appropriate, but we will use the term by analogy. In fact the 
analogy is best preserved, see [46], if we set p2/m = kBT = fl-1. 

In practical simulations with realistic potentials and also in the simulations for 
our simple model in [30], the empirical measure 

t 

1 ! ds 6ssx 

appears to converge (weakly) to a final stationary distribution for at least a dense 
set of initial points X of the phase space. However, the mathematical proof of 
existence and uniqueness of stationary measures, which can be given for some cases 
of the traditional stochastic approach [17, 18], is generally lacking here. Further- 
more, in contrast to the stochastic modeling method, the stationary distributions 
appear on the basis of numerical evidence to be singular with respect to Liouville 
measure. Indeed, the measures appear to be multifractal, with an information 
dimension strictly less than the dimension of the constraint surface in phase space 
([12], Ch. 10). The simple model we consider affords the opportunity to rigorously 
examine such issues. 

In addition, simple formal arguments suggest some remarkable properties of 
the Gaussian dynamics. It is found in particular that the physical entropy produc- 
tion in the steady state is just equal to the asymptotic rate of decrease of the Gibbs 
entropy for time-evolved initial distributions, and the latter is seen to be just the 
negative of the sum of the Lyapunov exponents (defined almost surely with respect 
to the final stationary measure) [12]. From this results immediately a relation 
between the transport coefficients, which appear in the entropy production, and the 
Lyapunov exponents for the Gaussian dynamics. We wish also to study the validity 
of such relations in our simple model example. 

The plan of the paper is as follows: In the next section of Part I we give simple 
formal arguments - which are later made into proofs - for the relations mentioned 
above, as well as indicate some generalizations and extensions which we do not 
prove afterward in all details. In the section following that, we give precise 
formulations of the rigorous results we establish for the model, and indicate some 
basic ideas of the argument. In addition, we point out the surprising transformation 
of this essentially non-equilibrium problem into a problem of (lattice) equilibrium 
Gibbs measures, by the method of Markov partitions and symbolic dynamics. In 
the final section of Part I we analyze in detail the basic features required of physical 
systems, in general, and of our model in particular for the validity of linear response 
theory. We do this in the context of the van Kampen argument against validity of 
linear response theory. In the more technical Part II the proofs of all the main 
results are outlined. 

(b) Formal Arguments. Let us first give the argument for the relations between 
physical entropy production, time-derivative of Gibbs entropy, and Lyapunov 
exponents. Although our discussion is entirely in the context of the Lorentz model, 
it will appear that the basis of the results is rather general [12]. We assume in our 
discussion that, if # is an initial measure absolutely continuous with respect to the 
Lebesgue measure and S~# = # o S~', then ;~#  ~ / ~  (weakly) as t ~ + ~ ,  where 
/~  is the physical stationary measure for the forward evolution. For simplicity we 
denote S~# by/~t and its density with respect to LiouviUe measure b y f .  With the 
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usual definition of Gibbs entropy, 

S(#) = - kB ~ f (X)  log f ( X )  d X ,  

it is a simple calculation for differentiable f that 

d s(~,)  = kB ~ f , ( X ) ( V x ' 2 ) d X  = - kB#,(~), 

using in the last equality Eq. (4). Observing from Eq. (3) that ~ is a bounded, 
continuous function on the phase space, we can therefore infer that 

d k + lim - ~ S ( # , ) =  hUE((), 
t--* q- oO 

and, in fact, the right side is just equal to g~(v)'E/T. This has an interesting 
physical interpretation: if we consider J = / ~  (v) as the steady state electrical 
current, then it is just J ' E / T ,  which is the entropy production due to Ohmic 
dissipation [19]. (It may appear odd that the negative time-derivative of Gibbs 
entropy corresponds to entropy production. One should understand that the 
Gaussian dynamics are supposed to model the effect of reservoir elements on the 
particle system, for which the total system, reservior + particles, obeys the 
Liouville theorem. Hence, the decrease of particle entropy corresponds to the 
increase of reservoir entropy, and the latter represents the physical entropy produc- 
tion.) 

For the other half of the relation, we note that, if there exist local stable and 
unstable subspaces in the tangent space to 9X (for every point where the flow is 
smooth), then one may define local exponential rates of contraction, At(X) ,  and 
expansion, A t ( X ) ,  along those one-dimensional subspaces. The third direction, 
along the flow, is neutral. Formally, these rates are defined by the limits, 

A~(X)  l iml log  OS~(X) u:, , ~S~(X) = " E at t~o t ~X where ~X is the Jacobian matrix of S t 

X, ~ = s(~ = u), u, is a vector in the stable (unstable) subspace at x, and II "11 is the 
Euclidean norm. The volume of a small parallelepiped with one leg along the flow 
direction and the other legs along the stable and unstable rays has the volume 
which is the triple wedge product of those legs, i.e. the product of their magnitudes 
and a combination of trigonometric functions of the angles between the legs. We 
denote the latter angular factor by UE(X), defined for all points of smoothness of 
the flow. Then, there holds the following relation for all X at which the flow is not 
singular, 

d t=o (Vx')()(X) = A~(X)  + A~(X) + dt UE(S~X) . 

On the other hand, 2 sE = #~ (A~) and 2"E = #~ (A[) are the Lyapunov exponents for 
the ergodic measure #~, while the time-derivative has zero expectation just by 
stationarity under S~. Hence, we have also the relation 

1 
- E . J  = -  k . ( 2 ~  + 2 ~ ) .  (5) 
T 

The content of this remarkable relation is the equality of the full (nonlinear) 
entropy production and the negative sum of the Lyapunov exponents. 
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We now turn to a discussion of the formal response theory. It is very useful here 
to develop certain exact integral expressions for the stationary measures #~. To 
this end, let us note that the density of the measure at time t starting from initial 
Lebesgue measure is just given by the Jacobian determinant 

f , ( x )  = a x  " 

Then, by an elementary calculation, 

c~tft(X) = - (Vx" 2) [ s f ,x  "f (X)  = f l (E ' v (S[ tX) ) " f t (X ) ,  (6) 

and, by direct integration, 
t 

f ( X )  = 1 + flE" ~ v(S~sX)L(X)ds = expEflE" fQ,(X)]  . 
0 

Therefore, for any well-behaved function ~b on the phase space, 

pt(~b) = S[#o(~b)=/20(r + fiE" i #o(V'(~b ~ S~))ds (7) 
0 

(where, note, #o according to our previous notation is just Lebesgue measure, 
which is stationary for E = 0.) By our assumption, S[#o converges to #~ as 
t ~ + oo, and, if the integrand on the right side has sufficiently good decay, we 
obtain finally 

~ ( ~ )  = ~o(~) + fiE. ~ ~,o(V.(q) oS[))at. (8) 
0 

Such exact expressions for steady-state measures are sometimes called in the 
physics literature "non-equilibrium statistical distributions" and have been known 
for a long time [27, 29, 44]. Assuming that v is in the class of ~b for which the 
expression is valid, one obtains at once a formula for the exact current-response as 
a nonlinear function of field: 

J(E) = fiE" ~/~o(V | (vo S[))d t .  (9) 
0 

This is an example of the so-called Kawasaki formula for the nonlinear response 
[41]. As we see below, it may be regarded as a generalization of the usual 
Green-Kubo formula. 

It is now easy to specialize the above results to obtain the response to linear 
order in the field. Indeed, we see formally that the linear correction term to the 
measure # [  is just given by 

I~(~)  = I~o(C~) + fiE" ~ #o(V'(C~oS~))dt + o(IE[) .  (10) 
o 

This is rigorously correct, for example, if there is a bound on the decay in t of 
~to(V'(~b ~ S[)) uniform in E, so that dominated convergence may be applied to 
show the remainder term is really o (IEI). Needless to say, this is not just a fine point 
of rigor but is exactly where dynamical properties enter in the derivation of the 
transport law. In fact, from Eq. (10) one obtains directly Ohm's law 

J = a . E  + o(IEI) (11) 
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with 

r = ~ ~ IZo((voS~o)| 
o 

The latter yields immediately the Einstein relation 

= p" D ,  (12) 

where D is given by the usual Green-Kubo formula. Furthermore, putting together 
Eqs. (5), (11), and (12), we obtain a simple formula for the diffusion coefficient as: 

~ ' D ' ~  = lim - kBT2(2E + 2~) 
E+0 E 2 ' 

where ~ is the unit vector E/IEI. The relation appears naturally as both the 
transport coefficient and Lyapunov exponents are related to entropy production. 

There is nothing in the above arguments which imposes a restriction to d = 2, 
and corresponding results for higher dimensions can be rigorously obtained by 
using extensions of our methods developed in [9-1. Another interesting generaliza- 
tion is to consider the addition of an external magnetic field to the dynamics. This 
involves just the addition of an appropriate Lorentz force to the left side of Eq. (2): 

p = E + p x B - ~ ' p .  

Because the magnetic interaction is Hamiltonian and conserves kinetic energy, the 
definition of ~ is the same and also the formula (4) for the divergence of the 
dynamical vector-field remains valid. It is therefore easy to derive formally in the 
same manner as before expressions like Eqs. (8) and (9), with only S~ replaced by 
S~, E- In particular, the Kawasaki-type formula for current response remains valid: 

J(B, E) = ]~E #o(V| 
o 

The above formula describes several new phenomena that arise in the simultaneous 
presence of electric and magnetic fields, e.g. the Hall effect of transverse electrical 
currents. From this follows also the validity of Ohm's law, as in Eq. (11), but with 
a B-dependent conductivity given by 

a(B) : B ~ #0((v o S~,0) | v)dt. (13) 
o 

Although time-reversal symmetry is broken by the magnetic field, one can derive 
from this expression, by considering time-inversion, the relation 

a T ( -  B) = ~(B) ,  

which is the usual Onsager-Casimir reciprocal relation for the transport coefficient. 

(c) Rigorous Results. We now state precisely the results along the above lines that 
we can establish by - we emphasize - essentially just supplying necessary rigor to 
the above formal arguments. The basic properties we need, as we have seen, are 
existence of local stable and unstable manifolds, (weak) convergence to a station- 
ary, ergodic measure and some uniform decay of correlations. The general ap- 
proach to the rigorous derivation of the transport law is the same as that given in 
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[13] for the case of stochastic lattice gases. Here the necessary information on 
uniform correlation bounds is established by approximating the deterministic 
dynamics by a suitable Markov chain, through the method of Markov sieves. 
Unfortunately, the formal argument as we have given it above cannot be presently 
made rigorous, since there are so far no proofs of decay of correlations for the 
Lorentz gas (even at zero field) in "true" time. Instead, such bounds have been 
obtained by counting time in terms of numbers of successive collisions. This is 
connected with the so-called special representation of the flow, a particular applica- 
tion of a general technique of ergodic theory. We give now a more precise 
formulation of our model than in the Introduction (partly to set notations) and 
then describe the special representation. Afterward, we formulate our main results 
as a series of propositions with brief indications of the main ideas of the proofs and, 
finally, discuss the notions of Markov partitions and symbolic dynamics which are 
not actually used in the proofs but give some additional insight into the model. 

As stated in the Introduction, we consider the system of a moving particle in the 
torus ~F 2 with a finite number of disjoint strictly convex scatterers. The region of 
that torus complementary to the union of all the scatterers is denoted by Q. Recall 
that the speed of the moving particle is constant and equals v = p/m. Therefore, the 
phase space of the system is now ~Jt = Q x S),  where S~ stands for the circle of 

S t radius v. The motion under the field E generates the phase flow { E } in ~R where 
- ~ < t < Go. Define a subset of ~01 corresponding to the points of collision of the 

particle with the boundary 0Q: 

M = { x  = (q, v )  ~ 9 ~  ' q  ~ ~Q ,  v ~ S ) ,  v" n ( q )  > 0 }  . 

