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Summary. A large amount of information is con-
tained within the phylogenetic relationships be-
tween species. In addition to their branching pat-
terns it is also possible to examine other aspects of
the biology of the species. The influence that dele-
terious selection might have is determined here. The
likelihood of different phylogenies in the presence
of selection is explored to determine the properties
of such a likelihood surface. The calculation of like-
lihoods for a phylogeny in the presence and absence
of selection, permits the application of a likelihood
ratio test to search for selection. It is shown that
even a single selected site can have a strong effect
on the likelihood. The method is illustrated with an
example from Drosophila melanogaster anfi sug-
gests that deleterious selection may be acting on
transposable elements.

Key words: Maximum likelihood—Natural selec-
tion—Phylogeny

Introduction

The neutral theory of molecular evolution (Kimura
1983) has had a major impact on our concepts about
evolution. The theory suggests that most molecular
polymorphisms are influenced more by random drift
than by selection. Simple expectations can be con-
structed to predict the pattern of molecular genetic
variation that should be observed when selection is
absent. Many of these predictions of the neutral
theory have been found to be reasonably accurate,
whereas others are still controversial.

The distribution of genetic variation within pop-
ulations has been used to support the neutral theory
(Nei 1987). Several features of these data such as
the excess of rare alleles led Ohta (1973) to suggest
that the neutral theory should be modified to in-
corporate the presence of small levels of deleterious
selection acting on allozyme polymorphisms. The
changes proposed by Ohta (e.g., 1976) brought the
theoretical results into much closer agreement with
the observed data.

Another prediction of the original neutral theory
is that if neutral mutation rates are constant over
time then the mean rate of molecular evolution
should also be constant. This has been found to be
approximately correct for the coding sequences of
many genes (Wilson et al. 1977). However, the rates
of evolution of some genes are not constant and a
closer examination of those that do show constant
mean rates reveals that they have much larger var-
iances than expected (Ohta and Kimura 1971; Lang-
ley and Fitch 1974; Hudson 1983). Rates appear to
be partly influenced by generation time (Maeda et
al. 1988; Koop et al. 1986) but this effect cannot
explain the higher than expected variance (Gillespie
1989).

As more molecular sequences are determined, the
rates with which sequences change are becoming
known for many genes. Gillespie (1984a, 1986) has
demonstrated that the rates of evolution for these
genes may follow an episodic pattern. He suggests
?hat the best way to explain this pattern of evolution
1s to invoke selection acting on these sequence al-
terations.

Thus, both within-population variation and be-
tween-population variation suggest that at least some
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level of selection is a required consideration for
studies of molecular evolution. However, very little
progress has been made in attempts to extend Ohta’s
advanced theories because of the difficulties asso-
ciated with incorporating selection into theoretical
models. Gillespie (1984b) has been able to include
the effects of strong selection in his models of change
between species using an asymptotic analysis as-
suming weak mutation and strong selection.

A major difficulty with studies of natural selec-
tion is the immense power of this natural force. Even
selection coefficients that are of the same size as
mutation rates can have significant effects when the
geological time periods over which species have di-
verged are considered. Estimating selection coeffi-
cients of this size and distinguishing them from mu-
tation rates is difficult. The best method to attempt
estimation is experimental verification but this is
almost completely ruled out by the potentially small
size of the coefficients. It is possible, however, to
examine sequences that have been influenced by
selection for millions of years and to determine if
their changes might suggest the action of selection.
This was the approach of Sawyer et al. (1987) when
they inferred selection coefficients on the order of
10-7 from the distribution of segregating amino acid
polymorphisms for the 6-phosphogluconate dehy-
drogenase gene in Escherichia coli. The results of
Hartl et al. (1985) suggest that such small selection
coefficients may in fact be very common and are a
result of the saturation kinetics of enzymes with flux
that is a concave function of activity. They suggest
that many enzymes have these kinetics and that
evolution therefore leads to very small selective dif-
ferences between most segregating alleles.

Another major problem associated with studies
ofnatural selection is the lack of an accurate concept
of what the effects of selection should be. For ex-
ample, Hill and Hastie (1987) found a gene where
the first and second codon positions changed more
rapidly than the third position in a group of serine
protease inhibitors. This unusual result was inter-
preted as being due to positive selection. However,
Graur and Li (1989) suggest that the frequency dis-
tribution of amino acids was unusually skewed and
that this accounts for the peculiar pattern of sub-
stitutions. An impartial method for detecting the
effects of selection is clearly desirable. Furthermore,
in addition to simply stating whether or not selec-
tion has influenced the genes under study, there
should be some method to estimate the actual values
of the selection coefficients and to test their statis-
tical significance.

The large amounts of sequence data that are ac-
cumulating for many genes from many species per-
mit the reconstruction of phylogenies that relate the
ancestries of these sequences. The patterns of se-

quence change in these phylogenies are significantly
altered when some of the characters in these se-
quences are influenced by selection (Golding et al.
1986). These differences can be used in tests to de-
tect the presence of selection.

One way to use these differences is to examine
the most recent distinguishable ancestor of each ex-
tant sequence (Golding et al. 1986). This however
was done with a deterministic model that does not
include the effects of random drift (see Iizuka 1989)
and ignored the problems of inference from a phy-
logeny. Monte Carlo simulations indicate that ex-
tensive sequence data are required to detect selec-
tion with a reasonable degree of certainty (Golding
1987). Generally, sampling must be sufficient to de-
termine 30—40 distinct haplotypes. Because the col-
lection of sequence data is often difficult and ex-
pensive, it is desirable to have a method that extracts
more information from the data.

A maximum likelihood approach is developed
here in an attempt to gain greater statistical sensi-
tivity. This approach has the advantage that it is
based on a fully specified model with all assump-
tions apparent. There are also standard statistical
tests that have been developed making use of alter-
nate likelihoods. It is thus possible with this type of
an approach to detect even very weak selection with
statistical reliability. Furthermore, the shape of the
likelihood surface contains useful information about
the variance of estimates.

Method

Consider sequences of sites that can have only one of two
possible allelic states. This is appropriate for the presence/ab-
sence of restriction sites or the presence/absence of any other
feature such as a deletion or an insertion. Consider these sites to
be selectively neutral and let the characters spontaneously mutate
at a rate v per gamete per generation. For simplicity, let the
mutation rates to and from each state be equal. Generations are
assumed to be discrete and the evolution of each site is assumed
10 be independent of all other sites.

