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Abstract. The question of complete integrability of evolution equations associated 
to n x n first order isospectral operators is investigated using the inverse scattering 
method. It is shown that for n > 2, e.g. for the three-wave interaction, additional 
(nonlinear) pointwise flows are necessary for the assertion of complete integrability. 
Their existence is demonstrated by constructing action-angle variables. This 
construction depends on the analysis of a natural 2-form and symplectic foliation 
for the groups GL(n) and SU(n). 

I. Introduction 

A classical Hamiltonian flow with 2N degrees of freedom is said to be completely 
integrable if it has N independent integrals of the motion which are in involution. 
More generally, k independent commuting Hamiltonian flows in a 2N-dimensional 
manifold are said to be a completely integrable family if there are N - k  independent 
integrals of the motions which are in involution, or equivalently the N - k  flows 
may be enlarged to a set of N independent commuting flows. By a theorem of 
Jacobi and Liouville, there then exist (at least locally in phase space) a new set of 
canonical variables, called action-angle variables, in which the flows are particularly 
simple; see [A] for a precise global version due to Arnold. 

In recent years a number of nonlinear evolution equations, beginning with the 
KdV equation, have been shown to have Hamiltonian form on appropriate 
infinite-dimensional manifolds and to have an infinite family of integrals of the  
motion which are in involution. Such equations are commonly referred to as 
"completely integrable," although it no longer makes sense to count half the number 
of dimensions. Nevertheless the inverse scattering method makes it possible to give 
a precise form to the question of complete integrability and, indeed, to reduce it 
to a question in a finite dimensional space. 
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Such results are known for the KdV hierarchy and the nonlinear Schr6dinger 
hierarchy; [Ga, ZF]. The scattering map both linearizes and decouples these flows, 
and action angle variables have been obtained [ZF, ZM]. In both these cases the 
pointwise dimension of the scattering data is 2, and no new pointwise flows are 
needed to get to half the dimension. Manakov [Ma]  obtained action-angle variables 
for the 3-wave interaction equation. 

The inverse scattering method is based on analysis of an associated linear 
spectral problem, and the associated hierarchy of flows are isospectral for the linear 
operator. For KdV the linear operator is the 1-dimensional Schr6dinger operator 
and for NLS it is the 2 x 2 AKNS-ZS operator 

d 
- -  - z J  - q(x); (1.1) 
d x  

here z is the spectral parameter, and J is a given constant matrix. In this paper 
we consider the n x n version of (1.1), under the assumption that J is semisimple 
with distinct eigenvalues and that q takes values in the range of ad J and vanishes 
rapidly at oo. The three-wave interaction is an example of an associated isospectral 
flow, when n = 3; [ZM, Ma, Ka]. The scattering and inverse scattering theory for 
(1.1) has been considered by a number of authors: see [ZS1, AKNS] for n = 2  and 
[Ma, Ka, Sh, Ne, Ge, BY, BC1, Ca]. 

Each traceless matrix p which commutes with J generates a hierarchy of 
isospectral flows of (1.1). On the scattering side these form an (n-1)-parameter  
family of commuting pointwise flows. The pointwise dimension of the space of 
scattering data for (1.1) is n 2 - n .  We show that there is an appropriate Hamiltonian 
structure on this space of pointwise data, and that the ( n -  1)-parameter family is 
completely integrable in the classical sense: it is part of an (n 2 -  n)/2-parameter 
family of commuting Hamiltonian flows. Both the existence of an appropriate 
pointwise Hamiltonian structure and complete integrability follow from a con- 
struction of Darboux coordinates (coordinates which diagonalize the 2-form) which 
are action-angle variables for the flows of the hierarchies. It should be noted that 
the additional commuting point-wise flows needed when n is greater than 2 are 
not linear on scattering data. 

The results just described are obtained in the category of complex manifolds 
and Hamiltonian structures. We are also interested in the real case. The three-wave 
interaction, for example, is associated to the operator (1.1) with J + J * - - 0  and the 
constraint q + q* =0; on the scattering side the appropriate group is SU(3) rather 
than SL(3, C). We show that one can find real Darboux coordinates for scattering 
data to provide action-angle variables for the 3-wave interaction and the other 
flows of the hierarchies. The canonical transformation to action-angle variables is 
not algebraic in this case: it requires the Liouville method and elliptic functions. 
Manakov [Ma] used a different method to obtain action-angle variables for the 
3-wave interaction which have a simple form but which are nonlocal functions of 
the entries of the scattering matrix s of Sect. 3; the associated flows are also nonlocal 
in s. 

Our analysis of the Hamiltonian structures (symplectic form, Poisson brackets) 
leads to a natural closed 2-form of rank n 2 - n on GL(n) ,  and a natural symplectic 
foliation of GL(n) .  The reduction J +  J* =0,  q + q* =0  leads to consideration of 
S U ( n )  in place of GL(n) .  The induced Poisson bracket is not a Poisson-Lie structure 
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[Dr], since it is not degenerate at the identity element. However it was pointed 
out to us by Lu [Lu] that our structure is the translate by a Weyl element of a 
Poisson-Lie structure which is the classical limit of a quantum group structure 
described by Drinfeld [Dr]. 

The plan of the paper is the following. In Sect. 2 we review the Hamiltonian 
structure and hierarchy of flows associated to the operator (1.1). The scattering 
theory for the case J + J * =  0 is reviewed in Sect. 3. We then compute the Poisson 
bracket for scattering data and state the main results on existence of Darboux 
coordinates and complete integrability. In Sect. 4 we introduce and analyze the 
2-form on GL(n) and obtain Darboux coordinates. A symplectic foliation of GL(n) 
is introduced in Sect. 4, and we calculate the associated Poisson bracket and the 
Hamiltonians for a family of linear flows. 

The algebraic results of Sects. 4 and 5 are used in Sect. 6 to prove the results 
on Darboux coordinates and complete integrability for scattering data which were 
stated in Sect. 3. The case of SU(3) is taken up in Sect. 7; complete integrability 
of the three-wave interaction is a consequence. In Sect. 8 we show that the results 
stated in Sect. 2 remain valid without the restriction J + J* =0. 

2. Symplectic Structure of Hamiitonian Hierarchies 

We consider Hamiltonian hierarchies of flows associated to the first order differential 
operator 

d 
dx zJ-q(x), z~C, (2.1) 

where J is a constant n x n semisimple matrix; q(x) is an n x n matrix whose entries 
qSk belong to the Schwartz class 5e(R); and, for each x, q(x) lies in the range of 
ad J. We denote by P the linear space of all such q; thus P = 5P(R; ad J(M,,)), where 
M, = M,(C) is the space of n x n matrices, with the Schwartz topology. We use 
the following inner product on P: 

(q, P) = S tr [q(x)p(x)]dx. (2.2) 
a 

Since P is a linear space we may identify it with its tangent space. We denote 
tangent vectors (at a given point q) by q. Associated with (2.1) is the closed 2-form 

12e = ~ ! tr [6q(x) ^ [ad J ]  -1 6q(x)]dx, (2.3) 

where 6q(x) denotes the linear functional taking ~ to O(x) and lad J ] - ~  maps to 
the range of ad J, on which ad J is injective. Thus 

1 
I2e(Ox,O2)=~!tr[Ol(x)[adJ]-1912(x)-gh(x)[adJ]-lgh(x)]dx. (2.3') 

Since the inner product is non-singular, 12 e is symplectic. Note that when 
J + J* = 0, and we restrict to the set {qeP:q + q* = 0}, then the form 12 e is real. 

We shall work with the case in which J is diagonal with distinct eigenvalues: 
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J = diag(i21,i22,..., i2,). In this case 

1 
$2i, = ! i~<k i(2k -- 2 i) 6qJk(X) ̂  6qki(X)dx" (2.4) 

A Poisson bracket is associated to the symplectic form g2 e in the standard way. 
If F is a functional on P which is Frechet differentiable, and 0 is a tangent vector, 
we write 

[ O F ] ( q ) = d  =oF(q + eit)= ( ~q (q),(t I ,  (2.5) 

i.e. we identify 6F/bq with the gradient of F. The Hamiltonian vector field associated 
to F, denoted H v, is then defined by 

g2e(H e, dt) = -OF. (2.6) 

This definition and (2.3') imply that Hr  = [J ,  6F/dq]. The Poisson bracket [Ne] 
is then given by 

{ F , G } e = t t r G =  - ~ , ( H a ,  H p ) = ! t r  J ' 6 q J ~ q J  " 

There is an (n - 1)-parameter family of hierarchies of commuting Hamiltonian 
flows in P, defined as follows. Let ~ be a constant matrix with 

tr~ =0 ,  [ J ,~ ]  = 0, 

and associate to q in P a sequence of matrix-valued functions Fk defined recursively 
by 

dFk + x-. - ~ 
Fo(x)=#;  [J,  f k + l ] = ~ x  [q, fk] ;  lira Fk+l(x)=0.  

The Fk depend nonlinearly on q for k > 1 (k > 2, if n = 2). Various formal and 
rigorous versions of the following are well-known. 

