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Abstract:  Various finite volume mixing conditions in classical statistical mechanics 
are reviewed and critically analyzed. In particular some finite size conditions are 
discussed, together with their implications for the Gibbs measures and for the approach 
to equilibrium of Glauber dynamics in arbitrarily large volumes. It is shown that 
Dobrushin-Shlosman's theory of complete analyticity and its dynamical counterpart 
due to Stroock and Zegarlinski, cannot be applied, in general, to the whole one phase 
region since it requires mixing properties for regions of arbitrary shape. An alternative 
approach, based on previous ideas of Olivieri, and Picco, is developed, which allows to 
establish results on rapid approach to equilibrium deeply inside the one phase region. 
In particular, in the ferromagnetic case, we considerably improve some previous 
results by Holley and Aizenman and Holley. Our results are optimal in the sense that, 
for example, they show for the first time fast convergence of the dynamics for any 
temperature above the critical one for the d-dimensional Ising model with or without 
an external field. In part II we extensively consider the general case (not necessarily 
attractive) and we develop a new method, based on renormalizations group ideas and 
on an assumption of strong mixing in a finite cube, to prove hypercontractivity of the 
Markov semigroup of the Glauber dynamics. 

0. Introduct ion  

Recently many efforts have been devoted, with increasing interest, to analyze the 
precise connections between i) mixing properties of Gibbs measures for lattice spin 
systems (typically expressed in terms of rapid decay of the truncated correlations), and 
it) the (properly defined) speed of approach towards equiilibrium of some associated 
spin flib Glauber type dynamics. We have in mind, in particular, the basic paper by 
Holley [H2], and the subsequent works by Aizenman and Holley [AH] and Stroock 
and Zegarlinski [SZ], where such connections were established, first for ferromagnetic 
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Ising type models [H2, AH] and then for very general discrete or continuous spin 
systems [SZ]. 

The goal of those papers was to show, under very general hypotheses on the 
flip rates, that a Glauber dynamics for values of thermodynamical parameters (e.g. 
temperature and magnetic field) which do not give rise to a phase transition, must 
have a rapid (typically exponentially fast in the sup-norm) approach to equilibrium. 

In all these works the mixing properties of the Gibbs state were expressed in terms 
of some finite volume condition similar if not equal (see [SZ]) to the famous Dobrushin 
and Shlosman complete analyticity conditions [DS2, DS3]. If such conditions hold 
then the Glauber dynamics approaches its invariant Gibbs measure # exponentially 
fast either in the L2(d#) sense or in the L ~ norm in any finite or infinite volume and 
with rates uniformly bounded in the volume and in the boundary conditions. In the 
standard Ising model the various conditions are easily verified at high temperature or 
large external magnetic field. 

The first result referring to the region of parameters really close to the line of first 
order phase transition was proved a few years ago by the authors of the present paper in 
collaboration with Scoppola [MOS] while working on metastability for the dynamical 
Ising model. By purely dynamical arguemnts we established the rapid approach to 
equilibrium for the standard 2D stochastic (= dynamical) Ising model for any value 
of the magnetic field h, provided that the temperature T was low enough (depending 
on h!). In the arguments of proof in [MOS] a crucial role was played by the results 
of Neves and Schonmann [NS] on the metastable behaviour of the 2D Ising model 
in finite volume. In order to extend the resul to 3D in the same region of the phase 
diagram and since detailed results on metastability were (and still are) not available in 
3D, we tried to see whether one of the various finite volume mixing conditions of the 
above mentioned papers could be satisfied by our model. To our surprise only very 
weak results could be deduced in our case since we could not verify the majority of 
these conditions; moreover, thanks also to some simple examples by Schonmann that 
are described in Sect. 2, we realized that, in general, any Dobrushin-Shlosman type 
of finite volume mixing condition is probably bound to fail near to a first order phase 
transition. The main reason for this surprising result is that, in such conditions, one 
is required to control the Gibbs state in a finite collection of sets of the lattice some  
of which with a ratio surface/volume of order 1 (e.g. a layer with thickness equal to 
one in 3D). Clearly, close to a first order phase transition line, one should expect to 
be able to establish mixing properties of the Gibbs state only in sufficiently regular 
regions (for example such that their surface/volume ratio tends to zero as the volume 
tends to oc). 

A second important observation on the approach to equilibrium for Glauber 
dynamics that comes out of the present work is the following one: as in equilibrium 
statistical mechanics where sometimes one is able to prove rapid decay of the infinite 
volume correlation functions but not of the finite volume ones, with bounds uniform 
in the volume and in the boundary conditions, also for the dynamics one has to 
carefully distinguish between infinite volume results and finite volume ones (with 
bounds uniform in the volume and in the boundary conditons). The reason is that 
even if there exists a unique infinite volume Gibbs state with exponentially decaying 
correlation functions, it may happen that, in arbitrarily large but finite volume (e.g. a 
big cube), a sort of long-range order close to the boundary occurs with a consequent 
decay of the correlation functions non-uniform in the location of the observables; 
such a non-uniformity must give rise to a global slowing down of the dynamics in 
the whole volume (see the remark at the end of Sect. 4). 
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Such a "boundary phase transition" is known to occur in 3D for the so-called Czech 
models [Sh]; even for the Ising model at low temperature and very small (depending 
on the temperature) magnetic field a "layering phase transition" is expected to take 
place (Basuev phenomenon [D1]). However it is reasonable to conjecture that the 
above phenomenon should never appear in 2D since, in this case, the boundary is 
one-dimensional and, in this case, phase transitions for a short range interaction can 
never take place. This is exactly what we prove in a paper in preparation done in 
collaboration with Schonmann [MoSh]. 

As a consequence of the above discussion, if one is willing to prove rapid 
convergence to equilibrium for the Glauber dynamics in the whole one-phase region, 
one should try to envisage a method that works directly for the infinite volume 
dynamics without any assumptions on the finite volume one. In [AH] first and later 
on in [SZ] the exponential convergence to equilibrium, directly in the infinite volume 
in the L2(d#), is proved without requiring anything on the finite volume dynamics. 
However in order to get a stronger result in which the LZ(d#) norm is replaced by 
the L ~ one, all the existing method had to assume a uniform lower bound on the 
gap of the generator of the dynamics in a finite region uniformly in the size, in the 
shape of the region as well as in the boundary conditions. 

By the above discussion this seems too strong a requirement in order to cover the 
whole one phase region. 

In this paper we make what we believe is an important step toward the solution 
of the above problems at least for discrete, finite range spin systems. 

In the attractive (= ferromagnetic) case we show tha t rapid approach to equilibrium 
in the infinite volume in the uniform norm is equivalent to exponentially weak 
dependence on the boundary conditions for the magnetization at the origin. In the 
Ising model such a condition is expected to be true in the whole phase diagram 
outside the coexistence line but we are able to verify it only for: 
i) T > T c and any uniform magnetic field h, 

ii) for T small enough and any h r 0. 
In order to obtain stronger results, namely rapid approach to equilibrium in finite 

volume in the uniform norm with bounds uniform in the volume and in the boundary 
conditions, we make a mixing assumption (rapid decay of two point truncated 
correlations) on the Gibbs state on a given large enough cube A 0 (thus we have 
no arbitrariness on the shape). Such a finite volume mixing condition was introduced 
some years ago by Olivieri [O] and Olivieri and Picco [OP] in order to derive, 
by renormalization group methods (decimation) and cluster expansion, analyticity 
and decay of truncated correlations of the Gibbs state in infinite and finite volumes, 
provided that the latter are in some sense a "multiple" of A 0. Although their results 
may appear weaker than those of Dobrushin and Shlosman, since not all possible 
geometric shapes are covered, they are certainly suited to deal with systems close 
(but not too close because e.g. of the Checks models) to a first order phase transition. 
We show that under the hypothesis of [O] and lOP] we can get the rapid approach 
to equilibrium, both in the LZ(d#) and in the L ~ sense, for volumes that are a 
"multiple" of A 0. Again we verify that for the Ising model our condition holds for 
high temperature or low temperature and arbitrarily small (not vanishing) magnetic 
field h but with h i t  >> 1. This in particular covers the case of metastability in the 
3D case. 

In this paper we only give the proofs in the attractive case; the general case requires 
proving the hypercontractivity of the Markov semigroup generated by the dynamics, 
which in turn is equivalent to proving the existence of a finite Logarithmic Sobolev 
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constant for the Gibbs state. This was provided for the first time by Stroock and 
Zegarlinski [SZ] under a Dobrushin-Shloshman complete analyticity assumption; in 
our case we found a different approach, based on renorrnalization group methods. 
This new method is the argument of a forthcoming paper [MO]. 

The present paper is organized as follows: 
In Sect. 1 we define the models and the Glanber dynamics. 
In Sect. 2 we critically review the existing finite volume mixing conditions together 

with their implications both for the equilibrium problem and for the approach to 
equilibrium of the dynamics. 

In Sect. 3 for the attractive case (not necessarily reversible with respect to a Gibbs 
measure) we prove rapid convergence to equilibrium in the infinite volume under a 
weak dependence on the boundary conditions of  the magnetization in the origin. 

In Sect. 4 we establish finite volume results. 
In Sect. 5 we discuss the implications of our results for the stochastic Ising model. 
Yau and ShengLin Lu [SY], starting from mixing properties of the Gibbs measure, 

proved a very interesting lower bound on the spectral gap of the generator of  the 
Kawasaki dynamics. Their method, based on the strong mixing condition SM(A, C, 7) 
for all cubes A, allows them to treat also the Glauber dynamic. 

1. G e n e r a l  D e f i n i t i o n s  a n d  N o t a t i o n  

In this section we define the statistical mechanics models and the associated Glauber 
dynamics that we want to examine. 

We will consider lattice spin systems. We start giving a list of basic definitions. 

- Configuration space of  a single spin: finite set S = {1, . . . ,  N} ,  N E N. 

- Configuration space in a subset A c Z d. 

f2 A = S A , 

thus an element o- A in f2 A is a function 

CrA:A ---+ S.  

- Configuration space in the whole Za: 

f~ = S Zd 

thus an element ~r in K2 is a function 

o- :Z  d --+ S .  

- ~7 x ~ or(z) is called value of  the spin at the site z E A in the configuration ~7. 

- By IXl we denote the cardinality of  

X c c  Z d 

(we write X CC Z d to express that X is a finite subset of Zd). 

- Potential U = family of functions indexed by finite sets in Z d 

u = { u x ,  x c c  z 
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where, for every finite X.  

U x : O  x ~ R .  

On the potential U we will always assume the following hypotheses: 

H1. Finite range: ~ r > 0: U x = 0 lfdiam X > r (we use Euclidean distance). 

H2. Translation invariance 

VX c <  Z ~ Vk ~ Z ~ Ux+ k = U x .  

- Given A c Z a and ~- E X2Ac(A c = Zd\A),  for every (7 E X? we denote by err the 
configuration obtained from (7 by substituting r to (7 outside A :  

(~r)  x = % ,  Vx ~ A, 
(1.1) 

(c~r)x = r~,  Vx ~ A c . 

- Given a set A c C  Z d, a boundary condition, (b.c.), is a configuration 

~- E g?A c . 

- Given A c C  Z a the energy associated to a configuration ~7 E 22 A when the 
boundary condition outside A is r E / 2 A ~  given by: 

H~((7) = HA((7 = u x ( ( ~ r ) x ) ,  (1.2) 
x : XnOAr 

because of  the hypothesis H1, H~(a )  depends only on r~ for x in 0~+A: 

O+A = {x ~ A: dist(x, A) < r } .  (1.3) 

- The Gibbs measure in A with b.c. r E ~A~ and inverse temperature/3 > 0 is 

#7~(cr ) = exp(-flH~(cr))  (1.4) 

The normalization factor, called partition function is given by 

Z~ = Z exp( - /3H~(a) ) .  (1.5) 
crEs A 

If  there exists a unique limiting Gibbs measure for A -+ Z d, independent on r ,  it 
will be denoted by #. 

- The variation distance between two probability measures P, Q on a finite set Y is: 

1 
Var(P, Q) = ~ ~ IP(y) - Q(y)I = sup [ p ( x )  - Q ( X )  I . (1.6) 

y c Y  X c Y  

- Given a metric Q(., .) on a finite space Y (a much more general framework can also 
be considered) the Kantorovich-Rubinstein-Ornstein-Vasserstein distance with respect 
to Q between two probability measures Pl, P2 on Y, that we denote by KROVo(pl  , #2), 
is defined as 

KROVe(#I ,  #2) = inf Z O(Y,Y')P(Y,Y')  (1.7) 
PEK( /Z l  ,~2) 1 

y,yl EY 
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where K(Pl ,  #2) is the set of joint representation of #1,/z2 namely the set of measures 
on the cartesian product Y • Y whose marginals with respect to the factors are, 
respectively, given by #1, #2. Namely we have VB C Y: 

#(B x Y) = 
yEB y~ CY 

~ ( Y  • B )  = 

yEY yICB 

For the particular case 

9(Y, yl) = 1 

u(y, y') = u l (B) ,  

/~(y, y') : ~2(B). 

iff y ~ y '  and 0 otherwise, (1.8) 

D = ~_J D(A)  
A 

is the set of cylindrical functions and by CU?) we denote the set of all continuous 
functions on ~? = I-[ Sx with respect to the product topology of  discrete topologies 
on S x. x 

The dynamics is defined by means of  its generator L which is given, for f �9 D, 
by: 

Lf(cr) = Z c:~((7, a) (f((7~,x) _ f ( a ) ) ,  (1.10) 

where (7~,~ is the configuration obtained from (7 by setting the spin at x equal to the 
value ct and the non-negative quantities ex(~7, a) are called "jump rates." 