The probability that a site initially in state i will change to
state j within time t is P;. The value of Pt; can be found easily
if the site is selectively neutral. It is given by

Py =" + Ve~
=l — e~

ifi=}

ifi=]

Here v and t are measured in the same units (usually years or
generations) and it is assumed that mutations occur according to
a Poisson process,

The likelihood of part of an evolutionary tree subtended by
the kth node for a site in state i is designated as L™, This like-
lihood can be calculated in a recursive fashion. As an example,
consider the tree given in Fig. 1. The tree is assumed to be strictly
bifurcating with the node or taxa 3 of the tree bifurcating to give
descendant nodes or taxa 1 and 2. The time between node 3 and
node 1 is t and between nodes 3 and 2 is t'. With these definitions
the likelihood of an evolutionary tree can be found recursively
from
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(Felsenstein 1981). The terms L™, L, designate the likelihoods
of part of the evolutionary tree subtended by nodes ! and 2, for
sites with states j and k. If nodes 1 and 2 designate extant species
then these likelihoods are known explicitly. The likelihoods are
either | or 0 depending on whether the extant species does or
does not have that state (allele) at that particular site. This in-
formation can be used to determine L®,. In more complicated
phylogenies with more than two species the likelihoods of interior
nodes can be calculated in a similar fashion. In this case identify
node 3 with a more ancient bifurcation and nodes 1 and 2 with
bifurcations that in turn give rise to more species. Begin at the
lips of the phylogeny and move down the tree one node at a time.
Each successive step uses the likelihoods just calculated such that
the value determined for L®, is used to find the likelihood of the
next node. The likelihood of every subtree of every state is cal-
culated for every node using those likelihoods calculated for the
previous nodes. This continues until the root of the tree is reached
and then the overall likelihood is found by summing the products
of the root likelihoods with the prior probabilities of each state,
Without any further information, the prior probabilities of each
state are usually taken to be their equilibrium frequencies.
Because each site evolves independently, the likelihood of a
phylogeny can be calculated separately for each site. The product
of the likelihoods for each site provides the overall likelihood of
the observed data.

Transition Probabilities with Selection. We would like to mod-
ify this method and to find values for Py when selection influences
sites within a sequence. This cannot be done in complete gen-
erality and instead will be approached using two approximations,
First the overall selection model is described, then a method to
calculate these probabilities for a single selected site is given
assuming that selection is weak, then a method to calculate prob-
abilities is given, which assumes that mutation is weak relative
to selection.

This type of algorithm requires that the individual taxa evolve
independently after speciation. When selection occurs this is true
only of trees consisting of different species. It is not true of in-
dividual, selected haplotypes within a species because selection
will alter the a priori probabilities of some phylogenies. We will
calculate likelihoods assuming that the structure of the phylogeny
itself does not contain information about the strength of selection.
We require and will assume that the individual lineages have
evolved independently after speciatior. This implies that a fork
in the tree is coincidental with speciation and hence that the
effective population size is much less than the divergence time
(N, < 1) so that lineages coalesce rapidly when they are traced
back within an ancestor. If polymorphism exists at the time of
speciation, daughter species are formed from a randomly sampled
haplotype. Note that the descendants must be contemporary in
this model (assuming that selection has had equal opportunity
to act in each taxa) and hence a molecular clock is assumed.

In addition to the neutral sites previously described, a second
class of sites may also be present in the sequences and these sites
may be influenced by selection. Assume that these sites can have
one of two states, which are designated 4 and a. The frequency
of allele A is designated by x. When individuals carry a copy of
the deleterious allele, a, their fitness is reduced by a proportion
| — s. Genic selection is assumed and so the results for either a
haploid or a diploid model are equal. Thus the fitnesses are either

Haploid 4 a

1 1 —s
Diploid 44 Aa aa

1 t—s (I-sp
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Fig. 1. A single taxon (3) bifurcates (speciates) to yicld two new
taxa (1, 2). The taxa 1 and 3 are separated by t generations,
whereas taxa 2 and 3 are separated by t’ generations.

Each character has the same selection coefficient and fitnesses
are multiplicative. Note that no restriction is placed on the sign
of s and so advantageous alleles can also be modelled with this
method. These sites spontaneously mutate at a rate u per gamete
per generation.

To calculate P'; consider the expected allele frequencies in a
finite population. Given some initial conditions, the expected
frequencies can be calculated for different time periods of evo-
lution. The changes in these expectations are then identified with
the corresponding probabilities of transition.

A formula for these expectations when selection is acting in
a finite population was first illustrated by Kimura (1955) and
again by Avery (1978). Consider a population that has only small
changes in its allele frequency x from one generation to the next.
If this small change is designated as 6x, then the expected nth
power of the allele frequency in the next generation is

E[(x + 6x)"] = E[x"] + nE[x"'E(3x|x)]
+n(n— 1)/2E[x"2E(x*|x)] +...,
The expectations E, are over conceptually replicate populations
each with a given value of x. For the above model,
E(6x|x) = u(l — 2x) + sx(1 — x)
E(6x?|x) = x(1 — x)/2N

For n = | and ignoring higher-order terms
E(x + 6x) = E(x) + u[l — 2E(x)] + sE(x) — sE(x?)

A similar equation for E(x?) with selection will require still an-
other equation for E(x3), and so on. Unless s = 0, this leads to
an infinite system of equations describing all of the allele fre-
quency moments. However, it is possible to determine a series
solution for E(x) in powers of (Ns). For example, consider E(x")
expanded into

E(x™) = a + b(Ns) + c(Ns)? + d{Ns)* + ...

wherea= E(x") and the other terms are yet to be determined.

Ns=0
To calculate E(x) to a first order approximation the above equa-
tion gives

E(x + 6x) = E(x) + [l — 2E(x)]

+ sE(x) - sE(x?)

5=0

s~0

This formula does not lead to an infinite system but rather to a
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three-dimensional system of equations that determines E(x) but
ignores terms of the order of O(Ns)2. This system gives the ex-
pected change in allele frequency in one generation. The expres-
sion for t generations is found by iterating these equations. The
solution to this system of equations is

1
E\(x) = e>2u1E0(x) + 5 (1 —_ e—z‘a)

+ 2NS (e-zul —_ e—-4ul—l/2N)[ED(x) p— ED(XZ) ]
1+6 Ns=0 Ns=0.
Ns 9

+ 1 — e~2ut — | — g-4mt-vaN
I+ 8[ ¢ A )]

where # = 4Nyu. Note that E'(x) = % (1 — e~2) + e~2E%x) when

1
s = 0 and that E*(x) = 3 [1 + 2Ns/(1 + 26)] as expected.