Theorem 2.1. [Sa, BC2, BC3]. Each Fk(q) is a polynomial in q and its derivatives 
of order less than k. The hierarchy of flows defined by 

(t = [ J, F,+ ~(q)] (2.8) 

are Hamiltonian with respect to 12 e and the Hamittonians are in involution with 
respect to the Poisson bracket {, }e. 

We shall discuss the Hamiltonians for these flows later. 

It is also well-known that the scattering transform linearizes the flows (2.8). 
We discuss this in the next section. 

3. The Scattering Transform; Symplectic Structure on Scattering Data 

We summarize here the basic results of scattering theory for the operator (2.1); cf. 
[BC1]. In this section we assume 

J=diag( i21  . . . . .  i2,), 21ER, 2 1 > J t 2 > . . - 2  .. (3.1) 
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For a given q in P, we seek a matrix-valued solution of the spectral problem 

~x •(x, z) = zJ~b(x, z) + q(x)tp(x, z), zeC, (3.2) 

which is normalized by the asymptotic conditions 

lira ~ ( x , z ) e x p ( - x z J ) =  1, limsup ][~(x,z)exp(-xzJ)l[ < c~. (3.3) 
x - - *  - -  aO X ~ + ~  

If ~ II q(x)Irdx < 1, then there is a unique solution to (3.2), (3.3), and it has a limit 

lim exp(-x~J)~k(x,r ~eR. (3.4) 
2---~ q- oO 

The transformation q~--~s = s(. ; q) is one of two versions of the scattering transform, 
and s is called the scattering matrix. 

Still assuming j II q(x)II dx < 1, the solutions ~(x,z) for non-real z are holo- 
morphic and have limits on R which are related by 

qJ(x, ~ + iO) = qJ(x, ~ - iO)v(~), r (3.5) 

To describe the target spaces for the maps q~--,s and q~--,v, we define the spaces 

SL +-= {a~.SL(n,C):aik=O if ___(j-k)>0}; 

SL~ = {a~SL • :diag (a) = 1 }; 

SL.  = (SL +. SL- ) n (SL- . SL +). (3.6) 

This means that SL,  consists precisely of those s in SL(n) = SL(n, C) which have 
two (unique) triangular factorizations 

s=s+v+X=s_vS_ 1, s•  +, v• (3.7) 

(3.8) Definition. SD is the set of matrix-valued functions s :R~SL(n)  with the 
properties 

s is smooth and bounded; each derivative has an asymptotic expansion 
in powers of ~- x as I~l ~ ~ ;  (3.8a) 

s takes values in SL,,  so it factors as s(~)= s•177162 (3.8b) 

the diagonal-matrix-valued functions 6 • (r = diag s + (4) are the 
boundary values of a diagonal-matrix-valued function which is bounded, 
holomorphic, and invertible in C\R. (3.8c) 

(3.9) Definition. SD' is the set of pairs of matrix-valued functions (v+,v_), v+_: 
R--* SL +-, with the properties 

each entry of v• - 1 belongs to 5g(R); (3.9a) 

the upper principal minors of the matrix-valued function v = v-%+ 
are non-zero and have winding number zero. (3.9b) 

Condition (3.9b) includes discrete scattering data (bound states); throughout 
this paper we consider only potentials with purely continuous scattering data. 

We equip SD and SD' with the Schwartz topologies. 

Theorem3.1. ([Sh],[BY],[BC1]). The map q~--*s is a diffeomorphism from a 
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neighborhood of 0 in P onto a neighborhood of 1 in SD, and it extends to map an 
open set in P bijectively to a dense open set in SD. 

The matrix function v in (3.5) is related to the matrix function s by the factorizations 
(3.7); in fact 

v = vS_ iv+ = sS_ is+, (3.10) 

and this equation uniquely determines v• from v. The map q~-*(v+,v_) is a 
diffeomorphism from a neighborhood of the origin in P onto a neighborhood of( l ,  1) 
in SD', and it extends to map an open set in P bijectively onto a dense open set in SD'. 

(3.11) Remark. It is nearly implicit that SD and SD' are diffeomorphic. The 
factorizations (3.7) and (3.10) determine v from s. Conversely, write s • = 6 • t • with 
6 5 diagonal and t• in SL~. The factorization (3.10) gives vS_lv+ = tLl(6-16+)t+, 
showing that t • and 6-16 + are determined algebraically from v. The holomorphy 
properties (3.9) shows that the factors 6_,6+ can be obtained from 6S_16+ by 
solving a Riemann-Hilbert  factorization problem, and thus s • and s itself can be 
obtained from v or from the pair (v+,v_). 

Proposition 3.2. ([G, BC1]). The pull-back of the 2-form 12 p of(2.3) under the inverse 
of the scattering transform is 

12s=4--~l! tr[v_(6v)v7~l ^ s-16s]. (3.12) 

It will be convenient to have a somewhat different formulation. 

Proposition 3.3. The 2-form 12 s can be written 

O s = 4 ~ l ! t r [ v ; 1 6 V + A S ; 1 6 s + - v - 1 6 v _ ^ s - - 1 6 s _ ] .  (3.13) 

Proof. Since v = v-_iv+ and s = s• 1, it follows that 

V_(6V)V + 1 = (6V + )V + 1 --  (6V_)V-_ 1; 
S-  16S = S -  I[-6S• 1 - -  S• V~ 16V• V--• 1] = V+ S.~ l ( 6 s •  )V~ I - -  (6V5 " )V~- 1 

Thus 

tr [-(6v+)v~ 1 ^ s-  16s] = tr [v~16v• ^ s~ 16s• ], 

since (6v• 1 is strictly upper or lower triangular. 
Next we consider the image under the scattering transformation of the Poisson 

bracket {, }p of (2.7); equivalently, this is the Poisson bracket associated with the 
2-form Os on scattering data. As usual, we may consider the entries of the scattering 
matrix s(r -- s(~; q) to be functionals on P and compute the corresponding bracket 

{Sjk(~), Stm(rl)}s(s) = {S/k(~), Stm(rl)}v(q), 4, r/~R. 

There are two problems here. First, the gradients 6sjk(O/6q do not decay, so the 
formula (2.7) does not have an absolutely convergent integrand and it is necessary 
to use a regularization such as 

li~mo~ - N  i tr J'6qq'r ax" 



Complete Integrability of Completely Integrable Systems 415 

Second, even this limit exists only in the sense of distributions in the two variables 
~, r/. Thus  the precise meaning of the calculation is this: for any pair of test functions 
u, w in C~ one considers the pair of functionals 

F(q) = ~ Sjk(~)u(~)d ~. G(q) = ~ S,m(r162 s = s(';q). 
R R 

Then formally one has 

(F'G} = lim ~str([J'fi~--q ]~q 

= lim S ~ N t r  N-= J ' - - ~ - q ] ~ )  u(r 

= ~ {Sik(~), SZm(~/))sU(~)w(rl)d~ drl (3.14) 

as the defining equat ion for the distribution {sjk(~), stm(r/)} ~ ' ( R  x R). The follow- 
ing calculation is standard; see [Ma]  for the 3 x 3 case and [Sk, K D ]  for R-matrix 
formulations. 

Proposition 3.4. The distribution defined by (3.14) is given explicitly by 

{Sjk(r Sl,~(r/) } = nisjm(~)S,kffl)[sgn(l--j)- sgn(m -- k)]6(~ - r/) 

1 
+ Sjk(~)Stm(rl)[t~l- ~km] p.v.~ __ ~/, (3.15) 

where we take sgn (0)=  0 and p.v. denotes the principal value. 

Proof. The variation of s with respect to q is 

~(~) = ~ s(~)@(x, r l(l(x)@(x, ~)dx; (3.16) 
R 

[BC3, (2.45)-I. Here the qJ are the eigenfunctions (3.2), normalized at x = - oo. We 
write ~k(x, 4 )=  ~b(x, ~)s(r which is normalized at x = + oo. With F as above, 
an easy calculation using (2.2), (2.5), and (3.16) shows that 

~q (X) : ! qJ(x, ~)ekj~(X, ~)-lu(r 

A similar formula holds for G, so (3.14) becomes 

N 

{ F , G } e =  lim ~ t r ( F j , 6 F ] & G ~ d x  
~-~ \L  (~q d cSq, ] 

N 

= lim ~ ~ tr([J,~(x,~)ek~(x,~) -1] 
N'~oo - N  

�9 ~(x, r/)e.,t~(x, r/)- 1)u(~)wO1)dxd~dtl. (3.17) 

We use the identity 

1 d 

~ - ~l dx - - - -  [~(x, ~)- l~(x, 4)] = ~(x, ~)- 1J~(x, 4), 
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and the properties of the trace to conclude from (3.17) that 

1 
{Sjk(~), S,m(7) }S = lirno ~ tr [ekjg(~, 7, N)em~g(7, r N) 

- ekjg(r 7, -- N)emtg(~, 7, -- N)] (3.18) 

in the sense of distributions, where g(~, 7, x ) =  ~(x, ~)-l~(x,  7). Now 

g(r ~ exp Ix(7 - ~)J]s(7) as x ~ + ~ ;  

~ s ( ~ ) e x p [ x ( 7 - ~ ) J ]  as x ~ - ~ .  