The general hypotheses on the jump rates, that we shall always assume, are the 
following ones: 

H3. Finite range r. This means that if  ~I(Y) = cr(y)Vx, y:IY - xl < r, then 
Cx(~, a) = e~(~, a). 

1-I4. Translation invariance. That is i f  rl(y) = ~7(y + x )Vy ,  then c~((7, a) = ex(~? , a). 

HS. Positivity. There exists a positive constant h such that inf ex((7 , a) > k > O. 

For reasons that will be clear in the sequel it will be important for us to consider 
also the Markov processes associated to the above described jump rates in a finite 

KROVo( . ,  .) coincides with the variation distance Var(. ,  .). 

- Given a measure #A on X? A we call relativization of #A to Dz~ with A C A, the 
measure #A,za on f?za given by 

#A, A(Cy A) = Z pA(O'A\ A' (7A)" (1.9) 
C~A\z~ 

Next we define the stochastic jump dynamics, given by a continuous time Markov 

process on (2 = S za, that will be studied in the sequel. Discrete time versions can 
also be considered. 

Given A c c  Z d let 

D(A)  = { f : f 2  ---+ R : f 0 ? )  = f(cr) if•x = crxVx �9 A} 

be the set of cylindrical functions with support A. The set 
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volume A with boundary condition T outside A. By this we mean the dynamics on 
s A generated by L~t defined as before starting from the jump rates 

e ; ' A ( f f  , a) =-- Cx(~- , a) , 

where, given T ~ Y2A~, cr E ~?A and cry- has been defined in (1.1). 
It is well known (see [L]) that under the above conditions L(L~A) generates a unique 

positive contraction semigroup on the space C([2)(CU?A)) that will be denoted by 

T t o r T  A'~-. 
Sometimes we will use the more probabilistic notation E~f(crt) for Ttf(cr), where 

(7 t denotes the Markov process generated by L at time t and E~(.) denotes expectation 
starting from the configuration or. 

It is also easy to see, using positivity, that in finite volume there exists a unique 
invariant measure that will be denoted by u~. 

In this paper we will mostly consider attractive dynamics. Attractivity is an 
important property enjoyed by some interesting spin dynamics and it can be formulated 
as follows: 

H6. Attractivity: If or(x) >_ rl(x) for all x then: 
I fa  <_ ~(x), then ~ c~(o-, b) <_ ~ cx( % b). 

b<_a b<a 

If a > c~(x), then ~ cx(cr, b ) >_ ~ c~(rl, b). 
b>a b>a 

It is easy to show (see [L]) that attractivity is equivalent to the following condition 
on the semigroup Tt: if in the space of spin configurations we introduce the partial 
order cr < ~ iff a~ _< r/~ for all x, then the Markov semigronp T t leaves invariant the 
set of increasing (decreasing) functions w.r.t, the above partial order. 

Another important class of spin dynamics on g?, generally called Glauber dynamics, 
are those which are reversible with respect to an a priori given Gibbs measure # (in 
finite or infinite volume). We will say that the generator L (1.10) is reversible with 
respect to a Gibbs measure # corresponding to a Hamiltonian H(~)  iff: 

= e x p ( - / 3 Z U x ( ( ~ 7 ~ a ) ) )  cx(crz'a'(Tz) (1.11) 

A similar equation holds in finite volume A with boundary conditions % provided that 
we replace in (1.11) ~7 with the configuration (77-. It is immediate to check that in finite 
volume (l.11) implies that the unique invariant measure of the dynamics coincides 
with the Gibbs measure #~. This important fact holds also in infinite volume provided 
that there exists a unique Gibbs measure in the thermodynamic limit. In the sequel 
such kind of dynamics will be referred to as Glauber dynamics. 

- Finally we recall the definition of stochastic Ising models that will be analyzed 
in Sect. 4. They are stochastic processes on ~2, reversible with respect to the Gibbs 
measure of an Ising-like spin system (S = { - 1 ,  1}). 

To introduce them it is enough to define the class of their Hamiltonians. They will 
be of the form given in (1.2) with 

Ux = - J x  I I  c r  (1.12) 
x C X  

and Jx  E R. 
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- We say that an Ising spin system is ferromagnetic if the local field at the origin 

h(cr)-- Z Jx H (rx (1.13) 
x;oex x~x\{0} 

is an increasing function of the spins or,  x r 0. 

The condition to be ferromagnetic is easily seen to be implied by the following 
more usual condition on the interaction Jx (see e.g. [FKG]) which ensures the validity 
of the F.K.G. inequalities for the Gibbs state. 

1 + (r x and write the Hamiltonian Let us introduce the lattice gas variables L)x - 2 
H(a )  as 

/~(L)) = -  Z ~ x  H L)~. (1.14) 
XNA7~ xEX 

If the new potential q5 X is non-negative for any set X consisting of more than one 
point then the system is ferromagnetic. 

It is easy to check that in the case of only two body interaction the system is 
ferromagnetic iff J(~,y) 20 .  

2. Critical Analysis of Finite Volume Mixing Conditions 

In this section we will critically review the existing notions of mixing forfinite volume 
measures and their implications for the Gibbs state in the thermodynamic limit as well 
as for the rate of convergence to equilibrium of an associated Glanber dynamics. 

We will distinguish between strong and weak finite volume mixing conditions. 
Both notions can be expressed as weak dependence, inside, A, say in x C A, on the 
value of a conditioning spin, say in y c O+A. We have strong mixing if the influence 
of what happens in x decays with the distance Ix - y[ of x from y whereas we speak 
of weak mixing when the influence decays with the distance of x from the boundary 
OA and not from y. 

Strong Mixing. Strong mixing properties of measures are naturally expressed in terms 
of truncated expectation. 

A mixing condition of strong type for a measure #A on Z2 A is a relation of the 
form: 

For every pair of cylindrical functions f9 with supports Sf, Sg c A there exists a 
constant Cy,g such that 

I#A(f, g)[ = I#A(fg) -- #A(f)PA(g)I <-- CS,g exp ( -  V dist(S$, Sg)) (2.1) 

for some 3' > 0. 
For example C$,g can be given by 

Cs,9 = cIIf l l  Ilgll ISfl IS l 
with 

]]fll = suplf(~)l 
o-  

and C independent of f ,  9. 



Equilibrium of Glauber Dynamics in the One Phase Region 455 

A mixing condition in the present form is not particularly meaningful; the 
exponential function in the r.h.s, of Eq. 10 is just a way of parametrizing the 
dependence between the variables. 

Of course (2.1) would become interesting if it was true for arbitrarily large volumes 
A with 3, independent of A, f ,  9. 

For instance, A could be a generic element of a van Hove sequence in Z a. In this 
last case a condition like the one given in (2.1), uniform in A, is of course at least as 
strong as the corresponding infinite volume analogue. 

- We say that a strong mixing condition in the sense of truncated expectations holds 
for the measure #A on X2 A, with constants D, C, 3, if for every cylindrical functions 
f ,  9 with S f, Sg c A, diam S f, diam Sg < D, 

]#A(f,g)[ <-- C]lfll Ilgll C-- '~d i s t (S f ' Sg )  , (2.2) 

and we denote it by S M T ( A ,  D, C, 3,). 

- We simply say that a Gibbs measure PA on ~?A satisfies a strong mixing conditon 
with constants C, 3, if for every subset A C A: 

7- "r (y) - sup Var(#A,A,  # A , A )  ~-- C e-~/dist(A'Y) , (2.3) 
T,~'(Y)CY2AC 

where r(~ y) = r x for x • y. 

We denote this condition by SM(A ,  C, 3,). 
It is easy to prove (see [SZ], proof of Eq. 3.4) that S M T ( A ,  r, C, 3,) (r is the 

range of the interaction) implies that there exists C I > 0 such that SM(A,  C ,  q/) 
holds (notice that A and 3' are unchanged). 

As it has been initially discussed by Dobrushin and Pecherski [DP], and more ex- 
tensively by Dobrushin and Shlosman [DS2, DS3], the assumption that SM(A ,  C, 3,) 
holds for all (finite or infinite) volumes A with uniform constants C, 3,, is equivalent 
to many other conditions of mixing as, for instance, S M T  and analyticity properties 
of the thermodynamical functions and correlation functions always for all volumes. 

To partially clarify this point we give the main result of [DP]. 

Theorem 2.1 (Dobrushin-Pecherski [DP]). I f  for some metric ~ on S, every A C Z a, 
A C A, % T ~ E s 

KROVo(#•,A, #A,z~) --< ~ ~ P(I x -- Yl)" 0(%, Z;) (2.4) 
xE A yEO~r A 

with lim p ( t ) t  ~ --+ O, a > 2d, then it follows that there exist C > O, 3, > 0 such that 

SM(A ,  C, 3,) holds for every A. 

Dobrushin and Shlosman called complete analytical interactions the class of 
potentials whose Gibbs measures in any finite or infinite volume satisfies SM(A,  C, 7) 
and proved a result (stronger than the above quoted Theorem DP) of equivalence 
of SM(A,  C, 3,), VA to some fifteen other mixing or analyticity conditions always 
considering all (finite or infinite) volumes with arbitrary size and shape. In their 
theory the arbitariness of the volumes involved seems to play a crucial role (see 
[DS2, DS3]). 

An important concept introduced by Dobrushin and Shlosman in [DS3] is the one 
of constructive condition. Namely in suitable circumstances supposing only that a 
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condition like SM(A, C, ~/) is true for a suitable finite family of regions A is sufficient 
to guarantee that the same condition holds for all (finite or infinite) A that is it implies 
complete analyticity. 

More generally, it is natural to introduce the notion of effectiveness: 

- Given two families F, F ~ of subsets of Z d a strong mixing condition SM( . ,  C, "7) 
is called (/', F~)-effective if, supposing that SM(A, C, ~/) holds for any A in the class 
/ ' ,  we have that there exist C ~, '7~ such that S M ( X ,  C ,  '7~) holds for every A r in F ~. 

Of course the interesting cases correspond to a finite family F and an infinite F ~ 
(finite size conditon for exponential decay of truncated correlations on arbitrarily large 
volumes). 

Weak Mixing. We want now to give an interesting notion of weak mixing. 

- We say that a Gibbs measure p~ satisfies a weak mixing condition with constants 
C, "7 if for every subset A C A 

/ 

sup Var(p~,zx,#~,~) <_ C (2.5) 
~-,~-IEY2AC 

exp(Jv lx  - Yl). 

xC A,yEOr+ A 

xEA 

We say that WMe(A , C, "7) holds if VA C A 

sup KROVeA(#~A,A,p~A',za) <_ ~ exp(- '7dis t (x ,A)) .  (2.8) 
~-,TI E ~A c x~Or+ A 

It is immediate to see that, when ~ is given by (1.8) WMo(A, C, q,) implies the validity 
of the bound given by (2.5) with the same constant -7 (but with a different C) so that the 
validity of WMe(A, C, "7) implies, in that case, that: 3C ' :  WM(A, C I, ~,) is satisfied. 
It is immediate to see that SM(A, C, 7) implies WM(A,  C, 7). The converse is not 
true. There exist potentials, the so-called Czech potentials, (see [DS1, Sh]) which 
satisfy WM(A,  C, "7) but do not satisfy SM(A, C, "7), uniformly on A for any C > 0, 
' 7 > 0 .  

These models, that in Dobrushin-Shlosman's language are not completely analyt- 
ical, exhibit a sort of boundary phase transition even though the phase in the bulk is 
unique. 

It is expected that also for the standard Ising model for d > 3 at very 
low temperature and for special values of the magnetic field (depending on the 

We denote this condition by WM(A, C, 7). 
Condition (2.5) implies: 

sup Var(#~,~,pA, x) --< C'  ~ exp ( -7 ' ]x  - y[). (2.6) 
~',~-I ET2A c yEO+ A 

Vx E A for suitable C ~ > 0, '7r > 0. 
It is easy to see that in the attractive (ferromagnetic) case (2.5) and (2.6) are 

equivalent. A similar weak mixing condition, that we call WMe(A , C, '7), is given in 
the following way: Suppose Q(. , . )  is a metric on the single spin space S. 

Given A c c  Z d, let QA(', ' )  be the metric on ~?A given by 

0A( A, = e % ,  (2.7) 
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temperature) some "layering phase transition" involving long range order along the 
boundary takes place. This analysis is due to Basuev [DS1]. 

Nothing similar is expected in d = 2 since, in that case, the boundary is one- 
dimensional [MOSh]. 