Here and further on n(q) stands for the inward unit normal vector to OQ at the 
point q; we have chosen rather arbitrarily to label points by their velocity the 
instant after collision. Standard coordinates in M are r and ~0 [4, 5], where r is the 
arc length parameter along OQ and ~0 is the angle between n(q) and v at a point 
x = (q ,v )~M,  I~ol < n/2. Rather than ~0 it is sometimes useful to consider the 
coordinate s = sin ~0, Is[ < 1. A map T E : M  ~ M may be defined by taking each 
point x e M  to the point of its next collision, the so-called billiard ball map or 
first-return map. We denote the time until the next collision by zE(x) and note the 
important restriction of all our considerations to the case of finite horizon. In that 
case zE(x )<  Zmax < + GO except possibly on the codimension 1 singularity set 
S-1  = T ~ I ( ~ M )  of the piecewise smooth map TE (where ~M = {x = (q,v)~ 
M : v" n(q) = 0}.) However, the singularities of TE are mild - they cannot accumu- 
late, i.e. after a finite number of collisions the trajectory will escape the vicinity of 
S_ 1 and stay uniformly far from it. The map TE has an inverse T~ 1 which is also 
piecewise smooth with a singularity set $1 = TE(~M). On the space M there is 
defined the inversion ~ = (r, - ~) for x = (r, ~) under which TE(ff) = ( T ~ l x )  ~. 
Note that the billiard flow { S0 } preserves the Liouville measure d#o = dq dv and 
the billiard map To preserves the measure dvo = dr ds = cos ~0 dr d~o. 

Since the dynamics for any E is completely deterministic, it is obvious that any 
point (q, v) ~ 93~ is completely specified by giving the point x ~ M corresponding to 
its state just before its last collision and the time z since that last collision. This is 
the so-called special representation of the flow. More formally, it corresponds to 
representing the system (~ ,  S~) as the flow under the (ceiling) function ZE generated 
by the map TE on the (base) space M; e.g. see the general discussion in Chapter 1 1 
of [10]. Let us just remark here that if vE is a measure on M invariant (ergodic) 
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under TF, then a measure #E on ~ invariant (ergodic) under S t r is defined by 

rE(x)  

ItE(f) = 1 ~ VE(dX) ~ d z f ( x ,  z ) ,  (14) 
TE M 0 

for f ~ C ( ~ ) ,  using the isomorphism YJI ~ {(x, ~):xEM,  0 <_ ~ <_ ~v.(x)}. Here, 
-CE~_~ y +  r (TE), the mean collision time, appears as a denominator for proper normal- 
ization. Notice that the measures Ito, Vo previously defined are in fact so related. 
There is also a simple relation between the Lyapunov exponents )~,s for any 
ergodicmeasure rE under TE and those for the associated ItE, which is just 

u s - 

We can now state our results. They all require the condition of finite horizon 
and sufficient smallness of the field, which we hereafter assume without explicit 
mention. First, we have (defining, as above, T~v =- v o T~") 

Proposition 1. There is a stationary, ergodic measure v~ for the map Tr on M, which 
is the weak limit 

v ~ = w -  lim /r 
n--* + oo 

for any measure v ~ Vo on M. The measure v~ satisfies the Pesin formula for the K-S 
entropy 

h ~  ( 7"E) = ~ , 

and Young's formula for the fractal (or information) dimension 

HD(v~) = h ~ ( T F ) ( ~  1 .21).  

Furthermore, considering S~ as the special flow, one obtains by the construction in 
Eq.(14) above, an invariant ergodic measure It~ which is the weak limit 
It~ = w -  limt_~+~ S~# for any It ~ #o, which has the K-S entropy given by 
h ~ (S~) = h ~ (TE)/~E and the fractal dimension H D (# ~ ) = n D (v~) + 1. 

This result is proved in Part II, Sects. (d) and (f). It is easy to check by 
combining the Pesin and Young formulas that 

n D ( i t ~ ) =  2 + l + h t j  ' 

where hE---hu~(S~) and ~-w =- - ( 2 ~  + 2~). The next main result allows us to 
physically identify the latter expression: 

Proposition 2. For any measure It on 93l, # ~ Ito, 

�9 d As J ' E / T = - t l i + m  ~ S ( # t ) = - - k B ( 2 ~ +  E). 

Here, as above, J = It~ (v), Itt = S~it and 2~, 2~ are Lyapunov exponents for the 
ergodic measure ItS. 

This result follows from the weak convergence in Proposition 1 and the 
existence of stable and unstable subspaces in ~ x ~  except for the codimension 1 set 
of points X e ~  where the flow is singular. The existence of the subspaces is 
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guaranteed by the strong hyperbolicity of the flow S T E, which holds for small E (see 
Part  III and Ref. [23]). It is perhaps interesting to note that the ratio determining 
the fractal dimension is just the physical entropy production J ' E / T  divided by (kB 
times) the dynamical entropy production hE. 

To state the next results, we must introduce some additonal notation. For  any 
X e 9)l let us define Q(X) to be the projection onto the configuration space Q, i.e. 
Q(q, v ) =  q. In particular, Q ( x ) ~ Q  for x~M.  We then define on M a function 
AE by 

A E - Q o T ~ - Q .  

Clearly, AE(x) is just the total vector displacement of the particle from its starting 
point x s M until its next collision. This definition is actually ambiguous since we 
use periodic boundary conditions on Q. For the results below it is crucial that AE be 
defined by the convention that, when a particle in IR 2 crosses the boundary of the 
fundamental domain Q, the displacement is evaluated between the starting point in 
Q and the final position in the adjacement domain (rather than its periodic image in 
the fundamental domain). Let us also define a space of H61der continuous fun- 
ctions H~ = { f :lf(x) - f  (Y)l < CfIx - y[~ for any x, y~ M}. More generally, let 
H* denote the space of piecewise H61der continuous functions, which are H61der 
continuous (with an exponent c~) on a finite collection of subdomains in M separ- 
ated by a finite union of compact smooth curves. (Note that the curves and 
domains must be fixed for the class H* under consideration: we consider below the 
case where the discontinuities occur on the singularity sets S_ 1,1 = S_  1 w $1 of 
both the maps irE-+ and To -+). Then, an exact integral formula for invariant 
expectations and a Kawasaki-type formula for nonlinear response can be estab- 
lished in the following form: 

Propos i t ion  3. For any 49 ~ H*, 

v~(49) = Vo(49) + ~ Vo[(49 ~ T~)(1 - e-/SE'AE)] . (16) 
n = l  

Furthermore, the following equality holds 

J(E) = ~ vo[AE(1 -- e-~E'AE)] + __ vo[(A~ o T~)(1 - e-~E.AE)] . 
TE n =  1 

The proof of this proposition is obtained by repeating the formal arguments 
given earlier, but now for the map TE (see Part II(a).) To make the argument 
rigorous it must be shown, for the first Eq. (16), that the function 
fE(x) = 1 - e-/~E'Ar~) obeys vo(fE) = 0 and is in H* for all (small E: the result 
then follows from Theorem 17 of Part II(e) which proves the decay of correlations 
to guarantee convergence of the summation. The second equation follows more or 
less directly from the first one (see II(a)). 

Finally, we have the following results on the linear response, transport law and 
Einstein relation: 

Propos i t ion  4. For any 49 ~ H*, 

v~(49) = vo(49) +/~E. ~ Vo[(49o rg)ao] + o(IEI). (17) 
tt=]. 
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Furthermore, J = 6"E  + o([EI), where 6 = flD and 

1 +oo 

D = 2.~o n 2 Vo((Ao~ T~) ~) Ao). (18) 
= - - o 0  

The latter expression is just the (discrete-time) Green-Kubo formula estab- 
lished by Sinai and Bunimovich in [3] for the diffusion coefficient. See also [5], 
where this formula was corrected and the matrix D was shown to be positive- 
definite. In these works, the diffusion coefficient is naturally defined through the 
covariance of the limiting Wiener process for the rescaled particle motion in the 
Lorentz array of scatterers. Thus, the relation r = flD is a proper form of the 
Einstein relation. (Although we give no details here, similar results can be obtained 
for the situations with an external magnetic field, as long as the scatterer array has 
finite-horizon for the motion along circular arcs produced by the Lorentz force. 
The limiting Brownian motion with B-dependent drift can be obtained, for 
example, by the arguments in [9], and the diffusion coefficient is then given just by 
the above Green-Kubo formula with T~ replaced by T~, o. In that case, therefore, 
there is a generalized Einstein relation of the form 6(B) = flD(B), where 6 is the 
symmetric part of~ given by the formula (13) or by a similar discrete-time formula.) 
The proof of Eq. (17) follows from the uniform correlation bounds in Part II(e), 
which allows dominated convergence to be applied to show the remainder term is 
o(IEJ). The rest of the proposition then follows rather directly (see II(a).) From 
Ohm's law and Eq. (15), we can obtain an estimation for the fractal dimension valid 
for small E: 

Corollary. 

E r" ~ �9 E / T  + 
HD(Iz~)  = 3 o(IEI 2) 

kB" ho 

This requires the proof that limE-.ohE = ho (see Part II(f).) In particular, it 
follows that H D ( # ~ )  < 3 when E is small but finite. 

The method of Markov sieves is the main technical tool used both in the 
construction of the invariant measure and in the proof of the correlation bounds. 
The construction of the measure proceeds by first defining in a usual manner 
a conditional measure pC on unstable fibers ?U(x) and, then, for a selected fiber 7", 
proving both the existence of the limit w - lim,~ + ~ T~p c and its independence of 
the choice of 7 u. Without entering into any technical details, we just remark that 
T~pC(B) - for a fixed "parallelogram" B circumscribed by stable and unstable 
fibers - is shown to have a limit only by studying the simultaneous evolution of the 
whole collection of parallelograms composing the Markov sieve. Likewise, the 
correlation bounds are obtained by using the Markov sieve to approximate the 
entire evolution sufficiently well by a Markov chain with good decay of correla- 
tions. The uniformity in E is the consequence of a "stability" property of the strictly 
hyperbolic map To under small perturbations. 

The related method of Markov partitions, which played the crucial role in 
earlier work [2, 3], is not used here. Nevertheless, it should be possible to construct 
such partitions with good enough properties, and, not only would this yield some 
further conjectured results, but also some additional heuristic insights into the 
model. We therefore very briefly explain this method and the related idea of 
symbolic dynamics. A Markov partition is a certain countable partition q of M into 
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parallelograms t / =  {Ai: i6J}  (for the definition of parallelograms see our 
Sect. II(c). As a notation, we write 7~(x) = 7"(x) c~ A ,  where x e A i s t l  and 7"(x) is 
the local unstable fiber through x (with a similar notation for the stable fibers.) 
Then, the Markov partition has the fundamental property that for a.e. x ~ M, 

T(7~(x)) ~ 7~(Tx), T-I(V~(x)) ~_ 7~(T- lx) .  

It  can be shown that the sets of the form (']+~-~o T~A~,, for any sequence 
co = { . . . .  co_. . . . . .  O)o . . . .  , o) . . . . .  } e 3: 7z may consist only of one or no points, 
and ~ + ~ TnA ~ ~ L J . = - ~ -  o,,:t:0 if v(Ao, ~ T A ~  + ) > 0  for all n e Z .  Setting ~ i j =  1 if 
v(A, c~ TAj) > 0 and 0 otherwise, we may define the space (2 of symbolic sequences 
co as the subset of 3; 7z such that rc . . . . . .  = 1 for every neTZ. Then it may be seen 
that the mapping 4: O ~ M defined as 

is one-to-one onto a set of full v-measure. It  a natural way it gives an isomorphism 
of measurable spaces for M and O. Furthermore, if S is the shift on ~2 defined by 
(S~o), = O)n_ 1, then (b o S = To q~ so that v is pulled back to an S-invariant measure 
p on Q. In fact, the essential point is that p is a kind of one-dimensional lattice 
Gibbs measure for the spin-system with values of spin in the countable set .3 and 
with interactions of sufficiently rapid spatial decay. The formal Hamiltonian of the 
measure p~ (corresponding to v~) is just given by the expression 

+ o o  

H(co)~ Z zi~(~(S"co)), (19) 

in which quantity A~(x) is the local exponential rate of expansion for x e M  
under the map TE, and is simply related to the expansion rate for S~ by/ i~(x)  = 
~o E(~)dzA~(x, z). (For the notions, see Ref. [33].) What  is very remarkable about  
this isomorphism in our context is that it converts the essentially nonequilibrium 
measure v + E into a lattice Gibbs measure p ~ of an equilibrium spin-system! This is 
the main feature of the so-called thermodynamical formalism [33]. 