Thus the right side of (3.18) is 

lim l~[sjm(rl)Stk(~)eilV(~-~)(;tz-~'JJ--Sjm(r (3.19) 

There is no singularity in (3.19) since the term in brackets vanishes at ~ = 7; therefore 
we may replace the expression in (3.19) by the principal value integral, i.e. letting 
the distribution act as the limit as 550 of the integral over the region I ~ -  7[ > e. 
This allows us to decouple the two terms in (3.19) and use the identity 

1 
lim p . v . - - e  iaN~r = rcisgn(a)6(~-7) if a~R\0  

N ~  ~ - 7  

to deduce (3.15) from (3.19). 
As is well-known, the flows of Theorem 2.1 become linear on the scattering side. 

Proposition 3.5. The potential q(., t) evolves according to (2.8) if and only if  the 
scattering data evolve according to 

~s(~,  t) = ~k [/~, S(~, t)], ~ V • (r t) = ~k [#, V • (~, t)]. (3.20) 

For a proof, see for example [BC2, BC3]. These flows are Hamiltonian (with 
the same Hamiltonian functions as in the original variables) with respect to the 
symplectic form -Qs on scattering data since the structure has simply been 
transformed from P to SD or SD'. We wish to emphasize that on the scattering 
side the flows (2.8) are not only linearized but decoupled for different valfies of 
~, r/; equivalently, the Hamiltonian vector fields act in a pointwise fashion on the 
entries of s or of (v+,v_). This allows us to reduce the question of complete 
integrability of the family of flows (2.8)/(3.20) to a finite-dimensional problem. 

This integrability question is related to certain problems and questions 
concerning the symplectic and Poisson structures on scattering data. Observe that 
the 2-form -Qs lifts to the loop space 

L(SL,)  = {a: R--* SL.:  entries of a -  1 belong to 6a(R)}. 

More precisely O s is the pullback to SD of the 2-form defined by (3.12) or (3.13) 
on L(SL,). Moreover, these are pointwise formulas, in the obvious sense: they 
express the form as the direct integral of forms computed pointwise from entries 
of a in L(SL,). However, the form is not symplectic on L(SL.). (This can be seen 
from the fact that the dimension of SL is n 2 - 1 but the rank of the pointwise form 
in (3.13), as we show in the next section, is n 2 - n.) 
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The alternative space of scattering data, SD', is itself a loop space, whose 
pointwise dimension is n 2 - n, and the form 12 s is symplectic on SD'; however the 
computation of s from (v +, v_) involves the solution of a Riemann-Hilbert  problem, 
so that (3.12) does not express ~s  as a direct integral of pointwise 2-forms on the 
fiber of the loop space; in fact it has no such pointwise expression when n is larger 
than 2. 

The Poisson bracket {, }s lifts to the whole loop group L(SL(n)) using the same 
formula (3.15), but the nonlocal term involving p.v. ( 4 -  t/)-1 shows that {, }s is 
also not a direct integral of a pointwise defined bracket, unlike the bracket {, }p 
on the space P of potentials. This corresponds to the fact that submanifold 
SD c L(SL(n)) is determined in part by the nonlocal constraint (3.8c). The nonlocal 
term does not vanish when {, }s is considered as a bracket on SD' if n > 2, which 
proves the earlier assertion that g2 s has no pointwise expression on SD'. 

The following summarizes these observations. 

Proposition 3.6. s s is a closed, pointwise 2-form but not a symplectic 2-form on the 
loop space L(SL,) .  .Qs is a symplectic 2-form but not a pointwise 2-form on SD'. 

{ ,  }s is not a pointwise Poisson bracket on L(SL(n)), nor on SD, nor on SD' (when 
n>2) .  

Our main positive results involve choosing new coordinates to overcome the 
limitations in Proposition 3.6. To state them we must extend the notion of a 
distribution-valued Poisson bracket beyond the coordinate functions themselves. 
Suppose f,  g are in C~~ and u, w are test functions. We define functionals 
on SD, or on P, by 

fr = f(s(~)), F(s) = S f(s(~))u(~)d~, 

g,(s) = g(s(~)), G(s)= ~ g(s(~))w(~)d~. 

Thus the coordinate functions ark(S ) = S jR, a~,,(s)= s,~ give rise to the functionals 
Sjk(~ ), S~m(tl), F, and G considered above. Then as before we obtain the distribution 
{fr g,} ~ ' ( R  x R) by the formal calculation 

(F, G)p = ~ {f~, g,},u(~)W(tl)d~dtl. 

This leads also to the expression 

V # f  Og { f ;, g,}s = z., ~ O~,. {sik(~)' s"(tl) }s. 

Theorem 3.7. There are functions p,, q~, 1 < v < �89 2 - n) which are defined and 
holomorphic on a dense open algebraic subset of  SL(n) and which have the following 
properties: 

The map s~-*(p 1 os, p2 os . . . .  , ql os, qE os . . . .  ) is an injection from a dense 
open set in SD into C~(R; C"2-"), (3.21) 

~ s  = ~ 6(p~os) ^ 6(q~os), (3.22) 
V 

{Pu,~,P~,,}s = {qu,~,q~.,}s = 0; {Pu,r = 6u~6(~ -- q), (3.23) 
For any f in C*(SL(n)), the distributions {p~,r have support at 

= th all v. (3.24) 
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In other words, the functions pros, qvos are global Darboux coordinates on 
the manifold SD of scattering data. The additional fact (3.24) implies that 
Hamiltonians which are functions of the p~ give pointwise vector fields on SD. 
These same functions p~ provide a strong positive answer to our question about 
complete integrability in the SL(n) case, as follows. 

Theorem 3.8. The functions p~ of Theorem 3.2 may be chosen so that for each traceless 
diagonal matrix It, the Hamiltonian for the flow (2.8), (3.20) is a linear combination 
of the functionals 

j" ~p~(s(~))d~. (3.25) 
R 

Thus the family of flows (3.20), which is determined pointwise by the 
(n-1) -parameter  family of traceless diagonal matrices, is imbedded in the 
�89 2 -n)-parameter  family of flows generated by the pv's. In fact the functions pv, q~ 
of Theorem 3.2 provide action-angle variables for the flows (3.20). 

Theorems 3.7 and 3.8 are proved in Sect. 6. 
In this section we have made two restrictive assumptions about J: that the 

eigenvalues are distinct and that they lie on a line through the origin in C. The 
same results hold without the second assumption, as we show in Sect. 8. 

Another situation arises with reduction, i.e. the imposition of restrictions on 
the potentials q. The most interesting example in the present context is the 
restriction q + q* = 0, still assuming (3.1). For such q, the scattering data satisfies 
the corresponding constraints 

s(~) belongs to SU(n); v+(~)*v_(~)=l.  

The pullbacks of the 2-forms are still symplectic. When n = 3 the simplest associated 
nonlinear evolution equation is the 3-wave interaction. (Note that one needs 
/~ +/~* = 0 in (2.8), (3.20) to preserve the constraints.) Here our manifolds are real, 
and we need the functions p~, q~ of Theorem 3.2 to be real in order to preserve the 
structure. 

Theorem 3.9. The functions Pv, q~ of Theorems 3.7, 3.8 can be chosen to be real on 
SU(3) in the case n = 3. In particular, the three-wave interaction is a completely 
integrable Hamiltonian evolution in the strong sense. 

This result is proved in Sect. 7. 

4. A 2-Form in GL(n) 

Let GL(n) denote either GL(n, R) or GL(n, C); in the latter case the functions and 
forms to be considered are complex-valued. The key steps in deriving Theorems 3.2, 
3.3, and 3.4 involve an analysis of a 2-form in GL(n): the integrand in (3.13). As in 
Sect. 3 we introduce the matrix spaces 

GL • = {a~GL(n):ajk = 0 if _ ( j -  k) > 0}; 

GL~ = {aeGL • :diag(a) = 1}; 

GL.  = (GL + .GL-)  n (GL-. GL +). 



Complete Integrability of Completely Integrable Systems 419 

Again, GL. consists of those elements of GL(n) with factorizations 

a = a + v + l = a _ v  -1, a+eGL +, v+eGL~. (4.1) 

We consider a • v • here as functions of a in GL(n); then da • and dv • are matrices 
of 1-forms on GL(n) and we may define a 2-form by 

[2= tr[v~ldv+ ^ a~lda+ - vZldv_ A a-ida_].  (4.2) 

At the identity, 12 = 2 ~ dajk A dakj, SO I2 has rank > n z - n on an open set. 
j<k 

Theorem 4.1. On a dense open algebraic subset of GL. the 2-form [2 has a 
representation 

N 1 
[2 = ~. dpv A dqv, N (n 2 - n), (4.3) 

where pv and q~ are analytic (holomorphic) and the i-forms dp~, dq~ are independent. 
In particular, I2 is closed and 9enerically has rank n 2 - n. 

The proof of this theorem is given after Theorem 4.4. The strategy is to obtain 
the general result by a reduction to the case n = 2. 