In the sequel, while analyzing the concept of complete analyticity in the Dobmshin- 
Shlosman's sense we will exhibit some counterexamples, involving "pathological" 
shapes, violating complete analyticity, namely the validity of SM(A,  C, 7) for every 
A. These models, however, satisfy as we will see, some weaker form of strong mixing 
involving only sufficiently regular shapes (see below). 

We can say that the way in which the Czech models or the Ising model in the 
Basuev situation violate complete analyticity is more "intrinsic" and it is related to a 
real phase transition that, however, is not detected inside the bulk. 

In a paper in preparation, [MOSh], the authors of the present paper, in collaboration 
with Schonmann, analyze the relations between strong and weak mixing conditions 
and show that in two dimensions, given C > 0, 3' > 0 if W M ( A ,  C, 7) holds for a 
sufficiently large square then SM(A,  C', 7') for some C ' > 0, 7 ~ > 0 holds for all 
squares. 

We want to notice, at this point, that W M ( A ,  C, ~/) implies not only uniqueness 
of limiting Gibbs measure but also decay of infinite volume correlations (see [DS1]). 
However, the example of Czech models shows that the notion of exponential decay of 
finite volume correlations (uniformly in the volume) namely, for instance, the validity 
of SM(A,  C, ~/) for some fixed C > 0, "7 > 0 and for any cube A is strictly stronger 
than the corresponding infinite volume property. 

Finally we remark that the above definitions can be extended to the case of non- 
Gibbsian measures for which there is natural notion of imposing boundary conditions 
outside A (see Sect. 3). 

Review of Known Results: the Gibbs State. Let us now review some of the known 
results concerning finite size conditions and mixing properties of Gibbs measures. 
We begin with a result by Dobrushin and Shlosman concerning uniqueness of infinite 
volume Gibbs measures. 

This result generalizes previous results by Dobmshin based on a "one point 
condition" on Gibbs conditional distribution (see [D2]). 

First we need a definition. 

- Given a metric ~ on the single spin space S we say that condition DSU~(Ao, 5) is 
satisfied if: 

there exists a finite set Ao CC Zd, a ~5 > O such that: VT, r' E y2cAo with 7- z' = % Vx ~ 
y and gy E O+Ao there is a number c% such that: 

sup KROVgA ~ (/,710,/.71'0) < O~uLO(7u, v-i) , (2.9) 
T~T I 

where 

c~v < ~rlA01. (2.10) 

yEO+ Ao 

- We simply say that DSU(Ao, (5) is satisfied if (2.9), (2.10) hold with Q given by 
Eq. (1.8). We observe that, for this choice of Q, in the ferromagnetic case we can 
substitute, in (2.9) KROV with Var. 
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Theorem 2.2 (Dobrushin-Shloshman [DS3]). Let DSUQ(Ao, 8) be satisfied for some 
p,A o and (5 < 1; then ~C > O, "~ > 0 such that condition WMo(A,C,~/)  holds for 
every A. 

Notice that the result of the above theorem is valid for every A but obviously it 
loses interest when A is such that any point of A is near to some point of OA (one 
can say that, in this case, the boundary "penetrates" inside the bulk). Examples of 
A's with this kind of shapes will be analyzed later on. One can apply Theorem 2.2 
to, say van Hove sequences of regions A. 

Remark. Theorem 2.2 implies, in particular, the uniqueness of infinite volume Gibbs 
measure. Then (2.9), (2.10) provide an example of finite size conditon: one supposes 
true some properties of finite volume Gibbs measure and deduces properties for infinite 
volume distributions. 

Remark. One can see that SM(A,  C, 7) for every A implies DSU(Ao, 6) with 8 < 1 
for a sufficiently large A 0 (depending on C, 7). It can be shown for the above 
mentioned Czech models that even though they satisfy W M ( A ,  C, 7) for all cubes 
A, they violate DSU(Ao, 8) with 8 < 1 for any cube A 0. 

Theorem2.3 (Dobrnshin-Shloshman [DS3]). There exists a function L = L(C, 7) 
such that SM( . ,C ,  7) is (F,F~)-effective with F given by the set of all subsets of 
a cube of edge L(C, 7) and F I =- the set of all (finite or infinite) subsets A of 
Z d" 

Remark. The above theorem requires to verify a strong mixing condition for re- 
gions of arbitrary shape with given maximal diameter and insures the validity of 
the strong mixing for any volume (finite or infinite). One can ask oneself whether or 
not it is reasonable to expect the validity of the above notion of complete analyt- 
icity in the Dobrushin-Shlosman's sense for the Ising model either in the whole 
pure phase region or at least when Basuev phenomena are excluded: for exam- 
ple for any given positive magnetic field, for all sufficiently large inverse temper- 
ature/3. 

The simplest example where no phase transition of any kind takes place which, 
however, violates complete analyticity (in its strong from) is simply given by the 
usual 3D Ising model with coupling constant J = 1 /3 larger than 2D critical value 
/3~2) and h = 2. 

Consider a (horizontal) squared layer of size L namely a parallelepiped (~  box) A 
with dimensions L, L, 1 in the directions 1, 2, 3, respectively. Suppose to introduce 
- 1  boundary conditions on the sites contiguous to A from direction 3 (namely the 
sites belonging to the L • L squared layer adjacent to A from above and below). The 
effective field inside A is zero and since/3 >/3~ 2) the spins inside A are very sensible 
to the value of the conditioning external spins belonging to the same horizontal layer 
as A. 

Certainly for these values of thermodynamical parameter both strong and weak 
mixing conditons are violated for these flat regions. However, as we will see later 
on and as it is very reasonable, one can prove strong mixing for every h > 0 and 
/3 sufficient large for any (arbitrarily large) cube and even for a very wide class of 
"sufficiently fat" regions. 

Another even more interesting example has been found by Schonmann [S]. 
Consider a 2D ferromagnetic Ising model with nearest neighbours and next nearest 

neighbours interactions whose hamiltonian in the finite region A, with open b.c. (no 
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interaction with the exterior), is given by 

H = - J  ~ cro/ry - Is Z crsv  - h ~ ~rx ' 
x , y E  A : l x - y l = l  x , y E  a l l x _ y l = ~ , / ~  x E  a 

where J = K = l ; h = 4 .  
Z 2 , E '  e ~--- Z 2 o f  Consider the partition of Z 2 into two sublattices Eo = ,/~,o ,/L e 

spacing v/2 and directions at 45 degrees with respect to the original lattice directions 

E o = {37 ~-  (Xl ,  x2 )  E Z 2 : x  1 -~ x 2 : odd}, 

E~ ---- { x - -  (Xl,X 2) C Z z :x  1 + x  2 = even}. 

Consider the square A with (oblique) edges parallel to the axes of E~, E o contained 
in E~ and containing (2L + 1) 2 points: 

A = {x ~_ (xl,x2) E Z 2:x a + x  2 = e v e n , - L  _< x 1 + x 2 < L , - L  _< x 1 - x 2 < L}.  

The set of sites in Z 2 exterior to A but conditioning A, namely O~/~A, is given by 

o 2A=o:uo:, 
Notice that 0 + "penetrates in the bulk" of A, whereas cO+ contains just the sites of 

E~ adjacent (at distance v~)  from the exterior to A. 
Consider any boundary condition T with - 1  in O+:ro + = -1 .  
In this way we reduce ourselves to a usual nearest neighbour Ising model in a 

oblique square with zero effective field and boundary condition simply given by To+. 
I f /3  is large enough our system will be, for every L, sensitive to the boundary 

condition To+ (first order phase transition) and then strong mixing condition for this 
particular sequence of regions A will certainly fail. 

Other interesting examples violating, for some pathological shapes, DS complete 
analyticity (without exhibiting any real phase transition) are provided by vanEnter, 
Fernandez and Sokal in the framework of their critical analysis of renormalization 
group transformations [EFS]. 

We want to stress that for these counterexamples to the DS complete analyticity 
it is essential to have chosen "strange" (pathological) shapes. 

Again one can see that in the above examples strong mixing SM(A,  C, "7) holds 
true for some C > 0, 7 > 0 for every regular (without holes) box in Z 2. 

In the context of studying properties of approach to equilibrium of Glauber 
dynamics several authors: Holley [H2], Aizenman and Holley [AH], Stroock and 
Zegarlinski [SZ] have considered relations between finite size conditions and different 
types of mixing conditions as those considered by Dobrnshin and Shlosman or similar 
ones. 

We want to quote first a result by Holley: one among many other results contained 
in the basic paper [H2]. Holley consideres Ising spin systems enclosed in a particular 
kind of regions: the boxes where: 

A c C  Z d is a box of it is the cartesian product of d finite intervals in Z. 

Holley introduces a finite size condition referring to a cube A 0, that we call 
condition H(Ao, 5); it can be considered as a stronger version of DSU(Ao, 6) and 



460 F. Martinelli, E. Olivieri 

it is given by: for every x E A o, y E O+Ao, there exists &x,y > 0 such that for every 
box A C A0: 

sup Var(#A,#~l (y)) -- ~ &x,v 
-c,~-(Y) E ~A c x~A 

with 

&~,y < 6[Ao[ �9 

xEAo,yCO+ Ao 

Theorem 2.4 (Holley [H2]). Consider a ferromagnetic Ising model. Then the exis- 
tence of a cube A o such that H(Ao, 5) holds with (5 < 1 is equivalent to the existence 
of C > O, 7 > 0 such that SM(A,  C, 7) holdsfor every box A. 

A similar statement is contained in [AH]. A generalization of Theorem 4.2 is due 
to Stroock and Zegarlinski and it is based on a condition that we call SZ(Ao, (5). This 
condition refers to an arbitrary finite subset A 0 c c  za; it is exactly like H(Ao, (5) 
with "for every box A c A0" replaced by "for every A c A0." 

Theorem 2.5 (Stroock, Zegarlinski [SZ]). In the general case (potentials satisfying 
hypotheses H1, H2) the existence of a region A o such that SZ(Ao, (5) holds with (5 < 1 
is equivalent to the existence of C > O, 7 > 0 such that SM(A,  C, 7) holds for every 
set A. 

Remark. Condition SZ(Ao, (5), (5 < 1, is called in [SZ] condition DSM(Ao) and it 
is erroneously attributed to Dobrushin-Shlosman. We want to notice, at this point, 
that also Theorem 1 in [AH] (and the same in [SZ]), even though it is attributed 
to Dobrushin-Shloshman, differs both in the hypothesis and in the thesis from the 
analogous Theorem 2.2 (see Theorem 3.1 of [DS1]). The difference in the hypothesis 
is the use of Var (in Theorem 1 of [AH]) instead of KROV (in Theorem 2.2). The 
difference in the thesis is in a prefactor, corresponding to the boundary of the volume, 
in front of the exponential (in Theorem 1 of [AH]) and absent in Theorem 2.2 We 
refer to [AH] and [DS1] for more details. 

The proof of Theorems 2.4 and 2.5 uses dynamical arguments similar, in spirit, 
to the "surgery" methods of [DS1, DS2, DS3], which are based on subsequent local 
modifications of joint representations of Gibbs measures in a big volume A. 

It provides a very simple way to deduce SM(A,  C, 7) for every A, starting from a 
finite size condition, SZ(Ao, (5), (5 < 1, that is easily seen to be implied by the validity 
of SM(A,  C, 7) for every A c A 0 for a sufficiently large cube A 0. Thus it provides 
an alternative proof of Theorem 2.3. 

Holley's argument of proof takes into account all the translates Ao(x) of the basic 
cube A 0 (of edge L) in A; here x is a vector in Z d not necessarily of the form: 
x = Ly, y ~ Z a. In this case sometimes it happens that Ao(x ) N A is not a cube but, 
rather, a box and this leads to the consideration of properties of a Gibbs measure in 
an arbitrary box subset of A 0. 

Now we want to introduce a last condition that we call K(Ao, (5), very similar to 
SZ(Ao, (5) (and also to H(A0, (5)). It is exactly SZ(Ao, (5) with the substitution of Var 
with KROV: 

- Condition K(A0, (5): for A c C  Z d let ~A be given by (2.7) where, for simplicity, 
we choose 0 as in (1.8). Then for every x E A o, y E O+Ao, there exists &x,v > 0 
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such that for every A c A0: 

sup KROVoA(m~A,YA(V))<_ Z 5~x,v 
v-,'r(Y) E ~2AC x EA 

with 
~x,v -< 6[Ao[ �9 

xEAo,yCO+ Ao 

Then we have: 

Theorem 2.5 I. In the general case (potentials satisfying hypotheses H1, H2) the 
existence of a region A o such that K(Ao, 6) holds with 5 < 1 is equivalent to the 
existence of C > O, 7 > 0 such that SM(A ,  C, 7) holds for every set A. 

Theorem 2.5 / is very similar to Theorem 2.5 and it can also be considered as 
another proof of Theorem 2.3. 

In Appendix 3 we give a proof of Theorem 2.5 / which hopefully will shed some 
light on why hypothesis K(Ao, 5) with 6 < 1, or the similar conditions H(Ao, 5) 
and SZ(Ao, 5), are so natural within the Dobrushin-Shlosman' approach to complete 
analyticity. We will show that Theorem 2.Y, and in a proper sense also Theorem 2.4 
and 2.5, can be reduced to a corollary of Theorem 2.2: one finds in fact that K(A,  5) 
is the correct strengthening of DSU(A,  6) that is needed in order to show S M  instead 
of W M .  The price to pay, in this way, is to consider regions with arbitrary shape. 

