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Abstract: Based on the treatment of the chiral Ising model by Mack and Schomerus,
we present examples of localized endomorphisms ¢ and gll"/cz. It is shown that
they lead to the same superselection sectors as the global ones in the sense that
unitary equivalence g o gll"c = 71 and 7y o gll"/cz & 7y, holds. Araki’s formalism
of the selfdual CAR algebra is used for the proof. We prove local normality and
extend representations and localized endomorphisms to a global algebra of observables
which is generated by local von Neumann algebras on the punctured circle. In this
framework, we manifestly prove fusion rules and derive statistics operators.

1. Introduction

In local quantum field theory one considers a Hilbert space 7% of physical states
which decomposes into orthogonal subspaces .9 (superselection sectors) so that
observables do not make transitions between the sectors. The subspaces .98 carry
inequivalent, irreducible representations of the observable algebra .-%, possibly with
some multiplicities [19]. Among the superselection sectors, there is a distinguished.-
sector .9%, which contains the vacuum vector |{2y) and carries the vacuum represen-
tation 7g. : :

The starting point in the algebraic approach to quantum field theory is the observ-
able algebra .4 which is usually defined as the C*-inductive limit of the net of local
von Neumann algebras {.4(9), @ € F }, where 7% denotes the set of open double
cones in D dimensional Minkowski space. The net is assumed to satisfy the Haag-
Kastler-axioms. In general, the observable algebra .4 admits a lot of inequivalent
representations. Therefore one has to find an appropriate selection criterion which
rules out the physically non-relevant representations. Doplicher, Haag and Roberts
[10, 11, 18] developed the theory of locally generated sectors; they suggested that
one has to consider only those representations 7; which become equivalent to the
vacuum representation in the restriction to the causal complement ¢@’ of any suffi-
ciently large double cone 2 € 7. That means that for a representation 7y satisfying
the DHR criterion, there exists for each sufficiently large double cone @ a unitary
V : 9%, — 9%, such that
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7TJ(A) = V’iTo(A)V*, Ace J@(@/)

The DHR criterion leads to the characterization of superselection sectors by localized
endomorphisms: Usually .4 and mo(.4) are identified, and one defines

05(A) =V*ry(A)V, Ae A4

Then g¢; is an endomorphism of the observable algebra and it is localized in €7 in
the sense that p;(A) = A for all A € _4(@"). Moreover, my o gy is a representation
of 4 in 5%, which is equivalent to 7 ;. The use of DHR endomorphisms allows to
extract all physical information out of the vacuum sector and to work without charged,
unobservable fields. It is another advantage that endomorphisms can be composed;
it is possible to formulate fusion rules in terms of equivalence classes of localized
endomorphisms.

Unfortunately, it seems to be very difficult to construct these endomorphisms
explicitly in models. Although the conformal field theory has turned out to be an
interesting and fruitful area of application of the DHR program, examples of local-
ized endomorphisms which generate charged sectors are known explicitly only for a
rather small number of models, e.g. the U(1) current algebra on the circle [8]. En-
domorphisms have been constructed for Level 1 WZW models [16] and, before that,
for the chiral Ising model [24, 25], however, they are in no sense localized. Mack
and Schomerus had already described the construction of localized endomorphisms
for the chiral Ising model in [24], but it has not yet been proven that they lead to
the same sectors as the global ones and, in particular, that they lead to irreducible
representations. This is done in the present paper.

In two-dimensional conformal field theory one considers as basic observable the
stress energy tensor which generates the space time symmetry. Its light cone compo-
nents Ty (z+) live separately on the compactified light cone variables z.. € S!, one
deals with chiral fields. Treating each component for its own, the stress energy tensor
has well-known commutation relations, fixed up to a constant ¢ [29, 23]; the stress
energy tensor generates the Virasoro algebra Vir. In the case ¢ = % (Ising model)
the Virasoro algebra admits three inequivalent positive energy representations s,
J =0, %, 1, which are lowest weight representations; g is identified to be the vac-
uum representation. In the chiral Ising model, the stress energy tensor can be built of
a free fermion field, the Majorana field [24, 23]. Smearing out the Majorana field with
test functions having support in a proper subinterval I C S' and considering bilinear
expressions of it, these objects generate the local C*-algebra .-4(I) of observables.
Such local algebras ./4(]) generate a global observable algebra ./6‘(;;; Unfortunately,
the Virasoro generators are not in 4%, but they are formal (unbounded) limits of
elements in 4%, . Mack and Schomerus [24, 25] presented endomorphisms g such
that mpo oy E 7y, J = %,1 is fulfilled. But, as already mentioned, these endomor-
phisms are not localized, i.e. there is no interval I’ # () such that their action is trivial
on .4(I'). In this paper we present examples Qll"/cz, o of localized endomorphisms
which are unitarily equivalent to those global ones in composition with the vacuum
representation. However, our construction slightly differs from the formalism used by
Mack and Schomerus.

Since the set Z of proper subintervals on the circle is not directed, a global
algebra cannot be defined as the C*-inductive limit of the system {.4(I),I € Z}.
The global algebra a@ﬁfv has to be considered as the algebra generated freely by all
local algebras .-4(I). This is the universal algebra (but generated by local C*-algebras
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instead of von Neumann algebras) in the sense of Fredenhagen, Rehren and Schroer
[14, 15]. Its center is nontrivial, generated by a unitary element Y. The C*-algebra of
the punctured circle . 4(I;) where I = 5'\{(}, ¢ € S" an arbitrary point, has a trivial
center and _#C. is generated by 4(I;) and Y. The local algebras .-4(I) are even
subalgebras of (selfdual) CAR algebras over spaces L2(I). Also the global observable
algebra .2<. is the even subalgebra of a global field algebra, the universal Majorana
algebra Maj. It has the structure of the direct sum of two selfdual CAR algebras
over L2(S). Alternatively, it may be regarded as the algebra which is generated by
an anticommuting universal Majorana field living on the double cover S! of the unit
circle [24, 25]. For recovering the local algebras .-4(I) as even subalgebras of Maj by
explicit construction, we have to fix an arbitrary reference point ¢ (“point at infinity”)
on the circle.

The non-trivial center of the global algebra .4C; implies that its irreducible
representations can no longer be faithful. This leads to some deviations from the
customary DHR program. In particular, the vacuum representation 7o of .4, cannot
be faithful. There is another difference between the formalism used by Mack and
Schomerus and the common DHR framework: The local algebras .4(1) are defined as
C*-algebras instead of von Neumann algebras. But the use of von Neumann algebras
is crucial for the analysis of statistics and fusion. On the other hand, if one works with
local von Neumann algebras (weak closures of .-4([) in the vacuum representation),
the universal algebra becomes even larger, in particular, its center is larger than that
of J@unw, generated by Y. Such a universal algebra appears to be hard to handle.

During our investigations, it turned out to be much more comfortable to formulate
the theory on the punctured circle. Such a formulation is possible because in our theory
Haag duality remains valid on the punctured circle. Having fixed a “point at infinity”
¢ € S, the set Z of those open intervals such that ¢ is not contained in their closures
(“finite intervals”) is directed by inclusion. So the theory can be developed close to
the DHR program. We define local von Neumann algebras J8(I) = mo(.4(I))", and
the net {.92(I),I € Z:} generates a global C*-algebra ¢ in the natural way; 2,
may be regarded as the algebra of quasilocal observables. The representations 7
and the localized endomorphisms ¢'% we present are at first defined on local C*-
algebras .#(I). We show that they possess an extension to the net of von Neumann
algebras. A local normality relation is used for the proof. Using some results of CAR
theory, we establish that indeed unitary equivalence 7 o 0'%° ¥ 7 holds. Finally, we
manifestly prove the Ising fusion rules in terms of equivalence classes of localized
endomorphisms, and we construct statistics operators and a left inverse.

With respect to the proof of fusion rules, we believe to close a gap left in [24, 25].
Mack and Schomerus had already proven that their global endomorphisms obey Ising
fusion rules. But caused by the use of local C*-algebras and a non-faithful vacuum
representation, this result could not be generalized to all endomorphisms, which lead
to equivalent representations. (There are counterexamples.) The existence of unitary
intertwiners in the observable algebra, being essential for such a generalization, is not
guaranteed if one does not work with von Neumann algebras. However, establishing
a theory based on local von Neumann algebras on the punctured circle, we close the
gap. But it should be mentioned that there exist also successful methods for prov-
ing conformal field theory fusion rules without the use of localized endomorphisms,
e.g. [22, 32].

Our paper is organized as follows. We present Majorana fields, local C*-algebras
of observables and the global algebra .45 in Sect. 2. Using some ideas of Szlachanyi

univ
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[31], we discuss the origin of its central element Y. We introduce the universal
Majorana algebra Maj, we describe the representation theory of Maj and 4C; and
we introduce the Mack-Schomerus endomorphisms. Section 3 begins with a brief
recapitulation of the CAR theory and some results we need. Next we describe the
representation theory of Maj and .4 in view of Araki’s selfdual CAR algebra and
quasifree states. We discuss the restriction to the algebra .4(l;) of the punctured
circle. Then we introduce our examples of localized endomorphisms and we analyze
the induced representations. In Sect. 4 we discuss the extension of representations and
localized endomorphisms to local von Neumann algebras and to the global algebra
2¢. In this framework, we prove fusion rules and give statistics operators and a left

inverse.

2. Algebras, Representations and Endomorphisms of the Chiral Ising Model

In this section, we develop and analyze the formalism used by Mack and Schomerus
to describe the chiral Ising model.