Lemma 4.2. For n = 2, 

g 2 = d l o g [ ~ ] ^  dlog~a211,  d = d e t a .  (4.4) 
L a l 2 j  

Proof. If a is in GL,(2) then 

v _ - - - -  l ' 

A direct calculation gives 

/)_ =~all 0 ] 
La21 A/ali " 

and some further manipulation leads to (4.4). 

(4.5) Remark. Given 1 < j  < k < n, consider the subset of GL, consisting of those 
a whose only non-vanishing off-diagonal entries occur in the (j, k) and (k,j) places. 
The pullback of D to this subset has, by an analogous computation, the form 

 4.6, 
L aik J 

We now proceed to reduce the general case to a sum of cases as described in 
the preceding remark. 
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Suppose that nl, nz . . . . .  nN, N = �89 2 -  n), are permutation matrices with the 
two properties (written using the standard matrix units) 

~ is the matrix of the transposition (k, k + 1), k = k~; (4.7a) 

the product glTrz...nN is the antidiagonal matrix r = ~ %,+ ~ _j. (4.7b) 

There are various such decompositions of the antidiagonal matrix r. One such 
decomposition corresponds to permuting (1, 2 . . . . .  n) by moving 1 to the extreme 
right in n - 1 steps, then moving 2 to the position left of 1 in n - 2 steps, and so on. 

(4.8) Definition. Given ~v satisfying (4.7), set 

r o = l ,  rv ~ ~l~2.../~v, l<_v<_N; 
U~=r~GL~r~I ;  L~=r~GL-rU1;  D~=r~B~r71, 

where B~ = {b~ GL(n); bjk = 0 for j ~ k unless { j ,  k} = {k~, k~ + 1) }. Thus the matrices 
in D~ are block diagonal in the sense that after conjugation by r~ ~ the nonzero entries 
lie in a single 2 x 2 block along the diaoonal. 

Note that U ,  L~, D~, U~ + D~, and L~ + D~ are subalgebras of the matrix algebra 
M,. Let 

P~:M, ~ D~ (4.9) 

be the projection which commutes with left and right multiplication by diagonal 
matrices. Then 

(D, + U,)c~(D, + L~) = D~; (4.10) 

P~ is an algebra homomorph i sm on Dv + U, a n d o n  D~ + L,.  (4.11) 

Note also that because r~_ 1 and r~ differ by a single transposition, we have the 
identities 

D ~ + L ~ _ a = D ~ + L ~ ,  D ~ + U ~ _ x = D ~ + U  v. (4.12) 

(4.13) Definition. Suppose the permutation matrices rt~ satisfy (4.7), and suppose 
rU l ar~ is in GL . ,  O <_ v <_ N. Then we may factor the rU l ar~ as in (4.1) to obtain 
matrices u~,l~ such that 

au~ = l~, u~U~,  lv6L~. (4.13a) 

Now define v + , v~-, a~+, a~- and 2-forms 12~ as follows: 

vT=P~u~_ l ,  v~+=P~uv, a ~ = P f l ~ _  x, a~+=P~l~; (4.13b) 

12~ = tr[(v~+)-ldv~ + ^ (a~+)-lda~ + - ( v ] ) - l d v ~  /x (a~) -1 ^ daU]. (4.13c) 

Lemma 4.3. With a as in (4.13), 

v _ = u  o, a _ = l  o, v + = u  N, a+=lN,  (4.14) 

U~_ll Uv = 1~_~1 l~ = (v~ ) - x v~+ = (aU ) -  l a~ +. (4.15) 

In particular, a{(v~+) -1 and aU(v]) -1 have a common value a~ in D~, and 12~ is the 
pullback at a~ of  12 under the map b~--~r~lbr~ from D~ to B~ c GL(n). 

Proof. That (4.14) holds is clear from the definitions, together with the assumption 
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(4.7), which gives rN = r. The factorizations (4.13a) imply the first equality in (4.15), 
since l~_lu~_~l = a = l,u~ 1. Because of this first identity and (4.12), the common 
value belongs to (D, + L,)c~(D v + U~)= D~. Therefore we can project and use the 
property (4.11) to obtain the remaining identities in (4.15). The final statement is 
immediate from conjugation of 12~ by r,. 

Note that avv{ = a{, and that 12 v can be expressed directly in terms of the 
entries of the a~ via (4.6). By virtue of the following decomposition theorem, the 
computation of I2 is reduced to a sum of 2 • 2 problems, as in Remark 4.5. An 
algorithm for computing av in terms of a will be given below. 

Theorem 4.4. Under the assumption (4.7), I2 is the sum 

I2=  121 + 0 2 + ... + O N. (4.16) 

Proof. We begin by reversing the reasoning in the proof of Proposition 3.3 to 
write 12 in the alternative form 

g2 = tr Iv_ (dv)v ~ 1 ^ a -  1 da]. 

From (4.14), (4.15) it follows that 

V ~ V - I v +  ~- UolUN ~- VlV 2 ""VN, 

where v~ is the common value of the matrices in (4.15). Then 

~_(dv)~ + = v_ { ~ ( ~ ,  ... ~ _  1)d~v(~+ 1"" ~ ) } ~ ;  1 = X u~_ l (dvv)u;  1. 

Note the identity 

u._ l dv .u71  = u v ( v : ) -  1 dv + u71 _ u ~ _ , ( v ~ ) -  1 dv7 u,:21. 

From a = lvu~ 1 we find 

tr{u~(v+)-ldv~+u71 ^ a - i d a }  = t r { ( v+ ) - l dv  + ^ [(du71)u, + 171dlv]}. 

The first term vanishes since v + and u, both belong to Uv. For  the second term 
we have 

tr { (v +)-1 dv + ^ p , ( l ;1  dlv) } = tr { (v +) -1 dv + ^ (a+) -1 da + }, 

since P,  is multiplicative on L,. The second term in tr (u~_ l dvvu71 ^ a - i d a )  is 
treated in the same way, using a = lv-lu,--11, and (4.13) follows immediately. 

Proof of  Theorem 4.1. Choose permutation matrices which lead to a decomposition 
(4.16) of ~. According to Lemma 4.2 and Remark 4.5, each g2 v has the form 
dpv ^ dq,, so we obtain the desired representation (4.3) on the dense set where the 
p~, q~ are defined. It follows immediately that g2 is closed and that it has rank at 
most n z -  n everywhere. The rank is n z - n  at the identity, and therefore is n 2 -  n 

on a dense algebraic open set, so the dp~, dq, are generically independent. 
To compute 12~, and 

a, note that 

where 

hence p,, qv, we need to find a v. To obtain a~ from 

# l#~, (4.17) a u  v = 

# - - i, # I, uv=u~_l (v ,  ) Iv= l ,_ l (v~) -  (4.18) 
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and 
# # P~l~=Pfl~_l(v~) - i  =a~-(v~-) -1 =a~, P~u~= 1. 

The matrix r~_~la~r~_ 1 is block diagonal; its nontrivial part is the 2 x 2 block with 
entries from rows and columns k~, k~+ x. It follows from (4.17), (4.18), and a simple 
computation that this block is D - CA- 1B, where A is (k~- l) x (kv-  1), D is 2 x 2, 
and 

[ r v _  l a r v _  l]j,k<=k~ + 1 = 

The following notational convention will be useful. 

(4.19) Definition. If J and K are two subsets of {1,2 . . . . .  n} having the same 
cardinality and a is in M., then re(J; K) = re(J; K; a) denotes the determinant of the 
corresponding submatrix 

re(J; K; a) = det (ajk)j~S,k~r. 

We set m(~, ~,~; a)= 1. 

Direct calculation leads to 

1 V m(J,k~;J, k j  m(J,k~;J,k~+l) ] 
O-CA- tB=m(J;J )Lm(J ,k~+l ;J , k  j m(J,k~+l;j,k~+l) ' 

where J = (1, 2 . . . . .  k~-  1) and rn(K; L) = re(K; L; r~_11 art- 1). Thus 

~ = dp~ ^ dq~, 

[m(J, kv; J, kjm(J, k~ + 1; J, k~ + 1)] 

p~ = log L m(J~', J)~m--(J, k~, k ~  l;--J, k~--~ k-~ + 1) 3' 

, [m(J, kv+ 1;d, k j ]  

(4.21) Example. 
(123)~(312)-~(23 !)~(321), i.e. 

(4.20) 

For n = 3, we consider the decomposition of r corresponding to 

Let A be the cofactor matrix A = d(a- 1)t, where A = det a. Then the corresponding 
decomposition of D is 

, 

\ Air // \ a 2 3 /  

We conclude with some symmetry properties of Q which will be important later. 

ii lo 01io, o Ol]i,i]o, o i oi]o 0 0 = . 
0 1 0 1 0 0 0 0 
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Proposition 4.7. The 2-form 12 is odd under the automorphisms of GL(n), 

q~l(a) = (a- 1),, q>2(a) = rar, 

(where r is aoain the antidiagonal matrix ~e~,,+ x_j), i.e. 

j=1,2. 