The probability of change from allele 4 to the alternate allele

2 in time t can be calculated from this formula as P',, = | —
E'(x) with

Eox) = =1

Ns=0

1, E%x) =1 and Ex?

Ns=0

Similarly P, = E{x) with the same initial conditions and
P, = E(x) and P!, = 1 — E‘(x) with initial conditions

=0 and
Ns=0
This is a first order approximation. For the algorithm that is
actually implemented, a solution to E(x) is used, which is a second
order approximation (the derivation of this formula is given in
Appendix 1),

This approximation is only valid when Ns is small, For large
Ns another approximation is used. This approximation assumes
that mutation is weak relative to selection. The previous require-
ment that N, < t ensures that the time required for fixation of
alternate alleles is very short relative to the length of time between
fixations. Advantage can be taken of this condition by letting the
fixation time approach zero relative to the time between fixations.
The probability of eventual fixation for a particular advantageous
allele is

E%x) = 0, E%(x) E°(x?) =0

Ns=0

U(s, Ns) = (1 — e"2)/(1 — e~ *%)

(Kimura 1962). Similarly the probability of eventual fixation for
a deleterious allele is U(—s, —Ns). There are 2Ny new mutations
of these alleles each generation. Using the approximation, the
probability of a change in the allelic state per unit time is a =
2Ny U(s, Ns) or b = 2Ny U(—s, —Ns) depending on the direction
of change. Therefore the probability of a change from 4 to a in
t generations is

P, = a/(a + b)[l — e-+or]
and
P, = b/(a + b)[1 — e-o+b1]

whereas P',, =1 — P, and P',, =1 — P',,. .

The two approximations to the transitions probabilities are
quite different. The series approximation is only valid with weak
selection and includes the chance of polymorphism. This ap-
proximation is used when 4Ns < 0.1. The weak mutation ap-
proximation considers the relative proportion of species fixed for
alternate alleles and because mutation is weak, does not permit
extended polymorphism. This approximation is more appropri-
ate when selection is strong and is used when 4Ns > 0.1. Both
approximations require that N, < t.

Multiple Sites within a Sequence. The next step is to combine
the answers for a single neutral site with those for a single selected

site and to consider the probabilities of transition between states
for the sequence as a whole.

The algorithm used by Felsenstein (1981) and other maxi-
mum likelihood programs assume that each individual site within
a sequence is evolving independently of the other sites. We again
assume here that mutation proceeds independently at each site.
However, we must be concerned that selection or random drift
may generate linkage disequilibrium between each of the sites
within a sequence. When all sites are neutral, it is known that
random drift will generate linkage disequilibrium in finite pop-
ulations. Although some disequilibrium is created in any partic-
ular population the expected value of this linkage disequilibrium
is zero when these expectations are taken across conceptually
replicate populations. Thus, the disequilibrium will not alter the
expected allele frequency nor the expected probability of tran-
sition.

Consider a single selected site that is completely linked to a
group of neutral sites. Again random drift can generate linkage
disequilibrium in finite populations, but the expected value of
linkage disequilibrium will be zero across replicate populations.
Birky and Walsh (1988) also found via simulations and a math-
ematical argument that the substitution of neutral mutations is
not affected by complete linkage to a selected site.

If more than one site is influenced by selection, the possibil-
ities for the generation of linkage disequilibrium become greater.
It was demonstrated by Felsenstein (1965) that even some se-
lection parameters that do not lead to stable linkage disequilib-
rium may cause transient associations between alleles. He showed
that this was due to epistasis between gametes. In this paper,
only genic selection with strict multiplicativeness of selection
coefficients will be considered. In this case neither transient nor
equilibrium linkage disequilibrium is generated by selection. Thus,
neither selection nor random drift generates a non-zero expected
disequilibrium.

To double-check these results, and to ensure that no dis-
equilibrium is generated, a series of equations can be derived to
describe the evolution of two completely linked loci, each with
two alleles. Haplotype frequencies are designated as X0, X015 X105
and x,, and fitnesses of the four haplotypes are assumed to be 1,
1 —r,1~—sand(l —s)(1 — r), respectively. The first site mutates
at a rate u and the second at a rate v. Following the same method
as given above recursion equations can be derived and are given
in Appendix 2. Again all parameters are considered to be small
(of the order of 1/2N) and terms in (Ns)?, (Nr)2, and (Ns)(Nr) are
ignored.

The equilibrium solution of these equations is

Xoo %(1+2Nr—;18—N+2Nsl+8N)
1

Xg1 = = (I_ZNr—‘f'—Sl_\I_+2Nsl+8NM)
1 1

"‘“=Z<1+2N'1+8Nf 1+8Nu>
1 1

"“=Z(1_2N'1+8Nu N1+8N;¢)

The extension to » arbitrary loci is obvious. These solutions are
the perfect square of the individual allele frequencies when the
level of the approximation is taken into account. As expected,
no stable linkage disequilibrium is generated.

To determine if transient linkage disequilibrium is generated,
these equations were iterated for t/2N = 10-3-10? with 2N = 104,
The mutation rates were chosen to be smaller than the selection
coefficients so that the effects of selection would predominate.
The results of this iteration are shown in Table 1 for three different
initial conditions. The table demonstrates that again, no transient
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Table 1. Linkage disequilibrium generated in finite populations
Initial condition

Generations Xgo = 1 Xo =1 X =1
t=2N/1000 ~1.25 x 10-'° 1.25 x 101 —1.25 x 10°'¢
t=2N/100 —1.25 x 10* 1.25 x 10-* —1.25 x 10°
t=2N/10 —-1.23 x 107® 1.21 x 108 —1.26 x 108
t=2N ~8.35 x 1077 -6.33 x 107 ~8.55 x 107
t=10 (2N) —2.07 x 10 —-2.06 x 10 -2.07 x 10
t=100 (2N) —9.40 x 10 —9.40 x 10~ —9.40 x 10+
1= —9.47 x 10~ —-9.47 x 104 ~9.47 x 10~*

The linkage disequilibrium (as measured by D = Xq0 — [(Xo0 + Xg,)(Xge + X,0)] that is generated by random drift in a finite population
for two completely linked loci each with two alleles in the presence of deleterious genic selection and mutation. Fitnesses are assumed
to be multiplicative. The population size is 2N = 10* with 4Nv = 0.05, 4Ny = 0.1, 4Nr = 0.1, and 4Ns = 0.2

linkage disequilibrium is generated. The values in this table are
not exactly zero because higher order selection terms are ignored.