2.1. Local C*-Algebras and their Universal Algebra. We begin our investigations with
a brief description of the field algebra, the local and the global observable algebras
of the chiral Ising model. Our starting point is a Majorana field ¢ on the unit circle
ST which has anticommutation relations

{¥(2)", Yw)} = 27izé(z — w) (1
and hermiticity condition
Y(2)* = 290(2). (2
We consider smeared fields
d
W= § SELfeNe), fe) e IS, 3
St 2miz:

These objects obey the canonical anticommutation relations (CAR) of the canonical
generators of Araki’s [1, 2] selfdual CAR-algebra & (%, ") over the Hilbert space
% = L*(S") with the antiunitary involution I" of complex conjugation. We have

W, w(@} = (f, g1 “
with

dz ——
V=PI, <ﬁm=f‘;iﬂwmn 5)
g1 £T1Z

As local algebras .4(I) with some open interval I < S', I # S! we define those
unital algebras which are generated by bilinear expressions

Br(f, 9) = v(H(y), supp(f) C I,supp(g) C I

in the Majorana fields. These generators are complex linear in both arguments and
obey relations



Localized Endomorphisms of the Chiral Ising Model 269

ZB[(faf) = <Ff7f>17 (6)
ZBI(fvg)BI(g7 h) = <Fgag>B[(f7 h)7 (7)
Bl(f)g)* = BI(Fg’Ff)7 (8)

where f, g, h € L*(S) are functions with support in 1. Next we consider the algebras
AA(I) as defined only by these abstract relations. Since the set Z of open, non-void
intervals I # S! on the circle is not directed there is no inductive limit for the algebras
(1), I € Z. But with the additional relation

Bi(f,9)=Bs(f,9), IclJ ©)
one can construct a global algebra L/@S;V which is generated by all B;(f,¢), f,g €
L*(SY) and T € Z [31, 15, 5]. Perhaps one could expect that the result is the even
subalgebra of the selfdual CAR algebra over the whole circle S'. We will show that
this is actually not the case; instead there occurs a central element Y € 4%, which
will finally lead to the fact that J@Sm, is the direct sum of two of those even CAR
algebras. Let now I} and I, be two disjoint intervals and let J, and J_. be intervals
containing both of them, one from the left side and one from the right side, so that
JoUJ_ = S'. Choose real functions f; € L2(S") with || f;]|*> = 2 with supp(f;) C I,

j =1,2. Then define
Y = B;,(f1, [2)Bs_(f2, f1)- (10

One finds that Y is unitary, self-adjoint and independent of the special choice of
f1, f2, I, I, J1, J_. Moreover, Y is in the center of 4. . For every ¢ € S! and

oniv*
Ir = S'\ {¢}, the global algebra .45, is generated by .4(Is) and Y [31, 15, 5).
We now want to reconstruct the global, or, “universal” algebra #£C; by a global
field algebra, the universal Majorana algebra.

Definition 2.1. The universal Majorana algebra Maj is defined as the direct sum of
the selfdual CAR algebra over (L*(SY), I') with itself, i.e.

Maj = &(L*(S"), I & (L*(SY),T). (11
The center of Maj is generated by the element
Y=-Do1 (12)

and we have the two subalgebras
; 1 . , 1 .
Majys = (1 - Y)Maj,  Majg = 5(1+Y)Maj. (13)

The universal Majorana algebra is a well defined C*-algebra since & (L*(S"), I") is.
For clarifying the connection between our definition and the definition of Maj given

by Mack and Schomerus [24] we consider the following two orthonormal bases of
28

1
{er,r€Z+§} and {en,n € 7},

where e,(2) = 2 for z =¢'? € §', -1 < ¢ < 7, a € 17. We define the elements of
Maj (Fourier modes)
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1
Yler) @0, reZ+=

b, ,
2
0 Y(ey), n € 7.

bn

Then we have

~ Maijyg is generated by the modes b, r € Z + %,
~ Maj;, is generated by the modes by, n € Z,
~ Maj is generated by the modes b,, a € %Z,

and the Fourier modes satisfy relations
1. .
{@UQ}=50+(—nhywm_m b =b_g, (14)

Ybe = (—1)%b,, [Y,b,]=0, Y=Y* Y?=1. (15)

It is convenient to understand the elements of Maj as smeared fields as well. We
define the Hilbert space

I = [A(SY) @ [XSY)
which may be identified with L*(S}), where 51 denotes the double cover of S'. Hence
each element f € 7% has the unique decomposition

F=rfas @ fr, s, fr € L*(SH).
On .% we have the antiunitary involution
I'=rer.
We define the field )(f) eMaj by
D) = (fxs) © V(S
so that we have the conjugation
() =D P,
anticommutation relations

A oA A 1 1
{9, v(@)} = 5(1 — Y} fns, gns) + 5(1 +Y)(fr, 9r)»
boundary condition
Yoh=dwh, y=C-bDoleBIH)

and o

Y, ()N =0.
We now want to redefine the local generators By(f, g) € .4(I) as even elements of
Maj. For that we have to fix an arbitrary point ¢ € S!. We distinguish between two

cases:
Case 1: For all intervals I € Z with { ¢ I we set

Bilf, ) =0Hd@, Ff=fofeH, j=goge . (16)
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Case 2: For every interval I € & with ¢ € I the point ¢ splits 7 in two disjoint
intervals I; and I, so that J = I; U{¢} U I,. Let x; be the characteristic functions of
I; and set f; = x;f, 9; = xj9, J = 1,2. Then we set

Br(f,9) = (FOd@) +d(f)b@) + YOI + Yo(f)db@), (7
fi=fiofieP, §=g @9, €, j=12

It is an easy but less beautiful work to control that these B(f, g) satisfy the relations
(6) - (9), and that relation (10) is fulfilled with the Y of Definition 2.1, also independent
of the functions and intervals [S]. It is not hard to see that the identifications (16),(17)
define an isomorphism between .4, and the even part Maj” of Maj, too [31]. Thus
we are allowed to identify the global observable algebra .4C.  with the even part of

univ
Maj.

2.2. Representations and Endomorphisms. Each of the algebras Majyg and Maj, pos-
sesses a faithful cyclic representation (s, 7ns, |{2ns)) and (F&g, 7r, |{2r)) which
is characterized by

1
WNS(br)'-QNS> 0, r> 0, reZ+ 5, (18)

7rR(bn)]QR>

respectively. The NS-representation is uniquely characterized (all matrix-elements can
be computed and the vector |{2xs) is defined to be cyclic). In the R-representation, the
action of the self-adjoint by on the cyclic |{2g) is not completely fixed. To determine
the R-representation uniquely too, we require in addition that the vectors |{2r) and
mr(bo)|{2r} are orthogonal in F&g,

0, n>0, necZ, (19

(2] (bo)|f2r) = 0. (20

One can consider these representations as those of Maj on the space .F#ys @ F% by
the requirement
mns(Y) = -1, m(Y) =1, (21)

which leads automatically to
1
7ns(bp) = 0, nez and mr(by) =0, rez+ 3 (22)

Le. 7y lives only on Majys and 7 on Majp. Of course, both representations are
then no longer faithful. The NS-representation is irreducible, the R-representation is
not; it decomposes into two irreducible subrepresentations (F&y , 7y) and (F#y , 7g )
(see below) which are generated by the action of mr(Maj) on vectors |£2%) and |23 ),
respectively, where

1

V2

These states are eigenstates of 7r(by) with eigenvalues 4-2-1 [30]. We are now
interested in what happens, when the representations of Maj, mns and 7g, are restricted
to the observable algebra which is the even subalgebra of Maj, 4. = Maj*. It is
known that the NS-representation splits into two irreducibles,

105) = —=|2R) & 7R (bo)| %)
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WNsiJ@g:] =mp D 71, Fbns = Ty D F, (23)
and the R-representation decomposes into two equivalent ones,
7TR|Jg‘ﬁ;: =7T1/2€B7T;/2, %R=951/269%{/2. 24)

The subspaces Fy, 1, F, , and | /» are spanned by vectors

1
ns(borpy - bor ) ins) € FHy, s ENg+ 50 TN > >

1
NSOerpny  b—r)|f2ns) € FB, 1 €ENp + 37 TaNe1 > e > T

ARG myy - b)) R) € FBij, 1 €ENp, noy >0 >my,
WR(b~n2N+1 e b—n1)|QR> < ‘%1//2> n; € NOa TN+l > 0 > Ny,

with N € No. We remark that the subspaces 5%/, and %] P do not coincide with

Ty and F#; . How is that possible? The reason is that the subrepresentations 7y

and 7y , when restricted to the observable algebra AC.,, become equivalent [30],

and see below. Therefore the decomposition into invariant subspaces is not unique.
Mack and Schomerus [24, 25] defined the following endomorphisms of Maj which

restrict to endomorphisms of the global observable algebra A4S, .

Definition 2.2. The endomorphisms g5, J =0, %, 1 of Maj are defined by their action

on the generators as follows,

o = td, (25)
iba+% a Z %
o2ba) =8 By —b_1)  a=0 . g p(Y)=-Y, (26)
——iba_% a S —-%
f ~by  a#0,%1 N
01(bg) = { b, 0= o,ié ; aY)=Y. (27)

It is shown [24] that these endomorphisms fulfill

NS © 012 =T OMR, (28)
™Ns©01 = 7Ns, 29

1
Tpo Qg = 7TJ, J=07§’17 (30)

where relation (29) is the most trivial one because g; is inner in Maj, implemented
by the unitary self-adjoint

R=v2by+by +b_, € Maj.

L
2

We can define these endomorphisms by the formula
0s () =dWi ),
where V; are the following isometries on %% = L2(S!) @ L*(SY),
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> 1 0 A _ 0 ‘/1/2 _ ‘/1 0 )
%—<O 1)7 Vvl/2"<{/1//2 0 )7 ‘/1"'(0 ‘/{ > (31)

the isometries (Bogoliubov operators, see below) V5, V] /2, Vi,V| e FB(LA(S)) are
defined by

Ve = s (leel ley) eoo-+lj{j( Heal = le_n_y)e-al),

1//2 = 1Z(|en 2 Ie—n><e-n+]|)
W= legeyl+le eyl = 3 (Jonnt el +len)eny)
n=1
W= leobeol = 3 (len)enl + enbleonl).
n=1

It is worthy to note that the two non-vanishing entries, each in 174 /2 and v, are
actually different.

3. Localized Endomorphisms

In this section we present our localized endomorphisms in terms of Bogoliubov trans-
formations. After a brief summary of mathematical results which we will use, we
introduce them as endomorphisms of the algebra of the punctured circle.

3.1. The Selfdual CAR Algebra: Some Useful Results. For a better handling of our
techniques we give a brief repetition of Araki’s selfdual CAR algebra & (%, I") and
quasifree states [1, 2]. We consider a Hilbert space % with an antiunitary involution
I (complex conjugation), I = 1, which fulfills

(r'f,rgy=1(g,f), frgeH.