Proof. cb~(GL • = GL;. Therefore if a t = q>j(a), the -4- factors in (4.1) are q~i(a_v), 
q~(v~_). It is immediate from this that ~ O =  - O .  The result for qh makes use 
also of the identity q~*(b-1 db) = - ( 6 - 1  db)', together with the identity tr (~ ^ fl) = 
tr (~t ^ fit) for matrix-valued 1-forms. 

5. A Symplectic Foliation and Poisson Bracket on GL(n); Flows 

We introduce now a foliation of GL. which is naturally associated to the 
factorizations (4.1). As in Remark (3.11) we define diagonal matrices 6 • = diag (a • 
and 6 = 6_- 16 +, and set 

a•177  b~.~GL~o, (5.1) 

so that 

v5 iv+ = a2 la+ = b- 1(6- x6+)b+ = bT_ 16b+. (5.2) 

In the notation of (4.20) the principal minors of aeGL(n) are m(J;J;a); we 
abbreviate this to re(J; a). If a is understood, we may write re(J). In particular the 
upper and lower principal minors are 

d f = d f ( a ) = m ( 1 , . . . , j ) ;  d ~ = m ( j  . . . . .  n); d o = l = d , + l .  (5.3) 

It follows from (4.1) that 6+(6_) has the same lower (upper) minors as a, so 

~@+1; (6 +)jj - d f  1 < j < n. (5.4) 
(6 _)jj = d;_ 1' 

Therefore 6 + and 6_ are determined uniquely by 6 = 6-16+, together with the 
quotients 

q~j(a) = d+ (a)/d]-+ ~(a), 1 < j < n. (5.5) 

Note that q~,(a)= det a, and that the ~oj determine the product 6 + 6_. 

Theorem 5.1. The foliation of GL, by the functions q~j is symplectic for O. Each leaf 
{a:q~(a) = c j, 1 < j<  n} is parametrized by V, = {(v+, v_)eGLo x GLg :v'2 iv+ r 
the pullback of ~ to a leaf is 9enerically of rank n 2 -  n; the pullback from a leaf to 
V, is independent of the choice of leaf and is oiven by 

tr[v+adv+ ^ {b+ldb+ +b+X( 6 - 1d f ) b } - v - l dv _  A {b- ldb_-b '21( f -~d6)b_)}] ,  
(5.6) 

where b• and 6 are determined from (v+, v_) by the factorization 

v-_%+=b-16b+, b• 6=diag(6).  (5.7) 



424 R. Beals and D. H. Sattinger 

Proof. Starting with a in GL,,  we define b§ 6+, as above and again set 6 = 6-16+. 
Let t /= 6_ 6 § Then 

67_1d6• =rl- ldq+_6-1d6; aT_~da+_ =bT_ldb+_ +bT_l(67.1d(~+_)b+. 

Consequently ,Q is given by the sum of (5.6) and 

tr[v+ldv+ ^ b+l(q-ldq)b+ - v - l d v _  A b- l (q - ldq)b_] .  (5.8) 

The pullback of dq to the leaves of the foliation determined by the functions ~0j 
vanishes, since these functions determine q, so the pullback of ~ to the leaf is given 
by (5.6). Now b+ and 6 are determined from (v+, v_) in V, by (5.2), so the pullback 
of -(2 to V, is leaf-independent and given also by (5.6). These pullbacks have 
rank < dim (V,) = n z - n everywhere and rank n z - n at the unique diagonal element 
in a given leaf, so they have rank n z -  n generically. 

The symplectic foliation gives rise to a Poisson structure on GL,. In fact there 
is a Poisson bracket (,)L on each leaf L corresponding to the pullback of ~2 to L, 
and this may be extended to a (degenerate) Poisson bracket for functions on GL,, 
characterized by 

( f ,g)IL=(f lL,  g[L)L; (f, rpj)=0, 1 < j < n .  (5.9) 

Equivalently, if .(2= ~,dpv ^ dqv as in Theorem 4.1, then 

(Pu, q~) = 6uv, (Pu, P~) = 0 = (qu, q~), 1 <= I ~, v <= (n 2 -  n); (f, rpj) = 0, 1 ___ j =< n. 
(5.10) 

Functions such as the ~0j which Poisson commute with all functions are sometimes 
called Casimirs. 

This Poisson bracket was computed for the standard coordinates of GL(n) by 
Lu [Lu] in the cases n = 2, n = 3; Lu also conjectured the general form below and 
pointed out the connection with the classical limit of a quantum version due to 
Drinfeld [Dr], as noted in Sect. 1. 

P r o p o s i t i o n  5.2. The Poisson bracket (5.9) is odd under the automorphisms ~1, (1) 2 

of Proposition 4.7, i.e. 

(fo@j, go~ j )=  -- ( f ,g)o~j ,  j = 1 , 2 .  

Proof. The Casimirs r satisfy ~oko q~j = r SO q~j maps leaves to leaves. 
Proposition 4.7 implies that the pullback under @j to a leaf L of ~ on q~j(L) is 
- .(2. Therefore the pushforward of the Poisson bracket (,)L is -- (,)~,(L), and (5.9) 
implies the desired result. 

Theorem 5.3. The Poisson bracket on GL,  induced by the 2-form ~ and the foliation 
by functions (r extends to the full matrix space M,  and is given by the following 
bracket relations between the coordinate functions ajk: 

(ajk, al,,) = �88 (l -- j) -- sgn (m-- k)] ajmalk, (5.11) 

where again sgn (0)= 0. 

Proof. We show first that the calculation can be redhced to the cases n < 4. For 
a fixed to, 1 < x < n, consider the map M, --* M,_ 1 obtained by omitting the ~c th row 
and column. We claim that the pushforward to M,_ 1 of the Poisson structure on 
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M ,  coincides with the structure on M , _  1 itself, i.e. the Poisson bracket  of  coordinate  
functions ajk, alto on M, ,  i, j,  k, l ~ K, is the same as that  obta ined by considering 
them as functions on M , _  1. To  verify this claim we take the decomposi t ion  (4.7) 
of the ant idiagonal  matr ix  r ~ M ,  obta ined f rom the following three sets of 
permutat ions:  the first set takes (1, 2 . . . . .  n) to (1 . . . . .  x - 1, x + 1 . . . . .  n, k) in n - k- 
steps; the second set takes us to (n, n -  1 . . . . .  1, x) in �89 - 1 ) (n -2 )  steps; the third set 
takes us to (n, n - 1 . . . . .  1) in ( x -  1) steps. The  corresponding additive decomposi t ion  
of -0 then takes the form 

1 2 = . O ' + . O " + . O "  (5.12) 

with the obvious notat ional  convention.  According to the prescript ion after 
L e m m a  4.5, .0" = X d p v  ^ dqv, where the p~,q~ are functions of  the matr ix  b in 
M , _  1 which corresponds to a in M ,  by the m a p  above;  moreover  12" has exactly 
the same form as .0,_ 1. To  complete  the verification of our  claim it is, therefore, 
sufficient to show that  the foliation functions for b Poisson commute  with all entries 
of b when these are considered as functions of  a. We know that  the p~ which 
cor respond to .0'  and to .0" in the decomposi t ion  (5.12) c o m m u t e  with all p~,qv 
f rom .0" and with each other, so it is enough to show that  the foliation functions 
of  b in M , _  1 are computab le  f rom the Pv in .0'  and .0",  together  with the foliation 
functions on M,.  The pv corresponding to .0'  are 

log(gk+l/Ok), x < k < n ;  gk= m(1 . . . . .  ~ . . . . .  k ) /m(1 , . . . , k ) ,  

where again m(. . . )  denotes the principal minor  of  a based on the indicated rows 
and columns. Similarly, the pv associated to .0"  are 

log (h k + 1/hk), 1 < k < x; h k = m(k . . . . .  n)/m(k . . . .  , ~ . . . . .  n). 

Modulo  the foliation functions on M, ,  the gk and h k can be determined f rom the 
p~. Again modulo  the foliation functions on M, ,  the 9k's and hk'S are equivalent 
to the set of functions 

re ( l , . . . ,  ~ . . . . .  k)/m(k + 1 . . . .  , n), x < k <- n; 

m ( 1 , . . . , k - 1 ) / m ( k  . . . . .  ~ , . . . , n ) ,  l__<k<x.  

These are precisely the foliation functions of b as an element of M , _  1. This completes 
the p roof  that  the two Poisson structures coincide on b. 

Suppose now that  aij, akl are any two coordinate  functions on M, .  Repeated 
use of  the preceding a rgument  shows that  their Poisson bracket  can be computed  
by taking them to be functions on Mp, with p the cardinali ty of {i, j ,  k, 1}. Thus 
the computa t ion  is reduced to the cases M1 (trivial), ME, M3,  M 4. The complete  
computa t ion  is tedious, so we merely indicate a few representat ive cases. Recall 
that  a Poisson bracket  is a derivat ion for each of its arguments.  

Fo r  n = 2 the foliation functions are a 11/a22, ,4 = det a. F r o m  this fact and (4.4) 
we deduce 

(al 1, az2) = (al 1, al  l(az2/al  1 )) = (al 1, al t )az2/al i = O; 

(al l , al za21) = (alx , al a a22 -- ,4) = O. 