These results indicate that the transition probabilities can be
calculated treating each site independently (as if it were in linkage
equilibrium). In the presence of selection any of the approxi-
mations can be used to calculate the probabilities of transitions
for individual sites. The overall likelihood is then the product of

likelihoods from each site.

Maximizing the Likelihood. The algorithm given in Felsen-
stein (1981) can be used to calculate the maximum likelihood
with the transition probabilities altered to those given here. For
the purposes of illustration however, the topology of the trees is
assumed to be given. It is not usually necessary to determine the
likelihood of alternative topologies because the null hypothesis
in any test for selection is that Ns = 0.0. For this situation many
excellent algorithms are available (reviewed in Felsenstein 1988).

Given a tree topology, the individual branch lengths are al-
tered to maximize the overall likelihood of the tree with and
without selection. The phylogenies must be rooted, as each lin-
eage must have had equal time periods for selection and mutation
to occur. After each branch length has been individually altered,
the difference is used as an approximation of the gradient and
an attemnpt is made to improve the likelihood by simultaneously
altering all branch lengths in the direction of the gradient. After
this, all branch lengths are again individually maximized and a
new gradient is determined. This is continued until no further
improvement can be made in the likelihood (or until a preset
number of iterations have been attempted). Note that the max-
imum likelihood found is only a local maximum and higher
maxima may exist elsewhere on the surface [however, Fukami
and Tateno (1989) have proved that fora simple model only one
stationary point exists).

Results

Examples

If species are very distantly related then this algo-
rithm is equivalent to determining the probability
of selection simply on the basis of the frequency of
deleterious characters. Unrelated species will con-
tain deleterious or neutral characters according to
their equilibrium frequencies. Departures from these
equilibrium frequencies can be used to look for se-
lection. As a character becomes rare, stronger se-

Table 2. Example sequences that have the phylogeny given in
Fig. 2

Species  Sequence Species  Sequence

A 0000001110 K 1100000001
B 0001001100 L 1100001000
C 0111001100 M 0010111100
D 1111000100 N 0010001100
E 0000010000 (e} 0000000100
F 0001010010 P 0010010100
G 0000010000 Q 0100111100
H 0001000000 R 0001111100
1 0100000000 S 1000011000
J 0100001001 T 1000010100

lection against that character is suggested. This al-
gorithm was applied to distantly related species to
determine the strength of this effect. It was found
that if 1 of just 8 unrelated species carries a dele-
terious character then a likelihood ratio test would
suggest that there is evidence for deleterious selec-
tion. If 2 species carry the deleterious character then
the number of species must be 11 or more for se-
lection to be supported.

A simple example of a typical phylogeny has been
chosen to illustrate the nature of the likelihood sur-
face. This hypothetical example has been construct-
ed using random data. Data are generated for 20
species each with sequences consisting of 10 sites.
The tree is assumed to be given, to be strictly bi-
furcating, and each branch is of a constant length
(except for the three branches leading to the first
four species, which are of double length to insure
that all species are contemporary). A random num-
ber generator is used to randomly alter a single site
along each branch (two along the double length
branches). The resulting sequences are given in Ta-
ble 2,

The branch lengths for this phylogeny were ad-
Jjusted so as to maximize the likelihood for all 20
sequences (Fig. 2). This was done assuming that all
sites were selectively neutral and that the mutation
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Table 3. The log, likelihood of the example phylogeny given in Fig. 2

4Ns
Weak selection Weak mutation
4Ny 10~ 10-3 10-2 10! 10! 100 10*! 10+2
a) A single deleterious character carried by a deeply branched species (J)
10— -~7.1678 —-7.1677 —-7.1674 —7.1658 —-7.1673 —7.3109 —14.1341 —101.8894
10-2 -5.2729 —5.2727 —5.2707 —5.2522 ~5.2529 —5.2515 -11.8920 —100.0931
10-2 —6.6957 —6.6938 —6.6749 —6.4902 —6.4807 —5.0456 —10.0978 —99.9950
10! —-13.7457 —13.7391 —13.6732 —13.0298 —12.8835 -17.2377 ~10.0004 —99.9950
10° —13.8626 —13.8599 —13.8330 —13.5657 —12.9880 —7.2655 —10.0004 —99.9950
b) A single deleterious character carried by a recently diverged species (K)
104 —-7.6916 ~7.6916 —-7.6912 —7.6885 —-7.6911 —7.8341 —14.6490 -102.3336
1073 —5.7909 —5.7907 —~5.7885 —5.7684 —-5.7703 —5.7627 —12.3360 —100.2110
10-2 —7.1618 —7.1598 -7.1404 -6.9504 —6.9420 —5.4645 —10.2152 —99.9950
10! —13.7863 —-13.7797 —13.7136 —13.0676 -12.9221 -7.2584 —10.0004 —-99.9950
100 —13.8626 —13.8599 —13.8330 —13.5657 —12.9880 —17.2655 —10.0004 —99.9940

Columns on the left (10~ < 4Ns < 10-') are calculated using an approximation that assumes selection is weak, whereas the columns
on the right (10! < 4Ns < 10*?) are calculated using an approximation that assumes mutation is weak compared to selection

Fig. 2. An example phylogeny with 20 species. The sequences
for each species are given in Table 2. The branch lengths were
optimized to give the maximum likelihood for the given phy-
logeny (see text).

rate for these neutral characters is 4Nu = 1072 per
site per generation with N = 10%.

Ideally, data should be analyzed using all sites
(including those potentially under selection). Trees
should be constructed by adding one species at a
time and testing all possible rearrangements of in-
dividual species to maximize the likelihood. Com-
putational considerations have forced a less ambi-
tious approach. The tree is assumed to be given by
the pattern of neutral characters (except for the
branch lengths) and the changes in the likelihood
are considered as selection is introduced.