This transformation, if it can be rigorously carried out here, should have 
various consequences. First, it is believed on the basis of various numerical 
evidence that the measure v + E should be multifractal, with an entire continuous 
spectrum of associated dimensions. In fact, we expect on general grounds that this 
should be so (for small E) and the verification by the above method of symbolic 
representation should be possible along the lines in [39]. Another interesting 
consequence of the representation as a lattice Gibbs measure is that there should be 
a variational principle which characterizes the measure v ~. Specifically, the measure 
V + E should minimize the quantity f ( v ) -  v(.4"E) h,(TE) among all the ergodic 
measures for TE on M. The question of existence of a variational characterization 
of steady state measures has been a traditional one in non-equilibrium statistical 
mechanics, with a principle of minimum entropy production most often proposed 
[13]. It may be of some interest to observe that linear corrections to invariant 
measures, such as in Eq. (17) above, are known to be correctly prescribed by 
minimizing entropy production in some simple stochastic dynamical contexts 
[-13, 24]. However, no such principle is known to be exactly valid, and the present 
example is the only one we know where a microscopic measure is precisely 
characterized. It  may be that this example is, in fact, a little more reminiscent of the 
maximum entropy principle proposed by Zubarev [45]. On the other hand, it must 
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be admitted that the form of the principle considered here is quite different from 
any of the ones conventionally considered in non-equilibrium statistical mechanics. 
The minimization is only within the class of ergodic measures and, whilef(v) > 0 in 
that class, the minimum should be exactly zero (so that v~ satisfies the Pesin 
formula.) Whereas standard variational principles seek to characterize a (unique) 
invariant measure out of the class of all probability measures, here the principle 
characterizes a certain physical measure out of the infinite class of ergodic measures 
for the deterministic dynamics. 

A final remark which we make regarding the Gibbsian formulation of our 
problem, is that, in this guise, the conductivity 6 appears as a "susceptibility," or 
the equilibrium response to an applied field. That is, the current J is just the 
expected value of a variable AE (actually, AE --- AE/~E: see Part II, (a)), and it is 
possible to show that the Green-Kubo formula for the conductivity 6 - VrJ l r=o  
is equivalent to 

+ 
Vrvr (Ar)lr=o = vo(Ao( - V r H l r = o ) ) ,  

where H is the formal Hamiltonian in Eq. (19). This is exactly the usual perturba- 
tion formula for the response of an equilibrium system to a small change in the 
potential. 

(d) The van Kampen Argument Against Linear Response. In the original form given 
by Kubo [26], the linear response theory essentially amounted to deriving a for- 
mula like our Eq. (7) - for the equilibrium measure Po evolved to time t - but 
without a thermostating mechanism. Thereafter, an expression was obtained for the 
current response by first expanding in E and then taking the limit t --* + ~ ,  in that 
order of limits. Because no "heat bath" was employed, the stationary state did not 
exist and the opposite order could not be taken. Although it is the opposite order 
which is logically correct, the final result for the linear part of the response was 
exactly the same as ours (essentially because the dissipative effects of the "heat 
bath" are O(]E[ 2) and do not enter at the retained order). Alternately, one may 
simply expand the expectation in E at a finite macroscopic time, with the assump- 
tion that the resulting finite-time integral contains essentially the full contribution 
to the conductivity. 

Kubo's analysis was criticized by van Kampen in [22-]. He claimed that the 
mathematical condition necessary for validity of the derivation is a restriction on 
the field strength sufficient to guarantee closeness of an individual trajectory over 
this macroscopic time interval. The basic point of the van Kampen argument was 
that one cannot expect such a linear microscopic response (i.e. of individual particle 
trajectories) over macroscopic times like seconds, minutes, or hours under an 
external perturbation, unless that perturbation is exceedingly small. On this basis 
he challenged the theoretical foundation of Kubo's microscopic response theory 
derivations of macroscopic linear transport laws (including, perhaps, the predicted 
value of the phenomenological coefficient). To demonstrate his point, van Kampen 
considered electrical conduction in a system of electrons which move freely except 
for occasional collisions with impurities. An external field E then has the effect of 
displacing the particle paths from their unperturbed positions over a time t by at 
least an amount �89 van Kampen argued that, in order that the induced 
current be linear in [E[, one must have �89 ~ d, where d is a mean spacing 
of impurities. Obviously, the upper bound on allowed field strengths f E[ becomes 
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more severe as t increases. Taking d ~ 100 A and t to be a macroscopic time of 
order 1 second or so, van Kampen found that the field must be less than 

10- is V/ cm! 
We argue that, in fact, much weaker conditions are sufficient for validity of 

linear response than such a severe requirement of "microscopic linearity": it is 
certainly nowhere used in our proof. We believe the loophole in van Kampen's 
argument comes from the fact that linear response theory deals actually with 
probability distributions of the electrons rather than individual phase space points. 
Such distributions of electrons are the relevant objects when one deals with 
a macroscopic system containing many particles. We agree therefore with the 
discussion of Kubo et al. in Sect. 4.7.2 of [37]. If one examines the formal response 
theory calculations, for example which lead to our Eq. (9) in Sect. (b), it is apparent 
that it really requires only relatively modest assumptions. The main requirement is 
that of a uniform bound on decay of correlations in the Green-Kubo integrand. 
The observation made in [12-], Sect. 7.8, that the integrands in formulas like 
Eq. (10) typically decay to nearly zero in a microscopic time, makes it very reason- 
able that such uniform integrability as is required will hold. Therefore, the invari- 
ant measure of realistic systems have very likely a finite, linear correction such as in 
Eq. (9). Furthermore, for such a system the macroscopic current response will be 
the sum of separate contributions of many individual electrons. Therefore, one 
should expect that there will be a law of large numbers for the macroscopic current, 
so that for every phase space point distributed with respect to the invariant 
measure the actual, empirical value of the current is equal to the average value with 
a probability approaching unity as the number of electrons increases (e.g. see [ 14]). 
Since the average value has a perfectly linear behavior in I E[, so will the actually 
observed current response. 

The substantive issue raised by van Kampen's criticism is just what is the exact 
range of validity of the response theory. One part of the question is what range of 
E constitutes the linear regime, where the linear transport law is valid, and whether 
the observed conductivity in the macroscopic linear regime corresponds to Kubo's 
prediction. It is possible in principle that what is experimentally observed corres- 
ponds to an intermediate asymptotic regime, where nonlinear corrections conspire 
to produce a linear effect with modified slope (although this seems unlikely). 
Another question is what is the range of E for which the full nonlinear response 
formula, like Eq. (9), is valid. We address now the latter issue in the context of our 
concrete model. 

Consideration of the details in Part  II yields conditions on E of a similar form 
as van Kampen's but with a crucial difference. A main condition of our proof is that 
of strict hyperbolicity, and that requires that the dynamics with imposed field be 
a sufficiently small perturbation of the original free billiards. A condition on 
E sufficient for that purpose is that �89 ) ~ a, where ~ is the mean-free-time 
between collisions and a is the radius of the scatterers. The meaning of this 
condition is that, in the time it takes until its next collision, a particle should deviate 
from its original trajectory under an applied field by an amount which is a small 
fraction of the scatterer radius. This guarantees that the collision map ire with an 
external field is a small perturbation of the original discrete dynamics To. Here, the 
demand of finite horizon requires that a be only a little smaller than the distance 
d between scatterers. Therefore, the main difference between this estimate and van 
Kampen's is the appearance of the microscopic mean-free-time - which is also of the 
order of the relaxation or correlation-decay time - rather than a macroscopic time 
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of the order of seconds. Some similar but more stringent requirements emerge from 
the specific details of the proof in Part II. For  example, in Lemmas 10 and 11 it is 
assumed that the perturbation is small under m iterates of the map T~, where m is 
an integer selected so that the minimal expansion rate after m collisions, W m, 
should be greater than, say, 100m. This requires m = 30 or so, and the basic 
restriction on E is of the form �89 W 30 ~ d (cf. the discussion in [31]). The 
expansion factor W..~  d/a appears since deviations accumulate exponentially; it 
may be taken somewhat less than 2. If one estimates the mean free time by taking 
a scatterer separation d ~ 100 A and v ~ 108 cm/sec, a typical Fermi velocity, then 

= d/v ~ 10-14 sec. Therefore, requiring that the deviation in 30 collisions be, say, 
no more than ~ of a scatterer radius, we still arrive at an estimate for E which is 
1018 times bigger than van Kampen's, allowing electric fields up to at least about 
1 V/cm. 

Unfortunately, for the proof in its present form, a much more severe restriction 
comes from Lemma 13, which makes a similar requirement on closeness of a power 
of the collision-map but with the number of iterates n2 selected by the requirement 
of "sufficient mixing" in the phase space. It is more difficult to estimate the 
minimum size of n2, but a value of 1000 could probably suffice. Even though this is 
still a microscopic time, it already implies an extremely tiny bound on allowed E, 
because of the huge factor W 1~176176 The resulting bound is much smaller than van 
Kampen's! Actually, van Kampen's numerical estimate did not take properly into 
account exponential deviation of trajectories - as he himself remarked, it is "far too 
optimistic." The true requirement on E for microscopic linear response over 
macroscopic times is smaller than his stated estimate by a factor of W l o 1,! That is 
the necessary limit on E he could have claimed, if his restrictive condition were 
really required, and our estimate is much better than that. However, our proof as it 
stands certainly does not prove the transport law for a realistic range of E. 

We have two comments on the situation: 
First, the strong requirement in Lemma 13 might be eliminated with some 

greater effort to optimize its proof. The essential requirement of our strategy is, we 
believe, a closeness of the trajectory for just several collisions and that implies 
a reasonable range of validity of the response theory. We emphasize again that our 
proof nowhere uses any "linearity" of individual, microscopic trajectories over 
a macroscopic time interval. Such a closeness is required only over a fixed, 
microscopic time interval. The consequence of the closeness of the single collision 
map is a certain "stability" of the phase-portrait of the dynamics as a whole. The 
entire hyperbolic structure of the billiards at zero field - local stable and unstable 
manifolds, Markov partitions, etc. - are just "slightly distorted" by turning on the 
thermostat and small field. Since we are only interested ultimately in statistical 
information about our system, it is this stability of the whole dynamics which is 
relevant and not the stability of individual trajectories over macroscopic times. 
From such properties we can deduce, in particular, the uniform estimate on 
correlation decay. 

Second, for the derivation of the transport law it is just this uniform integrabil- 
ity, besides existence of the stationary measure itself, which are required. The 
specific conditions on E emerge from our particular strategy based on strict 
hyperbolicity to prove a priori these requirements. There is no question that the 
required integrability is more general than the strict hyperbolicity, which can be 
lost if even a single scattering surface has a point of zero curvature. One must 
carefully distinguish between the linear response argument itself, which should 
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have very general correctness, and the specific technique we have used here to 
establish the required integrable decay. 

II. Mathematical Proofs 

Here we supply the proofs of all the main results in Part I. First, we repeat in 
Sect. (a) the formal response theory calculations in terms of the billiard map irE, but 
taking care to point out what is needed to make the argument into a proof. 
Afterward, we turn to the more difficult problem of existence of the limit measure 
V + E and investigation of its ergodic and statistical properties. Our reasonings here 
are very much similar to those employed in the theory of hyperbolic billiards [2-6, 
25, 35]. Recently this theory has been extended also to certain billiard-like Hamil- 
tonian systems [11, 7] and to piecewise linear hyperbolic maps of the torus [38, 8]. 
This theory is now sufficiently far developed, so that we can only outline here the 
corresponding arguments. We will explain in detail only the properties of our 
model which differ from those of billiards and other related systems. The main 
difference is certainly the absence of an absolutely continuous invariant measure in 
the phase space. In Sect. (b) the existence of local stable and unstable fibers for T~ in 
M (and for S t E in 91l) is established for almost every point with respect to the 
zero-field measures. In Sect. (c) the main tools for study of the statistical properties 
investigated. In the longest Sect. (c) the main tools for study of the statistical 
properties of the model, the so-called homogeneous fibers and the Markov sieve, are 
introduced and investigated. In the longest Sect. (d) the stationary measure v~ is 
constructed and some basic probability estimates developed. In Sect. (e) the 
uniform estimates on decay of correlations are established which are needed to 
prove the response formulas and Einstein relation. Finally, in Sect. (f) the Pesin 
and Young formulas are established, and their limiting behavior for small E is 
investigated as well. 