The selfdual CAR algebra &(7% , ") is defined to be the C*-norm closure of the
algebra which is generated by the image of a linear mapping ¢ which maps elements
f € F to canonical generators 1(f), so that

Y =9 f), W) (@} = (f, 91
holds. The C*-norm satisfies {2]

1
lwm=%wwu¢mw«wWP
In particular, we have the inequality

PO < 1. (32)

Elements of the set
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T(F T ={V € B(F)|[V,I1=0, V*V =1}

of I commuting isometries on .7 are called Bogoliubov operators. Every Bogoliubov
operator V' € F (5, I') defines an endomorphism gy of & (%, I'), defined by its
action on the canonical generators,

ov @ () =YV f).
Moreover, if V € F (9%, I') is surjective (i.e. unitary), then gy is an automorphism.
Definition 3.1. A state w of €(F ,I) is called quasifree if for all n € N

w(f1) - P (fans1))
W) W) = DFE Y signo [[w@Fo) ¥ fomi)  (34)

g=1

0, (33)

holds. The sum runs over all permutations o € %, with the property
o) <o) <--- < o(n), o(j) < a(j +n), j=1...,n. (35

Quasifree states are therefore completely characterized by their two point function. It
is known that there is a one to one correspondence between the set of quasifree states
and the set

OF T =1{8 € B(H)|S=S5",0<S<1,S+IS =1},

given by the formula
w@(H*Y(g) = ([, Sg). (36)

The quasifree state characterized by Eq. (36) is denoted by wg. A quasifree state,
composed with a Bogoliubov endomorphism is again a quasifree state, namely we
have wg o gy = wy-sy. The projections in J(F, ") are called basis projections.
If P is a basis projection then the state wp is pure and is called a Fock state. The
corresponding GNS representation (#p, wp, |£2p)) is irreducible, it is called the Fock
representation; the vector |2p) € .F#p is called the Fock vacuum. Araki proved [1, 2]
that a state w of &(.9%, I") which satisfies

w@(H(HH=0, fePH (37

for a basis projection P is automatically the Fock state w = wp.

We now come to an important quasiequivalence criterion for quasifree states. It
was developed for the case of gauge invariant quasifree states by Powers and Stgrmer
[26] and generalized for arbitrary quasifree states by Araki [1]. Unitary equivalence
(denoted by ”=”) or quasiequivalence (denoted by ”~") of states means always that
the corresponding GNS representations are unitarily equivalent or quasiequivalent,
respectively.

Theorem 3.2. Two quasifree states wg, and ws, of & (F% ,I") are quasiequivalent if
and only if

Si - 53 € BT, (38)
where Zo(H) denotes the ideal of Hilbert Schmidt operators in FB(F5).
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We now can conclude that two Fock states wp, and wp, are unitarily equivalent, if
and only if P, — P, is Hilbert Schmidt class, or, if wp is a Fock state and gy is a
Bogoliubov endomorphism, that wp o gy ~ wp if and only if P— (V*PV)% is Hilbert
Schmidt class. But in most cases we study representations of the form 7p o gy, where
ov is a Bogoliubov endomorphism and 7wp a Fock representation of & (9%, I'). Such
a representation mp o gy is in general not cyclic but it is equivalent to a multiple
of the GNS representation 7y «py of the state wy«py = wp o gy. The multiplicity
is given by 2"V where Ny is the dimension of the intersection of kerV* and P.%
[4, 28], i.e.

mpooy €2 ryepy, Ny =dim(kerV* N P.J). (39)

This is a decomposition of 7p o py into cyclic subrepresentations but in general
not into irreducibles. A decomposition into irreducibles is provided by the following
theorem which was proven in [6] and, in a different way, in [4].

Theorem 3.3. Let V be a Bogoliubov operator with My = dim kerV* < oco. If My
is an even integer we have (with notations as above)

Tpooy 27 wpr, (40)

where mps is an (irreducible) Fock representation. If My is odd then we have

My ~1

Tpooy E272 (M B W), 41
where .. and _ are mutually inequivalent, irreducible representations.

The representations 74+ occurring in Eq. (41) are called pseudo Fock representations
[1]. Consider the automorphism a_; of &(F, I') which is defined by a_;(W(f)) =
—1(f). We define the even algebra & (%, I')* to be the subalgebra of «_-fixpoints,

C(FH,I) ={z € E(F, Do) =z} 42)

We now are interested in what happens when our representations of & (%, I') are
restricted to the even algebra. For basis projections Py, P», with P, — P, Hilbert
Schmidt class, Araki and D.E. Evans [3] defined an index, taking values +1,

ind(Pl , PZ) — (_ l)dim(.l:’](%'ﬂ(l—Pz).%') .

The automorphism «_; leaves any quasifree state wg invariant. Thus «_; is imple-
mented in 7g. In particular, in a Fock representation 7p, a1 extends to an automor-
phism &_; of 7p(E(H, ')’ = .78 (Fp). The following proposition is taken from
[21.

Proposition 3.4. Let U € T(F, I') be a unitary Bogoliubov operator and let P be
a basis projection such that P — U™ PU is Hilbert-Schmidt class. Denote by Q(U) €
TB(FEp) the unitary which implements oy in wp. Then

a QU =c)QR), o)==l (43)

In particular,
o(U) = ind(P, U* PU). (44)

Furthermore, one has {3, 2]
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Theorem 3.5. Restricted to the even algebra €(F% , 'Y, a Fock representation wp
splits into two mutually inequivalent, irreducible subrepresentations,

7Tp|g.&((%f’p)+=7r}@7l'l_;. 45)
Given two basis projections Py, P, then

s ¥ (46)

ifand only if PL — P, € Z5(F%) and ind(Py, P,) = +1, and
T, ¥ T, @7)
ifand only if P, — P» € S(F%) and ind(Py, P) = —1.

On the other hand, it was proven in [6] that pseudo Fock representations 7, and 7_
of Theorem 3.3, when restricted to the even algebra, remain irreducible but become
equivalent. Summarizing we obtain

Theorem 3.6. With notations of Theorem 3.3, a representation wp o gy restricts as
Jollows 1o the even algebra & (F% , )*: If My is even we have

My, _
Tpoovigwr,ry 2272 (Tp ® 7o) (48)

with ©p, and T, mutually inequivalent and irreducible. If My is odd, then

~ My 41
mTp O QV’?(%,I’)" =272 (49)

with  irreducible.

3.2. Restriction to the Algebra of the Punctured Circle. Let us consider the algebra
of the punctured circle .4(;). There is no Y in .4(I;) and the generators are of the
form

Br.(f.9)=vHd@, Ff=fof G=909

Thus we identify .4(I;) as the even algebra &(LX(SY), I')* and we are allowed to
denote the generators by

Bilf, =9y,  fge XD, ICI,

i.e. we work with common CAR algebras. By construction (16) and (17) it is easy to
see that our representations 7 s, being non-faithful on .4 . fulfill

univ?

« 1
WJ(J@(IC)) = WJ(t/zgqiv)v J= 07 E) 17

the representation theories of ..#(I;) and .4$,, are obviously the same. Since
) & (LS, I)* we can identify representations mys and g with GNS
representations of quasifree states of & (L2(S!), I') and, correspondingly, representa-
tions o, 7y /2, 1 With associated restrictions to the even subalgebra. This works as

follows. Consider Sxs, Sr € @(LA(S"), I'), the Neveu Schwarz operator
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Sns= > le—r)(er] (50)

T‘ENO+%

is a basis projection, the Ramond operator

Si= 5 le0)eol + 3 e nble 51

neN

is not. BY (Fsys Tsuss |12sys)) and (Fs,, sy, |2, )) we denote the GNS triples of
the corresponding quasifree states wg,, and wg;, respectively. We have

1
wSNs(w(e‘l") 'd’(er)) - <6Ta SNSeT> = 7 T e NO + 57

and therefore, corresponding to Eq. (18),

1
T s (W(er))|25y) =0, r € No+ X

as well as
WSR(¢(en)*¢(€n)) = <en7 SReTL> = 07 n e N>

and therefore, corresponding to Eq. (19),

TFSR(w(en))|QSR> =0, n € N.

Since wg, is quasifree we obtain wg, (¥(ep)) = O as the correspondence to the ad-
ditional requirement (20). Consider an arbitrary element x = zns @ zr of Maj,
ans, Tr € E(LA(SY), ). By (18), (19) and (22), and taking into consideration that
mns and 7r are defined as cyclic representations of Maj, we identify

WNS('/E) = T Sys (xNS)v WR(:B) = 7“'SR('CL‘I'Z)'

Now .-6(1;) is generated by bilinear expressions of Maj with zys = xr. Therefore,
with identification of .4(I;) and & (LA(SY), I')*, we have to identify mys with T Syss
g With 7g,, and with notations of Theorem 3.5, wp with 7% s and 7; with 7 Sy~ CON-
sider our isometry V;,, (the Bogoliubov operator defined at the end of Subsect 2.2):
The kernel of its adjoint Vl*/2 is one-dimensional, spanned by the vector 2~ 2 (6[ +e_; )
ie. My,,, = 1. By Theorem 3.3 we find mgy o ov;,, ¥ 7 & 7 with 1nequ1valent
irreducible pseudo Fock representations w1, becoming equivalent in the restriction
to the even algebra by Theorem 3.6. Since Sg = V[ /2SNSV1 /2 the states wg, and
Wsys © 0v;,, coincide. By Eq. (39), msys © 0v;,, is indeed a GNS representation of
WR, the Fock Vacuum |£25ys) is cyclic for mg o gy, ,» since Ny = 0. This establishes
TSe = Tsys © 0V, = 7+ @ m—. We conclude that the equivalent restrictions of 7, and
- to the even algebra correspond to the representations 7/, and 7 /2
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3.3. Examples of Localized Endomorphisms. We have seen that, when working on
the punctured circle, one has to deal with even CAR algebras. Thus we are allowed
to define endomorphisms of .4(I;) simply as Bogoliubov endomorphisms of the un-
derlying algebra & (L*(S'),I"). We remark that our endomorphisms g/, and g; of

AL do not restrict to endomorphisms of .4(I-) because of the different entries
uny A C

V; and V7 in matrices V7, J = 1,1 of Eq. (31). For constructing localized endomor-
. J . . . 2 . q . g

phisms, we admit as localization regions all open intervals such that their closure is

contained in I¢, i.e. elements of the set

Fe={leF7|Cel}. (52)

(I’ always denotes the interior of the complement I¢ = S* \ I.) As usual, we define
an endomorphism ¢ of _#4(l;) to be localized in some interval I € Z if o(A) = A
for all A € A4, I € Z, I, NI = {. We present localized endomorphisms
as Bogoliubov endomorphisms which are induced by pseudolocalized isometries. A
Bogoliubov operator V' € F(L*(S'), I') is called pseudolocalized in I € Z if for
all fe L*(SH

VH) =0+ f(2), z el o+ € {-1,1},

where I, I_ denote the two connected components of I’ N I-. Moreover, V is called
even, if o, = o_, and odd, if 0, = —o_. Clearly, a pseudolocalized Bogoliubov oper-
ator induces a localized endomorphism of the even algebra A4(I;) = E(LA(SH, )"
We give the following examples

Definition 3.7. Let h € L*(S") be a real (i.e. I'-invariant) function, |h|| = 1 and
supp(h) C I for some I € ;. Define W € F(L*(S"), ),
W =2lh)(h| — 1 (53)

and the automorphism ¢\ = ow of & (L*(SY), ).
Obviously, W is even pseudolocalized and Qll"c therefore, when restricted to .4(l;),
localized in I.