In the work of Olivieri [O] and Olivieri and Picco, [OP], an approach to the 
same problem, substantially different with respect to the one of Dobrushin and 
Shlosman, was developed; it uses a block decimation procedure and the theory of 
cluster expansion; it can be considered as the analogue, for a suitable class of regular 
domains, of the DS theory of complete analytical interacitons (that, we repeat, is 
intrinsically formulated in terms of arbitrary shapes). 

Here (see Appendix 2) we propose a further simplification of the assumptions and 
statements of [O, OP]. In this formulation it is sufficient to assume Strong Mixing 
only for a suitable cube in order to ensure the same property for any multiple of this 
cube. Let us give the corresponding definitions. 

Given the odd integer L let 

QL(X)= { y C zd; ] x i -  yi' < L - 1  - 2  ' = 1 . . . ,  , d}  

be the cube of edge L centered at x. 
We say that A is a multiple of the cube A 0 = QL(O) if it is a union of translated 

cubes QL(X) with disjoint interior: 

A = U QL(LY) 
y C Y  

for some I(  C Z d. 

Theorem 2.6 (Olivieri, Picco [O], [OP]). In the general case (hypotheses HI, H2 
satisfied) ~L = L(C, 7) such that SM(. ,  C, 3/) is (F, FI)-effective where F consists 
just in the cube A o = QL(O) and 1 ~1 is the class of all multiples A o. 

A proof of the theorem in this form (a corollary of Propositions 2.5.1-2.5.4 of 
[OP]) can be found in Appendix 2. For an alternative dynamical proof see Sect. 4. 
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Remark .  It is easy to see that F '  can be extended to contain all properly defined 
"sufficiently fat" regions. 

Remarks .  The approach in [OP] makes use of a somehow complicated geometrical 
construction and of a suitable polymer expansion; it proves not only effectiveness 
but also analyticity properties (similar to the ones proved by DS in the case of their 
completely analytical interactions) by expressing any quantity of interest, referring 
to an arbitrary volume A multiple of A 0, in terms of a series expansion which is 
convergent by virtue of the assumed finite size condition on A 0. It is remarkable 
that the proof of the effectiveness alone can be given by avoiding this complicated 
approach and relying only on simple dynamical arguments. 

The lOP] theory, by omitting the consideration of arbitrary regions (practically 
excluding only pathological shapes), can be successfully applied near to the coexisting 
line corresponding to a first order phase transition where the previous DS theory 
failed. In particular for the Schonmann's example one can immediately show complete 
analyticity in the above (weaker) sense (other examples will be discussed in Sect. 5). 

Rev iew  o f  Known  Results:  the Dynamics .  In what follows we define various different 
notions of exponential convergence to equilibrium for the stochastic spin dynamics 
defined in Sect. 1. As we have already explained in the introduction one has to 
carefully distinguish among the various notions if one wants to derive results in 
a region of the phase diagram very close to a phase transition line. In what follows 
we will assume that there exists a unique invariant measure #. 
1) Exponential convergence in L 2 for the infinite volume dynamics. We denote it by 

E C  , L~(d#)  , Z d . 

It means that there exists 3, > 0 such that Vf �9 LZ(d#): 

IITef - #(f)llL2(u) --< Ilf - #(f)llL2(u) e-'Yt " 

2) Uniform (L ~ )  exponential convergence for infinite volume dynamics, denoted by 

U E C  , Z a . 

It means: 

namely 

32/> 0:Yf  �9 D B C f  > 0 : l l T t f - # ( f ) l l ~  <- C f  e - v T ,  

sup IE~f(crt) - #(f)l  -< C i e - ' # "  
o- 

3) Exponential convergence in L 2 for finite volume dynamics in A uniformly in 
A E F and in the b.c. r namely: 

~-y > 0:YA E F, YT E ~2~,Yf �9 L2(d#~): I IT~ '~ f  - ~](f)ILL2(,~) 

<- IIf - #](f)]lL2(,~) e -~t �9 

We denote it by 
E C ,  L2(/,~) VA E V. 

4) Uniform exponential convergence for finite volume dynamics in A uniformly in 
A varying in a class/" and in the b.c. r;  namely: 

~'T > 0 : g f  �9 D ( A ) 3 C f  > 0: sup IITA'~'f - #~A(.f)ll~ <-- C f  e - v t  . 
"vCX2AC 
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We denote it by 

U E C  , VA E F .  

Many authors and in particular Holley investigated the relationship between the 
above (and other) notions of convergence; on the other hand, for the case of dynamics 
reversible with respect to Gibbs measures like Stochastic Ising Models, they studied 
the relations between the speed of approach to equilibrium and mixing properties of 
invariant Gibbs measure. 

In particular the problem of deducing exponential approach to equilibrium (in the 
different above senses) from finite size condition involving properties of finite volume 
Gibbs measure has been recently the object of many studies. 

In this context we mention the following theorems: 

Theorem 2.7 (Holley [H2]). In the attractive case, suppose that there exists a cube 
A o such that H(Ao, (5), with (5 < 1, holds," then UEC, Z a holds," moreover EC, L2(/~)  
holds for every box A. 

Notice that, as previously remarked, the hypotheses of Theorem 2.7 do not apply 
to situations (like the previously discussed 3-D Ising system with h = 2J) for which, 
however, the thesis is certainly expected to be true provided that we replace for every 
box A with for every cube A. 

Theorem 2.8 (Aizenman, Holley [AH]). In the general, not necessarily attractive, 
case if there is a cube A o such that DSU(Ao, 6) is satisfied with 6 < 1, then 
EC, L2(d#), Z d holds. 

Finally we want to quote the following theorem, due to Stroock and Zegarlinski, 
obtained in the framework of the theory making use of logarithmic Sobolev inequal- 
ities. 

Theorem 2.9 (Stroock, Zegarlinski [SZ]). In the generalcase the following state- 
ments are equivalent: 

i) There exists a finite region A o such that SZ(Ao, (3) holds with 6 < 1. 
ii) U E C  for every A holds. 

iii) EC,  LZ(dYA) for every A holds. 

Notice that, by Theorem 2.5, points i), ii), iii) of Theorem 2.9 are also equivalent 
to the existence of C > 0, 7 > 0 such that SM(A ,  C, 7) holds for every set A. 

Following the previously developed critical analysis it is reasonable to try to prove 
a theorem being the analogue of Theorem 2.9 for some class of sufficiently regular 
regions. In particular, giving up with the consideration of every shape, one would 
like to substitute point i) of Theorem 2.9 with a finite size condition referring only 
to a cube (for example S M ( Q r  , C,7)  for L chosen sufficiently large in terms of 
(C, 7) and, moreover, to substitute "for every set" in Theorem 2.5 and in ii), iii) of 
Theorem 2.9 with: "for every multiple of Q5." 

Finally, in analogy with the case of equilibrium statistical mechanics, it is 
reasonable to expect that U E C  VA or even U E C  VA c F with F _= class of regular 
domains (for example van Hove) is a strictly stronger notion than U E C  Z d. Thus it 
is conceivable to look for some theorem stronger than, for example, Theorem 2.7, 
and such that the statement: "validity of U E C  Z d'' follows only from some hyothesis 
strictly weaker than H(A, ~5), (5 < 1: this hypothesis should not imply E C  L2(d#~t) V 
box A otherwise H(A, ~5), 3 < 1 would follow via Lemma 3.1 of [SZ]. 
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In the present paper and in [MO] we develop the above sketched program by 
positively answering the above quoted open questions. 

3. Exponential Convergence 
to Equilibrium Under a Weak Mixing Condition 

In this section we state and prove the first one of our main results, namely that 
for an attractive spin system, not necessarily reversible with respect to a Gibbs 
measure, a weak mixing condition on the invariant measure of the dynamics implies 
exponential convergence in a strong sense for the dynamics in the whole lattice Z a 
to its equilibrium measure. 

The infinitesimal generator L of our spin dynamics on $2 is given by (1.10) and 
the hypotheses on the jump rates are those discussed in Sect. 1: H3, H4, H5, H6, 
namely finite range, positivity, translation invariance and attractivity. However we 
do not require the detailed balance condition with respect to some Gibbs measure 
(1.11). For notation convenience we will denote by #~ and #A the invariant measures 
obtained using as boundary conditions the extreme configurations identically equal to 
the maximum value N and to the minimal value 1 of the spins, respectively; moreover 
any given realization of our Markov process on s at time t will always be denoted 
by at independently of the starting point. The latter will always be specified in the 
expectation value of the observables over at,  e.g. E~f(crt) if the starting point was 
the configuration ~. We will also denote the average of an arbitrary function f with 
respect to a measure u on f2 or f2 A by u(f). 

It is easy to check, using attractivity, that if f is an increasing cyclindrical function 
with support inside the finite set A, then the following inequalities holds: 

a) If  T < T', then TA'~-(f) <_ TA"/(f).  
b) If A C A' and if r(x) = N for all x in A'\A, then TA"~(I) <_ TA"(f) .  
c) TA'+f({) > Ttf({) if f is an increasing function. 

Remark. Clearly by taking the limit as t ---+ oo analogous inequalities hold for the 
invariant measures. The invariant measure in finite volume is unique because of the 
positivity of the jump rates. 

We formulate now a condition on the finite volume invariant measure which 
ensures the ergodicity of the infinite volume Markov process and the exponential 
convergence of its distribution at time t to the unique invariant measure as t -+ co. 
Such a condition, in analogy to the weak mixing condition for Gibbs states, will also 
be called weak mixing. 

We recall that QL(X) is the cube of side L, L odd, centered at x; we will write 
Qc for QL(O). 

Weak Mixing. There exist two positive constants C and c such that for any integer L, 

#~L(Cr(O))- #~,L(a(O)) <_ C e x p ( - e L ) .  (3.1) 

Remark. One sees immediately that the above mixing condition implies that there 
exists a unique invariant measure for the Markov process on S? that will be denoted 
by p. 

Our main result then reads as follows: 
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Theorem 3.1. The following ar equivalent: 
i) Weak mixing. 

ii) There exists a positive constant ra and for any cylindrical function f there exists a 
constant Cf such that: 

sup ITt(f) (~) - #(f)]  _< Cf e x p ( - m t ) ,  

namely UEC, Z a holds. 

Proof. i) ~ ii). Let us define 

~(t) = Et(cr(O))- E_(o-t(O)) , (3.2) 

where E+( )  and E _ ( )  denote the expectations over the Markov process starting from 
the configurations identically equal to N and to 1 respectively. It is easy to see that 
if o(t) decays exponentially fast to zero then the theorem follows. It is an important 
result by Holley [H2] (see also [AH] for a different derivation) that the exponential 

1 
decay of ~(~) follows once one is able to show that o(t) goes to zero faster than ~ .  In 

order to prove such a weaker decay of ~(t) the main new technical tool is a recursive 
inequality satisfied by L)(t) that for convenience we state as a proposition: 

Proposi t ion 3.1. Under the hypotheses of Theorem 3.3 there exist m,o finite positive 
constants C and e such that for any integer L: 

~(2t) _< 2(L) d o(t) 2 + 2C  e x p ( - c L ) .  

Proof We write Q(2t)as: 

. l  d#(z) [E+(cr2t(0)) - Ez(cr2t(O)) ] 0(2t) 

+ ] d#(z) [Ez(cT2t(O)) -- E (cr2t(0))] , (3.3) 

and we show that each one of the two integrals is bounded by a half of the r.h.s, of 
the recursive inequality. 