Also, p = log(alia22~,4), q = log(a21/a12 ) and (p, q ) =  1, so 

(a l la22,a2t /a12)  = alxa22a21/a12; 
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(ail,a21/a12)=(a~l,a21/aiz)/2all =(alla22all/az2,a21/a12~2a11 
=(alla22,a21/a12)/2a22 = alla21/2a12. 

Therefore 

1 2 
(a l  1, a21) ~- 2-~21 (a117 a21) -~- a12(a l  1, a21/a12)/2 = l a l  la21 �9 

Because of the symmetries in Proposition 4.7, (a22, a 2 1 ) = -  (all,a21) and so on. 
Also 

(azl ,alz)  = (azl,alzazi)/azl = (azx, -al lazz) /azl  
= (al lazzal 1/a22, azl)a21/al la12 = 2(al 1, a21)a22/a21 = al 1 a22/2. 

For n = 3, reduction to n = 2 gives all brackets such as (a22 , a12), (a23, a33 ). Let 
A = (det a)(a-1) t be the cofactor matrix. The foliation functions are 

deta,  ai i /Ai i ,  aa3/A33. 

The decomposition (4.21) implies, therefore, that 

O=(a22altal3/AttA33, A13/A31) = 2a22alla33(a22,A13/A3i)/AllA33; 

(a22, A13A31 ) = (a22, A 11A33 -- a22 det a) = A ilA33(a22, ai :a3a)/alla33 = 0. 

Therefore (a22,A12)= 0 = (a22, Aal), and the 2 x 2 results allow one to calculate 
(a22,a3t) and (a22,at3) from these identities. Similar computations yield all 
the 3 x 3 brackets, though for some it is convenient to replace the decom- 
position in (4.21) with the decomposition obtained from factoring r by means of 
(123) ~(132)--,(312)--,(321). 

The case n = 4 is similar, and again brackets like (a:2, a24) are known from the 
3 x 3 computation. This completes our sketch of the proof of Theorem 5.3. 

We consider now the ( n -  1)-parameter family of flows in M,: 

a(t) = exp(t#)a(O)exp(-t#), # diagonal, t r # =  0. (5.13) 

This conjugation preserves the principal minors of a, so the flow preserves 
GL(n), GL., and the leaves of the foliation. The factorization (4.1) is also preserved, 
so the flow preserves the 2-form/'2. Therefore these flows are Hamiltonian. 

Theorem 5.4. The Hamiltonian function for the flow (5.13) is tr [# log El, 6 = ~5-1~5 +, 
and it is a linear combination of the functions Pv of (4.20). 

Proof. We use the additive decomposition of Theorem 4.4, with the factorization 
of r described after (4.7). If n~ is associated with the interchange of j and k, then 
(4.20) implies that under the flow (5.13), ~v = / z ~ - / ~ .  Therefore the Hamiltonian 
for (5.! 3) is a linear combination of the p~. The p~ themselves are logarithms of 
quotients of principal minors of a: 

m~k=m(j, j+ l, . . . ,k), j < k .  

The term rusk occurs in the numerator of exp(p,) when re, is associated to the 
interchange of j - 1 with k or of j with k + 1; the term ms, occurs in the denominator 
when rcv is associated to the interchange of j - 1 with k + 1 or of j with k. Thus 
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the total weight attached to log mjk in the Hamiltonian for the flow (5.13) is 

(~k - ~ j -  ~) + ( ~ +  ~ - ~ j )  - ( ~ +  ~ - ~ j -  ~) - ( ~  - ~ j ) ,  

with the convention that if j - 1  = 0 or k+  1 =n,  the corresponding term in 
parentheses is omitted. Thus log mjk has weight zero unless j = 1 or k --- n, and the 
Hamiltonian for (5.13) is 

n - 1  n - 1  

~, (#k+l -- I~k)lOgmlk + ~ (U/+, -- ~/)logmjn 
k = l  j = l  

-- ~ #j log [d ;  (a)d+_, (a)/d;+~ (a)d + (a)] = ~ #~ log 6jj. 
j = l  j = l  

(5.14) Remark. Theorem 5.2 and its proof show that the flows (5.13) are completely 
integrable in the classical sense: they are an ( n -  1)-parameter family of commuting 
Hamiltonian flows in each r t  2 - -  n dimensional symplectic leaf of the foliation, and 
are part of the � 8 9  2 - -  n)-parameter family of commuting flows generated by the Pv. 
Note that the flows (5.13) are the only members of the larger family which are 
linear as flows on the full matrix algebra M,; in fact the generator of a linear flow 
which commutes with all the flows (5.13) must have each matrix unit e jR, j ~ k, as 
an eigenvector and if such a flow leaves all the pv invariant it can be shown to be 
included among the flows (5.13). 

6. Proofs of Theorems 3.7 and 3.8: Darboux Coordinates for Scattering Data 

Up to a trivial normalization, the functions Pv, qv of Theorem 4.1 are the functions 
of Theorems 3.7 and 3.8. To see this, we return to the notation introduced before 
Theorem 3.7. Observe that if f ,  g belong to C~176 then in view of Proposition 3.4 
the distribution-valued Poisson bracket can be decomposed as 

1 
{ f r  (f,g)(s(~),s(tl))p.v. r  (6.1) 

where [ , ]  and ( , )  have the following properties. 
The map f ,  g ~ [f ,  g] is an alternating bilinear map from C o~ (SL(n)) x C ~o (SL(n)) 

to C~ which is a derivation in each variable: 

[fg,  h ] = f [ g , h ] + g [ f , h ] ,  [ f ,  g h J = g [ f , h ] + h [ f , g ] .  (6.2) 

[ a3k, al,, ] = rciajmalk[sgn (l -- j) -- sgn (m-- k)]. (6.3) 

The map f,  g ~ ( f , g )  is a symmetric bilinear map from C~176 C~(SL(n)) to 
C~~ • SL(n)) such that 

( f g ,  h)(s, s') = f(s) (g, h) (s, s') + g(s) ( f ,  g ) (s, s'), 

( f ,  gh)(s, s') = g(s ')(f ,  h)(s, s') + h(s ')(f ,  g)(s, s'). (6.4) 

( ajk, al,,) (s, s') = ajk(s)al,,(s')[ f jl -- 6kr,]. (6.5) 

Here the ajk are the coordinate functions and s, s' are points of SL(n). 
The properties (6.2), (6.3) imply that the bracket [ ,  ] is precisely 4hi(,), where 

(,) is the Poisson bracket (5.11); this corresponds to the fact that 12 s is the direct 
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integral of 4ni.O. Consequently we may replace the functions p~ and qv of Sect. 4 
by the renormalized versions 

1 1 
~p~, ~/n/q~ (6.6) 

to obtain 
1 

(6.7) {P,,r qv,,}s = 6,v6(~ - r/) + (p~, qv)(s(~), s(r/))p.v.~ _ r/" 

To complete the proof of Theorem 3.7 we must show 

( p v , f ) = 0  all f in C~(SL(n)), all v; (6.8) 

(q~, q~) = 0, all #, v. (6.9) 

(6.10) Definition. Given subsets J, J', K, K'  o f ( l ,  2 , . . . ,  n}, set 

~(J, K; J', K') = card (J c~ J') - card (K c~ K'). 

Lemma 6.1. The bracket ( , )  between minors of  s satisfies 

(m(d ;K) ,m(J ' ;K ' ) ) ( s , s ' )=e (J ,K;J ' ,K ' )m(J ;K;s )m(J ' ;K ' ; s ' ) .  (6.11) 

Proof. The case when J, K, d', K' all have cardinality 1 is immediate from (6.5). 
The general case follows by expanding the determinants and using the derivation 
property (6.4). 

We can now prove (6.8) and (6.9), using (4.20). Each p~ is the logarithm of a 
term m(d)m(d')/m(K)m(K'), where each element j of(l ,  2 . . . . .  n) occurs with the same 
frequency in the pair of sets J, J '  as in the pair K, K'. From the derivation property 
(6.5) we deduce that (6.11) is equivalent to 

(log m(J; K), log m(J'; K')  ) = ~(d, K; J', K'). (6.12) 

Each coordinate function ajk is itself a minor, and therefore (6.12) implies 

" "o a 
m(J)m(J')  \ 

log m(K)m(K') ' t g jR / = e(J, J;J, k) + e(J', J';j, k) - e(K, K;j, k) - e(K', K';j, k) 

~ 0 .  

This proves (6.8). To prove (6.9) we note that according to (4.20), each qv has 
the form log m(J;K)/m(K;J), which we abbreviate slightly as log m(JK)/m(KJ) .  
Again we deduce from (6.12) that 

I ,  m(JK)  , m ( J ' K ' ) \  
'~  m ( ~ ) ' l ~  

= e(J, J; J', K') - e(J, K; K', J) - e(K, J; J', K') + e(K, J; K', J') 

= 0  

because e ( J , K ; J ' K ' ) = - e ( K , J ; K ' , J ' ) ,  and e ( J , K ; K ' , J ' ) = - e ( K , J ; J ' , K ' ) .  This 
proves (6.9). For the injectivity property (3.21) we need the foliation functions ~0i 
in addition to p~, q~. By Theorem 5.4, entries of 8,18 § are linear combinations of 
the p~ As in Remark 3.11, 8_ and 5+ are Riemann-Hilbert factors of 5_-18+. 
Finally, (5.4) and (5.5) determine the ~pj from 8+, 5_. 
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Proof of Theorem 3.8. It is a well-known fact that the Hamiltonian for the flow 
(2.8) is the negative of the coefficient of z -k-1 in the asymptotic expansion of 
tr # log 6(z) as z ~ ~ ,  where 

6(z) = xl~mo~b(x,z)exp(-xzJ), zeC\R.  