Lemma 3.8. The automorphism gll"" is inner in € (ILA(SY), I"). In restriction to the
even algebra A(1;) it leads to

loc ~

Tpog, =T1. (54)

Proof. One easily checks that gy is implemented in & (L?(S'), I') by the unitary
self-adjoint g(W) = v/24(h), for all f € L*(S') we have

gqWHP(fg(W) 29(hyp(fryph)
= 2{¥(h), () }(h) — 29 (Hrp(yg(h)
= 2(h, fiip(h) — Y(f)
= Q2 fh =D
= PpW).
Thus gw is implemented in 7g,, by GW) = wg(g(W)). Obviously we have

a_((QU)) = —QU) and Sns — W*SysW is Hilbert Schmidt class. By Proposi-
tion 3.4 and Theorem 3.5 we conclude



Localized Endomorphisms of the Chiral Ising Model 279

+ ~ o,
TrSNS °© QW - 7TSNS

which proves the lemma, g.e.d.
In the following we are searching for a localized endomorphism gll"/cz which leads

to a representation being equivalent to 7y /5. It turns out that the discussion becomes
much more complicated. First we fix our point { to be { = —1, without loss of
generality. Further, we choose the localization region I to be I,

pefredtes| o)
2=4z=¢%c 8§ 2<<;5<2

so that the open complement [} is divided by ¢ into I and I,,

I

{z=ei¢€Sl‘—W<¢<—g},

I, {z:ei¢651‘g<¢<w}.

The Hilbert space L2(S') decomposes into a direct sum,
LX(S") = LA(I-) @ LI © LX(I).

By Pr,, Pr_ we denote the projections on the subspaces L(1,), L*(I_), respectively.
Define functions on S! by

@ — V2220 zel,
¢ () { 0 2SN\

1
— 7.
a < 2
With
1
{eﬁz),r€Z+§}, {e? nc 7}
we then obtain two orthonormal bases of the subspace L2(I;) C L%(S%).

Definition 3.9. We define' Bogoliubov operators V,V' € F(L*(SY), ') as follows:

i
Vo= PL—P1++ﬁ(|e(%2)>(662>|‘|e(f)%><362>!) (55)
Y (€202~ 162, )e),
n=1
1o : @\ /D @ ()]
Vo= Pz_—PI++1;(|en><en_%1—ien><e_n+%|), (56)

and let gll"/cz and U%"/cz be the endomorphisms of & (L*(S"), I') defined by Qll"/cz = gy
and Ullo/cz = Qv.

Obviously, V and V' are odd pseudolocalized and gll"/cz and 011"/°2 therefore, when
restricted to .-4(1;), localized in 1.

! The definition of V’ was already suggested by Mack and Schomerus [24].
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3.2. Analysis of gll°/°2 and 011"/°2. In this subsection we establish that 7 0}’¥, is unitarily
equivalent to 7 /,. Furthermore we identify the unitary equivalence class of mg o

Qll"/czgll"/cz. The first step is the following:

Lemma 3.10. The following operators are Hilbert Schmidt class:

V*SnsV — Sk € B(IASY), (57)
VSnsV* — Sk € B(ILXSY), (58)
V™SV — Sk € BIASY), (59)
V'SV =Sk € BIASY). (60)

Because the proof is ugly work it is banished to the appendix. For drawing our first
conclusions of Lemma 3.10, we remember an estimate which was given by Powers
and Stgrmer [26]: For positive operators A, B € .%(%) the following inequality
holds: )

|Af — B35 < | A~ B\, (61)
where for T' € . (L*(SY)) by | T|; is denoted the trace norm

Il = (@ D),
and by ||T||, the Hilbert Schmidt norm

IT(l2 = @e(T*T)2.
This estimate will be used to see that the operators V*SxsV and V'™ SysV’ differ
from their positive square roots only by Hilbert Schmidt operators,
I(V*SnsV)2 = V*SisVIE < [[V*ShsV — (V*Sus V)l
[V*Sns(X — VV")SnsV |1
VISP IL = VV*]s.

Since 1 — V'V* is a rank one projection and therefore trace class, the right-hand side
is finite. Obviously, the same calculation runs for V/. More easily one finds

(G2l -

It follows immediately from Lemma 3.10:

IA

1
St — Skl = 1
158 — SRll2 S 2

L 1 1 1
(V*SnsV)? — Si € (LS, (V" SnsV"): — S € (LS.
Applying Theorem 3.2 this yields wy+gv =~ wr and thus
TSys © OV & TSgs
the same holds for gy+. We have already discussed that 7g, decomposes into two
inequivatent pseudo Fock representations. Using Theorem 3.3, the same is true for
Ty © @v and gy, © gy since My = My = 1. Thus we have
ﬂ—SNS ° QV r—_\‘J 71'+ EB m— g TrSNs o QV"

In restriction to the even algebra & (L*(S"), I')*, the representations m, and 7 be-
come equivalent and have to be identified with 7, /,. This means 7% ooy = mg oov
and m§ o gy = mg o oy/. We have proven
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Theorem 3.11. The representations of A4(I¢) obey

mooh Emodf, T my, (62)

A /2. (63)

oc loc
- 71'000'1/2%’7&00'1/2
Let us now consider the squares g3, = gy and ¢,/ = gy ».

1R

Proposition 3.12. The representations of A4(I;) obey

loc _loc

0 © 01120172 T 1y @7, (64)
71'000'110/(:20'110/02 = wg D . (65)

Proof. If we multiply the operator in relation (58) with V* from the left and with V'
from the right we get
V*SRV — Sns € Z(LAH(SY)).

Since relation (57) holds we can replace Sg by V*SysV, this yields
V*V*SnsVV — Sys € Z(LA(SY)).
In the same way one obtains
V'V S V'V — Sns € B(LA(SY).

Now the operators 1 — (VV)(VV)* and 1 — (V'V'XV'V’)* are rank two projections,
so that we can again conclude

(V*V*SxsVV)2 — Sxs € FH(LA(SY),
and 1
V7V SxsV'V)2 — Sns € Z(LHSY).
By using Theorem 3.2 we obtain for the states '
Woys © Q%/ = W) Woys © Q%/’ ~ Wsys -

Moreover, the kernel of V* is spanned by the I'-invariant, normed vector
1
(2) ) (2)
=-=(ey’ +e
] \/i( % _%)7

and the kernel of V'* is spanned by €. Thus, ker(V*)? (resp. ker(V'*)2) is spanned
by orthonormal vectors féz) and V f(§2) (resp. ef)Z) and V' egz)) ie. My = My»n =2,
we conclude

TSns © Q%/ = Tns @ TSys = My © Q%/’
by Theorem 3.3. In restriction to the even algebra, identified with .4(1;), this reads

loc 1 loc I ~
g © 91/2910/02 dm o Q1/c2910/cz = mp D D 7o DT,

loc _loc loc _I
Mo © 0107 @ TL 001507, = Mo m & mo DT

We have to assign the irreducible representations on the right-hand side to the

~no

representations on the left. By Theorem 3.11 we find 7o o glf/cz = 7o 9110/92 and

therefore mg © glf'/czgll"/cz Y Mmoo 9110/02@110;2- Using the same argument, one obtains

loc _loc ~v loc loc
Mo © 015071 )5 = 10 017507} g.e.d.
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4, Extension to von Neumann Algebras.

In the DHR theory one usually works with local von Neumann algebras instead of
local C*-algebras. This formalism allows to discover intertwiners in the observable
algebra and this is crucial for the analysis of statistics and fusion. It is our aim to find
a description of the chiral Ising model as close as possible to the DHR formalism.
Therefore we have to extend our local C*-algebras .4(]), to their weak closures in
the vacuum representation.

4.1. The Net of Local von Neumann Algebras. For intervals I € 7 with non-empty
open complement, we define local von Neumann algebras

R =AD", TeF, I'#0.

By Mobius covariance (some details are presented in the appendix), this defines a
so-called covariant precosheaf on the circle. In particular, we have Haag duality on
the circle [7, 9],

FIY = 7. (66)

Since the set of intervals {I € Z,I’ # 0} is not directed we cannot define a global
algebra as the C*-norm closure of the union of all local algebras. Following Fre-
denhagen, Rehren and Schroer [14], one could instead introduce the corresponding
universal algebra. But in our model it seems to be much more comfortable to define
a quasilocal algebra of the punctured circle. (The set %, Eq. (52), is directed.) This
works as follows. We fix again our point at infinity, without loss of generality, to be
¢ = —1 and admit only intervals I € . Then we define our algebra 2 of quasilocal
observables to be the norm closure of all such local von Neumann algebras,

A = | D). (67)
Iez

Now choose some interval I € Z. Let us denote the von Neumann algebra generated
by all #B(Ly), Ip € Z¢, Ip N I =0 by F(I'). Obviously we have

PRIy C BRI,

We claim that equality holds, that means Haag duality holds also on the punctured
circle.