Because of  the attractivity assumption the distribution of the process at time t 
starting from the " + "  configuration is stochastically larger than the one starting from 
a generic configuration z. Therefore, using the results of [H1], there exists a joint 
representation u +'z of  the two distributions E+(-) and Ez(.) which is above the 

diagonal, i.e. u+'z((~, ~):~ _> ~?) = 1. In what follows ~ and ~7 represent the evoluted 
at time t of  the configurations + and z respectively. Let now Xc be the characteristic 
function of the event that ~(j) = ~l(J) Vj E Qc. Then, using the Markov property, we 
can write: 

d#(z) [E+ (c~2~ Ez (~zt (0))] (0)) I 

+fd#(z)/dut+'z(~,t])(1-)CL)[E~(dt(O))--En(crt(O))]. (3.4) 
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Again by using attractivity and translation invariance, the second term in the r.h.s, of 
(3.4) can be bounded by: 

(L) d ~(t) i d#(z) v+'z(~(0) # 7(0)) _4 (L) d Q(t) 2 . (3.5) 

If we now denote by ~- the common projection in QL of the configurations ~ and 
and we denote by XL,~ the characteristic function of the event: 

~(J) = v(J) = v(j) Vj E QL , 
then XL is equal to 

XL = E )~L,m , 
TCff2QL 

and therefore the first term in the r.h.s, of (3.4) can be written as: 

f dp(z) ~ f dvt+'ff~,W)2x,~[E,(f,(O))-Ev(f,(O))]. (3.6) 
TC ff2Q L 

Attractivity allows us to bound the quantity [E~ (a t (0 ) ) -Ev  (~t (0))] by imposing extra 
"+"  and " - "  boundary conditions outside the cube QL. More precisely: 

E~(o-t(O)) - En(~rt(O) ) <_ E~QL'+(Ch(0)) -- EQL'-(at(O)), (3.7) 

where in general EQL'r denotes the expectation over the process starting from the 

configuration ~ and evolving in the box QL with jump rates cex,A(~, a). Thus (3.6) is 
bounded above by: 

7C[2QL 

<- i dp(z) E v+'z07(J)) = r ( j )Vj  E QL) [E~-Qn'+(ft(0)) - 
E~Z'- (f t(O))] 

J ~-E~QQL 

= i dP(z)Ez(EQL'+(ft(O)))" i dP(z)Ez(EQztL'-(~t(O))) (3.8) 

where, by an abuse of notation, z t is the value of the process at time t start- 
ing from the configuration z. Since E~L,+(ft(O) ) is increasing in z (because of 
attractivity) E~(E~L,+(f,(O))) is smaller than EQzL'+(E~L'+(ft(O))). Analogously 

E~(E~L,- (~t(0))) is larger than F_,?L,- (EQztL,- (fit(0))). Thus 

<_ f dv~ (~) E~'§ = V~L (~(0)) (3.9) 
J 

and 

f dp(z) mz(E QL'-(~(o))) > f dp(z) E QL'-(E~'-(~,(o))) 

<- i d#~2L (z) E~ L'- (E~ L'- (at(O))) = #QL (~(0)). (3.10) 
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In order to derive the last two equalities we used the fact that #QL is the invariant 
measure of the process in QL with "+"  boundary conditions and analogously for 
#~?L" Thus the r.h.s, of (3.8) is bounded from above by: 

]#QL (~(0)) -- #QL (Cr(0))l -< C exp( -eL)  (3.11) 

because of the weak mixing assumption. 
Exactly the same steps show that also the second term in the r.h.s, of (3.8) is 

bounded from above by (3.11). Thus combining together (3.8) and (3.5) we get the 
proposition. 

The main idea at this stage is to use the recursive inequality as a tool to transform 
a very rough and weak decay in time of Q(t) of the form: 

o(t) <_ exp(-'~(log(t)) 1/d) (3.12) 

into a much better decay of the form: 

~(t) _< exp(-exp(+'~(log(t))l/d)). (3.13) 

Once the above bound is established, then one has that Q(t) decays for large times 
faster than the inverse of any power of t and therefore, thanks to Holley's theorem 
(see Theorem 0.1 of [H2]), 9(t) has to decay exponentially fast. 

Let us first prove the rough bound (3.12). 

Proposition 3.2. There exists a finite time t o and a positive constant ~ such that: 

o(t) <_ exp(-7(log(t)) 1/d) 

for all t greater than t o. 

Proof. Using the attractivity of the dynamics, we have that for any cube QL: 

Q(t) <_ EQ+ L'+(~rt(O)) - EQ_ L'- (~rt(0)). (3.14) 

By adding and subtracting #QL (~(0))+ #QL (~(0)) the r.h.s, of (3.14) becomes equal 
to: 

E+ Q~,+(~(o)) - ~ L  (~(0)) + ~ L  (~(0)) 

- E e~'- (~(0)) + ~ (~(0)) - ~ (~(0)). (3.15) 

The weak mixing condition implies that the third term in (3,15) is bounded from 
above by 

C exp( -eL) .  (3.16) 

The estimate of the first and of the second term is identical and one gets: 

QL + E+ ' (~t(0)) - #Qc(~(O)) _< C exp( -cL)  (3.17) 

provided that 
t >_ exp(coLa), (3.18) 

where c o is a suitable positive constant depending only on the jump rates. The above 
one is a very poor estimate which uses only the fact that the jump rates are uniformly 
positive. This fact implies that starting from an arbitrary pair of configurations ~ and 
~] and coupling them together with e.g. the basic coupling (see [L]) there is a positive 
probability, at most exponentially small in the volume of QL, that at time t = 1 they 
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have become identical in the cube QL. This fact immediately implies the above rough 
bound on the first and second term of (3.15). [{ 1 } l /d  1 

We now choose the side L of the cube as L = L(t) = 2 log(t) With 
this choice we have that t > exp(c0lA l) and thus: ~c0 " 

Q(t) < 3C e x p ( - e L ( t ) ) .  (3.19) 

The proposition is proved. 
We now use Proposition 3.1 to transform the weak decay of p(t) given by (3.19) 

into a fast decay. The key point is the following lemma: 

Lernma 3.1. Let R(t)  be a positive increasing function o f t  tending to plus infinity as 
t --+ o0 and such that for some/3 < 2:R(2t )  _< B R ( t ) f o r  all sufficiently large times 
t. Then there exists a finite time t o and a positive constant A such that if for some time 
t 1 >_ t o it happens that 

~)(t 1) _< AR( t l )  -d , 

then there exists a time t 2 >_ t 1 such that 

where c is the constant appearing in Proposition 3.1. 

Pro@ Let us choose t o be so large that for all t >_ t o the following conditions are 
satisfied: ( e ) 

i) [12R(t)]d2Cexp(-eR(t) )  <_ exp - ~ R(t)  ; 
ii) R(t)  > 1; 

iii) (3.19) holds; 
iv) R(2t) _< BR(t ) ,  
where C appears in Proposition 3.1. 

We then set x(t) = (6R(t)) d ~(t). Then, using Proposition 3.1, the assumption on 
R(t) and the definiton of t 0, we have: 

x(2t) _< x(t) 2 + e x p  - ~ R(t) . (3.20) 

1 
Let us now take the constant A of the lemma equal to 3 - ~ "  Then by hypothesis 

1 there exists a time t 1 _> t o such that X(tl) _< 5" Let x~ = x(2ntl);  we will show that, 
by assuming 

x(2~tl)  _> exp - ~ R(2ntl)  Vn (3.21) 

we would get a contradiction. For, from (3.20) we get 

x~+ 1 _< 2x~ (3.22) 

which implies 
(2) 2'~ Xn < 1 (2x0)2 n < 5 " (3.23) 

On the other hand the assumption R(2t) _< BR( t )  with /3  less than 2 implies that 

exp - ~ R(2~tl)  _> exp - ~ /3~R( t l )  , (3.24) 
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which clearly contradicts (3.21). Thus there exists n o such that 

x(2~~ _< exp ( - 4 R(2~~ ) �9 

We then take t 2 = 2n0tl . This lemma is proved. 
We can finally conclude the proof of the theorem. Let 

R(t)=exp(~d(log(t))l/d ) �9 

Clearly R(t) satisfy the hypotheses of Lemma 3.1. Moreover, using Proposition 3.2, 
for all t 1 _> t o and sufficiently large: 

~(t 1) _< A]~(tl) -d , 
where A and t o are the constants appearing in Lemma 3.1. Thus, thanks to the lemma, 
there exists a time t 2 > t 1 such that: 

g(t2)-< exp ( -  4 ~(~2)) �9 (3.25) 

Since t I can be taken arbitrarily large, the above bound implies that for any finite N 
there exists an arbitrarily large time T such that: 

1 
~(T) _< T-- ~ . 

Thanks to Holley's theorem this implies that ~(t) decays exponentially fast in time. 

i) ~ ii) This was proved years ago by Holley and Stroock [HS] for the stochastic 
Ising model. For completeness we give the proof also in the more general case of 
non-reversible spin dynamics. Clearly ii) implies that the infinite volume dynamics is 
ergodic with a unique invariant measure #. Thus we write: 

#Qr (~(0)) - #QL (~(0)) = #QL (~(0)) -- #(~(0)) § #(~(0)) -- #~)r (~(0)). (3.26) 

Let us estimate #QL (~(0)) --#(~(0)). By adding and subtracting E+((Tt(0)) and using 
the exponential convergence to equilibrium together with attractivity, we get: 

0 < #QL (~(0)) -- #(~(0)) < C exp(-'Tf) + #(~z (~(0)) -- E+ (crt (0)). (3.27) 

We now choose the time t as t = 5L. Since the jump rates are finite range it easily 
follows (see e.g. [H2], Lemma 1.1) that if 5 is small enough one has: 

EA'+(~t(0)) -- E+(crt(0)) _< exp(-L) .  

Thus the r.h.s, of (3.27) can be bounded by: 

C exp(-'~SL) + #QL (~(0)) -- E+A'+(crt(0)) + exp(-L) 

< C exp(-'~SL) § exp(-L) ,  (3.28) 

since by attractivity #~Z(~(0)) -- EA'+((Tt(0)) is negative. In conclusion we have 

shown that #QL (~(0)) -- #(~(0)) is smaller than C exp(-7~SL) + exp(-L). 
The same argument applies also to the other term in the r.h.s, of (3.26) u(~(0)) - 

#~(~(o)). 
The theorem is proved. 
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4. Exponential Convergence in Finite Volumes: The Stochastic Ising Model 

We prove in this section the exponential convergence to equilibrium in finite volumes 
with rates that are estimated uniformly in the volume for the stochastic Ising model 
under a strong mixing condition on the Gibbs state. 

The Hamiltonian H~ of our spin system satisfies hypotheses H I  and H2 of Sect. 1, 
but for simplicity we assume that the spins can take only the two values +1 or - 1 .  
If there exists a unique Gibbs state in the infinite volume limit A -+ Z d independent 
of the boundary conditions ~- then it will be simply denoted by #. 

Later on, in order to simplify some of the proofs, we will make the assumption that 
the Hamiltonian is ferromagnetic or attractive (see Sect. 1); we emphasize, however, 
that all the results of this section can also be proved without the assumption of 
ferromagnetism by using the logarithmic Sobolev inequalities (see [MO]). 

The stochastic dynamics that will be the object of study in this section will be 
one of the Glanber dynamics associated to the hamiltonian H~ (see (1.2), (1.12)). 
We will need to analyze the stochastic Ising model in finite volume A with boundary 
conditions ~- as well as in the whole lattice Z d. Both cases are defined through their 
jump rates. In order to simplify the exposition and the computations we decided to 
take from the beginning precise form for our jump rates: 

1 
c~(a, a) = p~}(r/(x) = a) = . (4.1) 

l + e x p ( - 2 / 3 a  ~ Jx [I cry) 
x;xcx ycx\{x} 

where it is understood that if we are in a finite volume A the configuration cr agrees 
with the boundary configuration T outside A. This choice corresponds to what is 
known as the heat bath dynamics. 

Remark. In the finite volume case our expression for the jump rates makes sure 
that the Markov process generated by the jump rates on { - 1 ,  1} a is reversible with 
respect to the Gibbs state #~. This means that the generator of the process L becomes 
a non-positive selfadjoint operator in the Hilbert space L2(g?A, dp~A) and that #~ is 
the unique invariant measure of the process. This important fact holds also in the 
infinite volume limit if the Gibbs state is unique (see [L]). Moreover if the interaction 
is ferromagnetic then automatically the above defined jump rates become attractive 
in the sense made precise in Sect. 1. 

For the reader's convenience we recall now our finite volume strong mixing 
condition (see Sect. 1) that in the sequel we will refer to as SM(Lo, C, 7): 

Let A 0 be the cube of side 2L 0 + 1 with sides parallel to the coordinate axes and 
A ~- cr let for any V C O#Ao,V be the relativization of #Ao to the set V. Then for any y 

outside A 0 and any V in A 0 we must have: 

T(Y) , 
Var(#A0,V, #Ao,V) <-- C e x p ( - 7  dist(y, V))VT C {--1, +1} A~ , 

Remark. It is easy to check that the above condition implies that if for two given 
configurations ~- and ~-' we denote by V~_,~_, the set {x r A0; "r(x) r ~-'(x)} and by Q 

r)/2 the maximal subset of A 0 which is at distance greater than ~0 from V~,,_,, then we 
have: 

7' ) 1 
Var(P~0,Q,PA0,Q <- c(r) L~+---5 , (4.2) 

where c(r) is a numerical constant depending only on the range r. 
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Obviously since our condition has to hold only in a definite geometric shape, in 
our case a cube, contrary to what is assumed by Aizenman and Holley or Zegarlinski 
and Stroock, we will prove our results only in volumes that are multiples of the 
elementary volume A 0 (see the definition before Theorem 2.6). As already discussed 
in the introduction this has to be the case if we want to apply our condition to a system 
at low temperature near a first order phase transition for which it can be proved (see 
Sect. 1) that the Dobrushin-Shlosman complete analyticity fails. 

Let us now state our main results. 

- In what follows we will call L0-compatible any subset of the lattice Z a which is the 
union of translates of the cube A 0 such that their vertices lay on the rescaled lattice 
(2L 0 + 1)Z a, and we will denote by gap(L~) the lowest positive eigenvalue of - L )  
in L2([2A, d#~A). 

Remark. For simplicity the next three results are stated only for volumes A that are 
L0-compatible. It is however relatively easy to check that once they hold for this 
rather restricted class of volumes, then they hold also for the larger class of sets A 
such that for any x in A it is possible to find a suitable translated Ao(y ) of the cube 

L0 
Ao(Y ) entirely contained in A and such that dist(x, OA\OA N OAo(Y)) >_ ~- .  