The smallness of the field E is always assumed as well as the condition of finite 
horizon. Throughout the text we denote by cl, c2 . . . .  various positive constants 
(usually, constant factors), by a l ,  a 2 , . .  �9 also positive constants (usually, expo- 
nents) and by e l ,  c~2, �9 �9 - various positive numbers which are less than 1. 

(a) Response Calculation for the Discrete-Time Map. We first make the calculation 
for the formula in Eq. (16) of Proposition 3 which gives the expectations with 
respect to v~. Obviously, for any function 4) on M, 

n 

= ~ - -  T k -  f~Vo(r Vo(4)+ [Vo(4or~) vo(r E 1)2 
k=l  

k = 1 dvo " 

To evaluate the Radon-Nikod)m derivative d(~rglVo)/dvo, we recall first the 
obvious fact that 

d(SE#o)= I t3SEI(X) I 
d#o 8X " 
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The Jacobian determinant obeys the Eq. (6) in Part  I which may be explicitly 
integrated to give 

e s ~ ' ( x )  
Qx = exp [ -  flE.(QoSE t - Q)] .  

For any subset A of M and time interval I we may define the "product set" in the 
special flow coordinates A x I = ~ S~[A] contained in 9J/. Since the particle 
moves at the same speed v under S t for each E, it follows that for a net {A~} of 
Vitali sets converging to x ~ M, 

d(ir~ ~Vo) 
dvo(x) 

lim vo(T~[Ax]) 
A~+{x) vo(A~) 

,S~r~),A lim lim #or E t ~ •  
Ax+(x}6T~O ~o(A~x[ -6T ,  6T]) 

cl( ~ ' ~  ~o ) 
dido(X) vo-a .e .x .  

Thus we obtain 

d(r 
dvo 

- exp [ -  f lE ' (Qo TE--  Q)]  

= exp [ - fiE- A t ]  �9 
(20) 

The above argument is missing some details, but can be completed without great 
difficulty to give the final formula (20) for the Radon-Nikod~m derivative. Observe 
from this equality that vo(exp [ - f i E ' A t ] )  = 1. Therefore, finally 

7~Vo(~b) = Vo(4~) + ~ Vo E(~bo T~)(1 - e - # E ' A r ) ) ]  . 

k = l  

^ 

Now, if we assume that the measure T~vo converges weakly as n - ,  + oo to v~ and 
that the summation converges also in that limit for at least C ~-smooth ~b, then we 
obtain exactly 

v~(qS) = vo(q~) + ~ Vo [(q5 ~ T~)(1 - e- 'E 'AE)] , (21) 
n = l  

for such ~b. If the convergence of the sum can be proven for a larger class of 
functions by some uniform summable bound on its terms, e.g. as below for H* ,  
then the formula can be extended to that class also by approximation. 

We now provide the calculation for the second half of Proposition 3, the 
nonlinear response formula. Since v = Q, we see that 

~r(x) 
+v --1 ~v~(dx) I drv(x,~) J ( E )  = # E (  ) = z r  o 

1 v~(Qo Tr  Q) 
"gE 
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Thus, if Eq. (21) is shown to hold for q5 = AE/~E, we may simply substitute to 
obtain the formula for J(E). However, it is somewhat more convenient to use the 
invariance to write 

1 v+(a  E -4- AE) J(E) =2-~E E 

with AE - AE ~ Tg a = Q - Q o Tg ~. In that case, the contribution from the first 
term of Eq. (21) is seen to vanish. Indeed, v0 is invariant under time-inversion and 
also Q(~) = Q(x), so that vo(Q ~ irE) = vo(Q ~ T~I). On the other hand, the two 
terms from the summation are easily calculated to give the response formula 
Eq. (17). 

The next problem is to give arguments for the results on linear response in 
Proposition 4. We define a remainder function 

(1 -- ]~E'ao(X ) - e -pE'ar(~)) 
RE(X) -- 

IE[ 

so that we may write 

+ ~  

v~(~) = v0(~) + BE" VoF(~o TDAo] + IEl" ~ VoU(~o T~)RE]. (22) 
n = l  n=l 

Observe that vo(RE) = 0 for every E. Furthermore, RE is shown in Sect. (e) to be 
bounded uniformly in E and limr~o RE(X) = 0 vo-a.e. (by the C 2 convergence of 
TE to To for E ~ 0). From dominated convergence the terms in the last sum of Eq. 
(22) go individually to zero. Thus, only a summable bound on Vo[(~bo T~)RE] 
uniform in E is required to infer that the last term is rigorously o(IEI). The 
argument for Ohm's law and the Einstein relation is made similarly. Note first 
that AE is bounded (uniformly in E) and limE-~oAE(x)= Ao(x) v0-a.s. Thus, 
vo[AE(1 -- e -pE'ar) --/~(Ao | Ao)"El = o([EI). Likewise, Vo [(AE ~ T~)(1 -- e -~E'aE) 
-- (Ao ~ T~)/~E" Ao] = o([EI) for each n and a suitable uniform decay bound gives 

also o(IEI) for the summation. Thus, J = 6 "E  + o(IEI) with 

6 = / /  vo(Ao| Ao) + =- Vo((Ao ~ Tg) | Ao) , 
TO n= l 

which is obviously equivalent to what is stated in Eq. (18) of Proposition 4. 
We briefly indicate the modifications in the argument required if the magnetic 

field B =~ 0. In that case, the derivations of the Radon Nikod2~m derivative formula 
(20) and its consequence Eq. (21) are unchanged. However, the contribution to 

1 
J(B, E) from the first term in Eq. (21), namely, J~ E ) =  2-~B,E (v~ ~ TB, E ) -  

vo(Q ~ TE~)), is no longer zero, because vo(Q ~ T,, E) = vo(Q ~ T,~, E) is all that can 
now be inferred by the use of time-inversion. Nevertheless, J o (B, E) is easily seen to 
be o(1) as E ~ 0 (since S~,0 is Hamiltonian and preserves Liouville measure), while 

its contribution ,~ to the conductivity ,(B) = ~ J(B, E)IE=o may be checked 

to be finite, antisymmetric, and, by time-inversion, odd in B. The other "dynamical" 
contribution, o~ obtained from the second term in Eq. (21) has the same form as 
the B = 0  expression above with ~o~Z-B,o, Ao~AB,  o, and To~TB,o, and, 
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furthermore, it obeys t~D(B) s = ~D( _ B) by using time-reversal. The total conduct- 
ivity ~(B) = ~~ + ~D(B) then also obeys the relation t~(B) v = ty( - B) (Onsager 
reciprocity) and its symmetric part  6(B), whose entire contribution is "dynamical," 
is equal to 

This last equation can be trivially rewritten as 6 ( B ) - - ~ ' D ( B ) ,  and the matrix 
D(B) which appears there has another physical interpretation. If one follows the 
arguments of references [3, 5, and 9], one can show that in the case B 4= 0 (but small 
enough), a rescaled particle trajectory X~(t) converges weakly to the solution of the 
stochastic differential equation dXB(t) = (XB(t) x B)dt + dWB(t), XB(0) = 0, where 
WB(t) is the two-dimensional Brownian process with covariance D(B). Hence, 
D(B) is the diffusion matrix in the presence of the magnetic field and the result 
6(B) = ~.  D(B) is a natural generalization of the usual Einstein relation. 

(b) Existence of Local Stable and Unstable Manifolds. We need here a few addi- 
tional notations. Set S. = T~- Is t  and S_,  = T~"- I )S_I  for every n > 1. A natu- 
ral measure equivalent to the length on a smooth curve 7 s M is defined as 

P(7) = I cos tp dr, 

in terms of the standard coordinates (r, ~b), see [4, 5, 15]. 

Lemma 1 (Stable and unstable fibers). Almost every point x e M (with respect to the 
measure Vo) has stable and unstable fibers, denoted by 7S(x) and 7U(x), respectively, 
passin9 through x. 

Proof. First we observe that the billiard system {S~} has here a finite horizon and 
a smooth strictly concave boundary OQ. In particular, the time of first return %(x) 
is bounded away from 0 and oo : 0 < Zmi, < Zo(X) < Zmax < OO. These properties 
lead to a strong hyperbolicity of the billiard map To. The hyperbolicity of T can be 
defined in terms of families of strictly invariant cones which are popular nowadays, 
see e.g. [40, 6, 11]. These are two families of cones in the tangent planes Y x M  to the 
manifold M such that the unstable cones are strictly invariant under DTo while the 
stable ones are strictly invariant under DTo 1. Note that the rate of expansion 
(contraction) of each tanget vector in the unstable (stable) cones in our p-metric is 
bounded away from 1, see e.g. [4, 5]. We denote the minimal (maximal) rate of 
expansion (contraction) by Wo > 1 (resp., Wo < 1). Due to the smallness of E the 
same cones are still invariant under DTE (respectively, under DTg 1) and the 
minimal (maximal) rate of expansion (contraction) WE (WE) are close to Wo (Wo) 
and still bounded a w a y  from 1. Nevertheless, we cannot apply here the usual 
theorems on invariant cones [40] since no invariant measure has been constructed 
yet for TF, E + 0. Instead, we apply a direct method for constructing stable and 
unstable fibers, see [34, 35, 4]. 

For  any point x e M and n > 1 we take a curve 7" passing through T-"x and 
lying in unstable cones. (This means that at every point of that curve the tangent 
vector to the curve belongs to the unstable cone.) Then lim,_.~ T"7'  . gives us the 
unstable fiber 7~ provided that T" is continuous on 7" for all n and the length of 
T"7; is bounded away from 0. To estimate that length one needs the bound 

vo(U~(S +_ 1)) < ele (23) 
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for all e > 0, where U~(S +_ 1) denotes the t-neighborhood of S _+ t- The estimate (23) 
readily comes from the fact that in case of finite horizon the set S_+1 is always 
a finite union of smooth compact curves in M. Standard arguments [34, 35, 4] 
show that 7U(x) has the p-length > to as soon as T-"x  lies outside U,n(S_+ 1), 
t ,  = to" wE for all n >__ 1. Therefore, the set of points x ~ M with the unstable fiber 
7U(x) of length < to has the vo-measure less then 

vo(T~U,,(S_+ 1)). (24) 
n = 0  

The map TE can contract or expand the measure Vo but with a rate not greater than 
exp(~olEI), where o~ -=- pflVmax/m is a constant, see Sect. (a) and [30]. For  small IEI 
this rate is close to 1 and therefore less than w~ 1. The sum (24) then does not exceed 

C z t  0 ~ (exp(~olEI))-"w~ = c 3 t  0 �9 

n = l  

Hence the lemma. [] 

Corollary 2. The vo-measure of the set of points x ~ M for which the p-length of the 
unstable (stable)fiber is less than t does not exceed c4"t. 

Remark. In the proof of Lemma 1 we have explicitly found the necessary bound on 
I EI: exp [[Elpfl~max/m] < wE 1. However, in our further considerations we can no 
longer do so. 

Corollary 3. For almost every point X in the whole space 9Jl (with respect to the 
measure #o) there are stable and unstable manifolds of the flow { S~ } passin9 through 
X. 