Lemma 4.1. We have Haag duality on the punctured circle. For I € F; the following
relation holds:

RIY =R (I). (68)

Proof. We have to show #:(I') = (). It is sufficient to show that each gen-
erator mo(W(Y(g)), supp(f).supp(y) C I' of FB(I') is a weak limit point of a net
constructed out of elements in %2.(I"). Let Iy € Z;, Ip O I be an interval such
that Ij is a small neighborhood of (. Let xo be the characteristic function of I, and
Jo=xof go = xog- Since m((fo)¥(go)) converges in C*-norm to mo((f)p(g)) by
inequality (32) if I} shrinks to the point ¢ it suffices to show that mo(y(fo)¥(g0)) is
such a limit point for all such . Now let us denote the two connected components
of '\ {C} by I, and I_. Define x4 to be the characteristic functions of 7, and we

write fi+ = x+fo, 9= = Xx=go- Then
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mo(W(fo)(g0) = mo((f)P(ge)) + mo(b(f-)b(g-))
+mo(p(f(g-)) + mo(W(f-)(gs)).

Clearly, the first two terms on the right hand side are elements of 72(I’). We show
that the third (then, by symmetry, also the fourth) is a weak limit point described
as above. Choose sequences {h{",n € N}, where [ € L%(S') are functions,
IR = 1, supp(h D) € I, and I € Z are intervals, I C I N Ij, shrinking
to the point {. Then define for n € N

Zy, = mop(A)(h™)) € Z(T).

By M&bius covariance of the vacuum sector (appendix), we can choose the h(j':‘) such
that the Z,, are related by Mdbius transformations (dilations). For all n we have
| Z,|| < 1. It follows that there exists a weakly convergent subnet {X,,a € ¢},
that means there is a function F' : ¢ —— N (¢ a directed set) with the property that
Xo = Zp(q) for all a € ¢, and that for each n/ € N there is an o’ € . such that o > o
implies F(o) > n’ [27]. The weak limit point of the net {X,,a € ¢} in J2(I") will
be denoted by X,
w- 1ién X, =X

For each I} € Z all elements R € Z2(1;) commute with Z,, for sufficiently large n,
thus [X, R] = 0. It follows

(X,A]=0, Aec,

and, by irreducibility of the vacuum representation, X is a complex number, X = Al.
We have

A = (0] X|$20) = Tim( o] Xo|$20) = im (20| Z (9| $20) = (£20] 21| £20)

by Mobius invariance of the vacuum. We claim that we can choose A" and A such
that A # 0. Recall the definition of the Hardy space

H* = {f S LZ(SI) 1 (e—naf> =0, n=1,2,.. }
A Theorem of F. and M. Riesz (see e.g. [12], Th. 6.13) states that
feH,f#0 = f(2) # 0 almost everywhere. (69)

For example, for a given non-zero function k € SnsI?(S') we find that k' € H?,

197 .
where k'(z) = z2k(z). So k’ and hence k cannot vanish on a set of non-zero measure.
Now we have

A = () Z1|020) = wob (AP y(hD)) = (ThP, SxshD).

Define k = SNsh(_l) for a given RY as above. We find k # 0, otherwise Y ¢

SnsL2(SY) in contradiction to the fact that AY and hence I'h> vanishes outside 7.
It follows k(2) # 0 almost everywhere and hence

c=/ k)P-L 20,
0

2riz
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If we define, for instance, hﬁ,l)(z) = c*%x m(2)k(2), where x ;o denotes the charac-

teristic function of I then indeed X = ¢z # 0. So we can compute

RW(e-) = A m@(fdg- )X
= A7lw-lim mo@(f (g ) Xa

= A7lw-lim mo(f)Y(9-)ZF@)

= AT'w-limmo(W(f (g (T @)

= A7 'wlim o RS P ypig-))

= At w-limmoW(f O mop (T (g ),

i.e. mo(¥(f)(g—)) is indeed a weak limit point of a net of elements in .%2.(I"), q.e.d.

4.2. Extension. Because we work on the punctured circle the vacuum representation
is faithful, i.e. my acts faithfully on .4(I;). Thus we are allowed to use the common
convention of identifying observables A with their vacuum representers wp(A). Passing
over to von Neumann algebras, we consider the vacuum representation acting as the
identity on Z2(I), and in the same fashion, we treat local C*-algebras .4(l) as
subalgebras of J8(I), I € Z:. Now we have to check whether we can canonically
extend our representations 77 and endomorphisms glj’c, J= %, 1, to the von Neumann
algebras .92(I), I € Z, and the global (quasilocal) C*-algebra 2, they generate.
Thus we are looking for isomorphisms

ry o AL = R — 1y (AD)

satisfying #7(A) = my(A)if Ae A1), I € Z,J= %, 1. This means exactly that
we have to check whether the representations 77 are quasiequivalent to the identity
(vacuum representation) on local algebras .4(1).

Theorem 4.2 (Local Normality). In restriction to local C*-algebras A4(I), I € %,
the representations T; are quasiequivalent to the vacuum representation my = id,

1
Tl = molan,  T€F J=5,1 (70)
Proof. First we consider the case J = 1. We have to show that
ol @2, rr = Ty lewm,ry

We have already proven that g = 7§ o ow on &(LA(S"), I)*. We show that
75 © 0w and g, when restricted to & (L*(I), IN*, are unitarily equivalent (I €
Z). In €(LX(SY), I"), ow is implemented by the unitary g(W) = V24(h). Choose
a real function b’ € L?(S') such that {|#/|| = 1 and supp(h’) C I, for some Iy € Z,
IoN I =0 and set U = v/2ip(h"). Then (W)U is a unitary element of &(L>*(S!), I
and for z € €(L*(I), I')* we have

qWUz(gW)HU)" = gqW)HUzU (W) = q(W)zq(W) = ow (2),
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and therefore
Th © 0w (@) = 15 (qWV)Dwh (@)rs, (q(W)HU) T,

which proves the statement. Now consider J = % By the following Lemma 4.3 we
have quasiequivalence of 7g and ms, on &(L*(I),I'). In restriction to the even
subalgebra, the irreducible g, splits into 75  © g, and the two irreducible sub-
representations 7, and 7_ of 7g, become equivalent to an irreducible representation
7. Thus locally one obtains

(M5 ® T,y & 27|z o), 0y

where 7 corresponds to the representation 7 /,. Having already established the local
equivalence of 75 - and g this proves the theorem, g.e.d.

Lemma 4.3. For I € Z; we have the local quasiequivalence
Tsws @2, = Tsglwwa i,y (71)

Proof. We first claim that |{2g,) and |{2s,) remain cyclic for 7, (& (L*(I), I')) and
s, (B (LA(I), I')), respectively. Denote by P; the projection onto L*(I) ¢ L*(S1).
Then for g, the statement is a consequence (of the arguments in the proof) of
Araki’s Lemma 4.8 in [1], because

(1 — P)ILA(S") N SxsLA(S") = {0}.

(If k € SxsLA(SY), k # 0, then k'(z) = 22k(z) is a function in H? and hence again
by Eq. (69) k and &’ cannot vanish in the whole interval I.) An analogous argument
runs for mg,, because it is a direct sum of inequivalent pseudo Fock representations
w4 and 7. which restrict to Fock representations (see [1] for details) wp, of &((Fr +
I'PRINIA(SY), I) each, where

o0

= Z le—n){e—n]

n=1

is a basis projection of L3(S") = (P + ['PrI)LA(S"). If P® denotes the projection
onto L3(I) = L}(S") N L?(I) one finds again

A= PLF(SH) N PeL(SY) = {0}

because we have PI(O) = P; — {ey, Preo) ' Prleo){eo| P; and thus a function k €
(1—P)L3(S") is constant in I, k(z) = ¢, z € I and ¢ € C. On the other hand, for k €
PRLg(Sl) we find I'k —& € H?. Now I'k — € vanishes in I, so it follows by Eq. (69)
that I'k—¢ = 0, i.e. k is constant on the whole circle, k = ¢. But we have {eg, k) = 0 for
k € PrL3(S") and hence k = 0. So we conclude that the GNS vector |{25,) remains
cyclic for mp, (& (L3(D), I)), thus vectors |21) = |2p,) for mo(F(L*(I),I"). By
inequivalence of 7, and 7_, the GNS vector |Q2g,) = 277(|2,) & |£2_)) remains
cyclic for WSR(%(LZ(I ), I")). Thus, for proving the lemma, we have to show that
states wg,,, and wg, are quasiequivalent on & (L*(I), I"). We have to show

(P1SnsPr)? — (PrSePP)? € Z(LA(SYY).
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Using the inequality (61) it is sufficient to show
| PrSnsPr — PrSr Pr||1 < oo.

We use the parameterization 2z = €%, —m < ¢ < 7 of S'. Recall that Hilbert Schmidt
operators A € Z5(L*(S")) can be written as square integrable kernels A(¢, ¢'). For

instance, a rank-one-projection |e,){e,| has kernel e™¢~#", For (small) € > 0 define
operators in S\, S € Z(IA(S1)) by kernels

oo —Lip—igp'+e)
(€) N _ —m+1)p—i¢+e) _ € ?
SNS(¢7 ¢ ) - Z € 2 - 1 — e—(i¢*i¢'+€) 9
n=0
and

6. =g+ D e e

R 2 & 1 —e~G(d=i¢™+e  2°
n=

Note that ¢ regularizes the singularities for ¢ — ¢’ = 0, +27. Using Cauchy’s integral
formula, it is easy to check that for r, s € Z + 2,

(€) ﬁr__zlsh
lim (e,, Syae =
e\0 < 71 NS S> 6\0 g1 2’/le gt 27’(’12’ — 7’6—6

limep €° br.s r,s <0
0 otherwise

= <€7-, SNS€S>'

Because e < 1 for s < O this result can be generalized to
im (f, S\39) = (£, S
11{% (£, Sns9) = (f+ Snsg)

for arbitrary f,g € L?(S') by an argument of bounded convergence. So we have weak
convergence w-lime o 51(\12 = Sns. In an analogous way one obtains w-lim\ o S}(f) =
Sg. Thus the difference A© = S — S(E) with kernel

1 1
A, ) = ——ems 5
1+

R )
converges weakly to A = Sg — Sxs. We have to show that X = PfAPy is trace
class. The operator Pr acts as multiplication with the characteristic function x(¢)
corresponding to z = el € I. Now X© = Py A© Py, converging weakly to X, has

kernel
1

(€) N _ 1 /
X (¢7 ¢ ) - XI(¢) <1 + e—%(i¢_i¢'+e) 2 XI(¢ )

and is no more singular for € ™\, 0. Hence

™ dqs d¢/

lim (f,Xg) = [ o FE@NX ), ¢h9®),  f.g€ LS,

-7

by the theorem of bounded convergence. It follows X = X € Z(L*(Sh). Let
%1 be a smooth function on [—, w] which satisfies ¥7(¢) = 1 for z = ¢* € I and
vanishes in a neighborhood of ¢ = =m. We define
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S 1 Ly
X(¢a¢)—XI(¢)<mT)—E>XI(¢)

such that X = P; X P; and hence
X[l = [P X Prlly < [[PYIIX P = (1 X

Since X (¢, #') is a smooth function in ¢ and ¢’ it has fast decreasing Fourier coef-
ficients which coincide with matrix elements {e,,, Xe.,), n,m € Z. This proves the
statement || X||; < oo, q.e.d.

