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Abstract: Inspired by a recent work of  Frenkel-Zhu, we study a class o f  (pre-)vertex 
operator algebras (voa) associated to the self-dual Lie algebras. Based on a few ele- 
mentary structural results we propose that ~U, the category of  Z+-graded prevoas V 
in which V [0] is one-dimensional, is a proper setting in which to study and clas- 
sify simple objects. The category ~ is organized into what we call the minimal k th 
types. We introduce a functor F - which we call the Frenkel-Lepowsky-Meurman 
functor - that attaches to each object in ~ a Lie algebra. This is a key idea which 
leads us to a (relative) classification of  the simple minimal first type. We then study 
the set o f  all Virasoro structures on a fixed minimal first type V, and show that 
they are in turn classified by the orbits of  the automorphism group Aut(F(V)) in 
cent(F(V)). Many new examples of  voas are given. Finally, we introduce a gen- 
eralized Kac-Casimir operator and give a simple proof of  the irreducibility o f  the 
prolongation modules over the affine Lie algebras. 
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1. Introduction 

The theory o f  vertex operator algebras (voas) since its inception, has undergone 
many developments [1, 2, 7, 8, 9, 11, 15, 16, 24-27,  31] - both at the level o f  
structural theory and at the level o f  new examples (see the introduction in [9] for 
a historical review). 

This work is an attempt - partly inspired by a recent paper o f  Frenkel -Zhu - to 
understand certain basic aspects o f  the structure o f  voas. As a result, we discover a 
large class of  new voas. Recall that Frenkel -Zhu attach to every finite dimensional 
simple Lie algebra 9, a family o f  voas 1(9, Cz) (among other things). One o f  the 
main results of  the present work is the observation that the family o f  voas attached 
to 9 fits naturally into a much larger class o f  voas, each o f  which is associated to 
a finite-dimensional self-dual Lie algebra. We propose studying this new family of  
voas as a first step toward classifying the simple voas. 
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We begin with an outline of our motivations and goals. 

1.1. Conformal Field Theory, Quantum Groups and Chern Simons-Witten The- 
ory. Voa theory is deeply rooted, aside from the theory of the Monster, in string 
theory and conformal field theory (CFT). This work is partly motivated by two 
classes of CFTs. 

One of the richest classes of CFTs is the Wess-Zumino-Witten (WZW) mod- 
els[28, 13, 18]. These models were discussed originally within the fi'amework of 
semisimple groups G - partly inspired by similar models associated with abelian 
groups. When G is compact, the corresponding WZW models are relatively well- 
understood. For example, it can be shown that the genus-zero and genus-one proper- 
ties of these models are substantially captured by the properties of the corresponding 
voas (WZW voas) [18, 26, 11]. For non-compact semisimple G, some partial re- 
sults on WZW models are known (see [21] and references therein). No example is 
known beyond the case of a reductive G. However, there are hints that non-reductive 
WZW-type models might exist. 

In the case of a compact G, the genus-zero correlation functions of WZW 
models are known to be governed by the Knizhnik-Zamolodchikov (KZ) differential 
equations. These equations also bear some connections with the theory of quantum 
groups. In particular, the monodromy of the KZ equations is related to the tensor 
product structure of the representations of a quantized enveloping algebra [4]. On 
the other hand, Drinfel'd has recently pointed out that the KZ equations can in fact 
be formulated for any finite dimensional Lie algebra with an invariant bilinear form. 
But it was not known whether such equations actually arise in CFT (see [10] for 
a related discussion). Still this is a first hint that there might exist non-reductive 
WZW-type models and their voas. This is one of the motivations of the present 
work. 

Another interesting class of CFTs are the super unitary CFTs. It has been shown 
[14] that the super chiral algebra of such a CFT is a tensor product of "spin half 
fermion" theories and a Z+-graded chiral algebra V with one-dimensional V [0]. 
The chiral algebra V lies in what we call the category ~U. This category is the 
starting point of the present work (Sect. 3). Thus this paper may be viewed as an 
extension of the work of Goddard-Schwimmer. 

In one of his papers, Witten has uncovered a deep connection between a certain 
gauge theory and 2 + 1-dimensional gravity [29]. The gauge theory he studied was 
the Chern-Simons actions with gauge group IS0(2, 1). This group may be viewed as 
the semi-direct product SL(2, R~xs/(2, R ~) where SL(2, R) acts on the vector subgroup 
sl(2,R) t via the coadjoint action. The complexified Lie algebra of this group is 
g = sl2~<sl~. One of the key ingredients that were used to construct the Chern- 
Simons action was the non-degenerate symmetric g-invariant pairing between Sl2 
and sl~ [29]. 

There is in fact a host of other examples of non-compact groups similar to 
SL(2,R~<sl(2,R) ~, i.e. the ones of the form H [xh ~, where H is any Lie group, and 
h ~ is the dual of the Lie algebra of H. Its Lie algebra g clearly has a non-degenerate 
form, just as one does in the case above. Thus one can at least write down the 
Chern-Simons action for each of these "self-dual" groups - groups with invariant 
metrics. We have no idea whether it makes sense to quantize such an action. 

Now in [30], it is shown that Chern-Simons theory based on the group SU(N) 
gives rise to the WZW models based on the same group. More precisely, the con- 
formal blocks of the two-dimensional models arise as the physical Hilbert spaces 
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of the three-dimensional theory. Thus it is plausible that the conformal blocks of 
some other WZW-type models (perhaps one that might arise from self-dual group 
ISO(2,1) may be related, in a similar fashion, to the quantization of the corre- 
sponding Chern-Simons theory. This suggests that we should look for non-reductive 
WZW-type models. 

Where do we look? We know that the current algebra of SU(N)  leads to a 
WZW voa and to a conformally invariant quantum field theory. The local conformal 
transformations are effected by the action of the Virasoro algebra. Is there a voa 
associated to a general self-dual group? If so, what is the Virasoro action in the 
case? 

1.2. The Virasoro Action. Motivated by quantum conformal field theory, one re- 
quires that a voa be equipped with an action of the Virasoro algebra, satisfying a 
number of "physical" conditions. This action corresponds to local conformal trans- 
formations on a conformally invariant physical system. This requirement of having 
a Virasoro action is clearly independent of the Jacobi identity, for there are in fact 
many interesting objects - similar to voas - which satisfy the Jacobi identity, and 
yet carry no action of the Virasoro algebra. The space I(g, Cx) mentioned above 
with )~ equal to the negative of the dual Coxeter number of g, is one such example 
[1l, 5]. 

From an abstract point of view and the point of view of classification, it seems 
advantageous to begin with only the fundamental axiom and with no auxiliary as- 
sumption. The Jacobi identity is clearly fundamental. A Virasoro action on what we 
call a pre-vertex operator algebra should be viewed as an auxiliary structure. (To 
see how prevoa is related to existing notion, see Sect. 2.) Therefore it is important 
for us to start with the notion of prevoas. Once an interesting category of such 
objects is identified, we can then ask for the existence of a Virasoro structure. 

Closely related to the question of the existence of Virasoro action is the follow- 
ing problem in representation theory. Let g be any Lie algebra with a symmetric- 
bilinear invariant form ([). To the pair (g, (])), we can attach the loop algebra g | 
C[t,t -1] and its canonical central extension g. The Virasoro algebra Vir acts on 
0 canonically with zero central charge. Thus we can form the semi-direct product 
Z-graded Lie algebra Vir ~0. Given a positive energy 0-module M, when can we 
extend it to a Vir ~0 -module? 

We should point out that this problem has well-known solutions in a number of 
special cases: 

(i) When 9 is a finite dimensional simple Lie algebra with its Cartan-Killing 
form {I}, then a g-module M under suitable conditions, admits a Virasoro action. 
This action is given by the Suguwara-Sommerfield formula of Laurent series 

1 
~Lnz-n-zn - 2(Z + hv) ~ i  : Ui(z)Hi(z) : " (1.1) 

Here h ~ is the dual Coxeter number of g, Z is the central character of ~ with 
X + - hO, and ui(z), ui(z) are the vertex operators associated to the dual bases vectors 
ui, u i of g, 

(ii) Similarly, when g is finite dimensional abelian with a non-degenerate in- 
variant form ([), then a g-module M admits the Virasoro action 

Lnz_n_ 2 1 = ~ - - E :  uitz)ui(z) " �9 (1.2) 
z X Y  11 
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This is the original Virasoro formula. 
(iii) In the abelian case, there is actually a more general action of the Virasoro 

algebra which subsumes (ii) above. It is the Chodos-Thron-Feigin-Fuchs action: 

~ L  z - ' - 2  1 d i n = ~ ( :  ui(z)ui(z)'+ei~zU (z)), (1.3) 

where the ei are arbitrary scalar constants. This action is known to be of fundamental 
importance, both in physics and in mathematics (see [20, 6] and references therein). 

All three cases are strongly related to voa theory. In view of the formal resem- 
blance that they have, one should wonder whether there might be a natural common 
root to all three in the context of voa theory. 

We now summarize the problems, motivated by the above discussion, to be 
studied in this paper. 

1.3. Problem Statements. 1. What is structurally special about the objects in cat- 
egory ~U, i.e. prevoas V with a one-dimensional V [0]? 

2. Given a Lie group with an invariant metric, construct an analogue of the 
WZW (pre-)vertex operator algebra. 

3. A WZW prevoa is generated by its weight one elements. Describe all the 
prevoas V generated by V[1] (minimal type ones), in category • .  

4. Classify all simple minimal type ones. 
5. Classify in Virasoro elements on each minimal type one. 

1.4 Organization. In the following outline, the main results of this paper are high- 
lighted with bold-faced characters. 

In Sect. 2, we discuss the notion of a pre-vertex operator algebra and the asso- 
ciated enveloping algebra. We show that there is a distinguished derivation in every 
prevoa. This derivation plays an important role throughout this work. We also make 
a short excursion to the notions of normal ordering and operator product expansion. 

In Sect. 3, we study the category ~U consisting o!" the prevoas with one- 
dimensional V[0]. We use some elementary structural results to demonstrate the 
importance of restricting to ~ (Proposition 3.1, Corollary 3.3, Theorem 3.7). We 
organize this category by the notion of the minimal k th types. 

In Sect. 4, we begin with the construction of a prevoa structure on I(g, C). The 
main results in this section are Theorems 4.7 and 4.11. Theorem 4.7 generalizes 
Theorem 2.3.3, Theorem 2.3.4 and the second part of Theorem 2.4.1 of Frenkel-Zhu 
[11], while Theorem 4.11 describes the type ones in category ~U. 

In Sect. 5, we classify the simple type ones in terms of the self-dual Lie algebras 
(Theorem 5.4). We discuss many examples of self-dual Lie algebras - all of which 
correspond to new simple prevoas. 

In Sect. 6, we classify the Virasoro elements of a type one prevoa (Theorem 6.4, 
Corollary 6.7, Theorem 6.11, Theorem 6.14). We discuss the Virasoro elements 
in those new examples we give in the last section. As an application, we use the 
Virasoro elements to study the reducibility problem of the prolongation modules 
in the generic case (Theorem 6.19). We also use the action of the automorphism 
group on a self-dual Lie algebra to classify the vertex operator algebra structures 
on I(g, Cz) (Theorem 6.22). We then conclude with a few remarks. 

1.5 Notations. The bold-faced characters: C, R, Z, Z+ denote respectively the com- 
plex numbers, the reals, the integers and the non-negative integers. Let V be a 
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Z-graded vector space over C. We denote the n th graded piece as V [n]. Thus we 
have V = (~n V[n]. I f f  is a linear map of Z-graded vector spaces, i.e. f preserves 
the grading, the f[n] denotes the restriction o f f  to the n th graded piece. I f  a E V 
is homogeneous element of weight n, we write [a[ = n. I f  A is a linear operator on 
V such that AV[n] C V[n + m], then we write [A[ = m. The restricted dual of  V is 
Vt = (~n V[n] I, where V[n]' is linear dual of  V[n]. 

V[[z,z-m]] denotes the linear space of formal Laurent series with coefficients in 
V. The subspace of elements with at most finitely many powers of  z-m is denoted 
V((z)). 

Given a rational function f ( z ,  w) of two variables on the Riemann sphere, we 
denote the Laurent series expansions in the domains [z[ > ]w[, [w[ > tz[, and [w] > 
] z -  w[ respectively as Zz,wf (Z, W), zw,~f (z, w), and z~,~_wf(z, w). For example, 

lw, z_wZ n = ~(~)wn- l (z  - w) i . (1.4) 
i>=o 

Other notations used in this paper will be defined locally as we go along. 

2. Preparations 

We begin with some basic definitions. We review the notion of the universal en- 
veloping algebra associated to a voa, introduced in [11]. We then discussed the 
notions of normal ordering and operator product expansion. To every prevoa, we 
attach a canonical derivation which plays an important role throughout our discus- 
sion. Some of the results in this section are straightforward generalizations of  those 
in [8]. 

2.1 Pre- Vertex Operator Algebras. 

Definition 2.1 [2,9]. A prevoa is a pair (V, Y ( - , z ) )  where V is a Z-graded vector 
space, Y ( - , z )  is a linear map V --+ (EndV)[[z, z - l ] ]  with a ~ ~ n  anz-n-A for 
each a E V[A]. In addition, for homogeneous a,b E V, we have 

V1. Y(a,z) = 0 iff a = 0; 
V2. There is a distinguished l v  E V with Y( lv , z )  = idv; 
V3. anV[m] E V[m - n] for all m,n;anb = O for n >> 0; 
V4. The Jacobi identity: for all m, n, 

Resz_w(Y(Y(a,z - w)b, w)(z - w)~Zw, z_w(W + (z - w)) n) 

= Resz(Y(a,z)Y(b, w)t~.w(Z - w)mz n) 

- Resz(Y(b, w)Y(a,z)tw, z(Z - w)mzn). (2.1) 

The formal Laurent series Y(a,z) is called the vertex operator associated with a, 
and lv  is called the vacuum vector. 

When the context is clear we often denote (V, Y ( - , z ) )  simply as V, and lv  
as 1. For convenience, we often write Y(a,z) = ~~a(n)z -n-1. Thus the an and the 
a(n) are related by an = a ( n -  1 + A) whenever a C V[A]. The advantage of the 
notation a(n) is that it is meaningful even when a itself is not homogeneous. We 
often denote Y(a,z) simply as a(z). 
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A prevoa here is what 's  called a vertex algebra with Z-grading in [2]. I f  a 
prevoa is equipped with a distinguished element (o E V[2], known as the Virasoro 
element satisfying certain conditions, it is called a vertex operator algebra (voa) 
[9]. Not every prevoa admits a Virasoro element. I f  a prevoa admits an sl2-action 
satisfying some additional conditions, it is called a quasi-voa [8]. 

Definition 2.2 An ideal I o f  the prevoa (V, Y( - , z ) )  is a 9raded subspace of  V such 
that Y(I,z)V E l[[z,z-1]]andY(V,z)I E I[[z,z-1]]. A subprevoa V' of(V,  Y(-z ) )  is 
a graded subspace of  V such that (V', Y(- ,z)lv ')  is a prevoa is simple if  the only 
ideals are the prevoa itself and (0). 

For a discussion of  this and other categorical notions (homomorphisms, modules, 
etc.) in voa theory, see [8]. It is easy to check that i f  I is an ideal o f  the prevoa 
V, then the quotient space VII is also a prevoa in a natural way. 

The following is an elementary but useful result [8]. It tells us how to recover 
a from the corresponding vertex operator Y(a,z). 

L e m m a  2.3. Let a, b E V. Then we have 
(i) ( a ( - 1 ) l ) ( n )  = a(n)for all n, i.e. a = a ( - 1 ) l ;  
(ii) a(n)l  = O for all n>O. 

Proof 
(i) The first part of  (i) is a direct consequence of  the Jacobi identity V4 in the 

case b = 1,m = - 1 , n  = 0. Now we have Y ( a ( - 1 ) l  - a,z) = 0. From V1, it follows 
that a = a ( -  1)1. 

(ii) This part is a consequence of  V4 in the case b = 1, m > 0, n = 0 [] 

2.2. Universal Envelopin9 Algebra. Following Frenkel-Zhu [11], we can define 
the universal enveloping algebra of  a prevoa. Again, we weaken their definition by 
lifting the existence of  a Virasoro element. Much of  the detail is the same as in 
Sect. 1.3 of  [11]. We will describe briefly the construction. 

Let A be any Z-graded associative algebra. A formal Laurent series b(z)= 
~ i  b(i) z- i-1 in A[[z,z-1]] is called regular of  weight A i f  Ib(i)l = A - i - 1 for 
all i. The subspace spanned by the regular series in A[[z,z-1]] is denoted as A{z). 

Let (V, Y( - , z ) )  be a prevoa, S(V) be the Z-graded free algebra generated by 
the symbols as(i), where a E V and i E Z, subject only to the conditions that 

(i) the as(i) are linear in a; 
(ii) Is(i) = 6i,-11; 
(iii) [a,(i)[ = [a[ - i - 1 whenever a is homogeneous. 