Proof Due to Lemma 1 there is a stable curve 7s(x) for vo-almost every x~  M. It 
certainly provides a bunch of trajectories which converges exponentially fast in the 
future. Next, for any point y e7S(x) denote O . ( y ) = r ( y ) + r ( T E y ) + ' ' "  
+v(T~- ly )  the time up to the n th reflection. It is now clear that 

t i 10,(y) - 0,(x)l < Y',o -1 I~(Z~y) - v(T~x)l < c5" dist(x, y). Therefore, the function 
A(y) = lim,_.| - O,(x)) is continuous on 7S(x) and has a finite derivative at 
x with respect to the p-length. Now the map y ~ S ~(y)y transforms the fiber 7~(x) 
into the stable manifold for the flow {Sk}. The projection of that manifold into Q is 

S ~ a curve transversal to the trajectories of the flow { E}. Note that generally that 
curve is not orthogonal to the trajectories of the flow, as it was in the case of 
billiards. [] 

In the case of billiard flow {S~ } the curvature of a stable (unstable) manifold at 
a point X ~ 9~ is expressed through a continued fraction B~(X) (resp., B"(X)), see 
[34, 36]. The differential equation of the stable (unstable) fibers in M is then readily 
obtained as 

d~~ - B~(x)c~ + x(x) ( dq9 ) dr d r  = B"(x)c~ q~ + rc(x) , (25) 

where x(x) stands for the (positive) curvature of the boundary OQ at the point x. In 
our model, with IEI * 0, the curvature of stable or unstable manifold is no longer 
expressed through any continued fraction. But, if we denote by B[(X) (B~(X)) the 
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curvature of the orthogonal section of the beam of trajectories generated by the 
stable (unstable) manifold at X e 9)l, then the expressions (25) remain true for 
IEI ~=0. 

Lemma 4 (Absolute continuity). The stable and unstable fibers in the space M are 
absolutely continuous with respect to the measure Vo. 

The statement of Lemma 4 means that the canonical isomorphism on stable 
and unstable fibers, see e.g. [2, 5], is absolutely continuous with respect to the 

p- length  on those fibers. The proof  of Lemma 4 goes the same way as that of its 
analogue for billiards [34, 15] and we do not go into detail. 

Remark 5 (Alignment). The images S, of the singularity curves lie in unstable cones 
for n > 0 and in stable cones for n < 0. Thus, they become almost parallel to 
unstable fibers as n ~ ~ and to stable fibers as n ~ - ~ .  

We do not make this statement more precise. 

(c) Homogeneous Fibres and Markov Sieves. Stable and unstable curves with the 
absolute continuity property constitute the main tool for the study of ergodic 
properties of hyperbolic systems. But the exploration of their statistical properties 
requires the so-called homogeneous fibers. These fibers have been first introduced 
for billiards in [5]. As it was explained there, the billiard map To expands unstable 
manifolds but nonuniformly: the rate of expansion grows in the neighborhood of 
~M where cos (p vanishes. In order to control this rate the authors of [5] split the 
neighborhood of QM into a countable number of strips the thinner the closer to 
~?M. The strips were defined by the equations ~/2 - (n + 1) -~ > ~o > ~/2 - n -~ in 
the neighborhood of the line ~o = re/2 and - ~/2 + (n + 1) -~ < ~0 < - ~/2 + n -"  
in the neighborhood of the line (p = - 7z/2, where n > no. The parameters q > 1 
and no > 1 are rather arbitrary except no should be large enough. We denote 
~o  the union of the lines separating the strips. 

Definition. An unstable (stable)fiber ~" (Ts) is said to be homogeneous (or O-homo- 
geneous) if its images T-"y" ( T"7S) for n > 0 never cross 7~o, the borders of the above 
strips. An unstable (stable)fiber 7u (7~) is said to be m-homogeneous, m > 1, if its 
larger preimage Tin7" (T-m7 S) is a homogeneous fiber. 

The following lemmas have been proved in full detail for billiards in [5]. For 
small I EI they are also valid for our system and the proofs are essentially the same. 

Lemma 6 (Existence). Almost every point x ~ M (with respect to Vo) has homogene- 
ous stable and unstable fibers passin9 through x. 

The largest smooth components of the homogeneous stable and unstable fibers 
passing through x are denoted 7~ and 7~ respectively. The next lemma is 
a natural extension to Corollary 2. 

Lemma 7 (Distribution of length). For every e > 0 the set of points x ~ M with the 
homogeneous fibers of length < e has vo-measure less than c6 e "1, where a 1 depends on 
the choice of the value of tl above. 

For every point x e M and k > 1 denote by w~,(x) the rate of contraction of 7"(x) 
at the point x under T -k. 
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Lemma 8 (Homogeneity). Let 7 o" be an arbitrary m-homogeneous unstable fiber, 
m > O. Then for every pair x, y~7  ~ and every k > 1 

w~(x) 1 < c 7 ~  
w ~ ( y )  = ' 

where c7, ~1 are determined by tl and no above. 

Our further considerations extensively use elements of Markov  partitions for 
hyperbolic systems. In our notions and notations we follow the traditions of works 
[2, 4, 5]. A basic notion in the theory of Markov partitions is a parallelogram. It is 
defined as a subset A c M such that for any two points x, y e A  the point 
z = 7" (x)n  7S(y) exists and again belongs to A. If we substitute y~ and ~0S(y) 
for 7"(x) and 7S(y) in this definition, we obtain the definition of a homogeneous 
parallelogram. If for a parallelogram A both its images TmA and T - " A  are 
homogeneous parallelograms, then A is said to be m-homogeneous. In what follows 
we always consider only homogeneous parallelograms without specifying this. 

Any parallelogram A is a Cantor  set with a grid structure. We denote 
7"A'~(X) = 7"'~(X) C~ A for every x ~ A .  The sets 7~(x) (and y~(x)) for all x ~ A  are 
Cantor  sets on the corresponding fibers which are canonically isomorphic, see 
e.g. [5]. 

Let Ao be an m-homogeneous parallelogram and Xo e Ao. As shown in [5], the 
vo-measure of any subparallelogram A c Ao can be approximated by the value 

v~(A) = p(F~)p(F~a)(B"(xo) + BS(xo)) . (26) 

Here F~] '~ denote the images of A on the fibers y"'~(Xo) under the canonical 
isomorphisms. More precisely, the value (26) is an approximation to the Vo- 
measure of A, constructed below, with an exponentially small error: 

[v~(A) /vo(A)-  l I <  espY' �9 (27) 

Evidently, the image T~A of a parallelogram A is a finite union of parallelo- 
grams. Consequently, the intersection T~A n B is again a finite union of parallelo- 
grams, where B is another parallelogram. We say that a subparallelogram C c B is 
u-inscribed (s-inscribed) in B if y~(x) = y](x) (resp. y~(x) = y~(x)) for every x s C. Of 
the parallelograms composing T~A c~ B, the union of those u-inscribed in B and 
such that their images under T.-" E are s-inscribed in A is called the regular part and 
denoted by 9I(T~A c~ B), while the union of the others is called the irregular part of 
that intersection and denoted by X(T~A c~ B). Dual notations are introduced for 
T~A ~ B with n < - 1. The intersection T~A n B is said to be regular if it contains 
no irregular part. 

The Markov partition for T~ is a countable partition (mod 0) of the manifold 
M into parallelograms {A1, A2 . . . .  } such that the intersections T"A~ c~ A i are 
regular for any pair A~, Aj and any n @ 0. Note that there cannot be finite Markov 
partitions due to the presence of arbitrary short fibers. Markov partitions for 
To have been constructed in [2, 4]. This construction can be extended to TE with 
small [El @ 0. However, it seems to be of no use for us because it is not clear 
whether the parallelograms of the Markov partition cover a.e. point in M with 
respect to the needed measure v + E .  

We use Markov sieves introduced in [5, 8] and defined below. They consist of 
a finite number of parallelograms and therefore do not cover a set of full measure in 



590 N.I. Chernov, G.L. Eyink, J.U Lebowitz, and Ya.G. Sinai 

M. But the Markov sieve turns out to be much easier to construct and to control 
than the Markov partition, and it also yields useful estimates of the statistical 
properties of hyperbolic dynamical systems with singularities [5, 8]. Let us stress 
also that the Markov sieves depend on the interval of time which is considered. 

The Markov sieves are closely related to the pre-Markov partitions [-4, 5, 8] and 
we define them both below. 

Any domain/7  in M bounded by two unstable and two stable fibers is called the 
quadrilateral. Its boundary 0/7 consists of two unstable fibers called the u-sides of 
/7 and two stable ones called the s-sides of~7. The union of two u-sides is denoted 
by ~"/7 and that of two s-sides is denoted by 0s/7. Fix a sufficiently large m > 1 and 
let e > 0 be arbitrarily small and real (e < co(m)). A pre-Markov partition for the 
map T ~ is a finite partition ~o = ~0(e) of M into curvilinear polygons P1 . . . .  , Pk 
whose properties are listed next: The boundary ~ o  = Uc3Pi is the union of 
S-m,,, = U~=_,,Sk and a finite collection of unstable and stable fibers. Respec- 
tively, we denote ~4o = ~~ w ~"~o w ~S4o, where ~~ o = S_,,,,, and 0"4o ( ~ o )  
consists of unstable (stable) fibers. The main properties of ~o are T(0S4o) ~ (3~4o 
and T-1 (0" ~o) ~ ~" ~o. All the interior angles of the polygons P s ~o both sides of 
which are unstable and stable fibers are always less than g. The sides of the 
polygons P e 4o lying on unstable (stable) fibers are less than Cge and their images 
under T m (resp., T -m) remain less than Cloe. If a polygon Pi e 4o does not touch the 
set S-~,m, then it is a quadrilateral. All the other elements of ~o form a neighbor- 
hood of S_m,~ which we call the necklace and denote by 9l(4o). The necklace is 
actually contained in a c ~ i x/~-neighborhood of S_ m,,,, and so its vo-measure is less 
than c12e "~. We also define an extended necklace 91e(~0) as the union of 9l(~o) and 
all the quadrilaterals/7 e ~o intersecting ~o,  the borders of the strips constructed in 
the definition of homogeneous fibers. It is easily checked that Vo(9]~(~o)) < ca3e "~. 

Remark 9. Every stable and unstable fiber is either transversal to S_ m, m or tangent 
to it, and in the latter case the tangency has the order two, see [34, 2]. Therefore, the 
necklace 91(~o) can cover only a small part of that fiber so that the total p-length of 
that part is less than Ca4e a". The extended necklace 9l~(4o) also has that property. 
Likewise, the e-neighborhood of S_ m,~ for any e > 0 covers only a small part of 
that fiber so that the total length of that part is less than c15e aS. 

For precise description of the evolution of parallelograms in M we use the 
following geometrical notions introduced in [-5, 2]. For any parallelogram A the 
minimal closed quadrilateral containing A is called the support of A and denoted by 
FI(A). We say that a segment of an unstable (stable) fiber is inscribed in a quadrilat- 
eral /7  if it lies within/7 and terminates on two s-sides (u-sides) of/7. A parallelo- 
gram A is said to be maximal if it intersects all the unstable and stable fibers 
inscribed in its support H(A). In other words, to construct a maximal parallelo- 
gram one should take a quadrilateral H, draw all the unstable and stable fibers 
inscribed i n /7  and take all the mutual intersections; thus the maximal parallelo- 
gram would consist of the points of intersections of these fibers. The parallelogram 
so obtained is denoted by A(H). 

Now let n > 1 be a large number and e, = ~ for some c~3 e(0, 1). Consider the 
partition ~, = T-"4o v T-"+l~o v . . .  v T"4o of the space M, where ~o = ~o(e,) 
is a pre-Markov partition. Denote 91e(~,)= T-"9le(4o) W...wT"9le(~O). 
Clearly, Vo(91e(4,)) < c16~"4 for some c~4e(0, 1). Every e l e m e n t / / o f  4, which lies 
outside 9le(4,) is a quadrilateral. Moreover, its images Ti/7 for ]if < n do not 
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intersect S-,,,m or ~0.  Let H t  . . . .  , Ht  be all the elements of 4, lying outside 91(4,). 
The maximal parallelograms A1 = A(FI1) . . . . .  At  = A(I l i )  form the Markov sieve 
which we denote (5,. The properties of the partition 4, and Lemma 7 ensure that 
vo(M\L_)Ai) < c17c(~ for some ~5 ~(0, 1). All the parallelograms A ~ (5, are maximal 
and n-homogeneous. Note that if an unstable fiber y~ crosses both s-sides of an 
element A ~ (5,, then it intersects A itself. If a fiber 75 intersects no parallelograms 
A~(5 , ,  then it is either too short (i.e. p(yT) < C l s ~  for some ~6~(0, 1)) or it lies 
mostly in 9~e(~,). In the latter case one of its images Tiy~ for some I il < n belongs to 
the extended necklace 9le(~o). 