The tree in Fig. 2 was used to investigate what
would happen if there were an 11th site that was
under selection imbedded within this phylogeny. If
only one species carried the deleterious character at
an 11th site, then this species may be chosen in 20

different ways. The resulting likelihoods for the sin-
gle selected site are shown in Table 3a and b if this
single species is chosen to be the species with the
largest (species J) or shortest branch length (species
K), respectively. In both cases the likelihood slowly
increases with increased levels of weak selection. As
selection increases the likelihood continues to in-
crease up to a maximum value, Further increases
in selection intensity cause the likelihood to de-
crease again. This is because the deleterious selec-
tion has become so strong that observing even a
single deleterious character is unexpected. The dif-
ference between the maximum likelihood with se-
lection and the likelihood in the absence of selection
is large. A likelihood ratio test yields a ratio of LR
= 670 and 684 (for Table 3a and b for 4Nu = 10-!)
and LR = 733 and 733 (for Table 3a and b for 4Nu
= 109. Twice the negative logarithm of the likeli-
hood ratio should be asymptotically distributed as
a chi square with 1 degree of freedom. By this test
the chi squares are 13.02, 13.06, 13.19, and 13.19,
respectively. Thus in all these situations there is
evidence that deleterious selection would be oper-
ating. With smaller mutation rates the evidence is
suggestive but not significant. ‘

Two species may carry deleterious characters. For
this case the likelihood was calculated assuming that
species I and J (adjacent species in the phylogeny)
carried the deleterious character (Table 4a), that spe-
cies J and K (closely related species) carried the
deleterious character (Table 4b), or that species J
and M (distantly related species) carried the dele-
terious character (Table 4c). Table 4 again indicates
that selection is warranted if the mutation rate of
the selected character is large but the level of support
is much less than that present in Table 3. The dif-
ferences between Table 4a, b, and ¢ suggest there is
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Table 4. The log, likelihood of the example phylogeny given in Fig. 2

4Ns
Weak selection Weak mutation
4N 10 1073 1072 10-! 10 100 10+ 1042
a) Two adjacent species with deleterious characters (I, J)
104 -13.2268 —13.2270 —13.2284 —13.2435 —13.2448 —13.4865 -19.0730 —104.6357
10-3 -9.0207 -9.0207 -9.0204 -9.0191 -9.0197 -9.1219 ~14.6363 —103.6225
10-2 —8.0650 —8.0634 —8.0469 —7.8869 -7.8779 —-6.6598 —13.6322 -132.1971
10! —13.7488 —13.7429 —13.6845 —13.1155 —12.9860 —8.2367 -19.9999 —199.9900
100 —~13.8627 —13.8603 —13.8363 —~13.5990 —13.0880 —8.2654 -19.9999 —19%.9900
b) Two closely related species with deleterious characters (J, K)
10~ —14.1189 —14.1193 —14.1232 —14.1643 —14.1685 —14.7976 —22.8486 —106.2993
10-3 ~9.8996 -9.8998 —9.9018 —5.9240 -9.9274 —10.3668 —16.2977 —103.9431
102 —8.8088 " —8.8072 -8.7912 —8.6351 ~8.6281 —7.4576 —13.9516 —132.1972
10! —13.7896 —13.7837 ~13.7251 ~13.1535 —13.0249 —8.2577 —19.9999 —19%.9900
tge —13.8627 —13.8603 —13.8363 —13.5990 —13.0880 —8.2654 —19.9999 —199.9900
¢) Two distantly related species with deleterious characters (J, M)
104 —13.7955 —13.7959 —13.7999 —~13.8419 —13.8453 —14.4798 —28.4542 —~116.6893
10-3 —9.5866 -9.5868 —9.5891 —9.6143 -9.6170 -10.1061 —23.8176 —110.8945
102 -8.6019 —8.6004 —8.5860 —8.4465 —~8.4399 -7.5177 —19.7914 —195.4306
10! —13.7560 —13.7502 —13.6918 —~13.1224 —12.9933 —~8.2422 -19.9999 —199.9900
100 —13.8627 —13.8603 —13.8363 —13.5990 —13.0880 —8.2654 ~19.9999 ~199.9900

Columns on the left (10~ < 4Ns < 10-") are calculated using an approximation that assumes selection is weak, whereas the columns
on the right (10~ < 4Ns < 10*?) are calculated using an approximation that assumes mutation is weak compared to selection

Table 5. The log. likelihood for 20 species when 1 (M) carries a deleterious character

4Ns
Weak selection Weak mutation
4Ng 107 103 102 107! 10~ 100 10+ 10+
10+ —-12.1419 —12.1414 —-12.1374 ~12.0981 —12.1435 -12.3031 —19.1455 -106.8404
103 —9.8432 —9.8428 —9.8388 ~9.7995 —9.8447 —10.0028 —16.8427 —104.5351
10-2 ~7.5802 -7.5798 -7.5758 —7.5367 —7.5797 ~7.7230 —-14,5374 —102.1540
10! —5.6602 —5.6598 —5.6559 —5.6181 —5.6400 ~5.6352 ~12.1562 —-100.1451
100 —5,7638 —-5.7634 —5.7594 —5.7202 —5.5824 —4,4437 —10,1493 —99.9950

The phylogeny was determined by the coalescent process with N = 104, Columns on the left (10~ < 4Ns < 10-') are calculated using
an approximation that assumes selection 15 weak, whereas the columns on the right (10~ < 4Ns < 10+2) are calculated using an
approximation that assumes mutation is weak compared to selection

also an influence of the phylogenetic relationships
between the deleterious characters when the mu-
tation rate is small.

The branch lengths in this example phylogeny
are rather long and it is of interest to determine what
would happen if the branch lengths were much
shorter. The shortest branch lengths that could pos-
sibly be expected are those that would be appro-
priate not for 20 species but for 20 sequences chosen
from within a single population. The algorithm is
not strictly appropriate for intraspecific data but the
branch lengths for such data should provide a lower
limit to those expected between species. To this end,
the coalescent process was used to simulate a phy-
logeny for 20 sequences with branch lengtl'%s appro-
priate for samples from a single population with
effective size N, = 10* (Fig. 3). Given this phylogeny
the likelihoods are given in Table 5 when 1 species

of the 20 carries a deleterious character. In this case,
there is little support for deleterious selection.

Restriction Sites in Drosophila

It is desirable to be able to analyze the consequences
of selection when it acts on more than one site and
with as many species as possible. As an example
some variation revealed in Drosophila by restriction
enzymes will be used. Although this is a between-
species method and does not strictly apply to within-
species variation it may be used as an illustration.

