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Abstract: We consider the 2 • 2 hyperbolic system of isentropic gas dynamics, in 
both Eulerian or Lagrangian variables (also called the p-system). We show that they 
can be reformulated as a kinetic equation, using an additional kinetic variable. Such 
a formulation was first obtained by the authors in the case of multidimensional scalar 
conservation laws. A new phenomenon occurs here, namely that the advection velocity 
is now a combination of  the macroscopic and kinetic velocities. Various applications 
are given: we recover the invariant regions, deduce new L ~ estimates using moments 
lemma and prove L ~ - w* stability for "7 ~ 3. 

Introduction 

We consider the equations of isentropic gas dynamics. In the Eulerian coordinates 
these equations form a 2 x 2 hyperbolic system of  nonlinear conservation laws 

{ O ~ o + O ~ o ~ t  = O, 
Ot(~u) + Ox(~u 2 + p(Q)) = O, t >_ O, x E ~, (1) 

P ( O ) = ~ P T ,  7 >  1, n -  ( 7 - 1 )  2 
47 

where the unknowns Q(t, x) and q : =  ~u(t, x) are respectively the density and the 
momentum of  the gas. They are given at time t = 0 by the initial data O~ and 
qO = ~OuO(x). And of  course, ~ _> 0 on R + • R. 

We will also consider another 2 • 2 system, 

{ O~v - Oxw = O, 
(2a) 

Otw + Oxp(v) = O, t > O, x c ]~, 

endowed with the pressure law 

( 7 -  1) 2 
p(v) = ~v - 7  , 7 > O, t~ - - -  (2b) 

47 
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The system (2a)-(2b) governs the isentropic gas dynamics written in Lagrangian 
coordinates. In general Eqs. (2a)-(2b) will be referred to as the p-system (see Lax 
[7], Smoller [14].. .) .  They are also complemented by initial conditions v~ w~ 

In this paper we construct and analyze a kinetic formulation of these systems. By 
this we mean a formulation which is based on an appropriate transport equation such 
that 
�9 it involves an additional variable, ~, the so-called kinetic velocity variable; 
�9 its ~-moments recover the original equations and their augmenting entropy condi- 

tions. 
This approach was already used by the authors for scalar conservation laws in 

[9, 10]. The scalar conservation law and all of its associated entropy inequalities were 
formulated in terms of a single BGK-type kinetic transport equation. Here, we provide 
kinetic formulations for the isentropic system (1) and the p-system (2). These kinetic 
formulations are not of BGK-type 1, but instead they involve a limit collision term. 
This enables us to represent the corresponding 2 • 2 systems and their associated 
family of so-called weak entropies. (Strong entropies could be handled by a different 
kinetic formulation.) 

It is evident in both cases of  a scalar equation or the present 2 • 2 systems, that 
the kinetic formulation is in fact a way to represent a "rich" enough family of entropy 
inequalities. This seems to give the limits of the method, but also explains its power 
and why many properties of the system can be proved or recovered so easily using 
this formulation: these properties are in fact obtained with the use of certain particular 
entropies which here can be handled easily in the context of our kinetic formulation. 

As a first illustration of this advantage, we recover immediately the invariant 
regions. This provides, as it is well-known, see for instance Dafermos [2], Serre [13], 

"7--1 
a maximum principle on the Riemann invariants u • ~o 2 for weak solutions. 

A second illustration is the derivation of a new estimate for weak solutions, which, 
in the Eulerian case gives for some C > 0, 

+oc 
f 3~ 1 ( ~ l u ] 3 + ~  2 ) ( x , t ) d t  

0 

_< c / ( ~ ~ 1 7 6  2 + (~~ Vz ~ R, (3) 
J 

R 

The proof relies on the moments lemma for transport equations (see Perthame [12]) 
in the form in which they were set recently by Lions and Perthame [6]. Again it 
can be interpreted here as a choice of  appropriate entropies. A (relatively!) surprising 
feature is that, with this method, (3) appears very close to dispersive effects for the 
SchrOdinger equation. 

Our last illustration is a proof of the strong convergence of families of solutions 
corresponding to initial data Q0,~ u~~ bounded in L ~ ( R ) ,  in the Eulerian case (1) for 
y _> 3. Let us recall that this result was proved by DiPerna [3, 4] for values of 7 
given by "y = (N  + 2) /N,  N > 3 and extended by Chen [1] to 1 < "7 -< 5/3. The 
main difficulty lies with the degeneracy of the system close to the vacuum (~ = 0). 
This restricts the allowed entropies to the so-called weak family, and it is precisely 
this family of  weak entropies that is represented by our kinetic formulation. 