Let S(V) be a suitable completion of  S(V) (see [11] for details). Let Ys(a,z) 
denote the Laurent series of  formal symbols: ~ias(i)z  -i-1. The completion above 
is defined so that it is a Z-graded associative algebra containing the following 
elements: 

ReswResz_w(Ys(Y(a,z - w)b, w)(z - w) m zw, z-w(w + (z - w))nw l) 

- ReswResz(Ys(a,z)Ys(b, w)tz, w(Z - w))mz"w l) 

+ ReswResz(Ys(b, w)Ys(a, z)Zz, w(Z - w))mz"w l) (2.2) 
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where m, n, 1 are integers, and a, b are homogeneous elements in V. the universal 
enveloping algebra U(V) of the prevoa V defined to be quotient of S(V) by the 
two-sided ideal generated by the above elements (2.2). 

By an abuse of  notation, we will denote the image of the as(i) in U(V) 
simply as a(i). Similarly, Y(a,z) will denote the formal series ~ i  a(i) z-i-1 E 
U(V)[[z,z-1]]. We will call Y(a,z) the vertex series attached to a. When viewed 
as a formal series of linear operators acting on some V-module M, Y(a,z) will be 
called the vertex operator attached to a. 

Since the elements (2.2) are themselves homogeneous elements of S(V), it fol- 
lows that U(V) becomes Z-graded. Note that if a homogeneous element of V, then 
the vertex series Y(a,z) is regular of weight ]a[. Thus we have the linear map 

Y(- ,z )  : V --+ U(V)<z) . (2.3) 

Note that by construction, Y ( - , z )  also satisfies the Jacobi identity V4, but with 
Y(a,z) viewed as a vertex series in U(V)(z). 

2.3. Normal Orderin 9. Given two vertex operators Y(a,z), Y(b,z) acting on V, it 
is general meaningless to speak of their product "Y(a,z)Y(b,z)" because the coef- 
ficients of the z n in this formal product are in general not a well-defined operator 
on V. Let 

Y(a,z) + = ~] a(n)z -"-1 , (2.4) 
n>O 

Y(a,z)-  = ~ a(n)z -"-1 . (2.5) 
n < 0  

By V3, Y(b,z)c E V((z)) and Y(a,z)+e E V[z,z-1]. Thus both Y(a,z)-Y(b,z)c 
and Y(b,z)Y(a,z)+c are elements of V((z)). Note that both Y(a,z)-Y(b,z)  and 
Y(b,z)Y(a,z) + also make sense as elements of U(V)(z). 

Definition 2.4. For a, b in V, we define the normal ordered product of  the two 
vertex series Y(a,z), Y(b,w) by the followin9 series: 

: Y(a,z)Y(b,w) := Y(a,z)-Y(b,w) + Y(b,w)Y(a,z) + . 

Part (ii) of the following lemma shows that: Y(a,z)Y(b,w)" is nothing but the 
non-singular part of the ordinary product. 

Lemma 2.5 For a, b is V, we have 
= 

(ii) Y(a,z)Y(b,w) = ~i>=o Y(a(i)b,w)zz, w(z - w) - i - l  + �9 Y(a,z)Y(b,w) : . 

(iii) Y ( a ( - 2 ) l , z ) =  ~zY(a,z) .  

(iv) Y ( a ( - i -  1)b,z)= 1~, . .  Y(a,z)(b,z)" B 

Proof 
(i) This is the Jacobi identity for vertex series in the case m - 0. 

(ii) Using the definition of the normal ordered product, we get 

Y(a,z)Y(b, w ) -  : Y(a,z)Y(b, w) := [Y(a,z) +, Y(b, w)]. (2.6) 
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Applying part (i) to compute the right-hand side, we get the desired result. 
(iii) This is the Jacobi identity in the case b = 1, m = - 2  and n = 0. 
(iv) This is the Jacobi identity in the case m = - i  - 1, n = 0. [] 

Let 's define the normal ordered product of  n vertex series Ai(z)  . . . . .  An(z) in- 
ductively by 

: Al(z) . . .An(z) clef Al(Z)- : Az(z). . .An(z) : + : Az(z).. .An(z) : AI(z) + . (2.7) 

Now applying Lemma 2.5(iv) repeatedly, we get 

Corollary 2.6. For a l , . . . , an  E V and non-negative integers ia,...,i,,, we have 

Y(al(--/1 1 ) . . . an ( - in  1)l ,z) 1 1 ( d ~  '~ ( d ~  ~" . . . .  �9 . . - - :  a l ( z ) . . ,  a n ( z ) "  . 
is! in! \ d z J  \ d z / I  

(2.8) 

Lemma 2.5(i), (ii) show that the singular part of  Y(a ,z )Y(b ,w)  completely de- 
termines the commutators [a(n), b(m)]. In fact there is a quick way to compute such 
commutators. Given a V-module M and its restricted dual M' ,  for v' E M' ,  v E M 
and a,b E V it can be shown using the Jacobi identity [9] that (v', Y(a,z)Y(b,w)v}  
converges to a rational function R~,o, (a, z; b, w) with poles at z = 0, w = 0, z = w, in 
the region [z[ > [w[. Thus we can define the rational function 

singv, ~(a,z;b,w ) = Rv,,~(a,z;b,w) - (v',: Y(a ,z )Y(b ,w)  : v} . (2.9) 

Note that the last term in Eq. (2.9) is a Laurent polynomial in z,w. By Lemma 
2.5(ii), we have 

singj,v(a,z; b, w) = ~ (v', Y(a(i)b, w)v}(z - w) - i -1  . (2.10) 
i > o  

This will be called the singular part of  the operator product expansion of  Y(a,z)  
and Y(b, w). For convenience, we often write 

Y(a,z)Y(b,  w) ~ Z Y(a(i)b, w)(z - w) - i -1  (2.11) 
i > o  

to mean Eq. (2.10). 

Lemma 2.7. Let  Co be a contour around O, and Cw around w but not O. Then we 
have 

(v', [a(n), b(m)] v) - 

Conversely, we have 

1 
2 f f singv, ~(a,z; b, w)znwmdzdw. 

(27ri) Co Cw ' 

tz,wsingv, v(a,z; b, w) = ~ {v', [a(n), Y(b, w)]v}z -n-1 . 
n>O 

Proof  Eq. (2.10), we have 
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1 
(2~zi~ 2 f f s ingj#(a ,z ;  b, w)z"wmdzdw 

J CoC~, 

- (2~i )  fi~>__o ( ~ )  @',Y(a,(i)b,w)v)wm+n-idw 

1 
= - -  f (v', [a(n), Y(b,w)]v)wmdw 

2 z~i co 

=(v',[a(n), b(m)]v} . 

B.H. Lian 

(2.12) 

The converse follows immediately from Eqs. (2.6) and (2.9). [] 

2.4. Derivations. It is interesting to consider the Jacobi identity V4 in the case 
m = n = 0 .  One gets 

Y(a(O)b, w) = a(O)Y(b, w) - Y(b, w)a(O) . (2.13) 

We call a linear map d: V -+ V a derivation of  the prevoa (V, Y ( - , z ) )  if  for every 
a, b E V, we have d(Y(a,z)b) = Y(da, z)b + Y(a,z)db. A derivation is called inner if  
d = a(0) for some a E V. In particular, a(0) is an inner derivation for every a E V. 

It is trivial to show that the linear space Der V of  derivations of  the prevoa, V, is 
a Lie algebra whose bracket is given by the commutator. The inner derivations Inn 
V form a Lie subalgebra of  Der V. Among the derivations, there is one which will 
play an important role. This derivation is in effect acting as a formal differentiation 
operator on the prevoa. 

Theorem 2.8. Every prevoa V has a distinguished derivation L_I satisfying the 
following: for a, b in V, 

(i) IL-~I = 1; 

(ii) [L_ 1, a(i)] = - i a ( i  - 1) for all i, i.e, Y(L_ 1 a, z) = ~ Y(a,  z). In particular, 
L-1 centralizes Inn V in Der V; 

(iii) (L_l)ia = i!a(- i  - 1)1 for i=>0; 
(iv) Y(a,z)l  = e~la; 
(v) Y(a,z)b = e~ 1Y(b, -z)a; 

(vi) L-1 stabilizes every ideal of V; 
(vii) A submodule M of the adjoint module is an ideal iff M is stabilized 

by L_> 

Proof 
(i) Define L_I  by L_la = a ( - 2 ) l .  Thus if  a is homogeneous, we have 

IL-~al = la(-2)l  = la(-1)l  + 1 = [a I + 1. (2.14) 

The last equality follows from Lemma 2.3(i). 
(ii) Let b be a fixed but arbitrary element of  V. Fix i and let 

v = (L_la(i) - a(i)L_l)b + ia(i - 1)b 

= (a(i)b)(-2)l - a(i)b(-2)l  + ia(i - 1)b. (2.15) 

We will show that v = 0 for all i. For i < 0, using Lemma 2.5(iii) and (iv), we 
have 
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Y(v,z) - ( - i -  1)!dz : a(z) b(z) : 

1 . ( ( d ' ~ - i - l a )  ( d b )  " 
(-i-l)! \\dzj 

+ (_~.~ : a b :  

= 0 (2.16) 

By V1, v = 0. This proves part (ii) for i < 0. We now do induction on i > 0 .  First 
observe that by Lemma 2.5(iii), for every a we have 

d 
Y(L_la, z) = Y(a(-2) l , z )  = dz Y(a,z) (2.17) 

Also, recall that a(0) is a derivation, for every a in V. Thus for i = 0, we have 

Y(v,z) = Y(L_la(O)b - a(O)L_lb, z) 

= d[a (O) ,Y (b , z ) ] - [a (o ) ,dy (b , z ) ]  

= 0 ( 2 . 1 8 )  

Thus we have v = 0. Suppose that v = 0 for i = 0, 1 , . . . , k  - l. We want to show 
that it holds for i = k. This requires a lengthy calculation for 

Y(v,z) = Y(L_ la(k )b , z ) -  Y(a(k)L_lb, z )+  k Y ( a ( k -  1)b,z) .  (2.19) 

First by Lemma 2.5(i), we have 

k--1 k 

[a(k), Y(b,z)] = Y(a(k)b,z) + ~ (i)zk-ig(a(i)b,z) . (2.20) 
i=0 

Differentiating this and applying Eq. (2.17), we get 

k - - l k  
[a(k), Y(L_ lb, z)] = Y(L_ l a(k)b, z) + ~ (i)(k - i)z k - i -  1 Y(a(i)b, z) 

i=0 

k - l k  , . 

+ ~ (i)z x-* Y(L_ l a(i)b, z) .  (2.21) 
i=0 

Applying Eq. (2.20) again, but with b replaced by L_lb, we can replace the left- 
hand side of  Eq. (2.21) by a new expression, i.e. Eq. (2.21) becomes 

k - - l k  

Y(a(k)L_ 1 b, z) + ~ (i)z k-' Y(a(i) L_ 1 b, z) 
i=0 

k - - l k  
=Y(L_la(k)b,z) + ~ (i)(k - i)z k-i-1Y(a(i) b,z) 

i=0 

k - - l k  

§ ~ (i)zk-iy(L_la(i)b,z) (2.22) 
i=0 
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Isolate the term Y ( L _ l a ( k ) b , z ) -  Y (a (k )L_ lb ,  z) and substitute it into Eq. (2.19). 
Then using the inductive hypothesis 

Y ( L _ l a ( i ) b , z )  - Y(a( i )L_lb ,  z)  = - i Y ( a ( i  - 1)b,z), i = 0, 1 . . . . .  k - 1 (2.23) 

to simplify the resulting equation, we get 

k - 1  k , . k - 1  k 
Y(v , z )  = ~ (i)zX-~iY(a(i - 1)b,z) - ~ ( i ) (k  - i ) z  k - i - l Y ( a ( i ) b , z )  

i=0 i=0  

+ kY(a (k  - 1)b,z) 
k--2 k k - 1  k 

= ~ (i -? 1 ) zk - i - l ( i  + 1)Y(a( i )b ,z)  - ~ ( i )(k  - i)z k - i - 1 Y ( a ( i )  b ,z)  
i=0  i=0 

+ kY(a (k  - 1)b,z) 
k - 1  k k 

= ~ [(i + 1)(i + 1) - ( i ) (k  - i)]z k - i - 1 Y ( a ( i ) b , z )  
i=0 

= 0 .  (2.24) 

The last equality follows from the fact that the term [...] in the summand is 
identically zero. Now by V1, we conclude that v = 0. Thus we have proved that 
[L_a,a(i)] =- - i a ( i -  1). Combining this with Eq. (2.17), we get 

d 
Y(L_ la ,  z) = ~ z Y ( a , z )  = [L- l ,  Y(a,z)] . (2.25) 

This completes the proof of  part (ii). 

(iii) Y(L_ la ,  z) = d y ( a , z )  implies that 

This in turn implies that 

( d )  i 
Y((L-1)ia'z)= dz Y(a,z). (2.26) 

( (L_l) i  a)( - 1) = i ! a ( - i  - 1). 

Thus by Lemma 2.3(i), we have 

(L_l ) ia  = i ! a ( - i  - 1)1 

(iv) follows immediately from (iii). 
(v) This part is also a lengthy calculation: 

Y(a, z)b = Y(a, z ) b ( -  1)1 

= - [b( -a) ,  Y(a , z ) ] l  + b ( - 1 ) Y ( a , z ) l  
- 1  

= - ~ ( i ) z - l - i y ( b ( i ) a , z ) l  + b ( - 1 ) Y ( a , z ) l  (Lemma 2.5) 
i>O 

- 1  
= - ~ ( i ) z - l - i e Z Z - l b ( i ) a  + b(--1)eZL-la (par t  (iv)) 

i>O 

(2.27) 

(2.28) 



Classification of Simple Vertex Operator Algebras 319 

=eZL-1I~b(i)(--z)-l-i+ezZ-lb(--1)eZL-1]ali>__o 

=ezL-l[i~>__ob(i)(--z)-l-i 

+i~>=ol[L_l,[L_b..i times..[L_bb(-1)]..i times..]](-z)ila 

=e zL-1 I~b(i)(-z)-i-l + ~ l b ( - i -  1)(-z)i]a (part (ii)) 
Li__>0 i>O i! 

=eZL-1 Y(b, -z)a . (2.29) 

(vi) Let I be an ideal of  V, and a in I.  Then by definition, Y(a,z)l = ~i a(i) lz-i-1 
is in I[[z,z-1]]. In particular, L-la = a ( - 2 ) l  is in I.  

(vii) Let M be a submodule of the adjoint module V. This means that 
Y(V,z)M C M[[z,z-1]]. Suppose M is stabilized by L-1. We need to show that 
Y(M,z)V C M[[z,z-1]]. So let a be in M,b in V. Thus Y(b,-z)a is in M[[z,z-1]]. 
By assumption, eZL-1y(b,--z)a is also in M[[z,z-1]]. It follows from part (v) that 
Y(a,z)b is also in M[[z,z-1]]. Part (vi) provides converse. [] 

3. Prevoas With One-Dimensional  V[0] 

From now on, we assume that a prevoa V is Z+-graded. In this section, we present 
three structural results (Proposition 3.1, Corollary 3.3, Theorem 3.7), for the cate- 
gory ~ consisting of the prevoas with one-dimensional V[0]. We use some new 
information concerning the structure of  prevoas, to demonstrate the importance of 
restriction to ~U. 

3.1. A Commutative Algebra Associated to a Prevoa. In this section, we attach 
a commutative associative algebra to every prevoa V. The point of  this exercise is 
to indicate that in order to get some kind of classification of prevoas (or voas), we 
must somehow restrict the level zero V[0]. This is why we will later begin with 
the case in which V[0] is one-dimensional. 

Let (V, Y(-,z)) be a prevoa. Define a bilinear operation * on V[0] by (ef. * 
operation in [31]). 

a,b=a(-1)b.  (3.1) 

Proposition 3.1. The space V[O] is a commutative associative algebra with the 
product * 

Proof 
The unit. Obviously, 1 is in V[0]. Also by Lemma 2.3, we have 

a *  1 = a ( - 1 ) l  = a ,  

1 , a  = l ( - 1 ) a  = a .  

Commutativity. By Lemma 2.5(i), we have 

(3.2) 
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n 

[a(n), b(rn)l = ~ ( i ) ( a ( i ) b ) ( m  + n - i) (3.3) 
i>0 

for all integers m, n, and a, b in V[0]. By definition 

[a(i)N = [a[ - i - 1 + [bl - i - 1.  (3.4) 

This means that a(i)b = 0 for all i__> 0. Thus 

[a(n), b(m)] = O. (3.5) 

In particular, we have 

a * b = a ( - 1 ) b ( - 1 ) 1  = b ( - 1 ) a ( - 1 ) 1  = b ( - 1 ) a  = b * a .  (3.6) 

Associativity. Consider 

(a * b) * c = ( a ( - 1 ) b ) ( - 1 ) c  

= ReswResz_ w Y(Y(a ,  z - w)b,  w)c ( z  - w ) - l w -  1 

= R e s w R e s z Y ( a , z ) Y ( b ,  w)cz~,w(Z - w ) - l w  -1 

- Res~ReszY(b,w)Y(a,z)Ctw, z(z - w ) - l w  -1 (Jacobi  identity) 

= ~ ( - i -  1 ) b ( i -  1)c + ~ - ~ b ( - i -  2)a(i)c 
i > 0  i>=0 

= a ( - 1 ) b ( - 1 ) c  ( I b ( n ) l  = - n  - 1 and V[m] = O f o r  m < O) 

= a * (b * c) .  (3.7) 

This completes our proof. [] 

It is easy to show that if  V, V ~ are two prevoas, the commutative algebra 
attached to the prevoa V | V~ is the tensor product V[0] | V~[0]. Using this, we 
can show that there is a prevoa V with V[0] = A for any  commutative algebra A. 
This is the first reason for us to restrict our consideration to the case in which V[0] 
is one-dimensional. We now discuss the second reason. 