We have proven local quasiequivalence of our representations mp, 7/, and 7.
Thus we have an extension to local von Neumann algebra< F2(I) and to the quasilocal
algebra 2 they generate. By unitary equivalence g 9 > 7, on A(I¢), ie. there are
unitaries Uy : 9% — F&; satisfying 09°(A) = U;'m;(A)U; for all A € 4(I) and
all I € Z, we have an extension of gl"c to A¢, too, J = %, 1. These extensions,
denoted by the same symbols, fulfill

%A = A4, Ac R, Le Z, LinlI=0
(I denotes the localization region) and also
(R C Ry,  Ioe Z, IcC,

because these endomorphisms satisfy the corresponding relations on the underlying
C*- algebras A1) and A(Iy). We have established that our endomorphisms gl"c
J= 2, 1, are well-defined localized endomorphisms in the common sense. In addition,
these endomorphisms are transportable. This follows because the precosheaf {72(1)}
is Mdbius covariant. Thus 2+ is covariant with respect to the subgroup of Mobius
transformations leaving ¢, the point at infinity, invariant.

4.3. Fusion Rules of Localized Endomorphisms. The main advantage of working with
local von Neumann algebras is that one can manifestly prove fusion rules in terms of
equivalence classes of localized endomorphisms. Let g,, and g, be endomorphisms of
¢ localized in intervals I, I, € Z, respectively. Then there is an interval I € e,
1,U1, C I, such that g, and g are localized in /. Suppose that g, = g, i.e. that there
is a unitary U € .98(F#%) such that g,(A) = U* (AU for all A € 2. Exploiting
Haag duality one finds U € 98(I), i.e. U € .. This is an important tool which
enables to derive fusion rules in the algebraic framework: If also §,(A) = U*g,(A)T,
A € U, for localized endomorphisms go, Jp then Jo0. = Bp0s, realized by the
well-defined unitary g,(U YU. So we can deduce fusion rules in terms of equivalence
classes by computing it for some specml representatlves Obviously, this procedure
fails for global endomorphisms ¢, J = 5,1, of AL by two reasons: The first one

umv
is that a@ﬁw is generated by local C *-algebras. But local intertwiners may lie only in
their weak closures; there is a rather small number of endomorphisms which are inner
equivalent in the C*- algebras The second reason is that the vacuum representation
does not act faithfully on J@umv In the vacuum representation, too much information

gets lost. For example, the equivalence class of 7o o ¢/, does not depend on the
isometry V 1 a all but the representation g o g% /2 does. Counterexamples can be
constructed; there is, for instance, an endomorphism i/, such that mg o uy =
o © 0172, but mo © “1 2 2 mp o Ql 2 28 representations of J@umv [51.
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It is no problem to compute the fusion rules for our special examples of localized
endomorphisms, we just have to summarize some of our previous results. Proposition
3.12 gives us the first fusion rule, we have established

loc loc
o © 012012 = 1o @ 7.

We obtain the second fusion rule by the fact that 7y o gll"/cz = 72 (Theorem 3.11).
Hence we conclude

loc loc
MO 01 Q1) = MO 01/2 = T

Since gl"c and gll"/cz commute if we choose the localization region of g]°° disjoint to

that of g‘1°/°2 we also obtain

loc loc
T © 01201 = TMi/2-

Trivially, the fact that (¢'°°)? = id leads us to the third fusion rule

79 © Qloc Qloc ~ oy

Denoting by go the identity endomorphism (everywhere localized) and by [p;] the
equivalence class of localized endomorph1sms being unitarily equivalent to ¢'%° in the
vacuum representation, we summarize

Theorem 4.4 (Fusion rules of localized endomorphisms).

loi,] = leol+leil, 72)
lo1p01] = (010121 = lo1/2], (73)
leil = Ilool, (74)

i.e. the localized endomorphisms obey the Ising fusion rules.

4.4. Statistics Operator and Left Inverse. According to the general theory of super-
selection sectors [11, 13, 18], we expect that for each endomorphism ¢ which is
localized in some interval I € Z; there exists a unitary €, € Z2(I) which commutes
with ¢*(2¢),
g0 € *CUY
and fulfills
EQQ(EQ)E:Q = 9(59)599(59)- (75)

Therefore the elements 7; = ¢*~!(g,), i = 1,2,..., satisfy the Artin relations and
determine a representation of the braid group B, [11, 13]. The statistics operator is
given by the formula

£o=U"ol), (76)

where U is unitary such that the (equivalent) endomorphism g, defined by
HA=Uo DU, Ae

is localized in some interval Iy € Z, I C I'. The statistics operator is independent
of the special choice of § as far as I varies in one of the two connected components
of I' \ {¢} but it may depend on the fact whether I lies in the left or the right
complement of I with respect to our “point at infinity” {. The computation of £, is
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straightforward for ¢ = gll"c. Let o be induced by a real function h € L?(S') with
support in some interval I, ||||> = 1, as described in Definition 3.7. Analogously, let
o be induced by a real function hg, ||hol| = 1, with supp(ho) C Iy, I N I = . Since
these endomorphisms are unitarily implemented we find

U = 2¢(hoyp(h),  U™' = 24(h)y(ho)
and
o(U) = 2¢p(=hoyp(h) = =U
so that
€p=—1

expressing nothing but anticommutativity of Majorana fields. We now want to con-
struct the statistics operator £, for our localized endomorphism ¢ = 0‘110/02. It seems to

be very difficult to do that by the formula (76) but to be much easier to determine
it by its properties. The statistics operator commutes with o?(2). The commutant
az(Qlc)’ is spanned by elements 1, I where the projection I7 is defined by

I = Pleydle ), es= % (egm iiv'eg”) .

(We remark that the orthonormal vectors e span the kernel of (V/V’)* and satisfy
e+ = I'e_.) This leads us to the ansatz

€, = a(1+~ID), a,v€C.
Now &, is unitary,
oty = oM+ (y+7+9)ID) = 1.

Therefore v + 5 + 7% = 0, |a|® = 1, we write o = e, w real. The statistics operator
satisfies Eq. (75); we exclude the case v = 0 and find
0 = ey N (e0(e0)es — 0(Ea)eq0(es))
= (y+ 1)U — o(ID) +~*(Ho(INI — o(IN L o(IT)).

It is not hard to see that I and o(II) can be written in the following way:

= % (1+ 20V eDpie) , oD = % (1+ 20V e))
The fields obey
PP = bV e = (VPR = 1,
and
{(Ve?), e} = (Ve p(ef)} = (Ve w(V'e)} = 0.
Using these relations one finds?

2 With the identification E,, = o™~ 1(IT), n = 1,2, .. ., this is nothing else but the Temperley-Lieb-Jones
algebra relation
EnEptEn =d(c) 2E,

with statistical dimension d(o) = v/2.
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Ho(IDI = %H, o(I I o(IT) = %a(ﬂ),

so that we obtain .
<7 +1+ 5%) (T — o(ID)) = 0.
Since IT — o(II) # 0 we have
V+27+2=0 — y=—1%i,

and therefore _

g =Y — (1 £ DI,
According to the general theory [11, 13, 18], we expect that there exists also a left
inverse @, to our endomorphism o such that @, o o = id. The left inverse is a unital,
positive mapping from 2 to 2 which satisfies ¢,(.72(I)) C .J2(I) if I D I,. Since
o is not an automorphism @, does in general not respect products but

&, (0(A)Bo(C)) = AP, (B)C

holds for A, B,C € 2. In the following we want to derive an explicit description
for $,. We introduce an arbitrary orthonormal basis {v,,n € Z} of L*(S') with

vp = 682) and I'v, = v_,. It suffices to consider elements A of 2 which are sums of
monomials X of the form

X = ,(/)(’U’nl),l/)(vnz) e w(UmK)-

Using the anticommutation relations,
{w(vn)’ "ﬁ(%ﬂ)} = 5n,7n’17

in particular ¥(vp)? = %1, we can write every monomial X such that «(vy) appears
at most once. If every monomial X is written in that way we define @, as the linear
mapping which preserves the unit and fulfills

P (X) = PV 0 WV Uny) - BV 0.

It is no problem to check that @, is well defined and has the required properties. The
general theory says
Wo
47 g} = SN
o(€s) i)
where w, is a phase factor (“statistical phase”) and the positive real number d(o) is
called statistical dimension. Since ¢ = 011";2 belongs to the sector [g1/,] we expect that
d(o) = /2. Using our formula for @, we find (respecting that V’ 682)
@
ey )

is orthogonal to

1 et 1
P,(I1) = P, <5 (1 + 20V eg2>>¢<eg>))> =51

o 1, i), e@7d)
Dy(es) =e (1— (zii>> 1=—=1,

in agreement with d(c) = V2. At the end we find

‘We conclude
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£y = %((1 +i)1F 201D). 77

By the spin and statistics theorem [14] we expect that the statistical phase is given
by w, = e*™*, where s is the infimum of the spectrum of the conformal energy
operator Lo in the representation 7y o o. Since o belongs to the sector [g /2] we

have s = 11—6 and therefore w, = €% . However, we did not succeed in computing w,
directly. Moreover, we observe the freedom to choose the +-sign in our formula for
the statistics operator €,. The change of this sign corresponds to the replacement of
£, by £} The fact that &, # € goes back to the non-trivial spacetime topology which
is the origin of braid statistics. At the end we remark that the same calculations we
have done for o = 0“’/°2 run for the endomorphism ¢\%,; we just have to replace v

by V and egz) by f((,z).