1 It is possible to formulate the isentropic system (1) as a BGK-type kinetic equation but this 
formulation recovers just one entropy - the mechanical energy 
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We note that unlike the scalar case our current formulations are not "purely" kinetic, 
in the sense that the advection velocity of  the underlying transport equation involves a 
combination of  the kinetic velocity, (, as well as the macroscopic velocities, u and w; 
consult (18) (with ~ / #  3) and (44) below. Kinetic formulations of  such "non-local" 
type are familiar from kinetic modeling in other contexts. This particular formulation 
is compatible with moments lemma, but we do not seem to be able to use here the 
averaging lemmas (see Golse, LionS, Perthame, Sentis [6]; DiPerna, Lions, Meyer 
[5]). Instead, our convergence proof employs compensated compactness arguments, 
as in [3, 4, 1] (see Murat [11], Tartar [15]), and its relative simplicity is due to some 
algebraic properties of the kinetic formulation. 

We will also give details about the case 3, = 3 for the Eulerian case, announced 
by the authors in [9]. In this case, the kinetic formulation is particularly simple (since 
it becomes purely local), and we can prove regularizing effects in Sobolev spaces, 
similar to the scalar case (see [10]). 

The rest of this paper is organized as follows. We first give the kinetic formulation 
in the Eulerian case, from which we derive in a second section the a priori estimate 
(3). The third section is devoted to the strong convergence of bounded families of  
solutions for ~, > 3, a result that yields existence theorems by the vanishing viscosity 
method. Such existence results will be presented elsewhere. Treatment. of the case 
"y = 3 concludes the third section. Finally, in Sect. IV we give the kinetic formulation 
for the Lagrangian case, and as before we recover invariant regions and the L ~ 
estimate of  averages in time similar to (3). 

Let us finally mention that the case 1 < -f < 3 can also be studied, as far as strong 
convergence and existence results are concerned, and we shall come back on this in 
a future publication. 

I. Kinetic Formulation in the Eulerian Case 

In this section, we consider weak solutions of  the system (1) and we will give its 
kinetic formulation. This requires the knowledge of  a complete family of  "supple- 
mentary conservation laws" or, more precisely, the weak entropy inequalities. This 
is achieved in Subsect. 1. Then, we present our kinetic formulation and we conclude 
this section with several remarks in order to connect this formulation with classical 
notions like the eigenvalues of  the system or Riemann invariants. 

1.1. Entropy Inequalities 

Smooth solutions of  (1) satisfy the additional conservation laws 

%,(~, ~) + OxH(~, ~) = o, 

if and only if (% H)  satisfies 

p'(~) 
H e = ur]~ + - -  

or equivalently, 
p'(e) 

~]@o @2 7]uu " 

(4) 

(5) 

(6) 
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This is easily proved because the existence of such a r/ reduces to the equality 
Ho~ = Hue, which yields precisely (6). A function r] satisfying (6) is called an 
entropy. 

In the following, we are going to consider the so-called weak entropies, i.e. those 
functions ~7 which satisfy (6) and are subject to given initial conditions (0, 9(u)), 

r/(o = 0, u)  = 0 ,  

rle(O = O, u) = g (u ) .  
(7) 

Observe that (6) is a wave equation with variable coefficients independent of u, a fact 
that reflects the Galilean invariance of (1). Thus, the solution of (6), (7) is obtained 
through a convolution as stated in the 

Lemma 1. For  p >_ O, u, w E JR, 
(i) the fundamental solution of (6)-(7) i.e. 

~?o(Q = O, w) = ~(w) (Dirac mass at O) is given by 
the solution corresponding to 

X ( Q ; w )  : :  (Q~/-1 _ w2)~_ , 

A -  3 - 7  
2( 7 - 1) '  

(8) 

(ii) the solution of (6), (7) is given by 

(9) 

(iii) r/(given by (9)) is convex in (p, pu) for all ~, u if and only if g is convex, 
(iv) the entropy flux H associated with ~l is 

H(& u) = / g(~) [0~ + (1 - O)u] X(O; ~ - u)d~,  (10) 

where O= 7 -  1 
2 

Remark. In this lemma and in everything that follows we are using the notation 
(x)~+ = sup(0, IXlA-lx). 