3.2. The M a x i m a l  I d e a l  We will denote by ~//~, the category of  prevoas V with 
one-dimensional V[0]. 

Let a, b be elements o f  the prevoa V. According to Lemma 2.5(i), the coefficients 
a(n), b(m) of  the vertex series satisfy [2, 9] 

n 
[a(n), b(m)] = ~ ( i)(a(i)b)(n § m - i) . (3.8) 

i>0 

I f  a, b are homogeneous, we can write 

n - - l + l a [  

[an, bin] = ~ ( i )(a(i)b)n+m. (3.9) 
i>o 

Note that [an[ = - n  with respect to the grading of  U(V) .  Thus the subspace of  
U ( V )  spanned by the coefficients, a~, form a Z-graded Lie algebra whose bracket 
is given by the commutator (3.9). We denote by S(V) the Lie algebra spanned by 
the an' s. 
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The prevoa V is clearly a module, cyclically generated by 1, over the graded 
Lie algebra ~(V). Let Jv be the sum of all proper (graded) ~(V)-submodules in 
V. Since every proper submodule M has M[0] = 0, we have Jr[0] = 0. Thus Jv 
is the unique maximal submodule over the Lie algebra ~(V). It is clear that Jv is 
also the maximal submodule over the prevoa V. 

Proposition 3.2. The derivation L_I of V stabilizes Jr. 

Proof Suppose L_la does not belong to .Iv, for some a E Jr. We will obtain a 
contradiction. Since .Iv is graded, we may assume that a is homogeneous. We know 
that .Iv = | for some no > 0. So let a be an element of  lowest weight 
in J r  for which L_la ff Jr. Then by the maximality of Jr as ~(V)-submodule, we 
see that L_aa generates V. In particular, we have 

1 C UZ(V)L_la, (3.10) 

where U~(V) is enveloping algebra S(V). By P~BW theorem, we have the decom- 
position 

U~(V) = UE(V)+ US(V)[OIUS(V)_ , (3.11) 

where ~(V)• = (~•  3(V)[n] 

Now Eq. (3.10) means that there is an element P E U~(V), homogeneous of 
weight - l a ] -  1, such that PL_la = 1. By Eq. (3.11), we may choose P to be in 
UZ(V)Z(V)_. So there must be some b E V and m > 0 such that bmL la ~ .Iv. For 
otherwise it would mean that Z(V)_L_la C Jr, and hence PL_la E Jv (Jr is UY.(V) 
invariant). 

Now by Theorem 2.8(ii), we have 

bmL-la = L-ibma + (m - 1 + [b[)bm-la . (3.12) 

The last term is in .Iv because a is. Since the first term is not the .Iv, neither is 
the second. But then bma E Jv,[bma] = ] a [ -  m < [a[ and yet L-lbma (-Jr. This 
contradicts the minimality of  la[. [] 

Corollary 3.3. The V-submodule Jv is also the unique maximal ideal of V. In 
particular, V/Jv is a simple prevoa. 

Proof Since every ideal of  V is, in particular, a submodule of  the adjoint module, 
it follows that Jv  contains all the ideals. But Jv itself is also an ideal, by Theorem 
2.8(vii) and Proposition 3.2. [] 

This suggests that there is an abundance of simple objects in U ,  and that the number 
of  simple quotients of each object is well under control. There is a third reason for 
this category to be interesting to look at. It turns out to be intimately connected 
with Lie algebras of  a certain type. 

3.3.The Functor F. For every object V in ~ ,  we identify the one-dimensional 
commutative algebra V[0] with C, by 1 ~ 1. 

Lemma 3.4. Let V be an object ~ .  Let a, b be elements of V[1]. Then the 
components a(n), b(m) of the formal series Y(a,z), Y(b,z) in U(V)(z) satisfy 

[a(n), b(m)] = (a(O)b)(n § m) § na(1)b (~n+m, o 1 . 
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Proof By Lemma 2.5(i), we have 

n 

[a(n), Y(b, z)] = ~ (i)z n-z Y(a(i)b, z) 
i>o  

= znY(a(O)b,z) + nzn-XY(a(1)b,z) (b E V[1]) (3.13) 

Extracting the coefficients of  the z -m-a on both sides, we obtain 

[a(n), b(m)] = (a(O)b)(n + m) + n(a(1)b)(n + m - 1). (3.14) 

But then a(1)b E V[0] = C1 = C. This means that (a(1)b(n + m - 1) = 6n+m, 01. [] 

L e m m a  3.5. Let V be an object in ~ .  For a, b in V, 

(i) a(O)b---b(0)a;  
(ii) a(1)b = b(1)a. 

Proof (i) Applying Lemma 3.4 in the case m = 0, we get 

(a(O)b)(n) + (b(O)a)(n) = [a(n), b(0)] + [b(0), a(n)] = 0 (3.15) 

for all n. Thus (i) follows. 

(ii) Applying the same lemma again in the case m = - n  = 1, and using part (i), 
we get 

(a(1)b - b(1)a)l  = [a (1) ,b( -1) ]  - (a(0)b)(0) + [b( -1) ,a (1) ]  - (b(0)a)(0) = 0 [] 
(3.16) 

It is important to emphasize that Lemma 3.5 does not hold in general i f  V[0] is 
not one-dimensional. 

Definition 3.6. Define two bilinear maps 

[-, .]: V[1] • r [1 ]  ---+ V[1] 

(" I'): v[1] • v[1] ---+ c .  (3.17) 

For a, b in V[1], let 

[a,b]  = a(O)b c V[1] 
(a [b) = a ( l )b  E V[0] = C .  (3.18) 

This definition has been indicated by Frenkel -Lepowsky-Meurman in the special 
case, in which V = VL is the untwisted voa associated to an even positive definite 
lattice (see [9], Remark 8.9.1). 

Theorem 3.7. The space V[1] is a Lie algebra with the bracket [., .], and the 
V[1]-invariant symmetric form (. I'). We will denote the pair (V[1], ([)) by F(V). 
I f  f :  V ~ V I is a homomorphism in ~ ,  then it induces a Lie algebra homo- 
morphism F ( f )  which preserves the invariant forms. Moreover if  f is injective 
(surjective), then so is F( f ) .  

Proof Let a, b, c be elements of  V[1]. 
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Skew-symmetry. By Lemma 3.5(i), we have 

[a, b] = a(O)b = -b (O)a  = - [ b ,  a ] .  (3 .19)  

Lie algebra Jacobi identity. By definition, 

- [ a ,  [c, b]] + [c, [a, b]] + [b, [c, a]] = -a(O)c(O)b + c(O)a(O)b + b(O)c(O)a 

= [c(0), a(0)]b - (c(O)a)(O)b (Lemma 3.5(i)) 

= 0 (Lemma 3.4) . (3.20) 

Symmetry. Lemma 3.5(ii) implies that 

(a  Ib) - -  a ( 1 ) b  = b ( 1 ) a  - -  (b  l a ) .  (3 .21)  

V[1]-invariant form. By definition, 

([b, a] [c) = - ( [ a ,  b] [c) 

= -(a(O)b(1)c 

= -c(1)(a(O)b) (Lemma 3.5(ii)) 

= [a(0), c(1)]b - a(O)c(1)b 

= (a(O)c)(1)b (Lemma 3.4; a(O)c(1)b C a(0)V[0] = 0) 

= (a(O)clb) 

- -  ([a, c]lb) 
= (bl[a, c]) (symmetry). (3.22) 

Functoriality of  F. Let f :  V ~ V ~ be a prevoa homomorphism. Let F ( f )  be the 
restriction o f f  to V[1]. Then 

[fa,fb] = (fa)(0)Jb = f (a(O)b) = f[a, b], 
(3.23) 

( f a l f b )  = (fa)(1)fb =f(a(1)b) = f ( ( a l b ) l v )  - -  ( a l b ) l v ,  �9 

The fact that F preserves injectivity and surjectivity of  f is clear from the 
definition. [] 

We call F(V) the Frenkel-Lepowsky-Meurman Lie algebra of  V. 

Proposition 3.8, I f  J is a proper ideal of  V, then J[1]  is a proper ideal of  the Lie 
algebra F(V). Moreover, J[1]  is a subalgebra of the kernel of  the invariant form 
(I). Let's denote J[1]  by F[J]. Then there is a natural isomorphism F(V/J)-~ 
r ( z ) / r ( J ) .  

Proof Let a E F(V) = V[1],b E J[1]. By definition, Y(J,z)V, Y(V,z)J C J[[z,z-1]] 
and J[0]  = 0. In particular, [a,b] = a(O)b E J[1] and (alb) = a(1)b E J[0] = 0. This 
proves the first two parts. 

From the projection p: V ~ V/J in ~,~, we get a surjective Lie algebra homomor- 
phism in ~ , F ( p ) :  F(V) = V[1] ----+ F(V/J) = (V/J)[1]. The kernel of  this map is 
obviously J[1] = F(J). [] 

Lemma 3.4 and Theorem 3.7 clearly suggest that the affinization of  a Lie algebra 
[17] arises naturally in every object V with V[1] +0.  
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3.4. Affinization of  F(V). 

Definition 3.9. Let Y be the following category: Obj ~C~?: the pairs (g, (I)), where 
g is any Lie algebra with the g-invariant symmetric biIinear form (I). 

Morphisms: homomorphisms of Lie algebras 4): (g,(I)) ~ (g', (I)'), which pre- 
serve the invariant forms: (~b(x)l~b(y))' = (xly) for all x, y in g. 

We define the following functorA:Sf ~ ~ ,  called the affinization. Thus given a 
pair (g, (])), we will define a new pair (g, (I)), called the affine Lie algebra associated 
with the pair (g, (])). 

Given a pair (g,([)), define the loop algebra associated to g as the Lie alge- 
bra gOC[t , t  -1] whose bracket is given in an obvious way. Let ~ be the one- 
dimensional central extension: 

0 ~ C - -+  0 > g |  -1] ---+ 0 ,  (3.24) 

defined by 
[a |  n, b |  m ] = [a, h ] |  +m + n(alh)~.+m,O~ , (3.25) 

where ~ is the basis element 1 E C (we use ~ to avoid confusing it with 1 of  a 
d 

prevoa). Now 0 admits a derivation d = t ~ .  We let 0 be the semi-direct product 

algebra 
O -- Call x g .  (3.26) 

We call ~ and d respectively the canonical central element and the canonical 
derivation of 9. 

We now define (I) ̂ . For a,b in g and m,n integers, let 

(a @ t~l b | ^ = fim+~,o(alb) , 
(a| 0, 
(a | t ~ = o ,  

(~[d) = 1,  (3.27) 

and extended (1)^ by bilinearity and symmetry. It is trivial exercise to check that 
(I) ̂  is a well-defined 0-invariant form. This completes the construction o f  the pair 
(0),([)^). Note the Lie algebra 0 is naturally Z-graded, with ]a | PI = - n  and I~1 = 
I d[ = 0. It is also trivial to check that every morphism qS: (g, ([)) ~ O'1(I)') induces 

the new morphism q~: (g,(1)) ' (0'1(I)), defined by 

q~(a | t") = qS(a) | t ~, 

= 

$(d) = d .  (3.28) 

This morphism also respects the new invariant forms: 

(q~(x)l~(y))'^= (xty) . (3.29) 

Let E be a any g-module. Let p be the subalgebra (~)~__<0 0n. Let Z be a fixed scalar. 
We extend E to become a 00 = g | C~O Cd-module E z, by letting ff act by scalar 
Z and d act by zero. Now further extend E z to become a p-module by letting On 
with n < 0, act by zero. We now form the induced module: 
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l(g, Ez) = U(O O Ez)- 
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(3.30) 

We call this the prolongation of Ez[19,21,22]. Note that I(g, Ez) is Z+-graded 
according to the eigenvalues of - d .  When ~ acts by the scalar 1, we write l(g, E). 
When E is the trivial g-module C, we will often denote the vector 1 | 1 as 1, and 
will call this the vacuum vector of l(g, Cz). In this case, we have l(g, Cz)[0] = C1. 

The 0-module I(g, Ez) can be characterized by the following universal property. 
Let E~ be the p-module as defined above. Then there is a unique pair (Ez,), where 

/~z is a 0-module and t: E z ~/~z is a p-module map, satisfying the following 
property: for every 0-module M and every p-module map f :  E z ~M, there is 

a unique 0-module map f :  /~x ~ M such that f o ~ = f .  Clearly we have /~z ~ 
l(g, Eg. 

We now return to the discussion of prevoas. By Theorem 3.7, from every V in 
~ ,  we obtain an object in 5g: F(V) = (V[1],(1)). By Lemma 3.4, we have a natural 

Lie algebra homomorphism F(V) , U(V), with a @ t n ~-+ a(n) E U(V), ~ ~-+ 1. 

Now every V-module M is a U(V)-module. This means that M is also a F(V)- 
module. Since M is Z-graded, we can let the canonical derivation d of the affine 

A A 

algebra F(V) act by diM[n] = --n. The space M now becomes a F(V)-module. We 
summarize this as follows: 

Proposition 3.10. Let V be an object in •. Then every V-module M is a module 
A 

over the affine Lie algebra F(V) whose action on M is defined above. 

A 

Let's consider the F(V)-module, M = V itself. Clearly according to the action given 
by the Proposition 3.10 above, the one-dimensional subspace V[0] satisfies 

(a | tn) �9 b = a ( n ) b  = O,  

~ . b = b ,  

d . b = O  (3.31) 

for all a in F(V),n>O and b in V[0]. Here ~ and d are the canonical central 
A 

element and the canonical derivation of F(V) respectively__& Thus by the universal 

property of the induced module I(F(V), C), we have a F(V)-module map 

I(F(V),C) , V, 1 ~ l v .  (3.32) 

This leads us to the following natural questions: is I(F(V), C) a prevoa? I f  so, is 
the map (3.32) a prevoa homomorphism? 

We first organize the category ~//'. We say that a prevoa V is generated by a 
subset S of V, if V is spanned by the elements [8] 

al (i l) . . .  an(in)a (3.33) 

where al . . . . .  an, a, range over the S and il . . . . .  in are integers. We say that I is an 
ideal of V generated by the subset S c V, if I is the smallest ideal containing S. 

Definition 3.11. Let ~/sk, where k >O, be the subcategory of V in which every 
object V is generated by the subspace ~o<_i<_k V[i]. We call an object of  ~/~k a 
prevoa of the minimal k th type. 
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Thus the only zeroth type is the commutative algebra C. It is obvious that we have 
~//'0 c ~1 c . . . .  One of the main tasks of this paper is to describe all the (minimal) 
type ones. 

4. The Prevoa l(g, C) 

Let (g, (I)) be a pair in the category ~ .  We begin with the construction of a prevoa 
structure on I(g,C).  The main results in this section are Theorems 4.7 and 4.11. 
Theorem 4.7 generalizes Theorem 2.3.3, Theorem 2.3.4 and the second part of 
Theorem 2.4.1 of Frenkel-Zhu [11], while Theorem 4.11 describes the type ones 
in category ~ .  

To define the vertex operators on I(g, C), we use many ideas of  Frenkel-Zhu[11] 
where they consider the case in which g if finite dimensional and simple. However 
we emphasize that to prove Theorem 4.7 here, while following the general strat- 
egy of [11], we use different ingredients. For example, Frenkel-Zhu begin with an 
explicit formula for the "n-point correlation function": 

@t, al (Zl) ' " ' an(zn)v)) �9 (4.1) 

This formula requires the use of  multilinear trace form on g. In our general setting, 
however, where g may be infinite dimensional and (]) may be degenerate, a multi- 
linear trace form may not exist. Thus we must prove the required properties of  the 
n-point function abstractly. 

4.1. The Frenkel-Zhu construction. Let (g,(])) be a pair in the category 5~. Recall 
that ~ is the one-dimensional central extension, as defined in Sect. 3.4, of  the loop 
algebra of  g, and that 0 is the affinization of g. Let ~ be the canonical central element 
of g. Let A~O be the completed universal enveloping algebra of  ~ (for definition, 
see [32, 11]). We denote as U~O the quotient of A ~  by the ideal generated by 

- 1. As before, we denote by U ~ ( z }  the subspace spanned by the regular series 
in U ~ [ [ z , z - 1 ] ] .  For a C g, we write a(n) = a | t" and let a(z) = ~na(n)z  -~-1,  
viewed as an element of  U~O(z).  

Definition 4.1. For every regular series b ( z ) =  ~, ,b(n)z  -n-1 in U~O(z) ,  and 
a E g we define the action o f  a(n) on b(z) by 

a(n) �9 b(z) = Resw(a(w)b(z)tw,z(w - z)" - b(z)a(w)Zz,w,(Z - w) ' )  . (4.2) 

Then applying a similar argument as in [11], we show that Eq. (4.2) defines a 
~5-module structure on the space U ~ ( z ) .  Moreover if b(z) is a regular series of 
weight A - n then a(n) �9 b(z) is a regular series of  weight A - n. Thus if we let 
the weights of the regular series define a Z-grading on the space U ~ ( z } ,  then this 
space becomes a graded module, i.e. it is now a 0-module, where the canonical 
derivation acts by d �9 b(z) = Ab(z). 