Restriction sites have been mapped around the
alcohol dehydrogenase (Adh) gene in Drosophila
melanogaster (Aquadro et al. 1986). A total of 48
chromosomes were isolated and analyzed by eight
enzymes. During the course of the mapping, several
restriction fragment length polymorphisms were de-
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Table 6. The log, likelihood of Drosophila melanogaster haplotypes carrying transposable elements

4Ns

Weak mutation

4Ny 104 1073 102 10! 107! 10° 10+ 10+2

Weak selection

a) Branch lengths are optimized for each row to maximize the likelihood. Characters other than transposable elements have a mutation
rate of 107, N, = 104

10-¢ —75.3260 —75.3259 —75.3248 —75.3249 —75.3832 —77.1037 —138.9890 —863.6617
10-2 —56.3724 -56.3717 —56.3658 —56.3178 —56.3729 —57.6796 —119.4580 —828.4886
102 —47.4171 —47.4134 —47.3766 —47.0246 —47.0409 —45.6042 —106.6875 —872.0732
10! —54.5345 —54.5276 —54.4586 —53.7831 —53.4142  —46.6322 —107.4376 —993.2115
10° —123.9903 —-123.9718 —123.7867  —121.9535 —117.8246  —79.4223  —185.8273 NA

b) Branch lengths are optimized for each row to maximize the likelihood. Characters other than transposable elements have a mutation
rate of 10-8, N, = 10*

10-+ —55.9817 —55.9815 —55.9798 —55.9764 —55.9819 —57.2863  —119.0439 —828.0234
10-3 —47.4523 —47.4487 —47.4129 —47.0741 —47.0758 —45.6370 —106.6996 —871.7206
10-2 —54.5343 —54.5243 —54.4251 —53.4629 —53.4143 —46.6322 —107.4376 —993.2148
107! —120.7628 —120.7176  —120.2658 ~115.8584 —114.8262 —-77.6976 —177.6275 NA
100 -123.9911 —123.9725 —123.7871 —121.9511 ~117.8191 ~79.3750 —185.8838 NA

c) Branch lengths are optimized for each row to maximize the likelihood. Characters other than transposable elements have a mutation
rate of 10~%, N, = 104

10~ —47.4522 —47.4486 —47.4129 —47.0755 —47.0757 —45.6371 —106.6997 —871.7145
10-3 —54.5312 —54.5208 —54.4174 —53.4164 —53.4115 —46.6311 —107.4360 -993.1702
1072 —61.4378 —61.4230 ~61.2758 —59.8449 —59.7818 —39.3608 —110.6055 —1051.5039
10~} —123.9879 —123.9410 —123.4725 —118.9032 —117.8191 —79.3749 —185.8839 NA
10° —123.9911 —123.9725 —123.7871 —121.9510 —117.8184 —79.3701 —185.8901 NA

The likelihood is given only for the eight sites with transposable elements. The phylogeny was determined using a total of 47 sites
(including the transposable elements). Columns on the left (10~ < 4Ns < 10-') are calculated using an approximation that assumes
selection is weak, whereas the columns on the right (10-! < 4Ns < 10+?) are calculated using an approximation that assumes notation

is weak compared to selection. NA indicates that the likelihood is very small

A BC NO P QR 5 T

DE F GH ITJ X LM
i I I =

[
Fig. 3. A phylogeny for 20 species with branch lengths deter-
mined by the coalescent process with N = 10*

tected and these were shown to be due to either
insertions, deletions, or the presence/absence of
transposable elements. These data provide suitable
information to examine the selection coefficients that
may influence transposable elements.

Of the 29 distinct haplotypes discovered, 4 ap-
pear to be potential recombinants. For the purposes
of this analysis these recombinants are ignored. A
phylogeny was reconstructed by maximum parsi-

mony and rooted at the longest internal branch. The
transposable elements are considered to be poten-
tially selectively deleterious and the fast/slow poly-
morphism, the restriction sites, and the deletions/
insertions are considered 1o be neutral characters.
(Note that this is probably a false assumption but
is adequate for the purposes of illustration.)

The likelihood surface for the haplotypes is given
in Table 6. In this case, the branch lengths were
maximized assuming that the neutral characters have
a mutation rate of either 1079, 1078, or 1077 (these
were chosen to give 4Nv = 0.004-0.00004 with N
= 104, values that would be appropriate at the mo-
lecular level). For each of these, the mutation rates
of the transposable elements were assumed to range
between 4Nu = 1074 t0 10° (u = 2.5 X 107 t0 2.5
x 107%). For every combination of mutation rates,
the branch lengths were maximized but the topology
was again fixed as that determined by maximum
parsimony. The resulting trees were then used to
analyze what happens with selection assuming that
both the topology and branch lengths are constant
for given mutation rates.

For each of the three neutral mutation rates in
Table 6, the results are similar. There is a strong
suggestion of the presence of deleterious selection
against transposable elements in this data set if their
mutation rate is large. This table gives the natural
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Fig.4. The loglikelihood surface for transposable elements in Drosophila. The branch lengths are fixed and optimize the likelihood

when N, = 104, 4Np = 102 and v = 1072,

logarithm of the product of the likelihood for the
eight transposable elements observed. Each of the
different transposable elements has different pat-
terns and these are reflected differently in their effect
on the likelihood surface. One advantage of the like-
lihood method is that the effect of each individual
character on the likelihood can be examined. The
p element is shared by roughly half of the haplo-
types. If this element is analyzed in isolation there
is no evidence that selection is operating on it. The
likelihood decreases with increasing levels of selec-
tion, so that the maximum likelihood occurs in the
absence of selection. Only one other transposable
element is shared by more than one haplotype and
itis only shared by two. The remaining transposable
elements are all present only once. In each of these
cases, there is strong evidence that the individual
transposable elements may be selectively deleteri-
ous.