Proof of Lemma 1. (i) and (ii) are well-known and can be found in [3, 4] for instance. 
To prove the convexity statement (iii), we notice that 

+1 

r/(p, u) = L) g q + z 0  7 (1 - z2)+x dz, 

- 1  

(11) 
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with q = Ou and we still denote by rl(& q) this function. We can compute the Hessian 
matrix of ~7 

-) ~]oo ~ L o T 9  ' + z 9  ~$t z(1 2 x = - -  - z )+  d z  

f (  "/-- 1 7 -3 '2  
--  q T ZL) 2 ) 9"( '" -- + 7 + 0(1 zbX+& 

_ _  f ,.}/2 _ 1 2.),+1. -- 8 (~7  1) 07-2g"('")(1 - z )+ az 

f (  ~_3,,2 _ q 7 -  1 z0 z ) 9"(.--)(1-z2)+dza +o 7 + ~ -  
1 / 9"( rlqq --= ~ . . . )  (1 - z2)A+ dz,  

f (  q 7 _  1 -r-3) rlqQ= - - ~ q - - - - - ~ z < o  ~ -  9 " ( . . . ) ( 1 - z i ) ~ + d z .  

From these formulae, we see that whenever 9 is convex, i.e. g" is nonnegative we 
have Too -> 0, 7]qq ~ 0 and also 

2 

f ) T]Oc~ --  (7]qc9)2 ~ 7 + 7 - l 7-3 "~ 

x f 9 % . . )  (1 - z2)X+dz 
q _ ,~-3 2 

- [ / ( - ~ _ §  , 

which is again nonnegative using Cauchy-Schwarz Inequality. This proves the 
convexity of ~7. On the other hand, if g" < 0 on some interval, we can take 0 

7--1 
small enough and u the center of this interval so that for Izl _< 1, 9 " ( u + z o  2 ) < O. 
Thus T]qq is negative for these values of (O, u) and ~ is not convex. This concludes 
the proof of (iii). 

Finally, to recover the entropy flux in (iv), we just need to do it for the fundamental 
solution and we look for a representation of the following form: 

H(0, u) = f 9(0 h(#, u; 0 d~, 

with 

i f ( Q )  
ho(Q, u; ~) = u)Co + - -  Q 

h~(~, u; ~) = 0Xo - )~. 

X~ , 
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This gives 

.2.A--1 ho(&u;~)=k(~/ -1)co 'Y-2(O~+(1-O)u)(~ '~- I  = ( { - u )  )+ , 

h ~ ( o  = o, u; ~) = o ,  

and thus, h is given by the formula 

h(o, u; {) = (0{ + (1 - O)u)x(O; ~ - u),  (12) 

and Lemma 1 is proved. [] 

Remark. The "strong" entropies, X~(& w), are obtained using the fundamental solution 
corresponding to r/o(p = 0, w) = 0 and given by 

x , ( o ; w )  = o (o  ~ 1 __ w 2 ) ~  , # = - 1  - ;a, 

which belongs to L~oc(1Rw) for "y > 3 (since)~ > 0). For "y _< 3 this formula has to be 
interpreted using finite parts distributions. Then, the entropy flux is given by a more 
complicated formula than (10). If 

~ = / 9(~)x,(o; ~ - u ) d ~ ,  (13)  

R 

then, formally 

with 

(14) 

0 
O w  Cs(0; ~w) = xs(e; w). 

This can be obtained using the relation 

fg(u + z 0)(1 <dz ,  r/8(& ~) (15) 

and computing, H~ from the relation on H~, in (5). These entropies are only useful 
far from the vacuum since they are singular for ~ = 0. 

1.2. Kinetic Formulation 

Following the general theory developed by Lax [7] we are going to restrict our 
attention to the solutions of (1) which satisfy entropy inequalities. We thus begin with 
the 

Definition 2. A couple (6, pu) (t, x) is called an entropy solution of (1) / f  it satisfies 

Otr7 + OxH <_ O, (16) 

for all (globally) convex entropies r~ = rl(p, q) that vanish at p = O for all q, (i.e. the 
entropies given by the representation formula (9) with g convex). 

This definition needs to be made a bit more precise since we may need to restrict 
the growth of ~ (or of 9) depending on the integrability properties of (0, q). 
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Taking 9(()  = 1 or ~ in (9) we just recover ~7 = 6 or 6u and then (16) is nothing 
but the original system (1). A more interesting choice is to take 9(~) = ~2/2. Then, 
the corresponding entropy represents the energy 

1 
T]E = ~ ~ )u2 § ~'Y. 

7 - 1  

Therefore, entropy solutions will satisfy 

pzL 2 + 6 7 6 L ~ ( R + ;  LI(]R)). (17) 

In fact, in the following only subquadratic 9 will be used and we will say that a 
couple (6, 6u) (4, x) has finite energy if it satisfies (17). In that case, (16) makes sense 
and Definition 2 is now precise. 