The next results says that SM(Lo,  C,',/) implies exponential convergence to 
equilibrium in any L0-compatible finite volume in the L2-norm. 

Theorem 4.1. Given C and 7 there exists a positive constant L depending on C, % d 
and the range of the interaction such that if SM(Lo,  C, 7) holds with L 0 >_ L, then 
there exists a positive constant m o such that for any Lo-compatible set A and for any 
function f in L2(dYA). �9 

A,T T T IITi (f) - ~A(f)lIL~(~.~) --< U -- ~A(f)lJL~(d.~)exp(--~ot), 

where Tt A'~ denotes the Markov semigroup of the process evolving in A with boundary 
conditons T. 

Proof of Theorem 4.1. Let us fix an L0-compatible set A and a boundary configuration 
7- and let {Qi} be a covering of the set A with the following two properties: 
i) Each element of the covering is a cube of side 2L 0 + 1 with sides parallel to the 

coordinate axes. 
ii) If  two different cubes Qi and Qj overlap then necessarily each one of them is 
translated by L 0, along at least one coordinate axis, of the other. 

It is very easy to check that for any L0-compatible set A such a covering always 
exists. 

Next we introduce a new dynamics (Gibbs sampling) on { -1 ,  +1} A by defining 
its generator LQ as: 

LQI((7) = Z eQ{((7, 7) (f(~l) - f((7)), (4.3) 
rl,i  

where the new jump rates cQ{ ((7, rl) are a generalization of those of the heat bath 
dynamics and are given by: 

~( cch((7 , r/) = #Q~ r]) (4.4) 

if ~7 agrees with (7 outside the cube Q~ and zero otherwise. It is understood that outside 
A the configurations (7 and r/agree with T. 
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Remark. The above version of Gibbs sampling is different from the one employed 
by Holley [H2], Aizenman and Holley [AH] and Stroock and Zegarlinski [SZ]. In 
these previous works the updating was as follows: each site x is chosen in Z a with 
rate one and then the configuraton in Ao(x ) N A is put equal to 7 with probability 
#~0(~)nA(7), where Ao(x ) is the cube of side 2L 0 + 1 centered at :c. This dynamics 
has, however, sometimes the inconvenience to update regions that are not squares 
A 0 but rather boxes (= intersection between two cubes) on which, contrary to what 
happen for cubes A 0, we have no control at all and for which our mixing condition 
may very well fai l !  

Warning: Within the present proof of Theorem 4.1, by an abuse of notation, we will 
continue to use the notation a t to denote the evolution at time t of the configuration 
c~ according to the above defined Gibbs sampling, instead of the perhaps more precise 

notation at {c2d 

It is rather simple to show that the above Gibbs sampling is still reversible with 
respect to the Gibbs state in A with boundary conditions ~-; more important: one 
easily proves (see Lemma 2.3 of [SZ]) that if gap(LQ) and gap(L) denote the gap in 
the spectrum of the generators LQ and L respectively, then there exists a positive 
constant c independent of A and ~- such that: 

gap(L) _> exp(-cL0 d) gap(LQ). (4.5) 

Thus in order to prove the theorem we need only to estimate from below gap(L@ 
uniformly in A and 7-. 

For this purpose we adopt a scheme very similar to the one already used in Sect. 3 
even if we are working with a very general, not necessarily ferromagnetic, system. 

Given two initial configurations (7 and ~r ~ we couple their dynamics by defining 
the generator LQ of the coupled process as: 

gQf(~ ,  or') = E ~Q~(cr, ~', 7, 7') (f(7, r/) - f(~r, ~ ')) ,  (4.6) 
r/,~1,i 

where the jump rates 5Q~(~, cr ~, 7, V~) are given by: 

0-~0 "! I 
5Q~(cr, cr ' ,7,7 ')  = #Q~ (7 ,7 )  (4.7) 

if the pair 7, 7 ~ agrees with the pair or, cr ~ outside the cube Qi and zero otherwise. 
0"0 "I 

Here the measure #Q~ is an element of the set K of the joint representations of the 
O- O -! two Gibbs states #Q~ and #Q~ and it is such that it realizes the minimum 

O J 
Var(#~i,�9 = min E u(~'7')OQ~ (7'7~)' 

u E K  
~,rlt E g2Qi 

In the above formula 
PQ (7 7 ~) = 1 

if ~(x) 7s 7~(:c) for some z in Qi and zero otherwise and Qi is the maximal subset of 
r l /2  

Qi which is at distance greater than ~0 from the set V = {z ~ Qd or(z) r crY(z)}. 
! 

~'~ is Remark. It is well known that in the attractive case the joint representation IzQ~ 
~ 0  -I 

above the diagonal, i.e. #Q~ (7 -< 7 ~) = 0 if ~ > 7 t. 
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A concrete way to realize the coupled process is to attach an exponential clock of 
parameter one to each cube Qi; then when a clock rings, say at time t and at the cube 

Q~, one updates the pair crt, (7 t inside Q~ to the pair ~7, ~//with probability #Q~ (~/, ~I). 
Once the coupling has been established we define the quantity Q~(t) as: 

~t( t)  = sup P(rTt(x ) r cr~(x)). (4.8) 
~r,rlxE A 

It is elementary to verify that if ~K(t) decays exponentially with a rate rnQ bounded 
away from zero, uniformly in the volume A and in the boundary conditions T, then 
gap(LQ) > rnQ. 

In order to prove the exponential decay of ~ ( t )  we would like, at this point, to 
apply to ~ ( t )  the usual Holley's criterion: if there exists a large enough finite time t o 

1 
such that QK(to) << t~ then 0K(t) decays exponentially fast. The idea then is to verify 

the existence of the basic time scale t o by just using our SM(Lo, C, 7) condition. In 
fact the above described coupling is such that after the updating at time t of, say, the 
cube Qi, the probability to see a difference between ~ and ~/ at a site x in Qi at a 

r~/2 distance greater than ~0 from the set V = {x r Qi; (7t(z) r cr~(x)} is smaller than 
1 cg+2 << 1 uniformly in the configurations (Tt and a~, provided L 0 is large enough. 

Thus, under this coupling, two arbitrary configurations (7, a I should become equal 
everywhere in A in a short time and, in some sense, the Gibbs sampling behaves as 
a high temperature, almost independent, stochastic Ising model. 

In order to implement this program we first prove the Holley's recursive inequality 
(see [H2]) for 0K(t): 

~ ( 2 t )  < (C(2L 0 + 1 + r)t + 1)d ~)~l(t)2 q - exp(--'yt) (4.9) 

for suitable positive constants C and "7 independent of t, A and L o. 
To prove (4.9), let x, ~ and o-' be fixed, let A(x) be the box of side C(2L 0 + 

1 + r ) t  + 1 centered at the site x, where C is a constant to be fixed later and let 
Xt,x be the characteristic function of the event, for the coupled process {~rt, ~7~} that 
err(j) = cry(j) Vj E A(x) VIA. Then we can write: 

P(a2t(x ) 7 ~ (7;t(x)) < EX(a2t(x ) 7~ a;t(x)) (1 - X(t,x))) 

+ EX((72t(x ) r rT;t(x))x(t,x). (4.10) 

The first term in the r.h.s, of (4.10), using the Markov property and the definition of 
Q(t), is bounded from above by: 

(C(2L 0 + 1 + r)t + 1)d aTe(t) 2 . (4.11) 

In order to bound the second term we observe that the Gibbs sampling has "finite 
speed of propagation of information" since one single updating can influence spins in 
a region with diameter not larger than r + 2L 0 + 1. It is then easy to check (see e.g. 
Lemma 1.1 of [SZ]) that if the constant C is taken large enough independently of L 0 
and t then there exists another constant % e.g. larger than one for C large enough, 
such that the second term is bounded by: 

exp( -T t ) .  
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Using now (4.9) it follows immediately from Lemma 2.4 of [H2] that there exist two 
numerical constants (5 and t depending on the constant C, d and r such that, if for 
some time t o > t, 

(C(2L o + 1 + r)t  o + 1)d L)~(to) _< 6, (4.12) 

then there exists a positive constant raQ(to, 5) such that 

O~A(t) <_ exp(--mQt) Vt >>_ t o . (4.13) 

We finally verify the existence of such a time t o uniformly in A and in the boundary 
conditions 7-. Let x E A, o-, ~r ~ and t o be fixed, let Qi be a cube such that x E Qi with 

dist(x, OQ~\(OA A OQ~)) > L~~ and let Qil �9 Qin be the other elements of the 
- 2 ' ' ' ' 

covering which intersect Q~. The number n is clearly dependent on the geometry of 
A but can be bounded by a constant n(d) dependent only on the dimension d. Let also 
u(Qi, t) be the number of ringings of the exponential clock of parameter one attached 
to the cube Qi within time t and analogously for the other cubes Qq, . . . ,  Qi~. Then 

r l/2 
for any integer N small than ~ we estimate 0~(to) by: 

1 1 3  

O~A(tO) <_ P(u(Qi, to) = O) 
7~ 

+ Z P(u(Qij '  to) >- N) + P(u(Qi,  to) _> N) 
j = l  

+ E P (the k th updating of the cube Qij was "bad") 
j = l  k = l  

N 

+ Z P (the ]~th updating of the cube Qi was "bad"), 
k = l  

(4.14) 

where an updating {a, or' -+ r/, ~7'} of a cube Q~j is "bad" if V(x) r ~?t(x) for some 

c . (7 L~/2). x in Qi 5 with dist(x, {y E Q~5' J r or}} > 
Let us in fact assume that within time t o the cube Q~ has been updated at 

least once and that all the updatings within time t o of the cubes Qi, Qq,  �9 �9 Qi,~ 
have been "good" and not more than N. Then, for L 0 large enough, since right 
after the last update of the cube Qi, say at time t, there is no difference in the 

L0 
two configurations ~7 t and et in a cube Qi c Qi of side - T  containing x with 

dist(x, OQi\(OA N OQ)) > L~ and since a "good" updating of one of the neighbor 
- -  8 ' 

cubes Qi 5 can only bring a difference in the two configurations ~rt and ~7~ inside Qi at 

a distance from OQi\(OA n OQi) smaller than LU 2, after k updatings between times 
t and t o of the cubes Qq,  . . . ,  Q~,~, we have that the two configurations cr and ~ are 

L~ - kL~/2. Thus still equal for all y E Qi at distance from x less than or equal to -~- 

r)/2 
if k < N < ~'0 at the final time t o one still has cr~0(x) = Otto(X). 

- - 1 0  
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The first term in (4.14) is equal to exp(-t0).  The second and third term can also 
r)/2 

be bounded by exp(- t0)  if N = at  o for a large enough but at o < % .  Finally the 

sum of the fourth and fifth termis bounded by: 

(n(d) + 1 ) N ~,~'sup Var(~o ' q, ~'o , Q ) < ~(~) (n(d) + 1 ) N Lodl§ 

where Q is the maximal subset of A o which is at distance from Vc~,G, ---- {x 
/-1/2 

A0; o-(x) ~ ~r/(x)} greater than ~0 �9 Here c(r) is a numerical constant depending 
only on the range r. 

1 

LO +2 
Thus, by choosing, for example, t o - 10a ' N = at 0 with a large enough, we 

have that the quantity (C(2L 0 + 1 + r) t  0 + 1) g ~t(to) is bounded above by: 

(C(2L o + 1 + r) t  o + 1)dorA(tO) 

< (C(2L 0 + 1 + r) t  o + 1) a 2exp(- to)  + c(r) (n(d) + 1)at 0 L ~  _< 5, 

provided that L o is large enough (depending of C, r, 6). The theorem is proved. 

Warning: From now on we go back to the usual Glauber (i.e. single spin) dynamics. 

The first result that we derive from the above theorem is Theorem 2.6, namely 
the (/7, F~)-effectiveness of SM(. ,  C, "~) with F consisting only of the cube ALo and 

/7 / the family of all L0-compatible sets of Z a provided that L o is large enough. The 
proof is based on the following nice result due to Stroock and Zegarlinski: 

Proposition4.1 (see Lemma3.1 of [SZ]). Let us assume that gap(L))  > m > 0 
uniformly in A and r. Then there exist positive constants C and ",/ independent of A 
such that for any subset V of A any site k outside A and any function f with support 
in V: 

sup~ ]p~(k)(f) _ #~A(f)] <- C exp( -  7 dist(V, k)) { Illflll/~ supa I/(~)1 } ,  

where [llflll = ~ IIV~fll and IlVkfll = sup If(cr k)) - f(~)l. 
x p 

Remark. Actually in Lemma 3.1 in [SZ] the dependence of the estimate on f was 
only through the seminorm I IIfl[I. That may be not so convenient if f depends on 
a large number of spins (e.g. f is the characteristic function of the event that all 
the spins in A at distance from k larger than L are + l )  since one may introduce a 
spurious volume factor. A little effort shows however that the dependence on f can 
be improved to that of the proposition. 