To gain a better concept of the likelihood surface,

the tree with 4Nu = 10~2and 4Nv = 10-% was chosen
as an example. Figure 4 gives the likelihood surface
for this fixed tree as the mutation rate and selection
coefficient of the deleterious characters changes
[plotted as a function of log(4Nu) and log(4Ns)].
Figure 4 indicates that the surface is continuous and
smooth except for a slight discontinuity at the junc-
tion between the two approximations (as is to be
expected). Note that the likelihood surface is very
broad and indicates that a wide range of parameter
values is compatible with the data. This feature
has been noted previously and seems to be a com-
mon feature of phylogenetic reconstructions (Fel-
senstein 1981). For any reconstructed tree of this
nature, maximum likelihood estimates of the mu-
tation rates or other parameters are extremely vari-
able. However, there is significant curvature in. the
surface indicating that the likelihood does have large
changes and that useful maximum likelihood esti-
mates can be made for these parameters.
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The overall maximum likelihoods for Table 6
and Figure 4 all suggest the presence of selection if
the mutation rate of transposable elements is large.
It is interesting that Kaplan and Brookfield (1983)
have found high values of mutation from a dynamic
model of transposition and deletion. They used the
distribution of three copia-like elements (Montgom-
ery and Langley 1983) and found estimates of 6§ =
4Ny larger than 16 (their ¢ measures only the rate
of spontaneous deletions and not insertions; hence
the corresponding value of 4Nu might be even larg-
er). This would place the transposable elements into
a region where deleterious selection would be very
strongly supported. The magnitude of the MLE es-
timate of 4Nu from these tables is somewhat small-
er, but this estimate assumes that mutation occurs
equally to each state. If this assumption is strongly
violated, this maximum likelihood model will not
be valid.

Discussion

Many different kinds of mutational events can occur
within a small region of a DNA sequence. We have
focused on the information that can be obtained
from a reconstructed evolutionary history to follow
not only the frequency of mutational events, but
also the origins of sequence types. The origin of
sequence types, their branching pattern, and branch
lengths combined with other mutational events per-
mit an inference of evolutionary process.

One way to extract a large portion of the infor-
mation contained within a tree is to examine the
likelihood. This is done here for several simple trees.
The tables present examples of what the likelihood
surface looks like. This is done without the added
information that is available from within popula-
tion data. This information can be extracted using
the coalescent process but the addition of selection
to this process appears to be technically difficult.
The algorithm here uses only that information avail-
able assuming that each taxon represents a different
species. The likelihood surface for this case is gen-
erally broad emphasizing the variable nature of pop-
ulations. There is however good curvature to the
surface both as the selection coeflicient changes and
as the mutation rate changes. This implies that MLE
estimates of these parameters are possible and would
be reliable.

Using standard likelihood ratio tests it is possible
to test for the presence of selection. In some cases
these tests have a great deal of power for demon-
strating the effects of deleterious selection. The ex-
amples given here show that deleterious selection
may help to explain the distribution of some char-
acter states. In all of the cases presented, the mu-

tation rate for the deleterious characters had to be
large to support the presence of selection. This is
partly because only one or a few deleterious char-
acters are considered. In DNA sequence data, the
potential number of sites that might have deleteri-
ous states is very large. For each of these sites the
effect on the likelihood would accumulate and could
be quite substantial if many sites are considered. In
this way, even very small amounts of selection could
be detected.

The results shown here do not explicitly rule out
other more complicated hypotheses. These results
are based on a simple model and other explanations
invoking more complicated phenomena should not
be discounted. Maximum likelihood phylogenies
could be calculated for most of these phenomena.
However, adding such things as unusual mutation
patterns would be specific to each case, and although
they can be incorporated into the algorithm, they
would require a specific model of their effects to be
presented. At present most of these phenomena are
not sufficiently understood to permit specific models
capable of accurately describing their dynamics.

The possibility that selection can significantly al-
ter the maximum likelihood would caution against
overinterpretation of trees based upon many sites
that may be under very strong selection such as in
RNA. The sequence changes that have occurred in
RNAs are almost certainly under very strong selec-
tion pressures as evidenced by the high frequency
of complementary mutations.

There are several potential sources of error in this
analysis. The average age of molecular polymor-
phisms is a quantity that has yet to be determined
with accuracy. The age of these polymorphisms could
be very large and during these long time periods it
is conceivable that mutation rates and selection co-
efficients could change. The model used here as-
sumes that all parameters are constant. However,
this will not be a serious omission whenever the use
of an average value for these parameters gives an
accurate result.

This method assumes that all haplotypes are in-
dependent after branching. Although this is prob-
ably true for separate species it is only an approx-
imation for haplotypes chosen from within a single
species. In this case, the evolution of each haplotype
is not independent and the a priori probabilities of
different trees will be affected by selection. This al-
teration of the tree by selection is a potential source
of information that is not being exploited here. An-
other way in which the haplotypes may not be in-
dependent is through the overdominance between
the fast and slow alleles of Adh that has been sug-
gested by several authors. Due to this selection these
haplotypes have not had independent evolution since
their creation via mutation. Hence this is not a de-



finitive analysis of the transposable elements in Dro-
sophila but rather has been used to illustrate the
methodology.

Other potential sources of error are the accuracy
of the reconstructed tree and the accuracy of the
location of the root of the tree. More than one tree
is possible and several different trees should be an-
alyzed. This can simply be done by considering the
different trees that are presented from bootstrap
samples of the sequences data.

As more detailed molecular information becomes
available for population studies, more powerful
analyses can be made. The pattern of transitions in
a phylogenetic reconstruction contains a large store
of this information. Although the likelihood surfac-
es of the example phylogenies are broad, there do
appear to be general patterns to the likelihood, and
maximum likelihood estimates of parameters are
possible. These methods also permit standard sta-
tistical tests to be applied in the search for the effects
of selection. Perhaps advantage can be taken of these
in future, more extensive studies.
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Appendix 1

Using the same method as described in the text, an approximation to E(x) can be derived that is accurate to an order of (Ns)2 In
this case designate E'(x), E'(x?), and E'(x?) all evaluated at Ns = 0 as E ', E,', and E;, respectively. Designate the (Ns) order approximations
of Ex(x) and E{(x2) by W, and W, and the (Ns)? approximation of E{x) by Z,". The system of recursion equations for these is