We are now ready to give the kinetic formulation of (1). Observe first that if 6 
and q = pu belong to L~(]R+; LI(IR)), the t e r m  6 u2 in (17) should be interpreted as 
q /6. 
T h e o r e m  3. Let (& 6tt) E L~176 LI(]R)) have finite energy and p >_ O, then it is an 
entropy solution of  ( 1 ) / f  and only if  there exists a non-positive bounded measure m 
on IK + • •2 such that the function X(6; ~ - u) satisfies 

OtX + 0x[(0 ~ + (1 - O)u)x] = 0 ~ m ( t ,  x, ~). (18) 

Moreover, i f& 6u are C 1 in the open subset • of]R+ x IR, then m = O for  (4, x) 6 ~ ,  
~ 6 R .  

Remark. On the set {6(4, x) = 0}, the function u(t, x) is not defined, however it 
is never used on this set since X(0, w) = 0. In all that follows we just define, for 
convenience, u = 0 whenever 6 = 0. 

This formulation is clearly an extension of the one obtained by the authors in 
[9, 10] for scalar conservation taws. The new point here is that the advection velocity 
in (18) is no longer purely kinetic. This fact creates difficulties in the application of 
the known methods for kinetic equations. However, a possible application is given in 
next section. 

Proof of  Theorem 3. Let (6, 6u) have finite energy and let us define the distribution 
m by 

Otx + 0x{[0 ~ + (1 - O)u]X} = 0 ~ r a ,  (19) 

(or equivalently rrz is constructed as 

m = 0~2 + %~,  

where 2 and h are second primitives in ~ of X and h = [0~ + (1 - 0)u]x) .  In other 
words, (19) means 

o~ + % H  = @"(~), m) 

for any couple (% H )  given by the formulae of Lemma 1. Now, to write the entropy 
inequalities for 9 convex is equivalent to the following inequalities: 

(k((),m) _< O, W(() > o; 
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which in turn is equivalent to m _< 0. The equivalence of the formulation is completed 
by noticing that the choice g({) = {2/2 gives the bound 

- f dm(t,x,{)= f(VE(X,T)-rlE(x,O))dx 
[0,T] X R 2 R 

which is finite for any T by the assumption (17). 
Finally, if (& 0u) is smooth on ~ then the entropy inequality turns out to be 

an exact equality by the very construction of entropies and thus m = 0 on ~ • IR. 
Another way to prove it, is to compute exactly the left-hand side of  (19) using Eqs. (1) 
and the chain rule allowed for smooth functions ~, ~u. 

L3. Rema~s 

In order to clarify this formulation let us first notice that (1) is a hyperbolic system 
(actually strictly hyperbolic as long as ~ > 0). The corresponding eigenvalues are u-f-c 
with c = p,(~)1/2 the speed of sound. We recover the same speeds of propagation for 

~--I "7-1 

the advection term in (18). Indeed, when { C suppx  = [u - O 2 ,u-Ji- ~ ) T ] ,  then 

0 ~ + ( 1  -O)u c [ u -  c , u  + c]. 

Finally, using the convex function 9 given by 

g(~) = ({ - {o)+ (resp. ({ - {0)- ) ,  

we recover the classical maximum principle on the two Riemann invariants 

max(u + 9 ~ (x, t) _< max(u ~ + (O~ ~ (x), 
x x 

min(u - 0 o) (x, t) _> min(u ~ - (0~ o) (x).  
x x 

From this follows the existence of a constant M such that 

Ilk(t, ) IG + II0(t, )ll~ -< M(IIdlG, Ilu~ (20) 

Let us also give another possible derivation of (18). We consider the family of  
convex entropies indexed by k r ]R corresponding to gk(~) = (k - ~)+. Then, one 
also has 

k 

%(o,u)= f f x (o , { -u )d{dr l ,  
- -  E X )  - -  C , O  

or in other words 

x(0,  k - u) = OkkrM0, u ) .  

If  we write the Lax entropy inequalities for r/k as 

OdTk(O, u) + GH~(~, u) = ~(t, z, k) <_ O, 

for some measure rh, and we differentiate twice in k, we just recover (18) with k 
in place of  ~ and rh = m. This family of entropies is very similar to the Kruzkov 
entropies for scalar conservation laws. 
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II. A n  L ~ E s t i m a t e  

We now give a first application of the kinetic formulation (18), namely the L ~ 
estimate for integrals in time given in the introduction by formula (3). It is in fact a 
variant of the higher moments Lemma [12]. 