Clearly the above result proves the theorem since the variation distance between 
the relativization of the Gibbs states in V with boundary conditions outside A given 
by 7- and r (~) respectively, is equal to: 

sup 1~7~)(A) - ~7~(A)[. 
AC~Q(L) 

The last result strengthens the result given in Theorem 4.1: 
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Theorem 4.2. There exists a positive constant L depending only on the range of the 
interaction and on the dimension d such that if SM(Lo, C, "7) holds with L o > L then 
there exists a positive constant rn such that for any Lo-compatible set A and for any 
function f on { -1 ,  + I } A : 

sup ITA'~(Z) (a) - #(f)] < [I If Ill exp( - rn t ) ,  
o- 

where T r denotes the Markov semigroup of the process evolving in A with boundary 
conditions "c. 

Proof. In this paper we prove the theorem only in the attractive case. The proof for 
the general case can be found in [MO]. 

We proceed as in the proof of Theorem 3.1. We define similarly to (4.8) but for 
the Glauber dynamics: 

0K(t) = sup EA+l"(at(X)) - E_AL'~'(at(x)). 
x~A 

As in Sect. 2 we need only to show that p~A(t) decays exponentially to zero with a rate 
independent of the volume A and of the boundary conditions ~-. One easily checks 
that also the finite volume definition of 0K(t) obeys Holley's alternative: there exists 
a positive constant 5 o independent of the boundary conditions ,- such that if there 
exists a sufficiently large finite time t o such that: 

tdoo~(to) < 6o, (4.15) 

then there exists a finite constant rn depending on t o and 5 0 such that: 

O~A(t) <_ exp(--rnt) Vt _> t 0. (4.16) 

Thus, in order to prove the theorem, we need only to show that there exists a time t 0, 
independent of the volume A and of the boundary condition ,-, such that the above 
condition holds. In turn this will follow from a computation similar to that of Sect. 3 
since we know from the previous theorem that the mass gap of the stochastic Ising 
model can be bounded from below uniformly in the boundary conditions and in the 
volume A provided that A is L0-compatible. 

More precisely let, for any x E A, AN(Z) be an L0-compatible subset of A such 
that: 
a) x is contained in AN(x), 
b) dist(x, OAN(x)\OA (~ OAN(X)) > N L  o. 

Then, by attractivity, we can bound 0K(t) by: 

E+AN(x)'+(at(0)) -- EA N(z)'- (at(0)) , (4.17) 

where E+AN(x)'+( ) is the expectation over the process which starts from all pluses 
and evolves with + boundary conditions on OAN(x)\OA N OAN(x) and the given ' 

T-boundary conditions on OA N OAN(X ) and analogously for E_&V(~)'-(). Thus, as 
in Proposition 3.2, the r.h.s, of (4.17) is bounded from above by: 

- EA ~(x)'- (at(0)) + #+N(x)(a(0)) -- #~N(x)(a(0)), (4.18) 
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+ and #AN(~) have + and - boundary conditions on where the Gibbs states #AN(~) 

OAN(x)\OA A OAN(X) and the given T-boundary conditions on OA N OAN(Z). Using 
Proposition 4.1 the third term is bounded from above by: 

exp ( -TNL0) .  (4.19) 

The estimate of the first and second term is the same and we get that each of them, 
e.g. the first one, is bounded from above by: 

exp( -TNL0)  (4.20) 

provided that: 

1 
t > gap(AN(X) ' +) [log(#~N(x)(+) -1) + 7NL0) (4.21) 

(see for instance [Si]) where #AN(x)(+) is the #AN(x)-measure of the configuration 
in AN(x) identically equal to plus one and gap(AN(X), +) is the gap in the spectrum 
of the (self-adjoint) generator of the stochastic Ising model in AN(X ) with + 
boundary conditions on OAN(x)\OA N OAN(x ) and the given T-boundary conditions 
on OA N OAN(x). Using the result of Proposition 4.1 we have that gap(AN(X), +) (and 
the same for gap(AN(x) , - ) )  is bounded below by m 0 uniformly in N. Therefore, 

1 

since 1og(#AN(x)(+)) > -A(NLo)  d for some constant A, if we take N L  o = Cot~ 
then, if c o is sufficiently small depending on A, we get that (4.21) is satisfied and 
therefore 

1 

Q~(t) < 3 exp(-Tc0t~) .  

1 
Thus ~t( t)  decays faster than ~ uniformly in the volume A and the theorem follows. 

Remark. One may wonder whether the rates m 0 and m of the exponential convergence 
to equilibrium in the L2-sense and in the uniform norm are equal. The proof that we 
give of Theorem 4.3 in the attractive case, which basically rephrases in finite volumes 
the usual Holley's argument, does not allow us to derive any conclusion about this 
question. However if instead of Holley's argument one uses logarithmic Sobolev 
inequalities (see [MO]) then one can conclude that the two rates are actually the 
same. 

Remark. One may wonder why we need in this section a condition like SM(Lo, C, 7) 
which is much stronger than the weak mixing condition used in the previous section. 
A first simple answer to this question is the following: since exponential convergence 
to equilibrium in finite volume (in the L a or L ~ sense) implies the exponential decay 
of truncated correlations in the given volume (see Proposition 4.1), certainly such 
convergence cannot take place for those systems, like the Czech models or the 3D 
Ising model at low temperature at very small magnetic fields (Bassuev phenomenon) in 
which truncated correlations do not decay exponentially fast uniformly in the locations 
of the two observables. 

Another explanation which seems to be reasonable even in the attractive case, 
is the following: let us suppose that we have only a weak mixing property of the 
Gibbs state and let us consider the quantity EAL'v(f(crt)), where f is an observable 
located well inside a box A L of side L. If t _< 6L, where 6 is a suitable small 
constant, then, because of the finite speed of propagation of information, EAr'~(f(crt)) 



478 F. Martinelli, E. Olivieri 

is exponentially close (in t) to its infinite volume version tP,~(f(crt)) which is indeed, 
because of  Theorem 3.1, exponentially (in t) close to # ( f )  which, in turn, because of  

t 
weak mixing, is exponentially (in L) close to #AL (f)" Since L _> ~ it follows that 

for times t up to 6L we have: 

I E AL'~-(f(o-t)) - #~L (f)  l < C e x p ( - m t )  

for suitable C and m. 
Let us now consider times t much larger than L and let us suppose that for 

these times the probability distribution of  ~t(x) for x close to the boundary of A L is 
not exponentially (in t) close to the invariant measure. That is not an unreasonable 
assumption if our system exhibits a kind of  phase transition at the boundary as 
apparently does the 3D Ising model at low temperature for some very small magnetic 
fields (Basuev phenomenon). Let us now analyze the influence of this slow approach 
to equilibrium at the boundary on EAL,~(f(o-t)). Certainly, because of weak mixing, 
the effect will not be larger than a suitable negative exponential in L but we cannot 
exclude that it will be precisely of this order. If  this is the case then, since t >> L, the 
influence on EAL'~-(f(crt)) of the slow convergence to equilibrium at the boundary 
will be much larger than a negative exponential of the time t and thus, even in the 
bulk, we will have a convergence slower than exponential. 

Finally, from a technical point of view we observe that in finite volume, as the 
reader can easily check, we cannot repeat the proof of Proposition 3.1 because for 
some site x the cube of  side L and centered at x intersects the boundary of  the cube. 
Thus we are forced to choose the strong hypothesis (SM(Lo, C, "7)). 

5. Applications 

In this section we discuss some applications of  our results. In particular we prove the 
exponential convergence to equilibrium for the infinite volume stochastic Ising model 
for all temperatures above the critical one and for low temperature and non-zero 
external field. 

The model that we will consider is the standard Ising model whose Hamiltonian 
in a finite volume A of  the lattice Z d with boundary conditions 7- is given by: 

' ' [  l �9 ,vca:lx-vl=1 ~cA y~tA:l~-v[=l 

The associate finite volume Gibbs state at inverse temperature/3 will be denoted by 

jA'~'h(C). It is well known that if the dimension d is greater or equal than 2 there 
exists a critical value of /3, denoted in the sequel by /3c, such that there exists a 
unique infinite volume Gibbs state #Z,h iff h 76 0 or /3  < /3c. Thus, if we consider 
the associated stochastic Ising model discussed in the previous section, then it will 

be an ergodic Markov process on { - 1 ,  +1}  zd with pZ,h as unique invariant measure 
only for h 76 0 or /3  < /3c" In the following theorem we will strengthen this result. 
Let us denote by E~'h(f(~yt)) or by E~'~'~'h(f(crt)) the expected value at time t of 
the function f with respect to the distribution of  the process evolving with external 
field h and inverse temperature/3 in the infinite lattice Z b or in the finite set A with 
boundary conditions 7. Then we have: 
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Theorem 5.1. a) Assume that ri <ric. Then there exists a positive constant m and for 
any cylindrical function f there exists a constant CI  such that." 

sup IE~'h(f(at))  -- S ' h ( f ) l  <_ Cf  e x p ( - m t ) .  
O" 

b) There exists a positive constant rio such that for any/3 >_ rio and h > 0 there exists 
a positive constant m and for cylindrical function f there exists a constant Cy such 
that." 

sup IE~'h(f(crt)) -- #Z'h(f)l  < Cf e x p ( - m t ) .  

c) Given h > 0 there exist two positive constants rio(h) and Lo(h ) such that for any 
/3 >- rio there exists a positive constant m such that for any Lo(h)-compatible set A 
and for any function f on { - 1 ,  + l } A :  

A -r ~,h s u p l E ~ ' '  ( f ( c r t ) ) -  # ~ ' h ( f )  I <_ I ] t f l l l exp(- rn t ) .  
o- 

Proof. a) Thanks to Theorem 3.1 we need only to verify our weak mixing condition 
(3.1). This in turn follows from part i) of  Theorem 2 of a recent paper by Higuchi 
[Hil. 
b) Also in this case we verify the weak mixing condition and for this purpose we use 
a result by Martyrosian [M]. In order to state his result we need some notation. A 
finite subset A of the cubic lattice is said to be connected if for any two sites x and 
y in A there is a sequence of nearest neighbor sites x0, x l , . . . ,  x n in A connecting x 
to y, i.e. x 0 = x and x~ = y. The finite connected set A will be said to be simply- 
connected if its complement is connected. Given a connected set A, r  will be the 
smallest simply-connected set containing A. Then we have: 

Theorem 5.2 (Martyrosian). There exists a positive constant/3 o such that for any 
/3 >_ rio and any h > 0 there exists a positive constant C such that for every L: 

# ~ ' h ( c r ;  ~ a connected set A with ~r(x) = +1 Vx E A and QL-log(L) C r 

tends to one as L ~ oc. 

Corol lary  5.1. There exists a positive constant rio such that for any/3 >_ rio and any 
h > 0 there exist positive constants C and e such that for every L: 

p ; ' ] ' h ( o - ( 0 ) ) -  # ~ ' h ( c r ( 0 ) ) <  C e x p ( - z L ) .  

Proof. Using the method of  Appendix 1, it is enough to show that 

Ld-l[~; '~ 'h(o~(O))-  ~)~'h(o'(O))] (5.1) 

tends to zero as L ~ oc. For this purpose let us define 

L k = [L/2 + kClog(L)] ,  
Ak = QL~ , (5.2) 

for k = 1 . . .  K = 2Clog(L)  ' where C is the constant appearing in Theorem 5.2 

and [-] denotes the integer part. Let also, for any k, X? k be the event that in the annulus 
A ~ \ A k _  1 there exists a connected set F k such that: 
i) cr = + 1  V x E F  k. 
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ii) The set QL\Fk splits into two disjoint connected sets A and B, with 0 E A. 
Let finally ~) be the union of the events 22 k. It is easy to see, using F.K.G., that: 

so that 
Ld-l[]d,;'~'h(cr(O))- ]~Q~'h(o"(O))] _~ 2Ld-1]~Q~'h(~)c). (5.3) 

Thus we are left with the estimate of >~,h(j)c). 
If Xk denotes the characteristic function of the event g2~, we can write: 

k=2Xk U;;e'h(X~)' 
where we have used the D.L.R. equations and the fact that 

~-/3 h( . - / 3 h  
]ffA'~' Xk) ~ ~A' k ' (X.k)" 

for any r.  
By Theorem 5.2 we have that: 

(5.4) 

provided that L is large enough. 
Thus, if we iterate (5.4) K-times, we get that 

# ~ , h ( ~ )  _< 2 K,  

which clearly proves the corollary since K >_ L/2C log(L) - 1. 
c) In this case we verify that for any h > 0 there exist two positive constants/30(h) 
and Lo(h) > L, where L is the numerical constant appearing in Theorem 4.3, such 
that if/3 _> /3o then SM(Lo, C, 7) mixing condition holds. Let us fix h > 0 and let 

us choose 2Lo(h) = I A ]. It is simple to verify that if the constant A is taken large 

enough (e.g. A = 4 in d = 2 and A = 6 for d = 3) then the configuration identically 
equal to + 1 is the unique ground state configuration of the Hamiltonian H~L0(h)(CT) 

for any boundary condition r.  Thus if we estimate the variation distance appearing 
in our SM(Lo, C, 7) mixing condition by: 

2 sup #~A'~'h(3X C ALo(h); ~(x) = --1),  (5.6) 
"F 

then we can make the variation distance as small as we like by taking/3 large enough. 
Finally by taking the constant A large enough we can make the length scale Lo(h) 
larger than the numerical constant L appearing in Theorem 4.3. It is important to 
stress here that L does not depend on the parameters/3 and h of the Hamiltonian. 