Now the regular series 1 satisfies 

d . 1  = 0  

~ . 1 = 1  

a(n) �9 1 = 0 (4.3) 

for all n > 0. Thus by the universal property of I(g, C), we have a 0-module map 
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Y ( - , z ) : I ( g , C )  ~ U~O(z ) ,  

a l ( i l ) ' ' -  an(in)l ~-+ al( i l )  . " '  �9 an(in) �9 1 . (4.4) 

In particular, this map respects the Z-grading. Thus if a E I(g, C) is homogeneous, 
then Y(a,z) = ~na(n)z  -n-1 is a regular series of  weight ]a I, i.e. la(n)l = la[ - n - 1 
for all n. 

Since I(9, C) is a U~ we have a homomorphism 

U~ ~ End I ( 9 , C ) .  (4.5) 

Composing this homomorphism with Y ( - , z )  (and using the same notation), we get 

Y ( - , z ) : I ( g , C )  ; End I ( g , C ) ( z ) .  (4.6) 

Proposit ion 4.2. Let  Y ( - , z )  be given by Eq. (4.6), and V = I ( g , C )  be graded 
according to the eigenvalues o f  -d .  Then (V, Y ( - , z ) )  satisfies V1, V2 and V3 of  
Definition 2.1. 

The proof  is similar to the one for the first part of  Theorem 2.4.1 of  [11]. We now 
prepare for the proof  of  the Jacobi identity for modules. In the rest o f  this section, 
we let M be a O-module with M[n] = 0 for  n << 0, and M I be the restricted dual. 
Thus we have an algebra homomorphism ~M: U~O ~ EndM. 

4.2. The N-point Functions 

Proposit ion 4.3. For any f ixed v C M, v ~ C M ~, and a, b C g, the Laurent series 
(v', a(z)b(w)v) converges to a rational function e~,,v(a,z; b, w) in the domain Izl > 
Iwl, with possible poles at z = O, w = O, z = w. 

Proof  A simple calculation shows that 

(J,  a(z)b(w)v) = (v t, v)(alb)t~,w(Z - w) -2 

= +(v ' ,  [a, b](w)v)t~, w(Z - w) -1 + (v', :a(z)b(w): v ) ,  (4.7) 

where the normal ordered product is given by 

: a(z)b(w) : = a(z)-b(w) § b(w)a(z) + . (4.8) 

Since (v', [a, b](n)v) = 0 for all but finitely many n, we see that (v', [a,b](w)v) is 
a Laurent polynomial in w. Therefore the first two terms on the right-hand side of  
Eq. (4.7) converge to a rational function. 

Since a(n)v = 0 for n >> 0, a(z)+v is a Laurent polynomial. Thus (v ~, b(w)a(z)+v) is 
a Laurent polynomial in z,w. Similarly for (v~,a(z)-b(w)v). Thus the last term of  
Eq. (4.7) is a Laurent polynomial in z, w. [] 

Proposit ion 4.4. The rational function above Rv,~(a,z; b, w) satisfies 

R~,,~(a,z; b, w) = Rj,v(b, w; a , z ) .  (4.9) 

Proof  From the proof  of  Proposition 4.3, we have 

R~,,~(a, z; b, w) =(v', v)(a[b)(z - w) -2 + (v', [a, b](w)v)(z ~ w)-1 

+ (v', :a(z)b(w): v ) ,  (4.10) 
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Rv,,~(b, w; a, z) =(v' ,  v)(bla)(w - z) -2 + (v', [b, a](z)v)(w - z)-1 

+ (v', "b(w)a(z): v) . (4.11) 

One should keep in mind that all the terms of  the form (v~, . .-  v) are Laurent 
polynomials in z,w. 

Now to prove our claim, it is enough to show that Rv,,v(b, w; a,z) - R~,~(a,z; b, w) 
is zero is the domain Iz I > Iw[ > I z -  w I. This will involve a straightforward but 
rather lengthy calculation: 

Ro,,~ (b, w; a, z) - Rv,,v (a, z; b, w) 

= (v', [b, a](z)v)(w - z) -1 - (v', [a, b](w)v}(z - w) -1 

+ (v', :b(w)a(z): v) - (v','a(z)b(w): v) 

(d) ~Tw (z-w)"-~n, = ,~o (v', [a, b](w)v} 

- (v', [a(z)-, b(w)-]v} - (v', [b(w) +, a(z)+]v} 

( d )  ~ -w) "-1 
= ~ ~ w-k - l (v"[a 'b l (k )v ) ( z  n! 

n>0;k<0 

( d )nw-k- l (v , , [a ,b](k)v)  ( z -  w)n-I 
+ ~ ~ .! 

n>0;k>0 

- (v', [a(z)-,  b(w)-]v) - (v', [b(w) +, a(z)+]v) 

= ~ (l - 1 ) ( / -  2 ) . . .  (l - n)w z-"-1 (v', [a, b](-l)v) (z - w) "-1 
/>n>0 n! 

+ ~ ( - k -  1 ) ( - k -  2 ) . . . ( - k -  n)w - k - " - l ( v ' , [a ,b ] ( k ) v } ( z -  w) n-I 
l>0;k>__0 n! 

- (v', [a(z)-,  b(w)-]v} - (v', [b(w) +, a(z)+]v} 

= ~ (v', [a, b](-l)v)(z t-2 + zl-3w + . . .  + zw ~-3 + w 1-2) 
I>1 

I / n+k n-- 1 
-__>~0~n~>0( k ) ( ~  f ) )(v' ,[a,b](k)v} w-k -2  ) 

- (v', [a(z)-, b(w)-]v} - (v', [b(w) +, a(z)+]v) 
= ~ ( v ' , [a ,b] ( -m-n)v}zm- lwn-1  

m,n>O 

-- ~ ( ~ Z--n--Iw n+l~ (v t, [a, b](k)v)w -k-2 

% 

k>=o \>_.>~o / 

- (v', [a(z)-, b(w)-]v} - (v', Eb(w) +, a(z)+]v} 
= +(v', [a(z)-b(w)-]v) + (v', [b(w)+,a(z)+]v} 

- (v', [a(z)-, b(w)-]v) - (v', [b(w) +, a(z)+]v} 
= o [ ]  (4 .12)  

Proposition 4.5. For v E M,v ~ E M ~, and al , . . .an E 9, the Laurent series (v~,al 
( z t ) ' ' '  a,(z,)v) converges to a rational function R~,~(al,zl; . . .  ; an,z,) in the domain 
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IZll > " "  > {Zn{, with possible poles at zi = 0 and zi = zj f o r  i ~=j. We call the 
rational funct ion an n-point function. 

P r o o f  When n = 1, we get a Laurent polynomial in one variable. When n = 2, 
we have Proposition 4.3. Suppose our claim holds for the n-variable case. Let 's  
consider the n + 1-variable case: 

( v', ao(zo )al (Zl ) . . . an(Zn)V ) 

= ( v ' , ao ( zo ) -a l (Z l ) " .  an(Zn)V) + (V', [ao(zo)+,al(Zl) . . .  an(Zn)]V) 

+ (v', a l(zl)  �9 �9 �9 an(Zn)ao(zo)+v}  

= <v', a o ( z o ) - a l ( z l ) ' "  an(Zn)V> 
A 

+ ~ (v', a l ( Z l ) ' - ,  ak ( zk ) ' ' '  an(Zn)V>(ao[ak)tzo,zk(Zo -- zk) -2 
n>_k>_l 

+ ~ (v', a l(zl)" �9 �9 [a0, ak](Zk) ' ' '  an(Zn)V) tzo,Z ~ (Zo -- z k ) - i  
n>_k>_l 

+ (v', al ( z l ) . . .  an(Zn)ao(zo)+v> . (4.13) 

Since ao(zo)+v is a polynomial, the last term has at most finitely many pow- 
ers of  z0. The coefficient of  each power of  z0 converges to an n-point function. 
Thus by inductive hypothesis, the last term of  Eq. (4.13) converges to a n § 1- 
variable rational function with the desired properties. Similarly, the second and the 
third sums also converge to (sums of) rational functions. Thus we only need to 
Check that the first term also has the desired properties. It is enough to show that 
( v ' , ao (m)a l ( z l ) . . .  an(zn)v) = 0 for all but finitely many m < 0. Without loss of  gen- 
erality, suppose that both v/, v are homogeneous. I f  (v ~, ao (m)a l ( z l ) . . ,  an(Zn)V) ~ O, 
then 

(v', ao(m)al(i l)  . . . an(in)V) * 0 (4.14) 

for some i l , - .  ",in with [v'[ = Ivl-m- il . . . . .  i n and Ivl- il . . . . .  in>=N, be- 
cause the grading of  M is bounded from below by N. This means that m > 
N-lv'l. [] 

Proposition 4.6. For the same hypotheses as in Proposition 4.5, the n-point func-  
tion is permutat ion invariant, i.e. 

R v , , v ( a l , z l ;  . . . ; a n , Z n )  = R v , , v ( a i l ,  Z i l  ; " " ; a i n ,  Zin) 

f o r  any permutat ion ( i , . . . , in )  o f  (1, . . .  ,n). 

(4.15) 

P r o o f  The n = 2 case is given by Proposition 4.4. Assume that the claim holds 
for n-point functions, and consider the n + 1-case where n > 1. I f  the permutation 
(i0, i l , . . . ,  in) o f  (0, 1 . . . . .  n) stabilizes 0, then form the recursion formula (4.13) that 
defines R~,,v, it is clear that Eq. (4.15) holds. Therefore, it is enough to show that 
Eq. (4.15) holds for the permutation (1 ,0 ,2 . . . , n ) .  

By a similar calculation as in the proof  of  Proposition 4.5, we get 

(v', ao(zo)a l (Z l ) ' "  an(Zn)V) 

= (v ' ,an(Zn)-ao(zo)"" an-l(Zn-I)V) 



330 B.H. Lian 

+ ~ (v',aO(ZO)'''ak(zk)'' 'an-l(Zn-1)v}(anlak)l=k,=,(zk--Zn) -2 
n-l>_k>_O 

+ ~ @',ao(zo) '"[ak,  an](zk)'"an-1)v)t=k,=,(zk--zn) -1 
n--l>k>_O 

+ (v', ao(zo) ' "  a,- l (zn-Oa,(zn)+v) �9 (4.16) 

Now we know that this Laurent series converges to the left-hand side of Eq. 
(4.15). But by inductive hypothesis, Eq. (4.16) shows that this series also converges 
to a rational function that is invariant under the interchange of (ao,zo) and (ai,2i) 
for any i < n - in particular for i = 1. This completes our proof. [] 

4.3. The Jacobi Identity 

Theorem 4.7. Fix v ~ C M ~, v E M. 
(i) Let  bi , . . . ,bn be elements o f  I(g,C).  Then the series 

@', Y ( b l , Z l ) "  " Y(bn,zn)v) (4.17) 

converges to a rational function Rv, ,v(bl ,z l ; ' . .  ;b=,z,) in the domain IZl[ > . . .  > 
Iz~ I, with possible poles at zi = 0 and zi = zj for  i =#j. 
(ii) For every permutation ( i l , . . . , i , )  o f  (1 , . . . ,n ) ,  we have 

Rv,,v(bl,Zl; " " ; bn,zn) = Rv,,v(bil,Zil ; " " ; b&,zi,) . (4.18) 

(iii) The series 

(v', Y ( Y ( b b z  - w)b2, w)v) (4.19) 

converges to the rational function R~, v(bDz;bz,w) in the domain Iwl > I z -  w I. 
(iv) Let  YM(- , z )  = n M  o Y ( - , z ) : I ( g , C )  ---+ End M(z) .  Then the Jacobi identity 
holds for  (M, YM(--z)). 

We note that Theorem 4.7(i)-(iv) here generalize respectively the following four 
results of Frenkel-Zhu[11]: the two parts of Theorem 2.3.3, Theorem 2.3,4, and the 
second part of Theorem 2.4.1. In the proofs of their results, their Proposition 2.3.1 
was the key ingredient. Propositions 4.5 and 4.6 above are stronger versions of their 
Proposition 2.3.1. By using the same line of argument as Frenkel-Zhu did for their 
Theorems 2.3.3 and 2.3.4, but with the key ingredients Propositions 4.5 and 4.6 
above replacing their Proposition 2.3.1, one can easily generalize their proofs to the 
current setting for Theorem 4.7(i)-(iii). Thus we refer the readers to the reference 
[11]. 

As for Theorem 4.7(iv), one might first try to imitate Frenkel-Zhu's argument 
for their Theorem 2.4.1. But the argument, aside from using their Theorems 2.3.3 
and 2.3.4, also relies on the following fact: given a finite dimensional simple Lie 
algebra g, the Killing form (I) of g, and an irreducible g-module E, the 0-module 
I(g, Ez) is irreducible for generic values of Z. It is easy to show that this breaks 
down in general. In fact, for a general pair (g,(I)) in the category S ,  I (g ,E)  is 
always reducible, whenever (I) is degenerate. Even when (I) is non-degenerate, it is 
not obvious how to prove the irreducibility property. 

The way we bypass this difficult in our setting is by first strengthening the key 
ingredient - replacing their Proposition 2.3.1 by Propositions 4.5 and 4.6 above. This 
leads to stronger versions - namely Theorems 4.7(i)-(iii) above - of their Theorems 
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2.3.3 and 2.3.4. We now see that for proving the Jacobi identity, Theorems 4.7(i)- 
(iii) suffice. 

The first part of the following theorem summarizes the results given by Propo- 
sition 4.2 and Theorem 4.7(iv). 

Theorem 4.8. For  every  pa i r  (g, (I)) in the category  2P, I (g ,  C) is a prevoa  in ~ .  
Moreover ,  we have F( I (g ,  C)) ~ (g, (I)). 

P r o o f  We only need to prove the second part. By definition, we have 

I(g,C)[1] = {a(-1) l la  E g}. (4.20) 

Using the PBW basis of I(g,C), it is easy to see that a H a ( -1 ) l  defines a linear 
isomorphism g ~ I (g ,  C)[1]. Now by definition, the bracket on F(I (g ,  C) is given 
by 

[a(-  1)1, b ( -  1)1] = a (O)b ( -  1)1 = [a, b](-  1)1 (4.21) 

for all a, b E g. Similarly, the bilinear form on F(I (g ,  C)) is given by 

(a ( -1) l lb( -1) l )  = a(1)b(-1)l = a(1)b(-1)l = (a]b)gl - (alb)g. (4.22) 

This completes the proof. [] 

4.4. Functorial i ty .  Next we show that the construction of the prevoa I (g ,  C), is 
fimctorial. 

Let ~b: (g, (I)) ~ (g~, (I)') be a morphism in the category 5g. As seen in Sect. 
3.4, this induces a morphism ~:(~,(])A) ~ (~',(I)'A). Let E be any g'-module. 

^ *  ! 

The ~Cmodule I ( g t , E )  becomes a ~-module q5 I (g  ,E )  by pull back. On the other 
hand, the g/-module E becomes a g-module r Now in an obvious way, we get 

a p-module map (p = (~n_<0 ~n)r ~ q~ I (g  ,E) .  Thus by the universal property 
of the prolongation module, we have a ~-module map 

r  gp*E) ---+ ^* ' , (~ I (g  , E )  

a l ( n l ) .  . . ak(nk) | e H ( r  " (r  | e (4.23) 

for al . . . . .  ak E g , e  E E and integers nl . . . .  ,nk. More generally we have 

a l ( n l ) .  . . ak(nk).b ~ (Oal ) (n i )  " " (Oak)(nk) " " O.b . (4.24) 

Now we restrict to the case where E is the trivial gt-module. By the second part 
of Theorem 4.8, we can identify I(g,C)[1] with g. Thus by Corollary 2.6, for 
a l , . . . , a n  E g = I(g,C)[1] and non-negative integers il , . . . , in,  we have 

1 
Y ( a l ( - i l  - 1)"  "an(- in  - 1)l,z) ----= il-~.'"in~." dz a l (z )"  \ d z ]  an(z): . 

(4.25) 
Since the prevoa (/(g, C), Y(-,z)) is generated by its level one elements, it follows 
that the image of Y ( - , z )  is spanned by those expressions in (4.25). The same holds 
for g~ and the prevoa (/(g~, C), Y ( - , z ) ) .  It is now clear from Eq. (4.24) that 

C Y(a , z )b  = Y((Ja, z)~)b (4.26) 
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for every a, b in I(g, C). To summarize, we have 

Proposition 4.9. The correspondence (g,(I))---+I(g,C) is a functor from 
50 to ~1. 

We now return to a question which we raised at the end of Sect. 3. Given a prevoa 

V in the category "U, we considered the F(V)-module map 

~ : I ( r ( v ) , c )  > v 

al(nl)""  ak(nk)l ~-+ a l (n l ) ' "  ak(nk)lv (4.27) 

for ab.. . ,ak E F(V) and integers nb.. . ,nk. By an argument similar to that of 
Proposition 4.9, we have 

~v Y(a,z)b = Y(~va, z)~vb (4.28) 

for all a,b C I(F(V),C). Thus the map Zv above is a prevoa homomorphism. 
Let f :  V > V r be a morphism in the category ~U. By fimctoriality of F, f  

induces a morphism F(f): F(V) ~ F(V ~) in the category 5 ~ 

Proposition 4.10. Given a commutative diagram in 50: 

g gt 

,[ + (4.29) 

r(v)  r(v')  

we have a commutative diagram in ~U: 

I(g,C) ~ Z(g',C) 

.L + (4.30) 
V ~ V r 

Proof By the functoriality of I ( - ,  C) (Proposition 4.9), we have the following 
commutative diagram in ~ :  

i(g, c )  , i(g', c )  

i(F(v),c) ~ I(F(V'),C) 
(4.31) 

Since t~ and z v are prevoa homomorphisms, we have yet another diagram in ~U: 

I(F(V),C) c(f) I(F(V'),C) 

/~ .~ ~v, .L (4.32) 

V f ~ V r 

Thus we need to show that diagram (4.32) is commutative, for then combining 
diagrams (4.31) and (4.32) gives the desired result. 