To prove (3), we follow the method of [8]; we multiply Eq. (18) by ~ f l  sgn(x - y) 
2 and integrate on (0, T)  x R:~,~. This gives 

/ ~l~l (X( T, x, ~) - X(0, x, ~)) sgn(x - y) dxd~ 

R2 

T 

o ,x 

T 

= f / 2 s g n ( x - y ) s i g n ~ d m ( t , x , O  

o 1~2 

T 

0 R2 

> - 2 E  0 , 

where E 0 denotes the inital energy 

) 
7 - 1 (8~ 

dx.  

R 

Using again the energy inequality for the first term, we obtain, for any y E IR, 

T 

0 R 

And we will recover (3) if we prove 

L e m m a  4. There exists a constant 6 > 0 (depending only on 7) such that 

u f ]~] ~r ~ - u)d~ >_ ~50]ul2(8 ~ + ]ul) , (23) 

] ' 3  , I~1 X(P" ~ - u)d~ > ~5~(lul 3 + 83~ (24) 

Indeed, a combination of (22), (23) and (25) yields (3) - notice that 0 is positive 
but 1 - 0 can be negative. 
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Proof of Lemma 4. The proofs are similar for the three estimates and we just prove 
(25). We set cr = u/6  ~ then the left-hand side of (25) can also be written as 

61+30 f Iz + ~l (z + ~)z(1 - zbX+dz, 

R 

and it is enough to prove that 

~ ( a )  / I z  + ~l (z + ~)z (a  2 A = -- z )+ dz > ~(1 + M). (26) 
R 

But ~P is even, and thus we can only consider positive values of ~7. 
We have, for some c~ > 0, 

+1 

~P"(cr) = f sgn(z + a)z(1 - z2)x+ dz 

--1 

1 / (1) 
= 2  z(1-z2)~+dz>_c~ ~ - c r  . 

+ 

Therefore, for some ,~ > 0, 
~'(~7) _>/3(a A 1), 

and, integrating again, we obtain (26) and thus (25). 

Remarks. 1. Again the proof of Lemma 4 consists in using the appropriate family of 
(non-convex) entropies, which is very intuitive at the level of the transport equation, 
but which could be done directly at the macroscopic level. 
2. The form of the estimate (3) is very similar to the regularizing effects known for 
Schrtdinger equations (regularity in x of averages in time). The relationship can be 
understood by the moments lemma and the Wigner transform as in [8]. 

III. Strong Convergence of Bounded Solutions for 7 ~ 3 

III. 1. The Case 7 >- 3 

In this section we consider a bounded family (6~(t, z), 6~u~(t, z)) of uniformly 
bounded entropy solutions to the isentropic gas dynamics equations in Eulerian 
coordinates (1), with finite energy (uniformly in r~). From the estimate (20) and the 
energy estimate, this amounts to say that the initial data 6~ ~~ are bounded in 
L ~ with finite energy. 

In such a situation, we may assume that, as r~ tends to +o% 

6~(t, x) ~ 6(t, x) ,  un(t, x) ~ u(t, x) ,  (27) 

in L~((0,  T) • JR) weak *, for all T 6 (0, oc). 
The question, solved by DiPerna [3, 4] for some values of "y and extended by Chen 

[1] to the range "y Ell ,  ~-], is to prove that this convergence is strong, which allows 

to show that (6, 6u) is an entropy solution of (1) for the limiting (in L ~ weak *) 



Kinetic Formulation of Isentropic Gas Dynamics 425 

initial data. This is achieved in [3, 4, 1J for 1 < ~), < 5/3 and we will show below 
that a very simple argument allows to treat the case 7 -> 3. 

The main idea, as in [1, 3, 4], is to use compensated compactness on all the family 
of weak entropies (in order to deal with a possible vacuum). The advantage of the 
kinetic formulation is that it is equivalent to do it ~ by ~, thus giving a functional 
relation in ~ that is easy to use. 

Our precise result is 

Theorem 5. Let ~/ > 3 and an, Un as above, then a subsequence of On (still denoted 
by &Q converges pointwise to g and (a subsequence of) u n converges pointwise to u 
on the set {L)(x, t) > 0}. In particular, 8nun converges pointwise to ~u. 

Remark. It is possible to deduce from this "strong convergence" result a global 
existence result for general initial conditions. This can be done by a viscosity type 
approximation and requires some careful estimates that will be presented in a future 
publication. 

Proof of Theorem 5. Let us denote du~,t( & u) or du the Young measure (see [11, 15]) 
associated to the weak limit (27). Take two smooth functions with compact support 
g(~l), h(~2) and use the compensated compactness weak limit in the determinant built 
with the equations 

x X(OMu,, - ~)dr = (g" ,m} ,  

X X(L)n; U n -- {2)dr = (h I', m) .  