A. Appendix: Mébius Covariance of the Vacuum Sector

We will briefly discuss Mobius covariance here. Related topics can be found in the
book of Lang [21]. The Mibius symmetry on the circle S! is given by the group
Mob = SU(1, 1)/7,, where

SU(l,l):{g= ( g p ) € GL,(C) 1a12—1ﬂ|2=1}.
Its action on the circle is
_ 'dz~3 1
gz_-,32+a’ ze S

Each element g € SU(1,1) can be decomposed in the product of a rotation r(£) and
a transformation ¢’ = r(t)~!g leaving the point z = —1 invariant,

ey (% 0 s (o B
g—’/’(t)g, T(t)"( 0 e%)’ tER, g—'<ﬂ/ J ’

such that (o/ + #')(a/ + #)~" = 1. Since (¢ + 2m) = —r(t) we can determine —27 <
t < 27 uniquely by the additional requirement Re(a’) > 0. Then a representation U
of SU(1, 1) in our Hilbert space of test functions L?(S!) is defined by

U@)(2) = e(g; 2+ BE) 3@+ B2) b (gj I E ) (78)

where for z = ¢!, —n < ¢ < 7,

€(g; z) = —sign(t — = — ¢) sign(t + 7 — @),
and sign(x) = 1 if z > 0, sign(x) = —1 if z < 0. We observe that e(g; 2) is discontin-
wous at z = —1 and z = g(—1) = —(@+ B)( + B)~L. Up to this e-factor, Eq. (78) is

a well-known definition of a representation of SU(1, 1). So it remains to be checked
that

e(g1; 2)e(g2; 91 ' 2) = €(g192; 2).
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Since both sides have their discontinuities at z = —1 and z = g;92(—1) they can
differ only by a global sign. But this possibility is easily excluded by arguments of
L?-continuity in g. Moreover, by computing (U(g)e,, U(g)es) = 6, s for r,5 € Z + %
(NS-base) we can also check that U is unitary,

?{51 E_(CH-'BZ) (a+ﬂz)_ (gi:g)

= L dz (z+ B "Bz +m) !

<U(g)er, U(g)es>

(r s)! dzr~s

Qlwl

27

0 s>r

= ot Tl 4T (ﬁz+62)’"“5‘1|z__ s<r
Or s

by Cauchy’s integral formula, respecting that |a|?> > |3]? since |a?> ~ |3|> = 1. Since
the prefactor on the right-hand side in Eq. (78) is real we observe [U(g), "] = 0 and
hence each U(g), g € SU(1,1) induces a Bogoliubov automorphism oy = gy of
& (L*(S"),I'). Hence SU(1,1) is represented by automorphisms of #(L2(S1), I"),
and this restricts to a representation of Mob by automorphisms of & (L%(S), I')*. In
order to establish Mdbius invariance of the vacuum state and hence covariance of the
vacuum sector we show that

[Sns, U@l=0, g eSUQ, D,

i.e. that U(g) respects the polarization of L?(S') induced by Sys. It is sufficient to
show that

1
(e—r,U(gles) =0, r,s€Np+ X g € Su(,1).
The functions e (2), r € Z + % are smooth on S! except at their cut at z = —1.
The prefactor e(g; z) in Eq. (78) achieves that (U(g)e,)(z) remains a smooth function
except at z = —1, i.e. that the cut is not transported to g(—1). Hence we have

Bz+a@

(U(g)er)(2) = £(a + B2) 1@+ B2) " (“z - f) ,

where all the half-odd integer powers are to be taken in the same branch with cut at
z = —1. So we can compute as follows:

<e—m U(g)es>

dz e _ifez+ B\’
, 3mia? (z+PB) zz2(a+ PBz) 2 (ﬂz+a>

dz A 2(az+ﬁ)5 2(a+ﬂz) &= 2=0
27

again by Cauchy’s formula, respecting |o|? > || and that », s are positive half-odd
integers here.
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B. Appendix: The Proof of Lemma 5.3

An essential fact we use for the proof of Lemma 3.10 is presented in the following

Lemma B.1. The difference of the two odd pseudolocalized Bogoliubov operators,
given in Definition 3.9 is Hilbert Schmidt class,

V -V’ € ZILXSY)). (79)

Proof. Since 1 — Péz) is Hilbert Schmidt class, where

R =1— @)@ = Pr 4 Pi_+ 3 (€)@ + 162,62,

€_n
n=1

it is equivalent to prove
Ty =[PPV = VHEP| <

We remember that the square of the Hilbert Schmidt norm is the sum over the squares
of all matrix elements in any Hilbert space basis. Obviously, the Bogoliubov operators
V and V' differ only on the subspace L*(I,) C L*(S'). We compute

SO @, ved) — (2, vie|

nCZ MEZ

n#0  mA0
s 2 2 2
ZZ\ (2,e)) ~ile? . e)|
n=1 m=1 :
©0 2
303 [y it @)
n=1 m=—1
-0 o
#3030 e ) i, )]
n=—1m=1

2 (2
DI BHERCIR R

n=—1m=—1

Since (e (2;, ) = (e@,e? 1) the first and the fourth summation vanishes, so that
2
one finds by substituting to positive summation indices

>0 o0 2
To = S|, )+ e,

n=1 m=1

2 2 2
D[ ) e @

n=1 m=1

2
2 2 2
2ZZ| e )+ (e, e

n=1 m=1
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we used <e(_2)n+ ey = <€S)_1 ,e? ). The remaining matrix elements are easily com-
2 2

puted,
(€@ 6@ ) = 2/? minahedd _ D™ 1
_’I’L7 m+ —-er- 27r T m+n+%)
3 +n
(D @y o o 7 etmin-hedd D™ 1
<—n+— ’m-> /;%e 27_[_ T m+n—%.
It follows
2 x0
— < 00, q.e.d.
WZ;,; (n+m)2 s Z <k+1>2 1y

Now we can start proving Lemma 3.10. We introduce the following notations:

B V*SnsV — Sk,
Py = le—1){e_1|+|eo){eo| + e1){e1l,

oo

P = Z |€_2n41><e—2n~1|7
n=1
00

P = Z |€2n+1><32n+1 |7
o0

P = Z e—an){e-2nl,
n=1
oo

P4 = Z l€2n><e2’n|?
n=1

such that we find

Y p=1, I'P=RI, TIP=PRlI
=0

At first we have to show, that ||B]j; < oo. Since F, is Hilbert Schmidt class it is
equivalent to prove that

4 4
I1— P)BA - Pyl = || Y PBP;|| <Y |PBP;|2 < .
i,5=1 , =l

This will be done by estimating each term || P; BFP;||, for its own. Since B = B* we
find
|1 BP;|2 = |(P:BF;) |2 = | P;BPil2,

so that we are allowed to treat only those ten of sixteen terms with ¢ < j. Further, by
FBF = V*FSNs.FV - FSRF = V*(l - SNs)V - (1 - SR) = —

we find the identity
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IPBP |z = [TPABPI|y = | ,I'BL P2 = || BP 2,
and in the same way
|PsBPs||2 = |P4BRsl2, |PaBPs||a = [|PiBRsl2,  ||PABPs|2 = [|P2BEy|2.
In each term on the right-hand side one of the projections P, or Py appears, but since
PySp = SgPy = PySp = SpPs =0
we have only to prove the finiteness of the six norms

1PV *SnsV P2, [|PIV*SnsV Pz,  ||[PIV*SxsV Palla,
|PV*SnsV Pyllz, [|P3V*SnsV P2,  ||PaV*SnsV P2,

and, since V — V” is Hilbert Schmidt class, this is equivalent to prove the finiteness
of

|12V SusV B2, 1PV SnsV Ball2, |V SnsV Pylla,s
[PV SnsV Palla, [PV SnsVPilla, | PaV*SnsV Pylfa-

At first we consider

24

[PV Sns V' B3 = Z Z [{eans1, V" Sns V' €2mat )2

n=1 m=1
2

i i Z (6—7'7 Vl@2n+1> <e—7“a V162m+1>

n=1 m=1 T€N0+%

Since (ef; . €nsl) = 2_%6n7m the action of V' on odd basis vectors en, is simple,

one reads by definition

€n+1(2) zel-
(V'erni)(2) = iegnaa(2) zel, n € N.
—e2n41(2) zel,

This leads us to

(e—r,V'ern1) =

_ / 7 genrtine 49 [T eniaing 80 / " gitnstine 80
—

27 _=z 2 .o 27
2 3

i(—1)™ i (Tﬂ') 1
in | — .
p 2/ @n+l+r2n+2+7)
Substituting to integer summation indices we obtain
2
64 x2 o0 oo
— 0y
5= 433 (S
n=1 m=1 \ 1=0

where
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1
o
Tn,m.l (An +21+3)4n + 2L+ 5)(4m + 21+ 3)dm + 21 +5)°

We put off the estimate of this summation for some time and pass over to the next
sum,

2

=BV SsVIPfF =Y 3 1 Y fem Viean i) (e, Viesma)

n=l m=1 | reNo+}

The action of V' on vectors e_qy,_1 18

e_9n_1(2) zel_
(V'e_sn-)2) = —le_an 2(2) zelh n€N.
—€ 2m—1(2) zel,

This leads us to

_i=Dr  grw 1
(e Ve-an)==— Sm<2)(2n+1—r)(2n+2—r)’

so that
2
535 ()
O, ,m,l ’
n=1 m=1 1=0

where
6) 1

Tniml = (dn — 20+ 1)(4n — 21+ 3)(@m + 21 + 3)@dm + 21 +5)
Analogously,

2

S = |V SsVRIE=Y D | Y (e, Viean-1){er, Vean)

n=l m=1 |reNo+]

The action of V' on basis vectors ey, is

emn(2) zel_
Vew)z) =< ie2,:1(2) z€l, n € N.