Let's denote the vacuum vectors of V, V ~, I(g,C), I(g~,C) respectively as lv,  
lv,, 1, 1 ~ . For any a,b E V, we have 

fY(a ,z )b  = Y(fa, z ) f b .  (4.33) 
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In particular, if al , . . . ,an E F(V)  = V[1] and i l , . . . , i ,  are integers, then 

f ( a l ( i l ) . . ,  a , ( i , ) lv)  = ( f a l ) ( i l ) ' "  (fa,)(i ,) lv,  (4.34) 

Now by Eqs. (4.23) and (4.27), we have 

t~ o r(t-f)(al(il). . . an(/.)l) = i ~ v ( f a l ) ( i l )  . . . (fan)(in)Y 

= ( f a l ) ( i l ) ' ' '  (fan)(in)lv, 

= f ( a l ( i l ) . . .  (in)lv) 

= f o ~v(ai(il) '" an(in)l). (4.35) 

This completes our proof. [] 

Theorem 4.11. Every minimal type one is a quotient of  l(g, C), for some pair 
(g,(I)) in the category LP. Conversely, every quotient o f  I(g,C) by an ideal is a 
minimal type one. 

Proof  Let V be a minimal type one. By definition, V is spanned by elements of the 
form a1(i l) . . ,  a,(in)a, where the a's are elements of V[1] + V[0]. But V[0] = C l v .  
Thus without loss of generality, we may assume that a = lv  and a l , ' " , a n  E V[1]. 
This means that the prevoa map ~v: I (F(V) ,C)  ~ V in onto. 

Conversely for every quotient V of I(g, C), we have an onto map l(g, C) -+ V. 
Since I(g,C) is generated by I(g,C)[1], it follows that V is generated by V[1]. [] 

4.5.Modules over I(g, C) 

Proposition 4.12. Let M be Z-graded space with M[n] = 0 for n << O. M is a 
l(g, C)-module iff it is a U~O-module. 

Proof  Let (M, YM(--,z)) be an I(g,C)-module. By Theorem 4.8, I(g,C) is a prevoa 
in r and F ( I ( g , C ) ) ~  (0,(I)^). Thus by Proposition 3.10, M is a 0-module in 
which ~ acts by 1. Since M[n] = 0 for n << 0, it is also a U~0-module. 

Conversely given such an algebra homomorphism rCM : U~O --+ End M, we obtain 
YM(--,z) = ~M o z Y ( - , z )  which satisfies the Jacobi identity according to Theorem 
4.7(iv). Obviously, YM(1,z)= idM. Since both maps nM and Y ( - , z )  respects the 
Z-grading, so does YM(--,z). This completes the proof. [] 

5. The Simple Minimal Type Ones 

In this section, we prove that the simple objects in ~//'~ are in one-to-one correspon- 
dence with the self-dual Lie algebras (Theorem 5.4). A pair (g, ([)) in the category 
A ~ is called selfdual if  (1) is non-degenerate. We discuss many examples of self-dual 
Lie algebras all of which correspond to new simple prevoas. 

5.1. The Radical of  V.  Let E be an irreducible g-module Let J be the maximal 
0-submodule of the 0-module I(g,E), and let L(g,E) be the irreducible quotient. By 
Proposition 4.12, it is clear that J is also the maximal submodule of the adjoint 
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module over the prevoa 1(9, C). Thus by Proposition 3.2, J is the maximal ideal of  
the prevoa I(9, C). In particular, its unique simple quotient prevoa is L(9, C). 

Definition 5.1. Given a pair (g, (I)) in ~ we denote as rad (1) the radical of the 
bilinear form (I)- Given a minimal type one V in ~U, we let rad V be the ideal of 
V generated by rad (I)r(v~. (Recall that F(V) is identified with V[1] .) Whenever 
possible, we will drop the subscript F(V)  from (1). 

Theorem 5.2. For any minimal type one V in ~ ,  we have 

r a d v =  ~ a(n)V 
a E tad (1) 

Moreover, rad V is a proper ideal. 

(5.1) 

Proof Call the right-hand side of  Eq. (5.1) K. By definition rad V contains all of  
rad (1). Since rad V is an ideal, it must also contain the coefficients of  the Laurent 
series Y(a,z)b, for all a E rad (D and b E V. Thus K is clearly a subspace of  rad 
V. Now K contains a ( - 1 ) l v  = a for all a E rad ([). Since rad V is the smallest 
ideal containing rad ([), we need to show that K is an ideal and that K is proper. 

First we show that K is a V-submodule of  the adjoint module. Consider the action 
A 

of  the affine Lie algebra F(V). Now rad ([) is an ideal in the Lie algebra F(V). 
This means that for a E rad ([), b E F(V), n, m E Z, we have 

b(m)a(n)V = (a(n)b(m) + [b, a](m + n) + m(bla)fm+n,o)V 

C K + [b, a](m + n) V,  

c K .  (5.2) 

A 

Thus K is F(V)-stable.  Since V is generated by V[1], Corollary 2.6 tells us that K 
is stable under any b(m), b E V. 

Now we show that K is stable under L-1.  By Theorem 2.8(vii), this means that 
K is an ideal. For a E rad (I),  n integer, we have 

L_la(n)V C [L-b a(n)]V+a(n)L_lV.  (5.3) 

The second term on the right-hand side is clearly contained in K. The first term is 
too, by Theorem 2.8(ii). Thus K is stable under L_I .  

Finally, we want to show that 1 r K. We suppose otherwise and will get a 
contradiction. Since K is a sum of  graded spaces a(n) V, a E tad ( I ), we may write 
1 as a sum of  homogeneous elements of  the form a(n)b having weight zero, i.e. 

l = a l ( n l ) b l + . . . + a k ( n k ) b ~ .  (5.4) 

Since V is in category ~U, we have V[0] = C1. Thus each ai(ni)bi is a multiple of  
1. So we may assume that 1 = a(n)b for some a E rad (I), b E V. 

Since V is generated by V[1], b must be a sum of  elements of  the form 
ba(ml)...bk(mk)l, where the bi's a r e  in V[1]. Again because V[0] is one- 
dimensional, we may assume that 

1 = a(n)bl(ml).., bk(mk)l . (5.5) 
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Let c = e l ( n 1 ) ' "  ck(nk)l, where the ci's are in V[1] and at least one of  the Ci'S is 
in rad (I)- We will show by induction that if Ic[ = 0, then c = 0. This means that 
Eq. (5.5) is impossible. 

For k = 1, Icl(nl)l[ = - n l  = 0 implies that c = Cl(0)l = 0. Consider the k + 1- 
case: suppose Icl = 0, i.e. nl + . . .  + nk+l = 0. I f  all ni = 0, there is nothing to 
show. so let nj > 0 for some j .  We move cj(nj) to annihilate 1, by commuting it 
through cj+l(n}+l),...,ck+l(nk+x). Using the fact that one of  the ci's is in rad ([) 
(which is a Lie algebra ideal in V[1]), it is easy to see that c is now expressed 
as a sum of  terms of  the form q(nx).1 ~ .-c~(n~)l - having weight zero and with at 
least one of  the c~'s in rad ([). By inductive hypothesis on k, each of  these terms 
must be zero. Thus c = 0. This completes the proof. [] 

Corollary 5.3 Let V be any minimal type one in ~ ,  (g, (])) be any pair in 5Y. 
Then we have 

(i) F (rad V ) =  tad ([)r(v) �9 
(ii) F(Vrad  V) ~ F(Vrad ([)r(v) �9 

(iii) I f  V is simple, then F(V) is self-dual. 
(iv) The maximal ideal Jv of V has F(Jv) = rad ([)r(v) 
(v) F(L(g,C)) -~ 9/rad ([) .  

Proof 
(i) We will drop the subscript of  (1). By Proposition 3.8 and the fact that rad 

V is a proper ideal of  V, we have F(rad V) C rad (]). By definition, F(rad l/) = 
(tad V)[1]. By Theorem 5.2, we see that a = a ( - 1 ) l v  E rad V for every a E rad (]). 
This gives tad (]) C (rad V) [1]. 
(ii) This follows from Proposition 3.8 and part (i). 

(iii) If  V is simple, then rad V = 0. Now use part (ii). 
(iv) From the projection in V:  

p: V ---+ V/Jv (5.6) 

we get the surjective morphism (Theorem 3.7, Proposition 3.8) 

r(p): r ( v )  ~ r ( v / J v )  (5.7) 

with ker F ( p ) =  F(Jv). By part (iii), F(V/Jv) is self-dual. This means that ker 
F(p) must coincide with tad (])r(v).  
(v) By definition, L(g, C) = 1(9, C)/J, where J is the maximal ideal of  I(g, C). By 

Theorem 4.8, F(I(9,C))~= (9, (1)). Thus the desired result follows from part (iv) 
and Proposition 3.8. [] 

5.2. Correspondence between the Simple Objects of ~1 and 5~. In Theorem 4.8, 
we saw the "universal objects" I(9, C) in ~ are in one-to-one correspondence with 
the objects in 5~. To refine the relation between the two categories, we have 

Theorem 5.4. 
(i) Every simple minimal type one is isomorphic to L(9, C ) f o r  some self-dual 

pair (g, (I)) in ~e. 
(ii) For any simple minimal type ones V, V', we have V ~ V ~ r F(V) ~ F(V') .  

(iii) The simple objects in ~1 are in one-to-one correspondence with the self-dual 
objects in 5f. 
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Proof 
(i) Let V be a simple minimal type one and F ( V ) =  (9,(1)).  By Corollary 

5.3, (9, (1)) is self-dual. By the proof of  Theorem 4.11, we have an onto map 
~v : I(9, C) ~ V. Since L(g, C) is the unique simple quotient of  I(g, C), the map 
above induces an isomorphism L(9, C) --+ V. 
(ii) Obviously, V = V ~ implies that F(V)~= F(W). By part (i), we have V 

L(F(V), C) and V' TM L(F(V'), C). Thus F(V) ~= F(V')  implies that V TM W. 
(iii) follows from parts (i) and (ii). [] 

Let 's  briefly recapitulate what we have established so far. In Sect. 4, we see how to 
attach to each pair (9, (1)) in the category 5r a prevoa 1(9, C) of  the minimal type 
one. By taking quotients, we exhaust all the minimal type ones. The prevoas of  the 
kind I(9, C) are constructed in an utterly general fashion - with little assumption on 
(9, (I)). In this section, we describe the simple type ones in terms of  the self-dual 
Lie algebras. What is still lacking, however, is a description of  the class of  self- 
dual Lie algebra themselves. For example, we know that among them are the finite 
dimensional reductive Lie algebras. But are there any other interesting examples? 

5.3. Examples: Self-Dual Lie Algebras. We now describe a number of  important 
classes of  examples of  self-dual objects in the category 5r 1 

5.3.1. Double Extensions. In Sect. 3.4, we saw that affinization is a way of  getting 
new objects out of  old ones in the category 5e. Here we will describe a procedure 
- known as double extension - that generalizes affinization. The original context 
in which this procedure was discussed is the geometry of  real groups with pseudo- 
Riemannian invariant metric [23]. For completeness, we review the construction 
here. 

Let (9, ([)) be an object in 5~. We denote by Der(9, ( [ ) )  the Lie algebra of  
derivations d which are skew-symmetric on 9 with respect to ([), i.e. (da[b)= 
-(aidb) for all a, b E g. Let h be any finite dimensional Lie algebra with a homo- 
morphism 0 : h --+ Der(9, ([)). Let h' be the linear dual of  h. 

Define a bilinear form/3 : 9 x 9 ~ h~ as follows: 

(/3(a, b), c) = (aiO(e)b) (5.8) 

f o r a ,  b E 9  a n d e E h .  

Lemma 5.5. /3 is a two-cocycIe. 

Proof Let a, b, E g and d E h. Then 

(fl(a, b) + fl(b, a), d)  = (a 10(d)b) + (bl0(d)a).  (5.9) 

Now the right-hand side vanishes because O(d) is skew-symmetric. This means that 
/3 is skew-symmetric. Similarly, we have 

(/3( [a, b], c) +/3(  [c, a], b) +/3(  [b, el, a), d ) 

= ([a, hi I O(d)c) + (It, a]l O(d)b) + ([b, c] [ O(d)a) 

= (al [b, O(d)e]) + (a[[O(d)b,c]) - (a]O(d)[b,e]). (5.10) 

1 I thank G. Zuckerman for pointing out many examples to me. 
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This right-hand side vanishes because O(d) is a derivation on g. Thus/~ is a cocycle. 
[] 

We now regard h ~ as an abelian Lie algebra. Then using fl, we can form the 
central extension - which we denote by g (~# h ~, 01 . 

Lemma 5.6. 0 ~ defines an action o f  h on g ( ~  h ~ by Lie algebra derivations. 

Proo f  Let a, b E g, and c, d E h. Then we have 

([l(a, b) o adh c)d = ( [3(a, b), [c, d] ) 

= (a I O([c, d])b) 

= (a I O(c)O(d)b) - (a I O(d)O(c)b) 

= -(O(c)alO(d)b) + (O(d)alO(c)b) 

= -(f l(O(c)a,b),  d)  - (~(a,O(c)b), d ) .  (5.11) 

This means that 

fl(a, b) o adhc = -~(O(c)a,  b) - fl(a, O(c)b) . (5.12) 

Let #, v E h ~. Consider 

O'(c)[(a, #), (b, v)] = 0'(c)([a, b],/3(a, b)) 

= (O(c)[a, b], - f l (a ,  b) o adhc),  (5.13) 

[O'(c)(a, #), (b, v)] + [(a, #), O'(c)(b, v)] 

= [ (O(c)a, - #  o adh c), (b, v) ] + [ (a, #), (O(c)b, - v  o adh c) ] 

= ([O(c)a, b],/~(0(c)a, b)) + ([a, O(c)b], ~ (a, 0 (c)b)) 

= (O(c)[a, b], fi(O(c)a, b) + fi(a, O(c)b)). (5.14) 

By Eq. (5.12), we see that right-hand sides of  Eqs. (5.13), (5.14) agree. This means 
that O~(e) acts on g | h ~ by derivation. [] 

Definition 5.7. Let A(g,g; O ) denote the semi-direct product Lie algebra h~<o, 
(g ~ h'). It is called the double extension o f  (g, (1)) by (h; 0). 

Proposition 5.8. A(g,g; O) has an invariant f o rm  ([)A such that there is an inclusion 
(g, ([)) ~ (A(g,h; 0), ([)A) in the category 5s 

Proo f  As vector spaces, 

A(g,h; O) = h | g | h' . (5.15) 

F o r a ,  b C g ,  c, d C h  a n d # , v C h  t , w e l e t  

( (e ,a,#) l(d,b,v))z  = (alb)g + (# ,d)  + (v,e) . (5.16) 
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Checking the invariance property of (I)A is an easy exercise. Now it is obvious that 
we have the desired inclusion map. [] 

The following is a direct consequence of the construction above. 

Proposition 5.9. The pair (A (g, h; 0), (I)A) is self-dual iff (g, (])) is. More  precisely, 
we have rad ([)A = rad (I)g. 

5.3.2. A Few Special Cases. Given a pair (g, (D) from 5r the loop algebra L 9 = 
g | C[t,t -x] has a canonical invariant form defined by 

(a | t n Ib | tm)Lg = (aIb)fn+m,O (5.17) 

for a, b E g and integers m, n. 
Let Cd be the one-dimensional abelian Lie algebra which acts on L 9 by 0: Cd --+ 

Der(Lg,(I)Lg): O(d)a |  n = n a |  n. Then the affinization (g,(I)^) of 
(g,(D) is the double extension of (Lg,(I)rg) by (Cd;0). Moreover, (I)^ is non- 
degenerate iff ([) is. 

I f  we take h = g and 0 = ad, we get 

(fl(a,b),c) = - ([a ,  blle) (5.18) 

for all a, b, c E g. Thus the central extension g O/~ g~ is a split extension. Thus we 
have A (g, g; ad) = g )  (g | g~), where g acts on g~ by adjoint and coadjoint action 
respectively. 

Clearly, the construction in Sect. 5.3.1 makes sense even when g is the zero 
algebra. In this case, the double extension of 0 by h is nothing but the semi-direct 
product h )  h ~, where h acts on h ~ by the coadjoint action. 

We call h~ h ~ the self-dual double of h, and denote it by 6(h). Note that the 
invariant form given by Eq. (5.16) in this case is nothing but the (non-degenerate) 
pairing - denoted by (1)6 - between h and h ~. In fact even when g is nonzero, we 
have an inclusion map (6(h), ( I ) 6 ) ~  (A(g,h; 0), (I)4) in the category ~ .  