Observe that all the quantities appearing on the LHS are in W -1'~176 and, since {9 'I, ra} 
and (h", m) on the RHS are bounded measures in x, t, we can use Murat's Lemma 
to conclude as in [1, 3, 4], 

/ 1"b(~2))((~2)d~2/ff(~l) [0~1 -}- ( 1 -  0)u]  ~(~l)d~l  

= . /g (~ l )  h((2)X(~l) [0(2 + (1 - O)u] X(~2) d~l d(2 

-- J h((2)g(~l)X(~l ) [0~1 q- (1 - O)uJx(~2)d~l d~2. 

The last equality holds for arbitrary functions, g, h, and this yields 

X(~I) [0~2 @ 1(1 -- 0)U]X(~2) -- X(~2) [0~1 @ 1(1 -- 0)UJx(~2) 

= x(r [0~2 + (1 - O)u]x(~2)  - x (~e)  [o~1 + (1 - O ) u ] x ( ~ l )  

---~ 0(~2 -- ~l))((~l)X(~2) " (28) 

Here and below we use the overbar to indicate the usual integration with respect to 
the Young measure; for instance 

:= f x(o; u - Odu~ , t (O ,  u ) .  2(~) 
J 
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We may rewrite (28) as 2 

0 [ X ( ~ I ) X ( ~ 2 ) 1 ] - -  1 (uX({2) ttX(~l) ~ (29) 

for {~, {2 E g~, where ga is any open connected component in the union of the sets 
]u - 0 ~ u + ~0[, fo r  which (0, u) E supp u. 

The first step of the proof is to show that for 7 - 3, 

ux(r  
- -  is a nonincreasing function of { E ~ ,  (7 >- 3). (30) 
x(r 

x(O - 2({) To this end, we denote by f 0 ( { ) . -  , so that (29) takes the equivalent 
form 2(~) 

0 ~fO(~l) fo(~2) -- 1 (zLX(sC2) uX(~l) ) (31) 
1- -O ~2--~1 \ ~ ) 2 )  ~ " 

Sending {2 to {1 in (31), we should end up with 

1 - 0  ~ \ x(r ' 

and (30) follows, since 1 - 0 and hence the left-hand side are negative for 7 > 3. 
Notice that there is no difficulty to pass to the limit on the right-hand side of (31) 
(in distributions sense) since X({) does not vanish on g#. In order to pass to the limit 
on the left-hand side (in L2o~(ga)), we require f0(~) and hence X({) ~ L2(R~); but 

1 
since 2 = 0(5--0/2 {I)~(~)[[ L2(N{) f (1 -~2)2A d~, this requirement of L2(N~)-integrability 

-1 
restricts the range of admissible 7 ' s  with 7 < 5. To extend the statement of (30) for 
all 7 >- 3, we first regularize by mollifying both sides of (31) against a unit mass 
mollifier, ~b~({) >_ 0, arriving at f~ := f0 * g)~ which satisfies 

0 
1 - o  f~(r162 1 ( ~ ( { 2 )  %~(~1)~ ~1 ~/Jc~({1)~2 +0~(~2) " 

Granted the boundedness of the LHS and the smoothness of the RHS, we may now 
take ~2 = ~1, to find out that 

1 - 0 f~(r - r - r \ x(r ~ / 

If we now let c~ tend to zero, then the left-hand side of (32) yields a negative 
measure (again, since 1 - 0 is negative for 7 -> 3) whereas the right-hand side tends 

0 
/ \ 

(uX(~) ] ,  and thus (32~) yields the desired (30) as a ---+ 0. to ~ \ x(~) / 

2 The case 0 = 1 corresponding to 3' = 3 will be treated in Proposition 7 below 
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x(r 

i 

, ~  _ pO = r  u2 - po u l  U2 
~+ = ua + p0 

= u2 + p0 

Fig. 1. ~ =]~_, {+[ and two X functions for two values (01, Ul), (02, '~2) in the support of v 

The second and final step in our proof is stated as 

L e m m a  6. Let ~ =]~_,  ~+[ stand for any open connected component as above, and 
set u o :=  (~_ + ~+)/2, then 

lim ux(~i > Uo, lim ux(~) < % -  (33) 
~ +  x ( ~ )  - ~ -  ~(r - 

Before proving Lemma 6, let us conclude the proof of Theorem 5. Combining (33) 
with (30) we obtain that ~ / 2  is constant, which in turn tells us, by (32c0, that 

f2(~) = 0. Hence, f~(~) vanishes on the support of v and in particular, by letting 
--+ O, so does f0(~), 

f 0 ( ~ ) =  - l = 0 ,  (6, u) E s u p p v -  
x(r 

This shows that on the set {6 > 0}, the Young measure v is reduced to a Dirac mass 
and the conclusion holds as usual (see [1, 3, 4]). 