—ezn(2) zel,

This leads to
=" (rvr) 1
(er: Vo) = —=——cos (o ) 5 G rr+1)

so that

6 o> o0 o< 2

_ 3)
-8555 (o)
n=1 m=1 =0

where

) (—

Inmi = (4n — 20+ D)(@n — 20+ 3)(@m + 2+ D@m + 21+ 3)
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Further,
2
oo [e]
Sy = PV SV R = ZZ Z (e—r, V'ezns1){e—r, Vean)
n=1 m=1 rENp+{
Y]
- S (Ten)
n=1 m=1 =0
where

!
@ =D
Tnmit = (4n + 21 +3)dn + 21+ 5)(dm + 2L + D){(dm + 21 + 3)°
In the same way we compute

2
Ss= PV SnsVRI =) Z > {er, Veamer, Vem)

n=1 m=1 T€N0+%

The action of V' on basis vectors e_»,, is

e_onl(2) zel_
Ve_op)z) = —ie_gn_1(2) ze€l n €N.

—€_n(2) z€l,

This leads us to
i(—1n" T 1
—rsVen) = (%) ’
{e—r,Ve—n) ™ cos 2/ @2n—r2n—7r+1)
so that )
25 - g Z Z Un,m,l ’
n=1 m=1 =0
where
O 1
n,m,L Un—-20—D)(dn =20+ D@m+2[+ D(@m+ 21+ 3)
Finally,
2
oC o0
Yo = |[[PV*SxsVPf5= Z Z Z (e—r, Vern)(e-r, Vern)
n=1 m=l T€N0+%
2
- S5 (et
n=1 m=1 =0

where

© 1

Tnmit = @n+21+ 1)(@n+21 +3)@m + 20 + D(dm + 21 +3)
Next, we turn to the discussion of the operator
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C= VSNsV* - SR.

For showing that ||C|| < oo we prove that

4 4
I = P)CA =Pyl = | > RCP|| <> |IPCPll < co.
i,j=1 i,5=1

2

Because C = C* we have again only to treat those terms with ¢ < j. Further, by
I'Cr=va@—-5SwWw -1-Sp=VVv -1 -C,

and since 1 — VV* is a rank one projection (i.e. |[VV* — 1|, = 1), we find

|PICP|2 ITPLCPLL |y = |PTCI P = |[Py(VV* — 1 — C)Py|5

HP20P2||2 +1.

IA

In the same way one obtains
|PsCPs|l2 < | ACP2 + 1, |PBCP 2 < [|PICP2 + 1,

and
||P10P3||2 S ||P20P4Hz +1.

Again, Sy is annihilated by P; or P4 in these terms. Using once more that V — V" is
Hilbert Schmidt class, we conclude that it is sufficient to prove the finiteness of the
following six terms:

NPV SxsV*Pola, 1PV SnsV*Balla, [PV SnsV'™ Pala,
|V SxsV'* Palla,  |1P3V'SnsV' " Palla, | PaV'SxsV'™ Pal2

Now we have to work again,

2

o0 o0
57 = |PRVSsV B = ZZ Z (e—r, V*eans1) (e—r; V7 €2ma1)

n=l m=1 |reNg+1

The action of V* on basis vectors es,.1 18

€n11(2) zel.
(V¥erni)(2) = —~iean(z) z€l n €N,
—€2n+1(2) z€1,
This leads us to
T ) 1
eV eama) = - (%) =
{e-r, VZeznut) M\72) Cnrr@ntr+1)
SO that ,
5= S35 (o)
n=1 m=1 1=

where
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&) 1

Tnml = @n+ 20+ (@n + 20+ 3)@m + 21+ D@m+21+3)’

Further,

2

Ty =[PV SNsV* Bl = Z Z Z (e—r, V*e_on—1){e—r, V7 e2ms1)

n=l m=1 TENO"";‘

The action of V* on basis vectors e_s,,_; is

e_on-1(2) zel_
(V¥e_op_1)2) = ie_on(2) zel, n € N.
—e_om_1(2) zel,

This leads us to

R o s !
{e—r, Ve 2n-1) = T sm( 2 ) Cn—rCn—r+1)

so that ,
—_4 Z Z On,m,l s
n=1 m=1 \ [=0
where
O 1
nmd T (4 — 20— 1)(dn — 20+ D(dm + 21+ D)(dm + 20+ 3)
Further,

2

o0 o
o= ||PVSnsV Bl = ZZ Z {e—r,V¥e_sn-1){e—r,V €2m)

n=1 m=1 TGNO+%

The action of V' on basis vectors e, is

. eZn(Z) zel_
(Ve )(2) =1 —ieyp_1(2) zel n € N.
—€2,(2) zel,

This leads us to

(=D rr 1
(e—r, V' €25} = cos ( 3 )

7r Cr+m2n+r—17
so that
2
9N IEME
n=1 m=1
where

© (—1)
Tnml = Gn Z 20 — 1)@dn— 20+ D@dm+2l = D@m+20+ 1)
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Further,
2
[o0) o0 .
S0 = |PVSsV RIGE=D Z D Tle—r Vieamn)e—r, V' eam)
n=1 m=1 |reNo+}
2
- S35 (e
Tnm,l ’
n=l m=1
where
10 (-1}
ol T (4 4 21+ D)(En + 21+ 3)(dm + 20 — D(@@m + 21+ 1)
Further,

2

S =PV SV RE=Y D | Y (e, Ve an)(eor, Vern)

n=l m=1 T’GNO+%

The action of V'* on basis vectors e_s,, is

. e_n(2) zel_
(V7 e_)(2) = ¢ 1€_2n41(2) zelh n € N.
—e_on(2) zel,

This leads us to

" _ieye rm 1
(e—r, Ve_gn) = cos( 2 )

T Qn—-m2n—r—1)
so that 5
64 o =
— {1n
m= S5 (S
n=1 m=1 \ I=0
where
R L :
mmol T (4n - 20 — 3)(4n — 21 — D(@m+ 20 — D@m + 21+ 1)
Finally,
2
o0 [o0]
212 = ||P4V/SN5V/*P4H% = Z Z Z <€—r7 V,*62n><e—r7 V/ 62m>
n=l m=1 |reNo+]
- 2
- 43S
n=1 m=1 A 7
where

12 1

Tnml= Gp+ 20— )dn+ 20+ D@m+ 2l — D@m+20+ 1)’
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We have the following estimate of absolute values of the o for 7=1,4,6,7,10,12:

n,m,l

o 2Dl =4,6,7,10,12, n,meN, leNy.  (80)
If we omit in our summations [ =0 and [ = 1 terms, this corresponds to the replace-
ment of Sxg by

Sns = Sns — le_%>(6h%] - Je_%><e_§].

Since the difference Sns— S is obviously Hilbert Schmidt class, this has no influence
of the property of 2; to be finite or infinite. Hence the estimate (80) tells us that for
the proof of X; < oo, j = 1,4,6,7,10,12, it is sufficient to prove it for 7 = 1. We
compute

2
RS {Z 1
- N\ Gn+ 20+ 3)(An + 2l + 5)dm + 21 + 3)dm + 20 + 5)

n,m=

2
64 X 1 ke 1
< F;;(zmuw (§(4n+21+3)2>
00 2
1
(Z (4n +20 + 3)2>

oo 2
( 0 (4n+21+1)2>

[SSHN N

IA
Wl
Mang ng

2

- 34 2(4n+1)
1 1

< %Zl;rz

576’

2’; is finite. On the other hand we find for n,m € N, [ € Nj,

an 2 ety &) an 5

| nml fo-n,m,l+2 ’ Tn m,ll > |0n,)m,l+2 ’ j nm l| > Ian,m,l+1 ’
11 8) (11) 9

[ '5173’Ll > |0n,m,l+1 ’ nm,l| > |o.£z,)m,l+1 .

By the same argument, for the proof of X; < o0, j =2,3,5,8,9,11, it is sufficient
to prove that

- 400 oo o0 2
211-722(21 )
1=0

n=1 m=1

For this purpose, we decompose the sum over the index [ into three parts,
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oo 2n—2
an _ (11) (11) a1
Z'O-n,m,l - Z |anml ann 11+Z‘0n m,l
=0 =2n
2n—2
— E (11) an § 1)
- n m,l Un,m,?.n 1 + On ,m,l°
=0 i=2n

We begin with estimating the first part. By reversing the order of summation we
obtain

2n—2
an
2 nimi =
2n—2
1

; QRI+DR2I+3DHdm+4n — 21 - 3)Am+4n — 21 - 5)
2n+2m-—3 1

< ; QU+ 12@n +4m —20 - 57
C 4 @+ 1P@En+4am - 20 - 5P
2n+2m—3 1
* Z QU+ 1P@n+4m — 20— 57

I=n+

n+m-—2
1

=2 ; 21+ 1)2(4n +4m — 21 — 5)2

2 n+m—2 di
< 42
= @n+4m—502 /0 QL+ DX(dn+4m — 21 — 5)2

2 2n+2m—3 dz
B (4n+4m—5)2+/1 22@n +4m — 4 — 2P
_ 2 . 1
T (@Gn+4m—52 (@n+dm—422n+2m—1)
1
" (4n +4m — 42@4n +4m — 5)

1
B Un+4m —DH2n+2m —3)HCn+2m —1)

N 1 _ 2 0 2n+2m —1
(An+dm —H(An+4m —35) (dn+4m —4)> 2n+2m —3

2
————— In(dn +4m —
+(4n+4m—4)3 n(4n +4m —5)
P
2n+2m —3)2°

The last estimate is very rough but correct. In our computation we have used the fact
that in an area of strict decrease a summation can be estimated by an integral plus
the first summand. Next we consider the only negative term,
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(1n 1 1

= <
nman—l = (A v dm = 3)dn+4m —1)  Qn+2m — 3)2’

—0,

and finally the remaining summation,

i oD = i 1
et nm.l = QUL+DRI+3)An+4m+ 20 — D)(dn+4m + 20+ 1)

1 = 1
< (4n +4m — 1) lz:oj QL+ DQL+3)

1

T (@n+4m — 1)

- 1
2n+2m — 3)?°

We now can conclude that

. MRS 8 24096 X k+1
Sh<2 -
ns nz::h; <(2n+2m—3)2> w2 @ke iR

the proof of Lemma 3.10 is complete, g.e.d.
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