(d) Existence of the Invariant Measure. We now turn to the construction of the 
limit measure v~ which is defined as the limit of 7~Vo as n ~ or.  The conditional 
measure induced by Vo on a segment of an unstable fiber 7" can be constructed as 
follows. For  n > 1 take a uniform probabilistic measure (with respect to the 
p-length) on the preimage T-"7 u and then pull it back onto 7". The limit of the 
resulting measure on 7" as n ~ ov gives the conditional measure on 7". Lemma 
8 assures that the density of the conditional measure on any homogeneous unstable 
fiber is uniformly bounded away from 0 and ~ .  

Let 7" be a homogeneous unstable fiber and pC denote the conditional abso- 
lutely continuous probability measure on 7" constructed above. It is now clear that 
the existence of the measure v~ is equivalent to the fact that the limit of p,~ = 7~p ~ 
as n ~ oo exists and is independent of 7". This limit thus produces the measure 
v~ itself. Note that the methods of [42] can give a weaker result, i.e. the existence of 
l i m , ~ n - l ( V o  + 7~Vo + . . . +  7~-XVo). 

The measure p~ for finite n is concentrated on the image T"7" which is a finite or 
countable union of homogeneous unstable fibers. These fibers are called homogene- 
ous components of T"7", see [5], or just components, for brevity. The structure and 
the distribution of those components in the space M play the key role in our further 
considerations. The necessary properties of the components are accumulated in the 
next several lemmas. These lemmas have been first established for billiards in [5] 
and then for piecewise linear toral maps in [8]. 

For any D > 0 and n > 1 denote F"  the union of all components of T"7" 
which have p-length > D. 

Lemma 10 (From short to long components). There is D > 0 not depending on n such 
that for any n > 1, 

- k  u pC(Tu\Unk=lT I'k,D) ~ C19~1P(7 u) 

with some c~9, ct7 determined by tl and no. 

The meaning of the lemma is that during the first n iterates of T, if n > 
- c2olnp(7"), the majority of points x~?"  appear at least once in long compo- 

nents (of length > D) of the images Tk7 ", 1 <_ k < n. 
The proof  of Lemma 10 is based solely on the hyperbolic properties of the 

underlying map. It has been carried out in detail in [5, 8] and applies to our system, 
too. 

Lemma 11 (Distribution of lengths of components). For any e > 0  and 
c u n > - c211n P(7") we have p,(F,,~) > 1 - c22& 

Proof. Lemma 11 is just a stronger version of Lemma 10, but it is new and so we 
outline its proof here. The billiard map  possesses the following basic property: for 
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every m > 1 the number of smooth components of S_,,,,, meeting at a single point 
of M cannot exceed Kom, where Ko is a constant, see [4], Sect. 8. As a result for 
every m > 1 there is co(m) > 0 such that any unstable fiber of length < co(m) can 
cross at most Kom curves of S-m,0. This property is certainly valid for the map 
TE for small E, IE[ < Eo(m). Now we fix m sufficiently large, so that W~ >> Kom. 
Thus the image T~7~ of any short fiber 7~ of length < co(m) consists of at most 
Kom + 1 components and their total length is at least A~' times greater than that of 
7~. Similar estimates can be carried out for homogeneous components, i.e. if we 
take into account the splitting of the components by the borderlines of the strips 
defined above. The technique used for obtaining those estimates is the same as in 
proof  of Lemma 7, see [5] for details. Now we introduce a function r,(x) on T~7" 
by r,(x) = { p-distance from x to the nearest endpoint of the component  of T~?" 
containing x}. Note that r,(x) is actually smaller than the length of the component  
of T~7", containing x. The above reasonings show that the distribution of r,(x) 
cannot concentrate near 0, i.e. p~{r,(x) < e} __< C23E. Hence the lemma. [] 

Since we have not yet proved the existence of v~, we denote by vg(B) and v~(B) 
the upper and lower limits, respectively, of the sequence { p,~(B)}~ for any measur- 

U , L  able set B. The values VE (B) may also depend on the choice of the initial fiber 7 u. 
As an immediate consequence of Lemma 11 we obtain that the limit measure 

v~ (if it exists) is nonatomic. In terms of v g' L this means that lima-.o vV(Va(x)) = 0 
for any point x ~ M, Vo(x) being here the 6-disc centered at x. The following remark 
is a stronger version of this property: 

Remark 12 (Nonatomic structure). For  any unstable fiber ~" we have 
lima-~ov~(V~(~")) = 0, where Va(') now denotes the 6-neighborhood. 

Next, let 7" be an unstable fiber of length D/2 and H be a quadrilateral in M. 
Denote F2n the union of all subfibers in T~(V") which are u-inscribed in/7.  

Lemma 13 (From long components into a fixed quadrilateral). There exists a quadri- 
lateral /7 such that vo(A(H)) > 0 and constants nl > 0, fll~(0, 1) such that 

Cl  F U "t ~ -  P.[ ,,nl > ill for every n > n I . Here nl and fll are independent of V" and of the field 
E. 

Proof The proof  of Lemma 13 for billiards is based on the mixing property. Here 
we do not have it, so the arguments should be modified. For  billiard map To the 
statement of Lemma 13 has been proven [5] for any quadrilateral /7 such that 
vo(A(/7)) > 0 and any unstable fiber ?u of length > D. The proof  is easily modified 
if, instead of the fiber 7", we take any curve ~" of length > D which is sufficiently 
close to unstable fibers (to be specific, such that To m is smooth on ~" and Tom~" lies 
in unstable cones, m being a large constant). Now we take an unstable fiber 7" of 
length > D for TE, J E[ 4= 0. For small [E J, a bit smaller part of 7" (of length 
> D -- e) is certainly a curve close to unstable fibers in the above sense. The image 

T~?" is close to T~?" for all n < n 2 due to the smallness of IE[, and n 2 here is large 
for small IE[. Therefore the statement of the lemma follows for all n, n~ < n < n2, 
with maybe smaller values of D and fla than in the case of the billiard map To. To 
prove Lemma 13 for larger values of n, i.e. for n > n2, we observe that due to 
Lemmas 10, 11 there are enough components of length __> D in the images T~vu for 
1 < n < n2 - n~. To each of those components we apply the above reasonings 
again, etc. Thus we extend our estimate for all n > n~. [] 
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Corollary 14. v~(Fl) > const > O for any initial fiber 7". Note also that each fiber 
7~ u-inscribed in 11 intersects the parallelogram A = A(11) and p(7~c~A) 
> C(A)" P(7~)" vo(A), due to the homogeneity of the parallelogram A. Therefore, we 

also have v~(A) > C2(A) > 0. 

Remark. The proof of Lemma 13 requires the quadrilateral 17 to be small enough 
and vo(A(11)) > 0. However, we cannot state Lemma 13 and Corollary 14 for all 
quadrilaterals with such properties. Indeed, we have supposed the field E to be 
weak enough after choosing 11, i.e. actually we have required IEI < Eo(11). 

Let A = A(11) be a maximal parallelogram with the support 1-1 involved in 
Lemma 13. Consider a new map T,  defined only on the fiber 7" and on the 
components of its images. This map is specified by an "absorbing" property of the 
parallelogram A = A(/7). It acts exactly as the map T~ unless a component, 7~, 
intersects both s-sides of the quadrilateral 1-1. In that last case the part 7~ n A stops 
moving under T, ,  and then all the future iterates of T ,  on that part are identities. 
The remaining part, i.e. 7~\A, consists of a countable number of curves - sub- 
components - on which T,  still acts as the map Tr. After n > 1 iterates of T, ,  
a part of 7 u will be sooner or later "stuck" with the parallelogram A while the 
remaining part of it will be still moving. We denote that remaining part by }U(n). 
Obviously, its p~-measure monotonically decreases in n. 

The next lemma is a natural extension of Lemma 13. It was first introduced in 
1-8] for piecewise linear toral maps. Its proof [8] is based on the hyperbolic 
properties of T alone, so it works in our situation as well. 

Lemma 15 (From long components into a fixed parallelogram). For any fiber 7" of 
length > D and any n > 1 one has pC(~"(n)) < c24ct~, where c24 > 0 and cts s(0, 1) 
are constants, both independent of 7 u. 

Roughly speaking, Lemmas 10, 11 say that a short fiber is sufficiently fast 
transformed into long fibers, Lemma 13 says that a long fiber sufficiently fast sends 
some of its portions into fibers u-inscribed in H, and Lemma 15 tells that a long 
fiber is sufficiently fast transformed under T ,  into Cantor sets lying on fibers 
u-inscribed in 1-1 and covering the points of A(1-I) on those fibers. 

Remark. Our dynamics is obviously reversible. That is, our Lemmas 10-15 have 
dual forms for stable fibers and negative powers of TE (or, respectively, the iterates 
of a new map T,  ~-) which can be defined in a similar fashion as T,  by the action of 
Tg 1 and an "absorbing" property of A). 

The last remark actually provides the tool for the estimation of the values of 
v~'L(B) for the arbitrary parallelogram B. First we describe the main idea of that 
estimation and then work out the details. Let B be an arbitrary small parallelogram 
with Vo(B) > 0, which is also homogeneous and maximal. Consider an arbitrary 
y~B.  By the dual statements to Lemmas 10-15 the fiber 7S(y) is sufficiently fast 
transformed into A under T,  t-)", n > 1, see the above remark. Each time when 
a component of T~,-)"TS(y ) crosses both u-sides of A, it also intersects A and the 
points of T-"B on that component cover all the points of A on it, due to maximality 
of both A and B. We can extend the definition of T,  t-) to the whole parallelogram 
B and its images under T-", n > 1. This means that T ,  (-) acts exactly as Tg 1 unless 
a component of Tg"B crosses both u-sides of 11(A). In that last case the intersection 
T~"B ~ A stops, and on the remaining part, Tg"B\A ,  which consists of a count- 
able number of parallelogarms - subcomponents - the map T,  (-) will still act as 
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Tff 1. Thus, by Lemmas 10 15, the parallelogram B itself is sufficiently fast trans- 
formed into A under T.  (-). 

Fix now a large no = no(B) and consider the sets B~, -) = T~ -~ ("-"~176 In 
other words, B~ -~, n > 1 are produced by the evolution of B in the past when, 
during the first no iterates only, it evolves "freely" under T -1 and, then, the 
"absorbing" property of A is turned on. The sets B, ~-) for large n > no then consist 
of a finite number  of subparalMograms "stuck" with A and of some parallelograms 
outside A which are still moving under T .  t-). The preimages of the former are 
disjoint subparallelograms in B. Clearly, each of those preimages in transformed 
into A by TE-k for some k > no and then its image under T~ k belongs either to 
91(T-kB n A) or to Z ( T - k B  n A). We denote all the parallelograms of the first 
(regular) kind by B1, B2 . . . . .  Each Bi, i > 1 is a subparallelogram in B and there is 
a ki > no such that T-k'Bi c 9~(A n T-k'B). The parallelograms of the second 
(irregular) kind are less important  for us and we denote their union by B t~ 

Now we can estimate the measure p~(B) for large values of N. For each i > 1 
the parallelogram T -k'1r is s-inscribed in A, so that pyv_k,(T-k'B~) is approximately 
p~_k,(A)'vo(T-k'B~)/vo(A) due to (26), (27). This is an approximation with an 
exponentially small error, precisely 

P~-k~(T-k'Bi)v~ 1 < ~b" (28) 
p~l_ki(A)vo(T-kiBi) = C25 , 

where m is the order of homogeneity of the parallelogram A, as in (27). We now 
obtain 

pTv(UBi) = ~ ~ ,T-k .B  , = LPN-kA  ' i) (1 + A,,)(vo(A)) - 1 Z p } _ k , ( A ) v o ( r - k ' B i )  
i i 

The error term A,, here is exponentially small in m, as stated in (28). 
Next we estimate the value p}(B\UB~ ). First, the p}-measure of the set 

(B\ (B(~  (UBi)))  is exponentially small in nl - no due to Lemmas 10-15, be- 
cause that set consists of the points y e B  such that T - " ~ y , . . . ,  T-"~ do not 
belong to A. The estimation of the value p}(B (~ is based on the following lemma. 