Proof of Lemma 6. According to (30), ~ / ~  is a monotone function on ~ ,  and we 
turn to consider its one-sided limits as ~ -+ ~• The values of  (6, u) such that X(~) > 0 
in an interval ]~+ - e, ~+[ satisfy 

u + 6 ~ >> ~+ - e,  

and therefore, since ~_ _< u - 6 ~ for these (6, u) values, we have 

lim uX(~) _> min{u; (6, u) c supp v, u + 6 ~ = ~+} 

> r  
- 2 

A similar argument holds for ~_, thus concluding the proof of  Lemma 6 and of  
Theorem 5. 

Remark. The case 7 -> 3 is also the case where both families of entropies, weak and 
strong, are well-defined in L 1. 
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111.2. The Case ~/ = 3 

In the case when 7 = 3; we have 0 = 1 and the kinetic formulation reads 

OtX + COax = O ~ m .  (34) 
Thus, we can apply the averaging lemma in the version [5] and obtain 

Proposi t ion 7. Let (6, 6u) satisfy (1) with 6 ~ 6~176 2 + (6~ "r in LI(R), ~o ~ and u ~ in 
L~176 then 

1 
8,~, , ( 3 5 )  & 6u E Wlo c ([0, +oc [x Ik )  for  all 0 <_ s < 

where p = 7/4. 

Remark. The regularity given by (35) is probably not optimal and is just an indication 
of  regularizing phenomena taking place in the case when 7 = 3. 

Proof  o f  Proposition Z With these assumptions on the initial data we have 

X(t,  X, ~) E L~ L 2 ( ~ 2 ) ) ,  

rn( t ,x ,~)  E MI(IR+ x R 2) (bounded measures), 

and thus (35) follows from the general results of  [5] observing that supp X(t, x, .) is 
uniformly bounded for x EIk,  t _> 0. 

IV. The p-Sys tem 

To treat the case of Eq. (2), we follow the lines of Sects. I and II. We give first the 
kinetic formulation, then the invariant regions and finally the "dispersion" estimate 
analogous to (3). 

We only consider v(t, z )  >_ 0 and thus v plays the role of  6 in the Eulerian case. 

IV.1. Kinetic Formulation 

The couples entropy-entropy flux are now given by the relations 

%v + p'(v) r],o ~ = O, 

H v = rl~p'(v), H w = - % .  

Therefore the fundamental solutions to (36) are now 

(36) 

(37) 

hl(v,  w;{ )  = 0 ~ - w Xl(V;~ _ w) , (40) 
V 

v 

h2(v , w; ~) = O ~ - w / v X2(v; { - w) § (s l - ' r  - ({ - w)2)~ ds .  (41) 

0 

3 - v (38) Xl(V; ( - w) = v(v 1-~ - (w - ()2)~+, I - 2(A - 1) ' 

X2(V; ~ -- W) = (V 1 - ' /  --  (W -- ~)2)~_ , 1~ = --1 -- A. (39) 

The entropy fluxes are obtained integrating g({) against the function h given by 
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We still have 0 = (7 - 1)/2 and these formulae are obtained integrating the relation 
H v . . . .  in (37). Again, depending upon 7, these functions belong to LI(IR~) or not 

and in the following we restrict our attention to those cases corresponding to X1 E L 1, 
namely 

1 < 7 < + o c .  (42) 

The energy is now given by 

W 2 
E(t ,  x) = ~ -  + ~ v 1-~ . (43) 

It is always positive and its L 1 norm in :c decreases with t. Other entropies are given 
by the 

L e m m a  8. ~?(v, w) = f 9(~)X1 (v; ~ - w)d~ is a convex function of  v, w if and only if  
g is convex. 

Proof o fLemma 8. Skipping standard calculations we have 

- 7 2 - 1 v - ( 7 + 1 ) [ v - ~ 1 7 6  -- z2)')+dz 
r]w 4 

R 

>o, 

r / ~  f g ' ( . . . ) ( 1  2 ;, = - z )+ dz > 0 

R 

1+7 f gll (. . 1 - 7 - ~ -  - z2)X+dz, r lw = ~ v .) z(1 

R 

and we conclude again using Cauchy-Schwarz inequality and letting v --4 0 or +oc .  
As far as we are interested by shocks described by the convex entropies in w, v, we 

obtain that the entropy solutions to (2) with finite energy satisfy (recall that [71 > 1) 

(44) 

for some non-positive bounded measure m. 