5.3.3. Drinfel 'd Lie BiSlgebras and Manin Triples. Let g be a Lie algebra which 

admits a Lie coalgebra structure g ~  A 2 g, such that 6 is a one-cocycle, then g is 
called a Lie bialgebra. This notion, first introduced in [3], may be used to construct 
examples of quantum groups. 

It has been pointed out by Drinfel'd that Lie bialgebras are in one-to-one corre- 
spondence with certain self-dual Lie algebras known as the Manin triples. A Manin 
triple (h, hl,h2) consists of  a Lie algebra h with a non-degenerate invariant form, 
and two isotropic subalgebras hb h2, such that h = hi | h2 as vector spaces. Thus 
given a Lie bialgebra, 9, we can let hi = g, h2 = gt and h = g | g ~. The bracket 
[, ] : g x g ~ ~ h is defined so that the natural pairing between g and g ~ is h-invariant. 
Thus corresponding to the Lie bialgebra g is the triple (g | g p, g, g~). 

Let h be any Lie algebra. Then h can be endowed with the trivial coalgebra 
structure, i.e. let h ~ A 2 h be the zero map. Hence h becomes a Lie bialgebra. It is 
easy to show that the Martin triple corresponding to h is nothing but (h~< h~,h,h~), 
where h )  h t is the self-dual double of h discussed above. 

Drinfel'd has constructed many examples of  quantized objects Uqg out of certain 
Lie bialgebras g. It is an interesting problem to compare these quantized objects 
with the vertex operator algebras I(g | g ~, C), corresponding to the Manin triple 
(g | g/, g, g/). 
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In this section, we classify the Virasoro elements of  a prevoa of  minimal type 
one (Theorem 6.4, Corollary 6.7, Theorem 6.11, Theorem 6.14). We discuss the 
Virasoro elements in those new examples we give in the last section. As an ap- 
plication, we use the Virasoro elements to study the reducibility problem of  the 
prolongation module in the generic case (Theorem 6.19). We also use the action 
of  the automorphism group on a self-dual Lie algebra to classify the vertex oper- 
ator algebra structures on l(g, C) (Theorem 6.22). We then conclude with a few 
remarks. 

6.1 Uniqueness of  the Virasoro Element 

Definition 6.1 [9] Let (V, Yv( - , z ) )  be a prevoa. An element co E V is called 
a Virasoro element i f  the vertex operator Yv(co, z ) =  ~-~nLn z-n-2 satisfies the 
following: 

(i) [L-l, Yv(a,z)] = ~ Yv(a,z); 
(ii) L0 Iv[hi = nid ; 

(iii) [L~, Lm] = (n - m)Ln+m + 1-~(n 3 - n)an+m,O 

for all a E V, integers m, n. The fixed scalar c is called the central charge of co. 

Although (i)-(iii) above are stated in terms of  vertex operators acting on V, these 
conditions are equivalent to the following conditions on vertex series: 

d Y(a,z) ; (i) / [L_  1, Y(a, z) ] = -d~ 

(ii)' [L0, Y(a,z)] z d Y(a,z) + [a[Y(a,z);  = 

(iii)' [L,, Lm] = (n - m)L,+m + l ~ (n  3 - n)6,+m,O 

The proof  of  the equivalence is a straight forward application of  Lemma 2.5. Hence 
we use the two sets of  conditions interchangeably without explicitly s ta t ing so. 

In this subsection, we assume that V is a prevoa in ~ with a Virasoro element 
co. We use our further F, to obtain information about co. 

Proposition 6.2. Given a Virasoro element co of V, there is a unique F(V)-character 
2 E (F(V)/[F(V), F(V)] ) '  such that 

[Ln, a(m)] = -ma(n + m) + n(n + 1)(2, a)3n+m,O 

for all a E V[1] and integers m,n. 

Proof By Lemma 2.5(i) and the fact that Ln = co(n + 1), we have 

n+l 
[Ln, Y(a,z))] = ~-~( i )zn-i+lg(co(i)a,z) 

i>o 
= Z  n+l Y(L_la, z) + (n + 1)znY(Loa, z) 

1 
+ -~n(n + 1)zn-lY(Lla, z ) .  

Since Lla E C1 is linear in a E V[1] = F(V), we have 

(6.1) 
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Lla = 2(2 ,a)  (6.2) 

for some 2 E F(V) t. Now extracting the coefficients o f  the powers of  z from Eq, 
(6.1), we get 

[Ln, a(m)] = -ma(n + m) + n(n 4- 1)(2, a)~n+m,O . (6.3) 

TO show that /l is zero on [Y(V), F ( V ) ] ,  we compute [Ln, [a(m), b(l)]]  for a,b E 
V[1], in two ways. First we have 

[L,, [a(m), b(l)]] = [Ln, [a,b](m 4- 1)] 

= - (m  + 1)[a,b](n + m + l) 

+ n(n + 1)(2, [a,b])~n+m+l,O. (6.4) 

But we also have 

[Ln, [a(m), b(l) ] ] = [ [Ln, a(m) ], b(l) 4- [a(m), Ln, b(l) ]] 

= -m[a(n 4- m), b(l)] - l[a(m), b(n 4- l)] 

= --(m + l)[a, b](n + m + t) - m(n + m)(a]b)~n+m+l,O 

- lm(a[b)fi~+m+1,o 

= - ( m  + l)[a, b](n + m + l) .  (6.5) 

Equations (6.4), (6.5) show that (2, [a,b])  = 0 for all a,b C V[1]. 
Uniqueness of  2 is obvious. [] 

Theorem 6.3. Suppose V is a minimal type one such that V admits a Vira- 
soro element coo, F(V) is self-dual and finite dimensional. Then there is a unique 
Virasoro element co satisfying 

[Ln, a(m)] = -ma(n + m),  (6.6) 

where L~ = co(n + 1), for all a E V[1] and integers m,n. 

Proof Let 2o be the F(V)-character  determined by COo. By Proposition 6.2, we 
have 

[coo(n + 1), a(m)] = -ma(n + m) 4- n(n + 1)(2o, a)6n+m,O �9 (6.7) 

By hypotheses, we can pick (uniquely) e E F(V) such that 

(ela) = (20, a) (6.8) 

for all a E V[1]. We let 
co = coo + e ( - 2 ) l .  (6.9) 

We now check that co has the desired properties. For a,b E F(V),  we have 

([e,a]lb)c(v) = (el[a,b]) = (20, [a,b]) = O. (6.10) 

Since (I)r(v) is non-degenerate, this means that e is in the center of  F(V). By 
Lemma 2.5(iii), we have 
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Ln = co(n + 1) = coo(n + 1) - (n + 1)e(n). (6.11) 

Using Eq. (6.7), (6.8) and the fact that e is in the center of  F(V),  we get 

[Ln, a(m)] = - ma(n + m) + n(n + 1)(2, a)an+m,o 

- (n + 1)[e,a](n + m) - n(n + 1)(ela)an+m,o 

= - ma(n + m) .  (6.12) 

This gives Eq. (6.6). 
By Eq. (6.11), we have co(0)= COo(0). Since COo is a Virasoro element, COo(0) 

satisfies Definition 6.1(i). Hence so does 05(0). Since e is in the center of  F(V) ,  it 
follows that e(0) commutes with a(n), for all a E V[1] and integers n. Now V is 
generated by V[1]. Thus e(0) commutes with Y(b,z) ,  for all b E V. In particular, 
we have e(0)b = e (0 )b( -1 ) l  = 0, i.e. e(0) acts by zero in V. Thus by Eq. (6.11), 
we have CO(1)]v[n] = co0(1)lv[n] = n i d ,  i.e. CO(l) satisfies Definition 6.1(ii). Finally, 
suppose the Virasoro element coo has central charge c. Then we have 

[Ln, Lm] = [COo(n + 1) - (n § 1)e(n), Coo(m + 1) - (m + 1)e(m)] 

C 3 
= (n - m)CO(n + m + 1) + -(~(n - n)an+m,O 

- n(n + 1)e(n + m) + m(m + 1)(n + 1)(2o, e) 

+ m(m + 1)e(n + m) - n(n + 1)(m + 1)(2o, e) 

+ (n + 1)(m + 1)n(e]e)6~+m,O 

= (n - m)(COo(n + m + 1) - (n + m + 1)e(n + m)) 

+ l~ (n  3 - n)c~+m,O + m(m + 1)(n + 1)(e]e)a,+m,O 

C + 
12(~]~)(n3 - n)g~+m,O �9 (6.13) = (n - m ) L n +  m + 12 

Thus CO is a Virasoro element of  V with central charge c + 12(elS)r(v ). 
To prove uniqueness, let CO, co' be two virasoro elements satisfying Eq. (6.6). 

This means that [co(n) - CO'(n), a(m)] = 0 for all a E V[1] and integers m,n. Since 
V is generated by V[1], it follows that co(n) - co(n)' commutes with Y(b,z)  for all 
b E V. In particular for Lo = CO(l), we have 

Lo(co - co') = [L0, co(-1)  - co ' ( -1 ) ] l  = 0 .  (6.14) 

On the other hand because co, co' E V[2], the left-hand side of  Eq. (6.14) is equal 
to 2(CO - CO'). Thus we have CO = co'. This completes the proof. [] 

Theorem 6.4. Let  V be a prevoa satisfyin9 the hypotheses o f  Theorem 6.3. 
Then the set o f  Virasoro elements o f  V is the affine subspace o f  V [2] given by 
{coo + e ( -2 ) l [ e  E cent (F(V))}. Thus i f  exists, the set o f  Virasoro elements o f  V is 
classified by cent (F(V)) .  Moreover i f  COo has central charge c, then coo + e( -2 )1  
has central charge c + 12(ele)r(v). 
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Proof Using a similar argument as in Theorem 6.3, we can show that if  COo is a 
Virasoro element, then so is coo + e ( - 2 ) l  for every e E cent(F(V)).  The same proof  
shows that conversely, every Virasoro element differs from coo by exactly e ( - 2 ) l  
for some 8 E cent(F(V)).  This gives the first of  our claims. 

For the second claim, let 's assume that e E cent(F(V))  and e ( - 2 ) l  = 0. We 

to show that ~ = 0. By Lemma 2.5(iii), we have 0 = Y ( e ( - 2 ) l ,  z) = ~z Y(~,z). need 

This implies that e(n)= e ( - 1 ) r n - 1 .  In particular, (e]a)r(v)= e(1)a = 0 for all 
a E F(V). By hypothesis, (])r(v) is non-degenerate. This means that 8 = 0. 

The last claim of  the theorem follows from the proof  of  Theorem 6.3. [] 

In proposition 6.2, we see that every Virasoro element gives rise to a F(V)- 
character in a natural way. One wonders whether the converse is true. Indeed, 
under the same hypotheses in Theorem 6.3, this holds. In fact if  one considers 
the map cent (F(V))  ~ (F(V) / [F(V)F(V)] ) ' ,  e ~-+ 2~, with ()~, a) = (~[a) for a E 
F(V),  then one can easily show that this map is well-defined and bijective. By 
virtue of  Theorem 6.4, we see that the F(V)-characters also classifies the Virasoro 
elements, if  they exist. 

6.2. Characterizin9 the Virasoro Element. All of  the discussion in the last subsec- 
tion would not have been worthwhile, if  there were no new examples of  Virasoro 
elements beyond the known ones in the case in which F(V)  is reductive. But where 
do we look for new examples? A partial answer is provided by Theorem 6.3. It 
tells us that we should look at those prevoa V satisfying the hypotheses, and look 
at elements co E V [2] for which 

[co(n + 1), a(m)] = -ma(n  + m) (6.15) 

holds for all a E V[1] and integers m,n. In fact, as we will see, this condition 
actually characterizes the existence of  a Virasoro element. 

Definition 6.5. Let (g, (I)) be a finite dimensional self-dual pair in LP, {ui} be 
dual bases (b/il/A j )  = ( u J I u i )  = 6 Ji. I f  0 is any linear map of  9, we let (2~o = bli~U i 
(sum over i) be an element o f  the envelopin9 algebra of  9. In a context in which 
only one pair (9, (I)) is bein9 considered, we write f2~ instead o f  f2~. When ~ is 
the identity map, we write f2 instead of  f2 ia. The operator representin9 f2 ~ in the 
adjoint representation is denoted ado(2~, or simply ad f2~. 

Throughout this subsection, we assume that a prevoa V is o f  minimal type one 
with finite dimensional self-dual F(V).  Thus {Uz} and {u z} are dual bases of  F(V).  

Since V is generated by V[1], the most general element of  V[2] must take the 
form 

co = ui(-1)qbu i + v ( - 2 ) l ,  (6.16) 

where q$ is some linear map on V[1], and v is some element of  V[1]. We claim 
that, without loss of  generality, one can assume that ~b is symmetric with respect 
to (I)r(v). For if  we let qSt be the adjoint o f  q$, it is easy to show that 

Uz(-l)(q~ - Ot)u i = [ui, ~buZ](-2)l �9 (6.17) 

Thus Eq. (6.16) becomes 
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09 = ui(-- 1)(~b + ~b~)u i + (~[ui ,  ff)u i] + v ) ( - 2 ) l .  (6.18) 

So f r o m  now on, (a in Eq. (6.16) is a s sume d  symmetr ic .  

It is obvious that every graded piece V[n] of  V is a F(V)-module in a natural 
way, i.e. every a E F ( V )  = V[1] acts by the operator a(0). We denote the subspace 
of  F (V)-invariants by V [n] r{v) . 

Theorem 6.6. L e t  09 = u i ( - l ) ( o u i  + v ( - 2 ) l  where (o is some  ( symmetr i c )  linear 
map  on V[1], and  v E V[1]. Then the fo l lowin9  are equivalent: 

(i) For  all a c V[1] and  integers re, n ,  

[co(n + 1), a(m)] = - m a ( n  + m ) .  

(ii) For  all a E V[1], 

Y ( ~ o , z ) a ( w )  ~ - -  
a(w)  Oa(w) + - -  

( z  - w )  2 z - w 

(iii) v = 0 and  f o r  all a c V [ 1], 

2ui(w)((ou ila) + [~u i, [ui, a]](w) = a(w) , 

~3[qSu i, [ui, a]](w) - 2: ui(w)[(ou i, a](w): = 0 .  

(iv) v = 0 and  

2q~ + adr(v)f2r(v)  = id ,  

o9 E V[2] r{v} . 

(v) co is a Virasoro e lement  with v = O, and central  charge c = 2tr qS. 

P r o o f  (i),-e~,(ii) : This is a direct application of  Lemma 2.7 to the commutator 
given by (i) and the operator product expansion in (ii). 
(ii)~=>(iii) : By definition, Y(co, z)  =: ui(z)((oui)(z):+•v(z) .  By applying repeatedly 

[a(z) +, b(w)] = (a]b)tz, w(Z - w)-2  + [a,b](w)Z~,w(Z - w)  -1 (6.19) 

for a,b  C V[1], we can easily get the operator product expansion: 

Y (co, z )a(w)  ~ 2ui(w)(  (aui la)(z - w) -2 + 2aui(w)(  (oui la)(z - w) -1 

+ 2: ui(w)[(mi,  a](w):  (z - w) -1 + [~bu i, [ui, a]](w)(z - w)  -2  

+ 2(vla)(z  - w) -3 - [v, a](w)(z  - w) -2 . (6.20) 

Note that the invariant form (I) is non-degenerate.Thus comparing Eq. (6.20) with 
part (ii), we see that (ii) and (iii) are equivalent. 
(iii)r : By Lermna 2.3(i), the first equation of  part (iii) is equivalent to 

2U i(~uila) + [4U i [Ui, a]] ----- a .  (6.21) 

By the symmetry of  qS, this becomes the first equation of  part (iv). 
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By Lemmas 2.3(i) and 2.5, the second equation of  part (iii) is equivalent to 

[Ou i, [ui, a ] ] ( - 2 ) l  - 2 u i ( -  1)[qSu i, a ] ( -  1)1 = 0 .  (6.22) 

Now computing a(0)co (with v = 0), one  sees that it is equal to the left-hand side 
of  Eq. (6.22). Thus parts (iii) and (iv) are equivalentl 
( i v ) ~ ( v ) :  Since we have already shown the equivalence of  parts (i)-(iv), 
we can use any one of  them here as hypotheses. Applying part (i) to the case 
a = ui, we get 

[Y(co, z), ui (w)-]  = ui(z)tz, w(z - w) -2 . (6.23) 

Applying part (ii) to the case a = Ou i, we get 

Y ( o ) , z  ) (  ~)b/ i ) (w)  = ( ~gb/i)(W)tz. w (Z - -  w) -2  

+ ~(Oui)(w)zz, w(z - w)- I  

+ :  Y (co, z)(dpui)(w) : . (6.24) 

Part (iii) implies that v = 0. So we can write 

Y (co, z) = :  ui(z)((gui)(z) : . (6.25) 

We also know that for a,b  E V[1], we have 

a(z)b(w)  = (a[b)zz, w(Z - w) -2  + [a,b](w)tz, w(z - w) -1 + : a(z)b(w):  . (6.26) 

We now apply Eqs (6.23)-(6.26) to compute the product: 

Y (co, z ) Y  (co, w) 

= r(co, z)(ui(w)-(q)ui)(w) + (r +) 

= (b/il~gb/i)lz, w(Z --  W) -4  -~- [b/i, ob/ iJ (W)lz ,  w(Z  --  W) -3 

-~ : b / i (W)(~)b / i ) (w) :  lz, w(Z --  W)--2-~- : b/i(Z)~)bli(W): Iz, w(Z --  W) -2  

+ : ui(w)c3(~ui)(w): tz, w(Z - w ) - l +  : ui(w)Y(co, z)(qbui)(w) : . (6.27) 

The term with (z - w) -3 vanishes by the symmetry of  qS. Extracting the singular 
part of  the right-hand side of  Eq. (6.27), we get 

Y (co, z ) Y  (co, w) ~ (tr (9)(z - w) -4 + 2 Y  (og, w)(z  - w) -2  -}- (~Y (o),  w ) ( z  - w) -1 . 
(6.28) 

Now apply Lemma 2.7, we get 

2tr qS, 3 
[co(n + 1), co(m + 1)] = (n - m)co(n + m + 1) + ~ - i n  - n)6n+m,O �9 (6,29) 

This verifies Definition 6.1(iii). Applying part (iii) again, we get 

d 
[co(0), a(z)] = ~za(Z) (6.30) 

for all a E V[1]. Since V is generated by V[1], Corollary 2.6 tells us that for any 
b E V, Y (b,z)  is a linear combination of  
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Y ( a l ( _ i l _ l ) . . . a n ( _ i n _ l ) l , z )  1 1 .  ( d )  il ( d )  i" 
i1[ in[ \ d z J  a l (z ) . . .  -~z an(z):. 