ZH' =MZ + V

where
Z'=[E\ E}\ E!, W, W, Z, "
V=1[u 0 0, u 0, ul
and
1 — 2p, 0, 0, 0, 0, 0
2u + 172N, 1 — 4u — 1/2N, 0, 0, 0, 0
M = 0, 3u + 3/2N, 1 — 6u — 3/2N, 0, 0, 0
s, —s, 0, 1~ 2y, - 0, 0
0, 2s, —2s, 2u + 1/2N, 1 — 4u — 1/2N, 0
0, 0, 0, s, —s, 1—2u
To solve this system note that M can be decomposed into PDP-!. Where
1~ 2, 0, 0, 0, 0, 0
0, 1 — 4u — 1/2N, 0, 0, 0, 0
D= 0, 0, 1 — 6u — 3/2N, 0, 0, 0
0, 0, 0, 1 — 2, 0, 0
0, 0, 0, 0, 1 — 4u — 1/2N, 0
8%, 0, 0, 0, 0, 1 —2u
—(1 + 6)(3 + 28)/2N8, 0, 0, 0, 0, 0
—(1 + 0)3 + 28)/2N0, 0, 0, 0, 1, 0
p= —=3(1 + )2 + 8)/4N0, 0, 1, 0, 372, 0
s, 0, 0, 1, 2Ns/(1 + 8), 0
0, 1, 4Ns/(2 + 8), 1, 0, 0
s2, 2Ns/(1 + 6), 8Nzs¥(2 + H(3 + 20), 0, —4Nsz/(1 + )2, 1
—2N¢
m, a, 0, 0, 0, 0
—6Ns 2Ns(5 + 46) —4Ns - i 0
@+6’ a+ee+e6’ Q2+0’ ’ ’
3(1 +6)
P = 2B 1 28)° 3/2, 1, 0, 0, 0
+6Ns —2Ns
G+ 20’ a+o 0, 1, 0, 0
- 1’ 1, 09 09 Oa 0
4N2s2(56% + 96 + 3) 6(4N2s?) —12N32g? 8N2g? 2Ns —2Ns
L (1 + 6)*(3 + 20 2N(1 + (3 +20) (1 +6)3+20)° (1 +0)3+28° (1+6 (1+6°

The transient solution is then given by

t—1i
Z'=PDP'Z° + ) PDP-'V

i=0

and the sum is easily solved due to the nature of D.



Appendix 2

Two completely linked loci, each with two alleles can also be
analyzed in the presence of selection. Designate the haplotype
frequencies as Xqo, Xo1, X100 and x,,. Fitnesses of the four haplotypes
areassumedtobe I, ! —r, I —s,and (I — s)(1 — r), respectively.
The first site mutates at a rate x and the second site at a rate ».
The method described in the text yields recursion equations for
these frequencies as,

E(Xoo + 8Xo0) = uE(X,q) + vE(Xo() + (1 — g — v)E(Xg0)
+ SE(XgoX 0) + SE(XgeX,1) + TE(XgeXo))
+ rE(XgeX,,)
E(xo, + 8xq1) = uE(x,)) + vE(Xoo) + (1 — 1 — v — DE(Xo)
+ $E(xg,X10) + SE(Xg:X11) + rE(Xg1%01)
+ tE(Xq.%,,)
E(x, + 6x,0) = #E(Xoo) + vE(x;)) + (1 — u —» — 8)E(x,0)
+ 8E(X,0X,0) + SE(X)0X1;) + TE(Xp;X;0)
+ rE(X,0X11)
E(x,, + 8x,,) = pE(xq)) + vE(x)0) + (I — p — v — s — DE(x))
+ sE(x,,X,,) + SE(X;X,)) + rE(Xp,X 11}
+ rE(x,,%,,)
with
E(xo0l%) = — (1 + #)Xgo + #X10 T ¥Xg,
E(@dXq; 1X) = — (0 + )Xo + Xy T PXgo
E(6X,0!X) = —(u + #)X;o + MXoo + vXy,
E@©x,,1x) = —(u + »)x;, + #Xo, T ¥Xpo
due to mutation,
E(6Xop | X) = Xool8(X1a + X11) + (%o + X11)]
E(8%o, | X) = Xp [~ + 8(X;o + X;1) + 1(Xo, + X))
E(8%10]%) = Xy0[—5 + 8(xio + X1} + (%o + %4)]
E@x, [X) = X, [—s = 1 + s(X;p + X1y} + IXay + x )]

due to selection and,

E[(xgo + 8%o0)'1| = Ef%00)/2N
=0
+ (1 — 2p — 2 — 1/2N)E(x59?)
+ 2pE(XgoX10) + 2vE(X0%01)
E[(%, + 8%,)7)] = E&xo))/2N
s=0
+ (1 — 2u — 2v — 1/2ZN)E(x,,)
+ 2uEXoiX11) + 2vE(Xp0%g1)
E[(x,g + 8%,0)7]] = E(x,o)/2N
=0

+( - 2u— 2 — 1/2NE(x,)

+ ZuE(XDOXw) + 2”E(x10xll)
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E[(x;, + 0x,,)] = E(x,,)/2N

s=0

+ (1 — 2u — 2v — 1/2N)E(x,,%)

+ 2uE(q X, 1) + 20E(X,X1))

El(xon + 0Xoo)(Xo, + 6Xo))] =(1 = 2p — 2» — 1/2N)E(xgoXo))

s=0

+ pE(XpeX (1) + HE(o(X,0)

+ vE(XgoXoo) T vE(Xo1Xa1)

= = 2z — 2» — V2N)E(XgoX,0)

s=0

El(xoo + dxp0M(X10 + 8X,0)]

+ uE(XoXpe) + RE(X,0X,0)

+ vE(xg,X10) + VE(Xg0X,))

El(xo0 + 8xoo)(x,, + 6x,,)] =(1 — 2u — 2r — 1/2N)E(xg0X,,)

s=0

+ uE(XooXg) + #E(X0%,))

+ vE(Xo1X;1) + vE(X00X10)

Ef{xo) + 8%0)(X10 + 8%,0)] = (1 — 2u — 2v — 1/2N)E(xo,X,0)

=0

+ pEX,0%,,) + BERXgoXo)
+ vE(XooX10) + VE(xpX)1)

El(xo; + 3xo)(xiy + 0%,)]|  =(1 — 2u — 2» = 1/2N)E(Xo:X,y)

s=0

+ pE(x; X)) + vE(X0iX0))

+ vE(XgoXyy) + YE(xp1%40)

E[(x,o + ox30)(xy;, + 8X,)] =(1 - 2u — v — 1/2N)E(x,X,})

=0
+ _E(XoeX11) + #E(X0,X)0)
+ vE(x,:%,,) + vE(X0X0)

Again all parameters are considered to be small (on the order of
1/2N) and terms in (Ns)2, (N1)?, and (Ns)(Nr) are ignored.
These equations were iterated to yield Table 1.