See IS, BC3]. Now 6 is piecewise holomorphic with limits 6+ on R, so the 
Hamiltonian can be expressed in the form 

1 ~k 1 k ! [tr p log 6 + (4) - tr # log 6_ (~)]d~ = ~ ! ~ tr/~ log [~:  1(06 + (0]d~. 
2zti 

According to Theorem 5.4, this integral is a linear combination of the integrals (3.25). 

7. Coord inates  and F l o w s  on S U ( 3 )  

Formula (4.2) defines a complex 2-form on the intersection of GL = GL(n, C) with 
the real submanifold GL, n U(n). The automorphism a~--~(a- 1), takes GL • to GL T-. 
Therefore, in the factorizations (4.1), we have 

a•  *, v• *, aeU(n). (7.1) 

As in the proof of Proposition 4.7 we can conclude that 12 = - ~ on GL, ~ U(n). 

Theorem 7.1. (a) if2 is a closed real 2-form on GL, n U(n). 
(b) The foliation of GL, n U(n) induced by the foliation of GL, in Sect. 5 has 

leaves with real dimension n 2 -  n. The 2-form generically has rank n 2 - n  on each 
leaf, so the foliation is again symplectic. 

(c) I f  # is a real diagonal matrix with tr (I.t) = O, the flow 

a(t) = ei'"a(O)e-i,, (7.2) 

is Hamiltonian in GL, n U(n) with real Hamiltonian function tr (# log 6), where again 
= 6 - 1 ( ~ + ,  t~• = diag(a,). 

Proof. Part (a) follows from the preceding remarks. For part (b), note that (7.1) 
implies 

6•  [6_v_ (a)- l] *, aeU(q). (7.3) 

Because of (5.3) and (5.4), (7.3) implies that the foliation functions (5.5) take values 
in {Izl = 1 }, so the induced foliation is defined by the n independent real functions 
arg ~o~, The 2-form iI2 has (real) rank n 2 -  n at the unique diagonal element in 
each leaf,, so it has rank n 2 - n generically. Finally, the Poisson bracket associated 
to this symplectic foliation is - i ( ,  ), where ( , )  is the Poisson bracket of Sect. 5 
restricted to U(n). According to Theorem 5.3, therefore, the Hamiltonian for the 
flow (7.2) is tr(#log6),  and according to (7.3) 6 = 6-16+ = 6*6+ is real. 

The Darboux coordinates Pv, qv constructed in Sect. 4 are not real when 
specialized to U(n) (and suitably normalized) except for n = 2. We show in this 
section that real Darboux coordinates can be chosen in SL(3,C) in such a way 
that: (a) the restrictions to SU(3) are real; (b) linear combinations of the pv still 
include the Hamiltonians for the flows (7.1). As we shall see, the third Hamiltonian 
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flow which commutes with the 2-parameter family of linear flows (7.2) is not linear 
on M3. 

We begin our discussion by recalling the Darboux coordinates for SL(3) in 
example (4.21). Corresponding to the new normalization i.Q, we take these to be 

Pl = log(a l la22/A33) ,  if2 = l og (A l lA33 /a22 ) ,  if3 = log(a22a33/Al l ) ;  

ql = i log(a21/ax2)  q2 = i l o g ( A a 3 / A a t )  q3 = i log(a32/a23).  (7.4) 

Here again the Ajk a r e  the entries of the cofactor matrix (det a)(a-  ~)t. Therefore 

A SR =~ R  for a in SU(n).  (7.5) 

It  is convenient to make a preliminary linear canonical transformation to new 
Darboux coordinates 

P l  = f f l  "~ P2 

P2 = f f l  -t- P2 

P3 = if2 -~- if3 

ql = q2 -- q3 

q2 = ql - -  q2 

q3 = 

= log(a11A11), 

+ P3 = log(al la22a33) ,  

= log (a33A33), 

= i log(a23Ala /a32A31) ,  

+ ~ta = i log(a21Aataa2/a12Alaa23) ,  

- ? h  + ?lz = i l o g ( A l ~ a ~ z / A 3 1 a z l ) .  (7.6) 

Then Pl and P3 are real on SU(3), but P2 is not. It follows either from direct 
calculation using the Poisson bracket (5.11) or from the first symmetry in 
Proposition 5.2 that I o g ( A l I A E z A 3 3 )  is also in involution with Pl and Pz, so we 
may take 

I j  = a#Ajs ,  j = 1, 2, 3, (7.7) 

as the action variables for a new set of Darboux coordinates. The corresponding 
angle variables @1, @2, @3 are then obtained by the classical Liouville method; 
cf. I-W]. We briefly recall the method: in principle one solves the equations 

p s =  f t ( I , q )  = f s ( I i , 1 2 ,  I 3 , q l , q 2 ,  q3), j = 1,2,3. (7.8) 

Because the I t are independent and in involution, it follows that Oft/t3pk = C3fk/Oqj 
on the level surfaces {I t = cs, j = 1, 2, 3}. Therefore there is a generating function 
S(q, I) such that 

OS/Oqs = f s ( l ,  q) = pj, j = 1, 2, 3. (7.9) 

Putting O t = OS/dI s, it follows that 

dS = 2",psdq ~ + ~,@ sd l  s, 

and therefore 

il2 = ~Sdps ^ dqs = ,SdI  s ^ d O  s. (7.10) 

By (7.5) the functions I s are real on SU(3) and we may replace the O s in (7.10) by 
their real parts (if necessary) to obtain real Darboux coordinates. In the remainder 
of this section we show that the angle variables O r are elliptic functions. 

We turn to Eq. (7.8). We already have Pt = l~ J = 1,3. The remaining 
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equation can be obtained, in principle, once we have a nontrivial identity involving 
P2, l j, qj. 

Proposition 7.2. Let ( = e p2 = a 1 la22a33, I o = 12 - I  i - 1 3  + 1. Thefollowin9 identity 
holds on SL(3, C): 

( ( Io+ 2Ii ,I3)2 + 4 c o s 2 ( � 8 9  (7.11) 

Proof. We make extensive use of the identities defining the cofactors: A12 -~a23a31 - -  
aEla33 and so on, and of the corresponding identities coming from the inverse 
matrix / l : a12  = AE3A3i  - - A E 1 A 3 3  and so on. In the following computation each 
term in braces is replaced by its expression obtained from such identities in order 
to pass to the next in the sequence of identities. 

I 2 = a22 A 22 = al i a22a33 - { azzax 3 } { a22a31 } /a22 

= al~a22a33-[{A13A31} + {a12a21}{a23a32}-(a~2A~3a23+allA31a32)]/a22 

= I1 + 13 + 1 - 2Ai l .413/a22 + (a12A13a33 + a21Aala32)/a22 

o r  

a12A13a23 + a2iA3ia32 = a22/o + 2AliA33 

= (~Io + 2IlI3)/axlaa3. (7.12) 

On the other hand 

(a12Ai3a23)(aE1A31a32) = (alEaE1)(A13A31)(a23a32) 

= (al xa22 -- Aaa)(AI1A33 - aE2)(a22a33 - Ax 1) 

Let f =  a12Ai3a23 and O = a 2 1 A a l a 3 2 .  Then 

( f  + 9) 2 = f 9  [ x / ~  + x/gx/~] 2 = f 9  [exp (-- �89 + exp(�89 iq2)] 2 

= 4 f g  cos 2 (�89 

Combining (7.12), (7.13), and (7.14), we obtain (7.11). 
Returning to the generating function S, we have 

~S/~ql = Pl = log l l ,  ~S/t~q3 - P3 - log 13, 

SO 

dS/dq2 = P2 = log 

q2(~,l) 

S ( I , q ) = q t l o g I  l + q 3 1 0 g I 3 +  ~ log~(I,u)du. 

(7.14) 

(7.15) 

The angle variables corresponding to the action variables Ij are 

~ S _ q j  + ? 1  0~ , 
6)J- t3I j  Ij J ~ i j  au' j =  1,3; 

~S q21 U 
~I 2 du. 
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We rewrite (7.11) in the form 

�9 ((, I, u) = F([, 1) + cos 2 (u/Z)G((, I) = 0 

to define ( or u in terms of u or ( and 1. Thus 

O~ _ aq~/ai~ _ (aq~1631i)(634)/63u) 

<lau 63Ii 63~/63~ 

In particular, on the surface q~ = O, 

SO 

63~ ~F 63q~ (') - - 2(__;./F- = - sin cos ~u G; 
631 2 631 2 63U ~ U 

1 
c o s ( ~ u ) = i [ F / G ] ' / 2 ;  s i n ( ~ u ) =  [l +F/G]'/2; 

(7.16) 

63S q2 1 63~ �9 r 1 
o2=~i~:i  ~ Fx/gT_d63u- --au=i f x / F +  Gd(. 