Remark. Notice that multiplying (44) by ({, {2/2) we recover the conservation of the 
momentum (second equation of  (2)) and the energy inequality. The weight 1 does not 
give the first conservation law, and we do not know how to recover the conservation 
law (associated of  the conservation of  mass) from (44). 
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IV.2. Invariant Regions 

As before if  )tl(t = 0 , x , ~ )  = 0 for ~ > ~+, then this has to be true for all times 
(same for ~ _< ~_) thus recovering the maximum principle on the Riemann invariants 

(w + v -~  (x, t) <_ max(w ~ + (v~ - ~  (x) ,  (45) 
X 

(w - v -~  (x, t) >_ min(w ~ - (v~ - ~  (x) .  (46) 
X 

Thus v is bounded for ~ / <  - 1  and bounded from below for "7 > 1. In any case, w 
remains bounded. 

IV.3. An L ~  Estimate of  the Integral in Time 

A straightforward application of (25) in Lemma 4 yields as in Sect. II the "dispersion" 
estimates 

+oe 
f 3(i-%) (iwlvl-  + v 2 ) ( y , t ) d t  

o 

C J ( ( w ~  2 -[- (v~ 1-'y) ( x ) d x ,  Vy E N ,  (47) 

for entropy solutions with finite energy. Of course, for 3 / >  1, those have infinite L i 
norm of v but in that case the physical  density is 1Iv. 
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Note added in proof. After this work was achieved, other examples of kinetic formulation for 
N x N hyperbolic systems were obtained in [16]. 

R e f e r e n c e s  

1. Chen, G.Q.: The theory of compensated compactness and the System of Isentropic Gas 
Dynamics. Preprint MCS-P154-0590, University of Chicago, (1990) 

2. Dafermos, C.M.: Estimates for conservation laws with little viscosity. SIAM J. Math. Anal. 18, 
n. 2, 409-421 (1987) 

3. DiPerna, R.J.: Convergence of Approximate Solutions to Conservation Laws. Arch. Rat. Mec. 
and Anal. 82(1), 27-70 (1983) 

4. DiPerna, R.J.: Convergence of the Viscosity Method of Isentropic Gas Dynamics. Commun. 
Math. Phys. 91, 1-30 (1983) 

5. DiPerna, R.J., Lions, P.L., Meyer, Y.: L p Regularity of Velocity Averages. Ann. I.H.P. Anal. 
Non Lin. 8(3-4), 271-287 (1991) 

6. Golse, F., Lions, P.L., Perthame, B., Sentis, R.: Regularity of the Moments of the Solution of a 
Transport Equation. J. Funct. Anal. 76, 110-125 (1988) 

7. Lax, P.D.: Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock 
waves. CBMS-NSF regional conferences series in applied mathematics, 11 (1973) 



Kinetic Formulation of Isentropic Gas Dynamics 431 

8. Lions, P.L., Pertbame, B.: Lemmes de moments, de moyenne et de dispersion. C.R. Acad. Sc. 
Paris, t. 314, s6rie I, 801-806 (1992) 

9. Lions, P.L., Perthame, B., Tadmor, E.: Formulation cin6tique des lois de conservation scalaires. 
C.R. Acad. Sci. Paris, t. 312, s6rie I, 97-102 (1991) 

10. Lions, P.L., Perthame, B., Tadmor, E.: Kinetic Formulation of Scalar Conservation Laws. 
J.A.M.S. 7, 169-191 (1994) 

11. Murat, F.: Compacit6 par compensation. Ann. Scuola Norm. Sup. Pisa 5, 489-507 (1978) 
12. Perthame, B.: Higher Moments Lemma: Applications to Vlasov-Poisson and Fokker-Planck 

equations. Math. Meth. Appl. Sc. 13, 441-452 (1990) 
13. Serre, D.: Domaines invariants pour les syst~mes hyperboliques de lois de conservation. 69, n. 1, 

46-62 (1987) 
14. Smoller, J.: Shock Waves and Reaction-Diffusion Equations. Berlin, Heidelberg, New York: 

Springer 1982 
15. Tartar, L.: Compensated Compactness and Applications to Partial Differential Equations. In: 

Research Notes in Mathematics, Nonlinear analysis and mechanics, Heriot-Watt Symposium, 
Vol. 4, Knops, R.J. (ed.) London: Pitman Press, 1979 

16. James, F., Peng, Y-J., Perthame, B.'/Kinetic formulation for the chromatography and some other 
hyperbolic systems (To appear in J. Math. Pures et Appl.) 

Communicated by J. L. Lebowitz 