Lemma 16 (Bound for irregular parts), p~(7s ~ A)) < c26C~ofor certain ~1o e 
(0,1) a n d a l I N >  1, n > l. 

The proof of Lemma 16 is essentially the same as that of Proposition 5.2 in I-8]. 
The only difference is that we use here the measure p~ instead of the invariant 
smooth measure on M. The validity of this change of measures is justified by our 
Remark 9. 

Summarizing the above estimates, we obtain the decomposition 

ply(B) = (1 + Am)(vo(A)) -~ ~ p}_k,(A)vo(T-k'Bi)  + do + da , (29) 
i 

n t  - n o  
where [All < C275~11 and IAol < C2s~7~ for certain ~11, 712e(0, 1). 

The remarkable formula (29) allows us to estimate the measure p~(B) for an 
arbitrary homogeneous maximal parallelogram B. Denote e = vo(B), then 
P(7~(Y)) > c29e for any y ~ B .  Now we choose no = -  Co lne and nl = -  C t lne  
with some large constants Co < C1. Then both IA o l and I A z l in (29) do not exceed 
eD with some large D > 0. On the other hand, if the difference C1 - Co is also large 
enough, then the majority of points of B are transformed into A under the map 
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T,  (-) ("'-"~ o Ti  , so that vo(UBi) will certainly be close to e. To estimate the 
values vo(T-k'B~) we observe that 

ln(vo(T-k~B~)/vo(Bi)) < ~olEInl = - C lo lE[  lne 

due to (20). This implies the estimate 

~1 +cl~olrl __< ~ vo(T-k,Bi) <= ~;1-clm]E] . (30) 
i 

We obtain for small IE[ that the first term in the RHS of (29) is actually the 
principal one and we can neglect the others. It is also useful to note how the 
singularity of the limit measure v + E can arise. The inequalities (30) imply 

(vo(B))Cl~olEi < p~(B) < (vo(B))_cl~olE I (31) 
vo(B) 

Thus the "density" of p} with respect to Vo can approach either zero or infinity as 
N ~ oo depending on which of two processes dominates: the contracting or the 
expanding. Due to (20) the contracting prevails when the particle with the initial 
conditions in B travels mainly in the direction of the field E. The expanding prevails 
when the particle travels in the opposite direction. The displacement of the particle 
in the perpendicular direction causes no effect on the density of p}. 

Remark. In our model the particle has enough freedom to travel along or opposite 
to the field direction. If the billiard table is closed or extended only in the 
perpendicular direction to the applied field, then the particle has no such freedom 
and the density of p} stays uniformly bounded. Although that density apparently 
oscillates as N grows, the limit measure v~ nevertheless exists and is absolutely 
continuous with respect to the Lebesgue measure. Our response theory (Proposi- 
tions 1-4) is formally correct but trivial since the main constants D, ~ and the 
current J are all zeroes. 

As an immediate consequence of the decomposition (29) and the above remarks 
we obtain that v~:(B) >= C(B) > 0 as soon as vo(B) > 0. Here C(B) is independent of 
the initial fiber 7" and of the field strength E, provided the latter is small enough. 
Moreover, the decomposition (29) implies 

v[(B) , v[(A) 
--< (1 + zm) (32) 

where the constant A~, is determined by A alone and approaches zero as m ~ oo. 
So far we have applied only "local" arguments studying the evolution of 

a particular parallelogram B. These have given us only a "rough" estimate (32). 
Next we are going to show that actually v[(B)= v~(B) and thus this value 
determines v~ (B). To this end we have to involve certain "global" arguments. 
Namely, we use the Markov sieve (5, for some large n and study the joint evolution 
of all its parallelograms. It can be well approximated by a probabilistic Markov 
chain as is explained below. 

The properties of the Markov sieve (5, and our Lemma 11 yield the bound 

PN(~(~n)) ~ C30~f3 (33) 

for every large N, say, for N > - Cln p(? ") for some large C > 0. Furthermore, we 
can easily estimate the ply-measure of the set of points in the quadrilaterals 
F/~ . . . . .  Hf which do not belong to the parallelograms At . . . . .  AI. These points 
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have too short unstable or stable fibers, so that Lemma 7, along with the above 
estimate (33), gives the bound 

p ~ v ( M \ ~ A i )  < c3zc~f4 �9 (34) 

In other words, the measure p} is almost concentrated on the Markov sieve t5,, up 
to an exponentially small error term�9 

(K)~ ~,~ 
Now denote ~z~(N)= p~(Ai) and 7~ij ~JV)-~-p~V+K(Aj~ TKAi)/p~(AI). Setting 

Ao = M \ ~ A i  and letting the indices i , j  in the above notations run from 0 to I we 
(K) t ~r ) make II ~zi(N)I1 a probability distribution and II ~ij  ~ , '  H a stochastic matrix. The 

measure p} inside the quadrilateral H~ is concentrated on a finite union of unstable 
fibers u-inscribed in/-/z which are images of ?" under T~. Let ~" be one of those 
fibers and ~/' = ~" ~ As. Deno te /~  the probabilistic conditional measure induced 
by Vo on ~/' and /3, ~ = T"/3 ~ for n > 1. To the set ~' we can apply the above 
arguments involving a fixed parallelogram A and resulting in the estimate (29). 
These arguments show again that 

/3~(B) = (1 + A , , ) ( v o ( A ) ) - ~  ~[_k , (A )vo (T -k 'B )  + Ao + A1 , (35) 
i 

where B stands for A s. Choose, as in (29), no = Con, n~ = Can and K = C2n with 
sufficiently large constants Co, Ca, C2 such that Ca - Co and C2 - C1 are also 
large enough. Then again both ]Ao] and [A ~1 in (35) do not exceed ~ for some small 
c327~5 determined by Co and C~. 

> ~pN(B) provided Co, C~, Comparing (35) to (29) we conclude that /~,~(B) 1 
C2 and N are large enough. As a result we obtain that 

(K) 1 
7~ij ~ ~ ~ j (N)  . (36) 

Next, due to the n-homogeneity of the parallelogram As the values p~:(B) are almost 
the same for different fibers ~" u-inscribed in H~. To be specific, if ~" is another fiber 
of that kind, then 

] ~ ( B ) / ~ ( B )  - iI =< C3a~6 �9 (37) 

(K)tNI As a result, the values z~zj ~ . are almost independent of N, and so we can find an 
approximative stochastic matrix ~]~) such that 

(g) (K) Ir~e~ (g)/rc~j - iI < c3, c~'7 (38) 

for all i , j  > 1. The estimate (37) yields also an important Markovian property 

p~V+K(Aj~ TKAi~ ~ ~ TLKA 
�9 �9 �9 i l l  ( K )  , )  

p~(Ai, ~ .  �9 �9 ~ T(L-1)KAiL) = rci,j(N)(1 + A , (39) 

n ( K ) , .  7,T~ . ( K )  
where [d'[ < c35cqs. Moreover, z~,j(lv) in (39) can be replaced oy z~,j due to the 
approximation (38). 

As a result we obtain an approximation of the joint evolution of the parallelo- 
grams of the Markov sieve ~ ,  by a stationary Markov chain. To be specific, 

7zj(N "4- L K )  (1 + A) ~ , .  , (K) (K) (40) ~-" ~'gir(J~[ ) 7 ~ i L i L -  1 " " " 7 ~ i l J  
i l , . . . ~ i L  

with some [A[ < c 3 6 ~ 9  , provided L is not too large, say, L = n. Now we have an 
approximative stationary Markov chain (40) with the estimate (34) for the total 
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measure of the "marginal" set M\I_)Ai and with the regularity condition (36) of 
Ibragimov type, see [21] and also [5]. These basic properties allow us to estimate 
the rate of mixing in the Markov chain and to prove a rapid convergence in L of 
the probability distribution [Inj(N + LK)]I to the stationary distribution IIn~ll 
of the matrix II n~)II. The corresponding reasonings involve typical estimates from 
the theory of Markov chains. The proof is essentially the same as that of Theorem 
4.1 in [5], and we do not reproduce it here. The actual results are 

In~(g + LK) - z~j[ __< c37~o (41) 
J 

and 
I P~v+LK(TLKA, ~ AJ) l n 

- n~ < c38~21 (42) 
�9 ~ i  

for a typical parallelogram Ai. This last statement means that there is a subset 
R ,  e (5, such that (42) holds for every Aie R , ,  and the total p}-measure of all the 
other parallelograms, i.e. those in ( 5 , \ R , ,  is less than c39c~2. 

We are now able to prove the existence of the limit measure vff. First, for any 
quadrilateral H we prove that v~(II) = v~(I1). For large n > i consider the Markov 
sieve (5,, with elements A1 . . . . .  A2. The measure v~(17\UAi ) is small enough due 
to (34). The parallelograms Ai crossing the boundary 0F/also have a small total 
measure due to Remark 12. Therefore, the measures v[ and v[ are concentrated 
mainly on the union of parallelograms inside F/. We denote this union by H,.  By 
virtue of (41) the measure p}(F/,) is sufficiently close to the sum of the values nl for 
the parallelograms included in to /7 , .  Since this last sum is independent of N, we 
obtain that at least v[(F1)/v[(Fl) < C4oe~3. Finally, n here can be chosen arbitrarily 
large, so that actually v[(F1) = v~(F/). 

These arguments can be also extended to maximal parallelograms. A maximal 
parallelogram A can be obtained by removing from its support FI(A) an infinite 
number of smaller quadrilaterals (gaps) F/i, see e.g. [4, 5, 8] for detail. The Vo- 
measures of those gaps decay exponentially fast, see e.g. [8, Lemma B.1]. Combin- 
ing this fact with the estimate (31) we obtain the necessary tail bound for the v[- 
measures of those gaps, and then prove the formula v~(A)=  v~(F/(A)) 

- ~i  v~ (Hi). Thus we establish the existence of the measure v~. 

(e) Decay of Correlations. The estimate (42) has not yet been used. It readily yields 
the ergodicity of the measure v § E. Moreover, we could as well establish a subex- 
ponential rate of the decay of correlations with respect to that measure, as for 
billiards in [5]. However, we do not need this exactly. What we really need in 
Sect. (a) is an estimate for the decay of correlations with respect to the measure %. 

Let us fix here our definition of the H61der classes H*,  for small [El, by 
specifying the set of allowed discontinuity to be the singularity sets of the maps 
7~  and T + . Then, for instance, the functions Zo(X) and Ao(x), as well as zE(x) and 
AE(x), belong to H* (see below). 

Theorem 17 (Decay of correlations). For any two functionsf g e H* such that 

vo(f) = 0 
and for any n > 1 we have 

Ivo(f'(g o T~))I < C(f, g )2~" ,  

where 21 e(0, 1) is a constant determined by T and c~. 
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The proof of Theorem 17 is based on the estimate (42) along with supple- 
mentary estimates (34). It goes the same way as the proof of Theorem 1.1 in [5] and 
we omit the details. 

We need also certain estimates for the constants 21 and C(f, g) in Theorem 17. 
These estimates readily come from the proof of Theorem 17 and were first explicitly 
given in [8]. The constant 21 can be chosen as 2~ for some 2 ~ ( 0 ,  1) which is 
independent of e and E. Furthermore, we can set C ( f  9) = (CI + Mf) (C o + Mo), 
where C / i s  the factor in the H61der condition and M / =  maxMIf(x)[. 