This can be written as a Jacobi elliptic integral; cf. [Co, p. 400]. Set z 2 = ( ~ -  e)/(~ - fl), 
where e, fl are the nonzero roots of F + G; then the last integral becomes 

i z(q2a) dz 
0 2 = - -  ~ , k 2=fl/ct. (7.17) 

,/(1 - z2)(i - k2z 2) 
Note that ~fl = I,I2I 3 is real and positive on SU(3). 

The other angle variables are also elliptic integrals. Straightforward calculation 
gives 

1 r 1 J" I o + 2 1  3 ------.I3(I~ 
0 1 = ~ 1 q 1 + i  I ] - - 1 +  + ~ -- 11 ~ -- I l i  3 J 

)7_I r F ~ + G {  1 I o + 2 1 1 _  -t ~ I,(I0_+2)~ q +il ] 

The first of the three integrals in each line are equal to -O2 and the remaining 
two transform, under the same change of variables as in (7.17), into sums of Jacobi 
e11iptic integrals of the first and third kinds. 

To complete our discussion of SU(3) we consider the integration of the" flow 
with Hamiltonian 12, in the original coordinate system. The Poisson bracket 
determined by the foliation of the form i.(-2 differs from the Poisson bracket (5.1 I) 
by a factor - i .  Thus the flow on SU(3) is given by 

}=--i(logI2,f)=--i(loga22A22, f) ,  feC~(SL(n)).  (7.18) 

Theorem 7.3. On SL(3, C), let 

p=(111213) 1/2 , o ) = l  log(atla22a33/A11A22A33). 
Zl 

These functions and the functions aikAik and 1 l o g  (aik/Aik) are real on SU(3). Under 
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the flow (7.17) co evolves accordin9 to the pendulum equation 

d) = - 2p sin co. (7.19) 

Moreover 

each ajkA~k is an algebraic function ofcosco and the Ij; (7.20) 

each time derivative of ~ilog(ajk/Ajk) is an algebraic function 

of cose) and the Ij. (7.21) 

Proof. A direct but somewhat tedious calculation using (7.18), (5.11), and various 
identities for cofactors gives 

1 .. 
6) = ~ l o g  (az2/A22) = i(alxa22aaa - AllA22Aa3) 

= -- 2p sin co. 

To obtain (7.20) we use the identities 

ajl  Ak l  + aj2Ak2 + aj3Ak3 = 6 j k  = a l j A l k  + a2jA2k + a3jA3k,  

which come from (7.05) to obtain 

ajkAjk + akjAkj  = 1 - I j  --  I k + I~, 

for distinct j, k, I. Also 

ajkAjkakjAkj  = ajkakjAjkAkj  = (ajjakk -- A I ) (A j jAkk  -- au) 
= I ) I  k + I l --  2p  COS Co. 

Therefore ajkAjk and akjAkj  a r e  the roots of a quadratic equation with coefficients 
which are polynomials in the lj, p = (I11213) 1/2, and cos co. 

Finally, we consider log (a xz/A12). Another direct calculation gives 

d [ ( " I l l  a 1 2  1 1 S a 1 1 A z l + A 1 1 a 2 1 " ~  
d~L~l~ =-~ 2]a12A22 A12022.} 

-- ~ { a l l a 2 2 ( A 1 1 A 2 2  - a 3 3  ) + A 1 1 A 2 2 ( a l l a 2 2  - A 3 3 ) }  

= ~ {  -AlxAE2Aaa+axla22aaa-2IlI2 

1 
- -  - -  ( p  COS CO - -  11 I2 ) "  

2a12A21 

The calculations for other such terms are similar, and (7.21) follows, using 
(7.20). 

Note that on SU(3), the functions considered above a r e  ajkAjk = lajkl 2 and 
1 
27 log (ajk/A~k) = arg ark. 
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8. General NondegenerateJ 

In this section we discuss the case of a spectral problem (3.2) whose characteristic 
matrix J has n distinct eigenvalues but is not otherwise constrained. Thus we may 
assume 

J = diag(i21, i22 . . . . .  i2,), 2/s distinct. (8.1) 

The corresponding space of potentials P, the 2-form 12p, and the associated Poisson 
bracket {, }p are defined as in Sect. 2. The (continuous) scattering data s or (v +, v_) 
which correspond to a potential q in P is a matrix-valued function or pair of such 
functions, defined on the set 

27 = {~eC:Re(i2~0 = Re(i2k~), some j # k}. (8.2) 

This set is a union of lines through the origin; we will consider it as a union of 
rays from the origin and orient each ray from 0 to ~ .  We will describe the spaces 
SD = {s} and SD'= { (v+, v_)} in more detail below. The analogue of Theorem 3.1 
carries over to this more general setting; [BC1]. Therefore the 2-form and Poisson 
bracket can be carried over to a form 12 s and Poisson bracket {, }s on scattering 
data. In this section we prove the existence of Darboux coordinates and the 
complete integrability of the linear flows. 

Theorem 8.1. There are functionspvqv, 1 < v < ( n  2 - -  n)/2, holomorphic on a dense 
open algebraic subset of SL(n), which have the following properties. Let ~,x . . . . .  Xm 
be the rays of Z,. There is an assignment of rays V~--~Z, Rtv) such that 

s in SD is uniquely determined by the values 

{p~(s(0, qv(s(~)), ~,Skt~), 1 < v < (n 2 -- n)/2}. (8.3) 

"Qs = E ~ 6pv ^ 6q~. (8.4) 
v Z, ktv) 

{pu,r {p~,:,q~,n}s=6u~t~(~--rl), ~,rl~,kt~). (8.5) 
For any f in C~~ the distributions {fr have support at 

= rleZ, kt~), all v; as before, re(s)= f(s(~)). (8.6) 

Theorem 8.2. The functions p~ of Theorem 8.1 may be chosen so that for each traceless 
diagonal matrix #, the Hamiltonian for the flows (2.8), (3.20) is a linear combination 
of the functionals 

~kp~(s(O)d~. 
.r.k(~) 

The machinery needed for the proofs of Theorems 8.1 and 8.2 has already 
been developed in Sects. 3 and 4. To show how it applies, we must describe the 
space of scattering data. Assume ~ II q(x)II dx < 1 and consider the spectral problem 
(3.1), (3.2). Again there is a unique solution ~k(.,z), This solution is holomorphic 
with respect to z, zeC\,~, and its boundary values satisfy 

~b(x,(1 + i0)~)= ~b(x,(1 - iO)Ov(r r (8.7) 

Given r in 2;\0, let I I r  be the projection defined by 

if Re(i2jr Re(i2kO, 

(//~a)Jk = {;ik otherwise. 
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Then the limit 

lim HeO(x,  ~)e -xeJ = s(~) (8.8) 
x~+o~ 

exists on 27\0. There are factorizations 

v(0 = v - ( O - l v + ( O  = s - ( O - i s + ( 0 ;  s+(O = s(Ov+(O. (8.9) 

The factors in (8.9) are characterized by the following conditions: 

Hev+(~) = v+(~); Hes+(O = s+(~); diagv+ = 1; 

(Vi(~))~k=(ST_(~))jk=O if Re i (2 j - -2k )W>O for w = ( l + i e ) ~ ,  small e>0.  

(8.10) 

There are further conditions on s and v as functions of ~ 2 : ,  which we do not need 
to cite here; see [BC1] for a complete discussion of these conditions and of the 
algebraic facts we are using in this section. 

Proposition 3.2 carries over, in the following form [BC3]: 

1 1 
F2 s = ~t~i ~ztr (v_(fv)v + ^ s-1fs)dz .  (8.11) 

The strategy for proving Theorems 8.1 and 8.2 is the same as for proving 
Theorems 3.7 and 3.8: pointwise analysis of the form Os. 

Suppose r is in 27\0. After conjugation by a permutation matrix (which depends 
on the ray of Z containing r we may assume that 

Re i2i~ . . . . .  Re i2a1~ > Re i2d1+ x~ . . . .  

= Re i2n~ > Rei2n~+l~.... (8.12) 

Then v(~) and s(~) have the block diagonal form 

A2 "'" , AjESL(dj). (8.13) 
~  

0 ... A~._] 

Moreover v_(i) and s+(~) have this form and are upper triangular, while v+(~) 
and s_(~) have this form and are lower triangular. With this normalization, the 
pointwise 2-form being integrated over the ray containing ~ is (a constant multiple 
of) the sum of the forms as in Theorem 4.1 for the matrix groups GL(d~), GL(d2) . . . . .  
There is an analogous decomposition of the Poisson bracket, which is computed 
as in Sect. 3. 

It follows from these considerations that the (trivial) extension of the results in 
Sects. 4 and 5 to block diagonal matrix groups yields the desired functions p~, q, 
of Theorems 8.1 and 8.2. 
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