(6.31) 
Now Definition 6.1(i) can be easily checked by induction on n, using Eqs (6.30), 
Similarly, applying part (iii) again: 

[co(l), a(m)] = -ma(m) .  (6.32) 

one can check as well that Definition 6.1(ii) also holds. 
( v ) ~ ( i )  : Suppose co is a Virasoro element with V = 0. By Proposition 6.2, there 
is a unique F(V)-character  2 such that 

[co(n + 1), a(m)] = -ma(m + n) + n(n + 1)(2, a}6,+m,O (6.33) 

for all a C V[1] and integers m,n. Using Lemma 2.7, we translate this into 

Y(co, z)a(w) ~ a(w)(z - w) -2 + (?a(w)(z - w) -1 + 2(2,a)(z - w) -3 . (6.34) 

But Eq. (6.20) also holds with v = 0. Comparing it with Eq. (6.34), we see that 
(2,a) = 0 for all a ~ V[1]. Thus Eq. (6.33) coincides with part (i). This completes 
our proof. [] 

From now on, given 4) we denote ui(-1)~u i C V[2] as co s. Combining Theorem 
6.6 and Theorem 6.3, we have 

Corol lary 6.7. V admits a Virasoro element iff there is a symmetric map ~ sat- 
isfying 

2~) r + adr(v)f2r(v) = id ,  (6.35) 

co s E V[2] r (v) (6.36) 

Thus we need to solve those two conditions above. 
A few comments about the conditions are in order. Based on the known cases 

of  prevoa V in which F(V) is a simple Lie algebra, one is tempted to guess that in 
the general case, there might be a Virasoro element of  the form (again sum over i) 

co = kui(-1)u i , (6.37) 

where k is some fixed scalar, i.e. 4 ) =  k i d .  Unfommately,  the first condition in 
Corollary 6.7 does not hold in this case unless ad f2 acts semi-simply on F(V). 
This means that co above does not give a Virasoro element in general. For example; 
i f  we let g be the self-dual double of  a finite dimensional simple Lie algebra h and 
consider the prevoa V = I(g, C), then Theorem 4.8 tell us that F(V) = (g, (I)) which 
is self-dual. In this case, one can easily show that adgf2g is a non-trivial square 
zero operator on 9. Thus Eq. (6.37) is a poor choice in the general case. 

In the case when F(V) is simple, we know that (I)r(v) is a scalar z times the 
Killing form, say (I). One can easily verify that the two conditions in Corollary 

6.7 have the solution ~b - 2( z _Z4- h v) , provided that Z + - hV, where h ~ is the dual 

Coxeter number of  F(V). This gives us the Virasoro element 

Z i (6.38) co -- 2(Z + hv) ui(-1)u ' 
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where the U i and U i a r e  dual bases with respect to (I)r(v). This is of  course the 
well-known formula of  Suguwara-Sommerfield. 

1 This means When F(V)  is abelian, it follows from Corollary 6.7 that ~b-  g. 
that 

1 
o) = ~ui( -1)u  i �9 (6.39) 

This gives the original Virasoro action. 

6.3. Existence o f  the Virasoro Element. Our task in this subsection is to solve Eq. 
(6.35), (6.36). To simplify notations, we denote F(V)  as 9 in this subsection. We 
begin with an observation which generalizes the fact that the second Casimir of  the 
self-dual Lie algebra 9, lies in the center Z(9 ) of  U(9). 

Lemma 6.8 I f  (o intertwines the adjoint module 9, then g2e E Z(g). 

Proof  Let a E 9. Then for each i, we have 

[a, ui] = aJiuj (6.40) 

for some constants a j. Using the non-degenerate invariant form of  9, we get 

a j = ([a, ui] I u j) = -(uil[a, u J]), (6.41) 

implying that 
[a, u j] = -a~u i . (6.42) 

Using Eq. (6.40), (6.42) and our hypothesis, we have 

[a, Ui~)U i] = [a, Ui]~)U i ~- ui[a, (gU i] 

= a~ujqgu i - ui(oaju j = 0 .  [] (6.43) 

Proposition 6.9 Suppose (9 satisfies Eq. (6.35). Then the followin9 are equivalent: 
(i) q5 intertwines the adjoint module; 

(ii) f2O E Z(9); 
(iii) (2 + adO) o ~b = id. 

Proof  (i) ~ (ii) is given by Lemma 6.8. 
(ii) ~ (iii) : Obviously if  f2 ~ commutes with F(V),  then ad f2 ~ intertwines the 
adjoint module. 

Thus by Eq. (6.35), so does q~ . But if q5 intertwines, then for every a E F(V) we 
have 

adf2~a = [ (au i, [ui, a]] = [U i, [Ui, qSa]] = (adO) o ~ba. (6.44) 

Thus Eq. (6.35) becomes 
2 4 + (adO) o ~b = id (6.45) 

(iii) ~ (i) : Since f2 E Z(9), ad f2 intertwines the adjoint module. Now (iii) implied 
that ~b also intertwines. [] 

In preparation for the next theorem, consider the subspace V (2) of  V spanned 
by 1 a,a(-1)b,  where a,b E V[1]. Let O(V (2)) be the subspace of  V (2) spanned by 
elements of  the form [a, b ] ( - 2 ) l  + [a, b] E V (2), where a, b E 9. It is important to 
note that the only homogeneous element in O(V (2)) is zero. It is easy to show that 
V (2), O(V (2)) are 9-submodules of  V. 
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Let Ti9 be the i th tensor power of our Lie algebra 9- Let T(2)9 = 
O0_<i_<2 Ti9 �9 Then T(2)9 carries a 9-action induced by the adjoint action of 9. Let 

0(T(2)9) be the subspace of T(2) 9 spanned by a | b - b | a - [a, b], where a, b E g. 
Then it is obvious that the kernel of the natural map 7"9 ~ Ug, restricted to tensors 
of at most rank 2, is given by O(T(Z)g). Thus we write U(2)g = T(z)9/O(T(2)9) as 
a subspace of Ug. 

We now define a linear map f :  T(2)9 > V (2) which maps 1, a, a | b onto 1, 
a, b ( -1 )a  respectively, for all a, b E 9. Then O(T(Z)g) is a 9-submodule of T(Z)g;f 
is a 9-module map which maps O(T(Z)t7 ) into O(V(2)). This induces the surjective 
map f : U(2)g , V(2)/O(V(2)).  

Proposition 6.10. zf ~ E Z(O), then co O E V[2]~. 

Proof Let a E 9 and [a, O ~] = 0. The by the symmetry ~b, we have 

[a, q~ui]ui + Oui[a, ui] = 0.  (6.46) 

Under the map f : U(2~9 ~ V(2)/O(V(2)), this equation rams into 

ui ( -  1)[a, 4)u i] + [a, Oui](- 1)dpu i -- 0 mod O(V(2)) . (6.47) 

The left-hand side of this equation is obviously a(0)co~ which is homogeneous of 
weight 2. By definition, the only homogeneous element in O(V (2)) is zero. This 
completes the proof. [] 

Theorem 6.11. I f  2 + ado  is invertible, then V admits a Virasoro element 9iven 
by co = u i ( - 1 ) ( 2  + adO)- lu  i. Moreover, its central charge is c = 2tr(2 + adO) -1 

Proof  By hypothesis, (2 + adO) is invertible. Call the inverse 4). Obviously ad O, 
and hence ~b, is a symmetric intertwining map of the adjoint module g. By Lemma 
6.8, O ~ E Z(g). Thus Eq. (6.36) follows from Proposition 6.10. 

Since ~b intertwines the adjoint module, we have ad O ~ = ado  o ~b. This means 
that 

id = (2 + ad O) o ~b = 2q~ + ad O ~, (6.48) 

which gives Eq (6.35). 
Finally, the formula for the central charge of co is given by Theorem 6.6 (v). [] 
Combining Theorems 6.4 and 6.11, we get 

Corollary 6.12. I f  2 + ado  is invertible, then the set o f  Virasoro elements o f  V 
is the affine subspace of  V [2] 9iven by {ui(-1)(2 + ad o)--lb/i + L-lglg E cent(g)}. 
Moreover, the element correspondin9 to e has central charge e = 2tr(2 + adO) -1 + 
12(e]e). 

We now consider the converse of Theorem 6.11. Here we need a further as- 
sumption on V. Recall that in Subsect. 4.4, we studied a natural prevoa map 

: I (F(V) ,C)  ~ V. Let's denote by iv[n] the restriction of the map to the sub- 
space of homogeneous elements of weight n. By construction, this restriction map 
is injective for n -- 0, 1. 

Proposition 6.13. ~ ~ [2] is injective, then coy E V[2J ~ implies that g24~ 6 Z(9). 
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Proof  First let's consider the g = F(V)-module map f : U(2)g ~ V(2)/O(V(2)) 
introduced above. This map is surjective and sends f20 to co o + O(V (2)) by con- 
struction. We will show that under the hypothesis here, f is also injective. If we 
can do this, then it follows t h a t f  -1 pulls the coset coo § O(V(2)) back to f20. 

Suppose (ziJuiuj ~- fi E U(2)g ( s u m  i, j )  is in the kernel o f f ,  for some fl C g = 
F(V) = V[1]. Without loss of generality, we may assume that (cd) is a symmetric 
scalar matrix, for the antisymmetric part can be absorbed by ft. Then under the 
action o f f  we get 

o:iJuj(--l)ui -}- fl =~ 0 modO(V(2)). (6.49) 

This means that the left-hand side takes the form f i ( -2) l  + ft. This gives 

f i ( -2) l  = eiJuj(-1)ui. (6.50) 

By hypothesis, Zv [2] is injective. In particular, V[2] has a basis of the form 
{ui(-1)uj + uj(-1)ui, u i ( -2) l (d imV [1])=i>=j>=0}. This means that both sides of 
Eq. (6.50) must vanish. It follows from Eq. (6.49) that fi E O(V(2)). But fi has 
weight 1, while zero is the only homogeneous element in O(V(2)). Thus fi = 0. 
This completes the proof. [] 

Theorem 6.14. Suppose iv [2] is injective. Then V admits a Virasoro element iff 
2+adf2 is invertible. 

Proof  Theorem 6.11 gives the " i f"  part. Suppose V admits a Virasoro element. 
Then by Corollary 6.7, V admits a Virasoro element o 4) satisfying conditions (6.35), 
(6.36). Now by Proposition 6.13, we get (20 E Z(g). By Proposition 6.9, finally, we 
see that (2 + ad~2) is invertible. [] 

We now recast the results in this section in more familiar notations. 

Corollary 6.15. Let (9,(])) be any finite dimensional self-dual pair, and Z be any 
nonzero scalar. Then the prevoa I(g, Cz) admits a Virasoro element iff 2)~ + adfi? 0 
is invertible. I f  exists a Virasoro element is given by co = ui(-1)(2Z + adgO0) -1 u i, 
where {ui} and {u i} are dual bases of  (9,(])). Moreover, co has central charge 
c = 2ztr(2z + ad o Og) -1. 

Proof We take V = I(g, Cz) and use the fact that (Theorem 4.8) F(V) ~- (g,g([)), 
1 _ !  i A 

and hence f2r(v) = )~-lf2g, {X-~ui}, {Z 2u } are dual bases of F(V). Clearly iv is 
an isomorphism in this case. Thus the first statement of our claim follows from 
Theorem 6.14. Applying Theorem 6.11, we get the Virasoro element 

co = z - lu i (  - 1)(2 + x-ladg~2g)-lu i . (6.51) 

The central charge is computed the same way we did in Theorem 6.6. [] 

6.4. Some Special Cases. In Sect. 5.3, we study the notion of the double extension 
of a pair (9,(I)) in category, 2z ~ by a Lie algebra h acting in g by anti-symmetric 
derivations. This construction offers a large pool of concrete examples of self-dual 
objects in the category Y. In ram, these examples lead to new examples of prevoas 
V of type one for which the radical rad V = 0. Then in the last section, restricting 
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ourselves to cases in which F(V) is finite dimensional, we classify the Virasoro 
elements on V. Thus we obtain a large class of new vertex operator algebras. 

In this subsection, we wish to consider the Virasoro structures on these new 
voas. We try to illuminate the new ones by comparing them to the ones that are 
well-known. First let's recover some well-known examples. We call a scalar # a 
critical value of the self-dual pair (g, (I)) if 2# + adg~20 is singular. 

Let y = (~i Y(i) be a finite dimensional semisimple Lie algebra with simple com- 

ponents g(i). Let (I)i be the standard Killing form on g(i); {uj(o}j, J {u(i)} be some dual 
bases with respect to (I)i, and h~i ) be the dual Coxeter number of g(0. Then we have 

adof2olo(i) = 2h~i) . (6.52) 

Let (1) denote the standard bilinear form of y. Thus given any nonzero scalar Z, 
the critical values of of the pair (9,Z(])) are - z - l h  ~ By Theorem 4.8, the prevoa (i)" 
V = I(y, Cz) has F(V)~= (Y,Z(]))- Since this pair is self-dual, every quotient V/J 
of V by an ideal J has F(V/J) = F(V), according to Proposition 3.8. Thus F(V/J) 
has the same critical values -z-lh~i). Hence if )~# -h~i ) for any i, then Theorem 
6.11 tells us that V/J admit the Virasoro element 

gO 2(z + h~,. ) uj(~ 1)u(0 ' (6.53) 
"Y () 

which we call the Suguwara-Sommerfield formula. Since cent (y) is trivial, it fol- 
lows from Theorem 6.4 that Eq. (6.53) also gives the only Virasoro element of 
I(y, Cz) and its quotients. Moreover the central charge of gO, by Theorem 6.11, is 
given by 

c = ~ z_dimy(i) 
i X + h~i) " (6.54) 

Now let's mrn to the other extreme: let (Y,(])) be a finite dimensional self-dual 
pair with an abelian y. In this case, adgf2g is of course zero. Let {u~}, {ui} be some 
dual bases of (Y, (1)), and )~ be any nonzero scalar. Consider the prevoa V = l (y,  Cz) 
and its quotients. Note that as before, any quotient V/J of V has F(V/J) = (Y,)~(1)). 
By Theorems 6.4 and 6.11 (the case q5 = �89 the most general Virasoro elements 
of V/J are given by 

1 
gO = ~gui(-1)ui  + e ( -2 ) l  (6.55) 

with e E cent(y) = y. Equation (6.55) is the Chodos-Thom-Feigin-Funchs formula. 
The central charge of gO is given by Corollary 6.12: 

c = dimg + 12Z(~10g. (6.56) 

Thus we see that Theorems 6.4 and 6.11 unifies the above two extreme cases in a 
natural way. In particular, Eq. (6.53) and (6.55) are actually two special cases of a 
general formula. The same is true for Eq. (6.53) and (6.56). 

We now consider a third special case: (g,(])o) is the self-dual double of an 
arbitrary finite dimensional Lie algebra h, i.e. g = h~<h', where h acts on h' by the 
coadjoint action. Thus ([)g is the canonical pairing between h and h'. Let {ui} and 
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{u / } be bases - dual to each other - o f  h and h' respectively. Then it is easy to 
check that 

f2g = uiu i' + u/  ui , (6.57) 

(ado~20)a = - u  i' o adha o adhui + u i' o adh [ui, a] C h' , (6.58) 

(adgfJg)[ h, = 0 .  (6.59) 

In particular, we have 
(ad0f2g) 2 = 0 .  (6.60) 

This implies that, for any nonzero scalar Z, 

1 
(2 Z + adgf2g) -1 - (2)~ - adgf2g) (6.61) 

4Z2 

1 
tr (2Z + adg~20) -1 = ~ d i m g  = )~- ld imh.  (6.62) 

Equation (6.60) also implies that the only critical value of  the pair (g,)~(I)) is zero. 
Thus if  we consider the prevoa V = I(g, C z) and its quotients, we find that, by 
Theorem 6.11 (the case qb = (2 + ) ~ - l a d g Q g ) - l , I ( g ,  Cz) and its quotients always 
admit Virasoro elements. By Eqs. (6.59), (6.61) and Theorems 6.4, 6.11, every 
Virasoro element takes the form 

~z(Ui(__l)u/ . . . .  CO = + U' (--1)Ui) -- U' (-1)(adgs + ~(-2)1  , (6.63) 

where e E cent(g). By Corollary 6.12 and Eq. (6.62), the central charge of  co is 

c = 2dimh + 12Z(~[e)g. (6.64) 

Even in the case above, there are yet two extreme subcases: (i) h is semisimple; 
(ii) h is the abelian. In subcase (i), we have cent ( g ) =  0. Thus there is a unique 
Virasoro element given by Eq. (6.63) with e = 0. In this case, the central charge 
is independent o f  Z. In subcase (ii), we have cent (g) = h | h ~, and hence we have 
the "maximal"  number of  Virasoro elements. 