The theorem is proved. 

#TtlP'h(X~) <_ 1/2, (5.5) 
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Appendix 1. A Simple Proof of Theorem 2.6 in the Attractive Case 

We give a simple proof of the "effectiveness" of the SM(Lo, C, ~/) mixing condition 
in the case the interaction J(X) is ferromagnetic. 

Let A be an L0-compatible set, let ~- and T (v) be boundary configurations outside 
A, where T (v) is obtained from T by flipping the spin at y ~ A ~ and let z be a site of 
A. Without loss of generality we assume that T (v) >_ T. Given C and 3' we will prove 
that there exists a constant L _> R such that if SM(Lo, C, ~) holds for L 0 _>/~, then 
there exist positive constants C0~/ such that: 

T (y) " T #A (~x = +1)  -- #A((7~ = +1)  _< C O exp(- '~ '  dist(x, y)) .  (AI.1) 

"r (y) -r 
Clearly (AI.1) proves the theorem. Let in fact #A ' (O', ~]) be a joint representation 

of #~(Y) and #~ which is above the diagonal. Then we have: 

Var(p~,v, CY), ~(~). #A,V) <-- Z #A (crz r fix). (A1.2) 
xCV 

Using (AI.1) and the fact that #A (v)'~ is above the diagonal, the r.h.s, of  (A1.2) is 
bounded by C '  exp( - ' y '  dist(y, V)) for some constant C' .  

c'  ~'~ denote the joint We now prove (AI.1). Let, for any A, cr _> r/ E a k~A 
representation of the Gibbs states in A with boundary conditions cr and r/ which 
is above the diagonal. Let also, for any x in A, Qx be a cube of side 2L 0 + 1 such 

L0 
that x E Q~ and dist(x, OQ~OA N OQ~) >_ ~ .  Clearly such a cube always exists. 

Let O<Qx be the set of sites y in A\Q x with dist(y, Qx) <- r, where r is the range of  
the interaction. Then we can write: 

T (y) - ";- ~ - -~  T (y) . / x  o- cr I . ! ) 
#A (~Tx = +1)  - #A(O-x = +1)  = L C Z A  I,O-, O- )#Qx t~]x ~s ?'Ix 

(TO-  I 

T(Y) IT ! 
~-- E #A (or, ~ )X(3Z e OrQ~; ~r z =/: ~'z)C exp( - '~n0 /2 ) ,  (A1.3) 

o - o  -!  

~' (  ,) where we have used SM(Lo, C, ~) in order to estimate #Q'x ~ r r/z . It is at this 

point that attractivity becomes important. Since PA ' is above the diagonal the term 
T (y) T r (y) , 

#A ' (or # ~7!z) is equal to PA t~7 = +1) -- p~l(Crz = +i). Thus, if we denote with 
F(x) the 1.h.s. of  (A1.3), we get: 

F(x) <_ Cexp(-~Lo/2 ) Z F(z). (A1.4) 
zEOrQ~ 

Iteration of  (A1.4) gives that F(x)is bounded by the series: 

F(x) <_ Z (Cc(d, r)Ldo -1 exp(-" /L0/2))  ~ , (A1.5) 

where c(d, r) is a numerical constant. Clearly (A1.5) gives the desired exponential 
bound for F(x) provided that L 0 is large enough depending on r and the dimension 
d. 
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Appendix 2 

In this appendix we want to prove Theorem 2.6. First we need some definitions. 
Let QL,3L(0) be the box: 

Q L , 3 L ( O ) = { x E Z d ; I x i I < 3 L - - l  i 1 , . . .  d 1 ]Xdl < L - 1  } 
- 2 ' ' ' - 2 

Let ff be the set of all subsets of QL,3L(0) which 

i) are union of cubes QL(X), x = Ly, y �9 Z a, 
ii) contain QL(O) and, 

iii) are symmetric with respect to all directions of  the lattice. 
Let us call "vertical" the d th direction of the lattice and "horizontal" the hyperplane 

orthogonal to it. 
For any A �9 ff consider pairs of  sites k, U in O+A "adjacent" to opposite horizontal 

faces of A in the sense that there exist x, x ~ E A, x = (X l , . . .  , Xd), x ~ = (x~, . . . ,  X~d) 
L - 1  

with I x - h i < r ,  Ix' - k' I <_ r, lXdl = lx~l - 2 ' xd = -x~d" 
Let 

A k = {x E A: dist(x,k)  _< r } ,  

A~, = {x E A : d i s t ( x , U )  < r } .  

We also assume that if the horizontal distance between Ak, A k, is larger than one, 
then there exists an x E A such that the cube QL(X) is such that A D QL(X) D A k, 
A k, C A\QL(X). 

Following a simple argument already used by Stroock and Zegarlinski (see [SZ], 
proof of Eq. (3.4) we write, for y E O+A: 

p ~ ( f )  _ #.~(v)(f) = p ~ ( f r  _ #~( f )p .~ ( r  (A2.1) 

with ~ )  such that: 

and 

1[~)tl ~ exp(411gll). (A2.2) 

Let us now state and prove a lemma. 

L e m m a  A2.1. In the general case (hypotheses H 1 , H 2  satisfied) suppose that 
S M ( Q L, C, 7) holds for some C > O, 7 > O, L > 8r, 2dr( L +  r) d-1 e x p ( - T L / 8 )  < 1. 
Then, for any A ~ if, k, k' as above, given any cylindrical function f ,  with support 
Sy = A k, we have: 

sup # ~ ( f ,  g) _< l l f l l C ' e x p ( - 7 ' L )  (A2.3) 
~-Ef?AC 

with 
C'  = Cexp(41iUl[), 

t 

where g = ~ ), and 

tLUll - -  

4L exp( -~ /L /8 )  = e x p ( - 7 ' L ) ,  

Xcczd,x90 
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Proof. For simplicity we shall only consider the case d = 2 w h e r e / '  contains only 
the square QL(O) (for which (A2.1) is true by hypothesis with C = C, 7 ~ = '7) and 
the rectangle A - QL,3L(O) with edges parallel to the 1,2 (horizontal and vertical) 
coordinate axes with length, respectively, L I = 3L, L 2 = L. The easy extension of 
the argument to the general, d-dimensional, case is left to the reader. 

Considering A we distinguish two cases: 
1) Aa, A k, have horizontal distance < L/2;  namely: 

inf Ix1 - Yll <- L / 2 .  
::cEz2Lk,yCz2~kt 

2) Ak, A k, have horizontal distance > L/2 .  
In the first case we observe that there exists x E A such that the square QL(X), 

that for notation convenience we call V, is contained in A, contains both Ak, A k, 
and is such that dist(Ak, O V A  A), dist(Ak, , OV ;~ A) > L /8 .  

We then have, V~- E J'~A c : 

#TA ( f  9 ) =- 

from which we get: 

with 

UA(f, g) = 

E T T~oJ 
# A , A \ V ( ~ ) ~ V  (f9) 

wE K2 A \ V 

(A2.4) 

From S M ( Q L ,  C, ~/), (A2.6) we have immediately: 

a~A(.f, 9) < ] I f f lCexp ( - 'T r /8 ) .  

From S M ( Q L ,  C, 7), (A2.7) and (A2.1) we get 

g~A(f, 9) <-- 4LrCi l f l l  Ilgll e x p ( - T L / 4 ) .  

= # v  ( f  g),ttA,a\v(W), (A2.6) 
wEK2A\V 

E T T l T~09 T~Cd l #A,A\V(O'))UA,A\V( 02 )UV ( f )  [#y (g) - #~)~ (9)] (A2.7) 
w , w t E ~ A \ V  

(A2.8) 

(A2.9) 

Consider now the second case (horizontal distance of Ak, A k, > L/2) .  By hypothesis 
there exists an x c A such that the square V =_ QL(x)  is such that QL,3L -- A D 
V ~ A k, A k, C A \ V  (suppose, for instance, that A k, between Ak, A~, is the set at 
largest horizontal distance from the vertical edges of A). 

We then have: 

= ['s (cO)g(cJ) [#v ( f )  # v  ( f ) ] '  (A2.10) 

From (A2.3), (A2.1) and (A2.10) we get 

YA( f , g )  <--4LCIIfll IIgI1119tl e x p ( -  y L / 8 ) .  (A2.11) 

From (A2.5), (A2.8), (A2.9) and (A2.11) we get the lemma. 
From Lemma A2.1 and Propositiori 3.1, Eq.'s (3.9), (3.11) of [O] we get that there 

exists L ~ L(C, ~/) such that Condition C L of [OP] (see Eq. (1.8) there) holds. Then, 
from Propositions 2.5.1, 2.5.2, 2.5:3, 2.5.4 of lOP] Theorem 2.6 follows. 

#~A(f , 9) ~ # ~A(f 9) -- #~A(f)#~A(g) = C~A(f , g) + g~A(f , g) (A2.5) 
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Appendix 3 

In this final appendix we prove Theorem 2.5q Our goal is to show that Theorem 2.6 
can be viewed as a corollary of  Theorem 2.2. 

Let A be a subset of  Z a, let T be a boundary configuration outside A, i.e. T E s 
let y C O+A and let z) C A. We want to estimate 

T T (~) , 
Var(PA, za, #A,,6) (A3.1) 

by supposing true K(Ao, (5) for some finite set A o and (5 < 1. 
For this purpose let for any x E A 

and let 

l~ = dist(x, y) ,  

B =- U {z E zd; dist(z, x) < l~} U A.  (A3.2) 
xEA 

Then by construction dist(A, O+B) > inf l x = dist(A, g) and y E O+B. 
xEA 

The idea at this point is to estimate (A3.1) by applying Theorem 2.2 to a suitable 
"Gibbs" measure uf~ on Y2 B, whose specifications satisfy, thanks to K(Ao, (5), the 
condition DSU(Ao, (5) with (5 < 1. In order to define the new measure u~, let us 
denote by ~ the restriction of the configuration ~- to the set B \ A ;  by abuse of notation, 
the restriction of ~- to Z d \ B  will also be called ~-. If  for every configuration L7 E s B 
we denote by ~r A its restriction to A C B, then the measure u~ is given by: 

u~(cr) = 0 if O-B\ A • ~ , 
(A3.3) 

u/~(cr) = #~(crA) if O'B\ A = ~ , 

where 7-~ has been defined in (l.1). 
Thus, by construction, (A3.1) can be written as: 

Var(u~ a ' eu) ,  uB,a) . (A3.4) 

It is easy to check that u )  is "Gibbsian" in the sense that it satisfies the DLR equations 

for the following local specifications @: 

qev((rV) = #(VNA(O'vcTAI(aVN(B\A)=~VN(B\A)) (A3.5) 

where ~ C Y?c~ and in general, for any set A 

I(C~A=~TA ) = 0 if aA }& ?']A , 

l(crd:r;A ) = 1 if era : ~?A" 

We next show that K(Ao, (5), with (5 < 1, implies that the specifications qev satisfy 
DSU(Ao, (5) with 6 < 1 uniformly in the location of the cube A 0 inside the set B.  

Thus, let us choose x 6 B in such a way that A o + x c B and let us compute: 

r 

sup KROVe(qi0+x,  qAo+z) , (A3.6) 
r162 

where @ is given by (1.8) and y' C O+(Ao + x). We have distinguish three different 
cases: 
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i) A o + x C B\A;  in this case (A3.6) is zero by construction. 
ii) A o + x c A; in this case (A3.6) is equal to 

sup (A37) 

which, because of K(Ao, 5), is bounded from above by a v, with 

Z c~v' -< 5lAoI ' (a3 .s )  

yt COr+ (Ao+x) 

iii) A 0 + x intersects both A and B\A;  in this case let V = (A 0 + x)N A. Then (A3.6) 
becomes equal to 

K R O V "  r r (A3.9) sup o(#v , # v  ), 
r162 

where ~ is the configuration in V ~ which coincides with ~ outside A 0 + x and with 
in (A 0 + x) A (/3\A). Again because of K(Ao, 5), (A3.9) is bounded from above by 

a v, with 

%, _ 6lAol. (A3.10) 

yI cO+r (Ao+x) 

We stress that it is precisely in the third case iii) that one uses the full strength of 
K(Ao, 5) since the set V can be an arbitrary subset of A o. 

At this stage we can apply Theorem 2.2 to the measure u~ and estimate (A3.4) 
from above by: 

Var(u~,A, r UB,A) _< C Z e x p ( - 7 ' l x - z ] )  -< C ' e x p ( - ' ~ " d i s t ( A , y ) )  (A3.11) 

xC A,zCO+ B 

for a suitable, positive constant 7". 

Remark. We notice that Theorem 2.2 has been stated only for translation invariant 
Gibbs measures and certainly the specifications in (A3.5) do not satisfy this require- 
ment. However, as one can easily check in the original proof in [DS1], translation 
invariance becomes irrelevant provided that one is able to verify DSU(Ao, 5) with 
6 < 1 uniformly in the location of the cube A 0 inside the set /3.  

The theorem is proved. 
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