We now return to the specific function 

fE(x) = 1 - exp [ - fiE" AE(x)] 

which appears in Part I and Sect. (a). This function lies in a H61der class H* and, in 
fact, the corresponding coefficients C/, M f  vanish at least linearly in E as E ~ 0. To 
be specific, 

If(x)l < 2[ElflAmax, (43) 

w h e r e  Area x - - - - m a x E m a x ~ g ] A E ( x ) l  is finite due to the finiteness of the horizon. 
Furthermore if x, y belong to the same component of smoothness of :irE, then 

[fE(x) --fE(Y)I < 21ElflrAE(X) - AE(y)I < 2[ElflCIx - yl  1/2 , (44) 

where C > 0 is independent of E. This last estimate is easy to check for E = 0, and 
then we apply the C 2 closeness of TE to To for small IEI. The estimate (44) also 
gives the exponent e = 1/2 in the H61der condition. 

The estimates (43) and (44) give a uniform in E bound for the decay of 
correlations which we need in Sect. (a). Let gE be another function in H* also 
depending on E such that Cg and Mg are uniformly bounded in E. Then 

]vo(fE'(gE ~ T~))I < ]El fo( f ,  9)2~ "/~ , 

where 22 e(0, 1) does not depend on E and Co(f  g) is uniformly bounded in E. 

(f) Entropy and fractal dimension. In this last section we prove the parts of 
Proposition 1 concerning entropy and fractal dimension for our measure v + E .  

First, the Pesin formula expresses the measure-theoretic entropy of the map 
TE as 

hv~ (~rE) = , ~ ,  

where ~u E is the positive Lyapunov exponent for TE, which is v~-a.e, constant in 
M due to the ergodicity. This formula has been proved in [23] for hyperbolic maps 
with singularities with the only assumption that the underlying invariant measure 
is absolutely continuous on unstable fibers, which is true in our case. The entropy 
of the flow S t E in the full space 93l is related to that of the map TF through the 
well-kinown Abramov formula [1]: 

h~({S~})  - ~ah~(TE) .  

Note that another expression for the entropy of a hyperbolic map exists, which is in 
our notations 

vr (A t ) ,  (45) hv~(TE)= + ~u 

where A~(x) is the local exponential rate of expansion for x r M under the map TE; 
see also (19). 
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As E--*0, the function A[(x)  converges to / ~ ( x )  for every x~M\(US,). 
Although that  convergence is nonuniform,  all those functions are uniformly 
bounded  and cont inuous on their domains  of  definition. Furthermore,  the measure 
v~ weakly converges to Vo as E ~ 0 due to our  estimate (31). Hence the RHS of (45) 

converges to Vo(/~) as E ~ 0, so that  

lim h~i (TE) = h~o(To). 
E~o 

This is what  we needed for the Corol lary  to Proposi t ions 1 and 4 in Part  I. 
Our  estimates of the fractal dimension of the measure v~ are based on the 

approach  by L.-S. Young. In  her paper  [43] a chain of relations between the 
Hausdor f fd imens ion  HD(v), the capacity C(v), the Renyi dimension RD(v) and the 
entropy h(v) has been proven for an ergodic measure v of a C 1 +" diffeomorphism 
T of a compact  two-dimensional  surface: 

HD(v)=C(v)=RD(v)=hv(T)I~ ~1 - -  . (46) 

Note  that )~ is negative, so that  the expression in the brackets is always positive. 
Our  map  TE is discontinuous,  but  its singularities are mild enough to extend the 
proofs of (46) to TE along the lines of Ka tok-S t re lcyn  [23]. The modifications are 
minor  and we do not  go into detail. 

Acknowledgements. N.C. and Ya.S. would like to thank L-S. Young for the suggestion that her 
dimension formula may be applicable to our problem. G.E. and J.L.L. would like to thank W. 
Hoover, D.J. Evans, and E.G.D. Cohen for introducing us to the Gaussian method and its 
applications in non-equilibrium molecular dynamics. All the authors thank G. Gallavotti for his 
many very helpful discussions concerning various aspects of the whole subject. Finally, G.E. and 
J.L.L. wish to acknowledge the support of the Air Force Office of Scientific Research, Grant No. 
AF-0010E-91, for its support while completing this work. 

References 

1. Abramov, L.M.: On the Entropy of a Flow. Dokl. Akad. Nauk SSSR 128, 873-875 (1959) 
2. Bunimovich, L.A., Sinai, Ya.G.: Markov Partitions for Dispersed Billiards. Commun. Math, 

Phys. 73, 247-280 (1980) 
3. Bunimovich, L.A., Sinai, Ya.G.: Statistical Properties of Lorentz Gas with Periodic Config- 

uration of Scatterers. Commun. Math. Phys. 78, 479-497 (1981) 
4. Bunimovich, L.A., Sinai, Ya.G., Chernov, N.I.: Markov Partitions for Two-Dimensional 

Hyperbolic Billiards. Russ. Math. Surv. 45, 105-152 (1990) 
5. Bunimovich, L.A., Sinai, Ya.G., Chernov, N.I.: Statistical Properties of Two-Dimensional 

Hyperbolic Billiards. Russ. Math. Surv. 46, 47 106 (1991) 
6. Bunimovich, L.A.: A Theorem on Ergodicity of Two-Dimensional Hyperbolic Billiards. 

Commun. Math. Phys. 130, 599 621 (1990) 
7. Chernov, N.I. : The Ergodicity of a Hamiltonian System of Two Particles in an External Field. 

Physica D 53, 233-239 (1991) 
8. Chernov, N.I.: Ergodic and Statistical Properties of Piecewise Linear Hyperbolic Automor- 

phisms of the 2-Torus. J. Stat. Phys. 69, 111-134 (1992) 
9. Chernov, N.I.: Statistical Properties of the Periodic Lorentz Gas: Multidimensional Case. In 

preparation 
10. Cornfeld, I.P., Fomin, S.V., Sinai, Ya.G.: Ergodic Theory. Berlin, Heidelberg, New York: 

Springer 1982 



600 N.I. Chernov, G.L. Eyink, J.L. Lebowitz, and Ya.G. Sinai 

11. Donnay, V., Liverani, C.: Potentials on the Two-Torus for Which the Hamiltonian Flow is 
Ergodic. Commun. Math. Phys. 135, 267-302 (1991) 

12. Evans, D.J., Morriss, G.P.: Statistical Mechanics of Nonequilibrium Liquids. San Diego, CA: 
Academic Press 1990 

13. Eyink, G.L., Lebowit, J.L., Spohn, H.: Microscopic Origin of Hydrodynamic Behavior: 
Entropy Production and the Steady State. Chaos/Xaoc. Soviet-American Perspectives on 
Nonlinear Science. New York: American Institute of Physics, 1990, pp. 367 391 

14. Eyink, G.L., Lebowitz, J.L., Spohn, H.: Hydrodynamics of Stationary Non-Equilibrium 
States for Some Stochastic Lattice Gas Models. Commun. Math. Phys. 132, 253-283 (1990) 

15. Gallavotti, G., Ornstein, D.: Billiards and Bernoulli schemes. Commun. Math. Phys. 38, 
83-101 (1974) 

16. Gauss, K.F.: Uber ein neues allgemeines Grundgesetz der Mechanik. J. Reine Angew. Math. 
IV, 232-235 (1829) 

17. Goldstein, S., Kipnis, C., Ianiro, N.: Stationary States for a Mechanical System with Stochas- 
tic Boundary Conditions. J. Stat. Phys. 41, 915-939 (1985) 

18. Goldstein, S., Lebowitz, J.L., Presutti, E.: Mechanical Systems with Stochastic Boundaries. 
Colloquia Mathematicae Societatis Janos Bolyai 27, Random Fields. Amsterdam: North- 
Holland 1981 

19. de Groot, S., Masur, P.: Nonequilibrium Thermodynamics. Amsterdam: North-Holland 1962 
20. Hoover, W.G.: Computational Statistical Mechanics. Amsterdam; Elsevier 199l 
21. Ibragimov, I.A., Linnik, Y.V.: Independent and Stationary Sequences of Random Variables. 

Gr6ningen: Wolters-Noordhoff 1971 
22. van Kampen, N.: The Case Against Linear Response Theory. Physica Norvegica 5, 279-284 

(1971) 
23. Katok, A., Strelcyn, J.-M.: Invariant Manifolds, Entropy, and Billiards; Smooth Maps with 

Singularities. Lecture Notes in Mathematics, vol. 1222, New York: Springer 1986 
24. Katz, S., Lebowitz, J.L., Spohn, H.: Nonequilibrium Steady States of Stochastic Lattice Gas 

Models of Fast Ionic Conductors. J. Stat. Phys. 34, 497-537 (1984) 
25. Krfimli, A., Simfinyi, N., Szitss, D.: A "Transversal" Fundamental Theorem for Semi-Dispers- 

ing Billiards. Commun. Math. Phys. 129, 535-560 (1990) 
26. Kubo, R.: Statistical Mechanical Theory of Irreversible Processes. I. J. Phys. Soc. Jap. 12, 

570-586 (1957) 
27. Lebowitz, J.L.: Stationary Nonequilibrium Gibbsian Ensembles. Phys. Rev. 114, 1192 1202 

(1959) 
28. Lebowitz, J.L., Bergmann, P.G.: Irreversible Gibbsian Ensembles. Ann. Phys. 1, 1 23 (1957) 
29. McLennan, J.A. Jr.: Statistical Mechanics of the Steady State. Phys. Rev. 115, 1405-1409 

(1959) 
30. Moran, B., Hoover, W.: Diffusion in a Periodic Lorentz Gas. J. Stat. Phys. 48, 709-726 (1987) 
31. Morris, G.P., Evans, D.J., Cohen, E.G.D., van Beijeren, H.: Phys. Rev. Lett. 62, 1579 (1989) 
32. Ornstein, D.S., Weiss, B.: Statistical Properties of Chaotic Systems. Bull. Am. Math. Soc. 24, 

11 116 (1991) 
33. Ruelle, D.: Thermodynamic Formalism. New York: Addison-Wesley 1978 
34. Sinai, Ya.G.: Dynamical Systems with Elastic Reflections. Ergodic Properties of Dispersing 

Billiards. Russ. Math. Surv. 25, 137-189 (1970) 
35. Sinai, Ya.G., Chernov, N.I.: Ergodic Properties of some Systems of 2-Dimensional Discs and 

3-Dimensional Spheres. Russ. Math. Surv. 42, 181-207 (1987) 
36. Sinai, Ya.G.: Hyperbolic Billiards. Proceedings of the International Congress of Mathematic- 

ians, Kyoto, Japan, 1990 
37. Toda, M., Kubo, R., Hashitume, N.: Statistical Physics II. Non-equilibrium Statistical 

Mechanics. Berlin, Heidelberg, New York: Springer 1985 
38. Vaienti, S.: Ergodie Properties of the Discontinuous Sawtooth Map. J. Statist. Phys. 67 (1992) 

(to appear) 
39. Vul, E.B., Sinai, Ya.G., Khanin, K.M.: Feigenbaum Universality and Thermodynamic For- 

malism. Russ. Math. Surv. 39, 1-40 (1984) 
40. Wojtkowski, M.: Principles for the Design of Billiards with Nonvanishing Lyapunov Ex- 

ponents. Commun. Math. Phys. 105, 391-414 (1986) 
41. Yamada T., Kawasaki, K.: Nonlinear Effects in the Shear Viscosity of a Critical Mixture. 

Prog. Theor. Phys. 38, 1031-105l (1967) 



Steady-State Electrical Conduction in Periodic Lorentz Gas 601 

42. Young, L.-S.: Bowen-Ruelle Measures for Certain Piecewise Hyperbolic Maps. Trans. Am. 
Math. Soc. 281, 41 48 (1985) 

43. Young, L.-S.: Dimension, Entropy and Lyapunov Exponents. Erg. Th. and Dyn. Syst. 2, 
109-124 (1982) 

44. Zubarev, D.N.: The Statistical Operator for Nonequilibrium Systems. Sov. Phys. Dokl. 6, 
776-778 (1962) 

45. Zubarev, D.N.: Nonequilibrium Statistical Thermodynamics. New York: Consultants 1974. 
46. Chernov, N.I., Eyink, G.L., Lebowitz, J.L., Sinai, Ya.G., Derivation of Ohm's Law in 

a Deterministic Mechanical Model. Submitted to Phys. Ref. Let. 

Communicated by A. Jaffe 