We now go to the fourth special case which, in fact, subsumes the case of  self- 
dual double (see Sect. 5.3). Consider the finite dimensional self-dual Lie algebra A = 
A(g, h; 0), obtained from the double extension of  a self-dual pair (g, (I)g) by a Lie 
algebra h acting on (g, (])0) via skew symmetric derivations, 0: h ~ Der(g, ([)g). 

Obviously, this setting is much more general than the case of  self-dual double. 
Thus it is more difficult to obtain detailed information about the Virasoro elements in 
this setting. For in general, adA/2A no longer acts nilpotently. It is therefore difficult 
to describe the Virasoro elements of  V = I(A,  Cz) in terms of  the constituents g, h, 0 
etc. We will however give a few general properties of  the operator adA faa. These 
properties may simplify and facilitate the computation of  the Virasoro elements in 
concrete situations. 

Let {u i} and {ui} be dual bases of  (g, (])g)-Let {v / } and {vj} be bases - dual to 
each other - o f  h' and h respectively. To simplify notation, we will identify h, g, h'  
as the appropriate subspaces of  A. For example, we regard a as the same thing as an 

element of  the form (a,0, 0) in A = g | g | h'. Thus {vj, u i, v / } and {v / , u i ,  vj} are 
regarded as two ordered bases of  A which are dual to one another. Then we have 
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. !  . . /  

~'2 A = VjV J -Jr- Ui ut -[- 1) J Vj . (6.65) 

Note that we may also regard the self-dual double 6 = 6(h) = (h~<ht,(I)a) of h, and 
(9, (I)9) canonically as subalgebras of (A,([)A) in the category ~ .  

It is straightforward to compute the action of Qa on each of the subspaces: 
h,o, ht. F o r a E h ,  b e g ,  a t E h t , w e g e t  

(adAf2A)(a, O, O) = (0, [O(a)ui, ui] , fi(O(a)ui, u i) + (ada~2~)a), 

(adAf2A)(O, b, O) = (0, (adgf2g)b, fi(ui, Iu i, b] )),  
(adA g2A)(0, 0, d )  = 0.  (6.66) 

In particular, it follows that every eigenvector corresponding to a nonzero eigenvalue 
2 must have the form 

(0, b, 2-1fi(ui, [u i, b] )) ,  (6.67) 

where b is an eigenvector of adgf2g : 

(adof2g)b = 2b. (6.68) 

This means that adaf2A is nilpotent iff adgQ o is nilpotent. The eigenvectors of 
adA~2A with zero eigenvalue are those (a ,b ,d)  satisfying 

(ad~ ~2a)(a, b, a t) =(0, [O(a)ui, u i] + (adgf2g)b, 

fl(O(a)ui, u i) + (adaf2a)a + fi(ui, [u i, b] )) 
= 0 .  (6.69) 

Let )~ be a nonzero scalar such that both 2X + adAf2A and 2 Z + adof2g are in- 
vertible. Let's consider the prevoa I(A,Cz) and its quotients V/J of V by any ideal 
J .  In this case, we have F(V/J) = (A,)~(])A). Then by Theorem 6.11 and Corollary 
6.12, the set of Virasoro elements in V/J consists of 

co =vj(-1)(2 Z + adADA)--lv j' + Ui(--1)(2 Z + adAQA)-lu i 

+ vJ'(-1)(2)~ + adag2a)-lvj + ~(-2)1,  (6.70) 

where e ranges over the center of A. Equation (6.70) can be expressed in terms of 
the constituents g, h, 0, of A using Eqs. (6.66). The central charge of co is given by 

c = 2ztr~t(2 z + adAQA) -1 + 12Z(~Ie)A 

= 2dimh + 2ztrg(2Z + adgQg) -1 + 12Z(el~)a . (6.71) 

Note that dim g = dimA - 2dimh. Thus if g itself is a double extension of some 
lower dimensional Lie algebras in 5r then Eq. (6.71) may be viewed as a recur- 
sion formula in which trg(2 z + as0~g) -1 can in turn be computed in terms of the 
constituents of G itself. 

6.5. Representation Theory of  O. From the construction of the affine Lie algebra 

0 = Cd 0 (g | C It, t - l ] )  | C~, (6.72) 
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it is clear that the Lie algebra of derivations DerC [t,t -1] acts canonically on the 
subalgebra 0 = g | C [t, r 1] | C~. Namely, we have 

nd  t -~(a @ tm,~) = m(a | tn+rn-l,o). (6.73) 

But the Virasoro algebra Vir projects onto DerC It, t -1] . The kernel of this projec- 
tion is the one-dimensional center of Vir. Via this projection, Vir acts canonically 
on 0 with zero central charge. Using this action, we define the semi-direct prod- 
uct algebra Vir ~0. Note that the affine Lie algebra 0 may be identified with a 
subalgebra of Virlx0, with d identified with -L0. 

In this subsection, we will use the above action and the theory of the Virasoro 
elements developed in the last section to study the following two questions: 

(i) Given a graded 0-module M, when can we extended the H-action to a Virt< 0- 
action? 

(ii) When is the 0-module I(g, Cz) irreducible for generic values of X? 

We assume that (g, (I)) is a finite dimensional self-dual pair in the category ~ .  
Thus the notations used in the last section remain valid here. As before, we restrict 
ourselves to the (Z-graded) H-modules M in which M [n] = 0 for all n << 0, and 
acts by a nonzero scalar )~. 

Proposition 6.16. I f  2Z + adJ2 o is invertibie, then every H-module M o f  the type 
above extends to a Vir~<O-module. 

Proof  By Proposition 4.12, M is a module over the prevoa I(g, Cz). By hypothesis 
and Corollary 6.15, 1(9, C z) admits a Virasoro element of the form co = ui(-1)(2Z + 
adof2g)-lu i. By Theorem 6.6, the coefficients of the vertex series Y(oo, z) ,Y(a,z)  
satisfy 

[o)(n § 1), a(m)] = -ma(n  § m) ,  (6.74) 

where a E g. As operators on the I(g, Cz)-module M, the co(n + 1) and the a(m) 
must satisfy the same relations. But these relations coincide with the Lie bracket of 
the Ln and the a | t m in the algebra Vir~0. It follows that M carries the Vir~<0- 
action which extends the H-action. [] 

Note that the proof above also gives an explicit formula for the operators by 
which Vir acts. Namely 

Y(co, z) =: ui(z) [(2Z + adof2o)-lu i] (z): . (6.75) 

We now move on to question (ii) above. We begin by defining a generalization 
of the Kac-Casimir operator [17]. As noted above, 0 can be identified as a sub- 
algebra of Vir~< 0 by identifying d with -L0. But a priori, the extension given by 
Proposition 6.16 need not respect this identification. That is, the action of -L0 on 
M given by the extension need not coincide with the original action of d on M. 
This is because one can shift the action of d by a scalar constant - hence change 
the action of 0-while preserving the H-module structure. However, once the action 
of d is fixed on M, the operator d + L0 turns out to have a nice property. 

Definition 6.17. Given a O-module M, we call the operator d + Lo on M (where Lo 
is given by Proposition 6.16) the generalized Kac-Casimir operator on M. Note 
that by convention, the action o f  d on I(g, Cz) is f ixed by d l  = O. 
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Proposition 6.18. I f  2)~ + adgf2 a is invertible, then the generalized Kae-Casimir 
operator on M commutes with the action o f  the prevoa I(g, Cx). 

Proof Since l(g, Cz) is generated by I(g, C z) [1] , it is enough to show that d + L0 
commutes with the a(m) , where a E I(g, C z ) [1]. But this just follows from 

[d + L0, a(m)] = ma(m) - ma(m) = 0 (6.76) 

for a l l a E g .  [] 

Theorem 6.19. The O-module I(g, C z) is irreducible for generic values of  Z. 

Proof Suppose otherwise. We will obtain a contradiction. Let's denote l(g, C x) by 
V x, the vacuum vector of Vz by lz. Now every homogeneous element v of weight 
n in V x can be written as ul z, for a unique u E U0+ [n]. Note also that whenever 
V X is reducible, it has a nonzero homogeneous singular vector v E V x [n] for some 
n > 0, i.e. a(m)v=O for a l l a E g a n d m  > 0. 

If our supposition were true, then there would be a nonzero element u E U0+ [n] 
for some n > 0, such that ulx is singular for all )~. This can be easily shown using 
the determinant of the Shapovalov form). Suppose 2Z + adJ~g is invertible. By 
Proposition 6.18, we have the operator d +L0 which commutes with the action 
of ~. Applying this operator on the singular vector ulz, we get 

(d + Lo)ul z = ui(O)(gpxui)(O)utx - nul. z , (6.77) 

where (2Z + adog2) 1 = ~bz. But since d + L0 commutes with u, the left-hand side 
of Eq. (6.77) is zero. By rearranging the terms slightly, we get 

[ui(0), [(q~zUr u]] 1 z = nul z . (6.78) 

Using the canonical isomorphism I(g, C z) ~ U0+, Eq, (6.78) gives a relation in 
UO+ : 

[Ui(0), [(~zUr U]] = nu ,  (6.79) 

which holds whenever 2)~ + ado•g is invertible. Now qSz = (27~ + adg~?g) -1, where 
adg~29 is a fixed linear operator on g. Thus the left-hand side of Eq. (6.79) clearly 
depends on Z, while the right-hand side does not. Hence our supposition must be 
false. [] 

6.6 The Automorphisms of I (g ,  C). We assume here that for the finite dimensional 
self-dual pair (9, (])),2 + adgf2g is invertible. We write V = I(g, C). 

Let Aut(V) denote the prevoa automorphism group of V, and Aut(F(V)) be the 
automorphism group of the object F(V) in category 5f. It is clear from Theorem 3.7 
that, every automorphism f of V induces an automorphism F ( f )  of F(V). By the 
functoriality of F, it preserves the identity, inverses as well as compositions. This 
means that we have a group homomorphism 

Aut(V) ----+ Aut(F(V)). (6.8o) 

By an abuse of notation, we denote this homomorphism as F. 
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For every automorphism 0 of F(V) = (g, (I)), the functor I ( - ,  C) induces (Propo- 
sition 4.9 an automorphism ~ of the prevoa V = I(g, Cz). By construction (Sect. 

4.4), it is clear that F(~) is 0 itself. This means that the map (6.80) is surjective. 
We claim that it is injective, i.e. every automorphism of V is determined by 

its restriction to V [1]. Let f E Ant(V) with F ( f )  = idr(v). By definition, we have 
f (Y(a , z )b)  = Y(fa, z ) f  b, i.e. f (a(n)b) = ( fa) (n) f  b for all a,b E V and integer n. 
Being generated by V[I] ,  V is spanned by al(nl) . .  "ak(nk)l with the a i E V[1]. 
Since F(f ) ,  which is the identity map, is also the restriction o f f  to V [1], we have 

f ( a i ( n l ) ' "  ak(nk)l) = ( fa l ) (n l ) . . .  ( fa~)(nk)fl  = a l (n l ) . . ,  ak(nk)l.  (6.81) 

Hence f is the identity map. To summarize we have 

Proposition 6.20. The map Ant(V) ~ Aut(F(V)) is a group isomorphism. In par- 
ticular, every prevoa automorphism of  V is determined by its value on V [1]. 

Proposition 6.21. The Virasoro element co = ui(-1)(2 +ad~2)-lu i is f ixed by 
Aut(Z). 

Proof  L e t f  ~ Ant(V) and a E V[1]. Then we have 

f (adQa)  = F ( f )  [ui, [ui, a]] 

= [iui, [Su ,Sa]] 
= [u;, [ui,fa]] using 0 uilJu = 
= adg2fa. (6.82) 

This means t h a t f  commutes with (2 + adO) -1 on V [1]. Thus we have 

fco = ( fu i ) ( -  1)(2 + adf2)-lfu i 

= Ui(--1)(2 -t- adO)-lu i using (fuilfu j) -= (~ 

= co [] (6.83) 

Theorem 6.22. The Virasoro element co = ui(-1)(2 -1- adf2)-lu i + e ( -2 ) l ,  corre- 
sponding to ~ E cent(F(V)), is f ixed by AUt (V)  iff e is f ixed by Aut(F(V)). The 
orbits o f  Aut(F(V)) in cent(F(V)) are in one-to-one correspondence with the equiv- 
alence classes of  vertex operator algebra structures on V = I(g, C). 

Proof By Proposition 6.21, co is fixed by Ant(V) iff c( -2)1 is. Suppose t h a t f  E 
Aut(V) fixes c(-2)1.  
Then we have 

( fe ) ( -2) l  = e ( - 2 ) l ,  (6.84) 

implying that 

d Y(f8 - e,z) = (6.85) O. 

Since fe - e E V [1], Eq. (6.85) means that F(f )e  = f e  = e. Thus if e ( -2 ) l  is fixed 
by all of Ant(V), then c is fixed by all of Aut(F(V)) by Proposition 6.20. The 
converse is similar. 

Given the prevoa V, a voa structure on V is specified by a Virasoro element 
co. Two voa structures, co, cot on V are equivalent iff V admits an automorphism 
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sending co to co I. By Theorem 6.4, the set of Virasoro elements in V consists of 
co + e ( - 2 ) l  where e ranges over cent(F(V)), and co = ui(-1)(2 + adf2)-lu/. Now 
the second part of our claim follows from Proposition 6.21. [] 

6. 7 Concluding Remarks. In the present work, the contributions that are made to- 
ward the understanding of vertex operator theory may be summarized as follows: 

(i) establishing a precise correspondence between the category Y of Lie algebras 
with invariant forms and the category ~U of prevoas, using a new functor F; 

(ii) Classifying the simple minimal type ones in ~ ;  
(iii) Classifying the Virasoro structures on each minimal type one V, with finite 

dimensional self-dual F(V); 
(iv) revealing new examples of vertex operator algebras; 
(v) extending the 0-action to a Vir~<0-actinn. 

Recall that the critical values of a finite dimensional self-dual pair (9, ([)) in 
2,e, are the eigenvalues of -�89 Strictly speaking, we have done (iii) only for 
the case in which 1 is not a critical value of F(V). The case of a general V for 
which F(V) admits the critical value, 1, is as yet unsolved. The real difficultly, 
amounts be the fact that when the map ~ [2] (see Theorem 6.14) fails to be 
injective, it is not clear how to solve the two linear conditions (6.35), (6.36) in 
Corollary 6.7. However, we believe that Theorem 6.14 still holds even when iv [2] 
is not injective. In other words, when F(V) has 1 as a critical value, those two 
conditions (6.35), (6.36) should have no solution. We have verified this in the case 
when F(V) is semisimple. It is worth noting that the conditions (6.35), (6.36) are 
invariant under the automorphism group Aut(F(V)), i.e. if  q5 is a solution, so are 
its Aut(F(V))-conjugates. This should be a useful fact for analysing the solutions to 
those conditions. It can be shown that when V is simple prevoa, i.e. V = L(g, C), 
condition (6.35) implies (6.36). Thus the problem reduces to proving the following 
(purely Lie theoretic) conjecture: 

2~b + adt2 ~ = idg has no solution 0 unless 2 + ad f] is invertible (6.86) 

Again, we have verified this in the case where g is simple. 
Based on our knowledge about the semisimple case, we expect that interesting 

phenomena [5] should occur when 1 is a critical value of F(V). For example when 
g is simple, (I) is the standard bilinear form of 9, and V = I(g, C), we know that 1 
is a critical value of F(V) iff Z is equal to the negative of the dual Coxeter number 
of g. At this critical value, V admits a large algebra of intertwining operators. It is 
an interesting problem to realize something similar in the non-reductive case. 

As pointed out in our introduction, one of the motivations behind this work is 
the attempt to understand some new examples which come up in conformal filed 
theory, quantum groups, and Chern-Simons-Witten theory. While having solved 
the problems we stated in the introduction, we have not attempted to resolve all of 
the issues raised there. This is not the purpose of the present work. The purpose 
here is to find the most general context in which those issues may be discussed. 
For instance, in view of the known connections between WZW voas and quantum 
groups via KZ equations in the reductive case, we may now at least ask for similar 
connections in the non-reductive case. A good point to begin may be to study 
WZW-type models based on certain Manin triple (g | g I, g, g/), where g is one of 
Drifel'd's Lie bialgebras [3]. 
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Historical ly in representat ion theory and related subjects, non-reduct ive  groups 
have received much  less at tention than their reductive cousins. So what  we have 
done in the present  work runs counter  to the convent ional  wisdom. But  the reward 
we get is a gl impse o f  a whole  new world  beyond  reductive groups. 
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