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Abstract: Based on the treatment of the chiral Ising model by Mack and Schomerus, 
1OC we present examples of localized endomorphisms L)] ~ and 61/2- It is shown that 

they lead to the same superselection sectors as the global ones in the sense that 
unitary equivalence 7r0 o p]oc ~ 7ri and 7r0 o p11~ 2 ~ 7rl/2 holds. Araki's formalism 
of the selfdual CAR algebra is used for the proof. We prove local normality and 
extend representations and localized endomorphisms to a global algebra of observables 
which is generated by local von Neumann algebras on the punctured circle. In this 
framework, we manifestly prove fusion rules and derive statistics operators. 

1. Introduction 

In local quantum field theory one considers a Hilbert space 3 ~  of physical states 
which decomposes into orthogonal subspaces , ~ j  (superselection sectors) so that 
observables do not make transitions between the sectors. The subspaces ~ j  carry 
inequivalent, irreducible representations of the observable algebra ~/~, possibly with 
some multiplicities [19]. Among the superselecfion sectors, there is a distinguished ..... 
sector .~{0 which contains the vacuum vector ]Y20) and carries the vacuum represen- 
tation 7r0. 

The starting point in the algebraic approach to quantum field theory is the observ- 
able algebra , ~  which is usually defined as the C*-inductive limit of the net of local 
yon Neumann algebras {~/g(~), ~ ~ ~ ' } ,  where ~ denotes the set of open double 
cones in D dimensional Minkowski space~ The net is assumed to satisfy the Haag- 
Kastler-axioms. In general, the observable algebra ~ admits a lot of inequivalent 
representations. Therefore one has to find an appropriate selection criterion which 
rules out the physically non-relevant representations. Doplicher, Haag and Roberts 
[10, 11, 18] developed the theory of locally generated sectors; they suggested that 
one has to consider only those representations 7rj which become equivalent to the 
vacuum representation in the restriction to the causal complement O t of any suffi- 
ciently large double cone O c ~d' .  That means that for a representation 7rd satisfying 
the DHR criterion, there exists for each sufficiently large double cone O a unitary 
V : ,-~r ---+ ~ a  such that 
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~j (A)  = V~o(A)V*, A E u ~ ( ~ ' ) .  

The DHR criterion leads to the characterization of superselection sectors by localized 
endomorphisms: Usually ~ and ~0(~-~) are identified, and one defines 

L)j(A) = V* Jr j (A)V,  A E ~/~. 

Then Qj is an endomorphism of the observable algebra and it is localized in O in 
the sense that oj(A)  = A for all A E ~ ( ~ r ) .  Moreover, ~0 o ~)j is a representation 
of ~ in ~ 0  which is equivalent to ~ j .  The use of DHR endomorphisms allows to 
extract all physical information out of the vacuum sector and to work without charged, 
unobservable fields. It is another advantage that endomorphisms can be composed; 
it is possible to formulate fusion rules in terms of equivalence classes of localized 
endomorphisms. 

Unfortunately, it seems to be very difficult to construct these endomorphisms 
explicitly in models. Although the conformal field theory has turned out to be an 
interesting and fruitful area of application of the DHR program, examples of local- 
ized endomorphisms which generate charged sectors are known explicitly only for a 
rather small number of models, e.g. the U(1) current algebra on the circle [8]. En- 
domorphisms have been constructed for Level 1 WZW models [16] and, before that, 
for the chiral Ising model [24, 25], however, they are in no sense localized. Mack 
and Schomems had already described the construction of localized endomorphisms 
for the chiral Ising model in [24], but it has not yet been proven that they lead to 
the same sectors as the global ones and, in particular, that they lead to irreducible 
representations. This is done in the present paper. 

In two-dimensional conformal field theory one considers as basic observable the 
stress energy tensor which generates the space time symmetry. Its light cone compo- 
nents T•247 live separately on the compactified light cone variables z• E S 1, one 
deals with chiral fields. Treating each component for its own, the stress energy tensor 
has well-known commutation relations, fixed up to a constant c [29, 23]; the stress 

a (Ising model) energy tensor generates the Virasoro algebra Vir. In the case c = 
the Virasoro algebra admits three inequivalent positive energy representations 7r j ,  
J = 0, �89 1, which are lowest weight representations; 7c0 is identified to be the vac- 
uum representation. In the chiral Ising model, the stress energy tensor can be built of 
a free fermion field, the Majorana field [24, 23]. Smearing out the Majorana field with 
test functions having support in a proper subinterval I C S 1 and considering bilinear 
expressions of it, these objects generate the local C*-algebra ~g( I )  of observables. 
Such local algebras ~/~(I) generate a global observable algebra c* ~univ. Unfortunately, 

C* the Virasoro generators are not in ~guniv, but they are formal (unbounded) limits of 
C* elements in "/~u~iv. Mack and Schomerus [24, 25] presented endomorphisms g j  such 

,-,., 1 that ~r0 o ~j  = ~rj, J = 3, 1 is fulfilled. But, as already mentioned, these endomor- 
phisms are not localized, i.e. there is no interval I ~ r ~) such that their action is trivial 
on ~ ( I / ) .  In this paper we present examples Aoo ~]oc ~1/2, of localized endomorphisms 
which are unitarily equivalent to those global ones in composition with the vacuum 
representation. However, our construction slightly differs from the formalism used by 
Mack and Schomerus. 

Since the set ~ of proper subintervals on the circle is not directed, a global 
algebra cannot be defined as the C*-inductive limit of the system {~/g(I), I E r 
The global algebra Jgc~v has to be considered as the algebra generated freely by all 
local algebras ~/g(I). This is the universal algebra (but generated by local C*-algebras 
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instead of von Neumann algebras) in the sense of Fredenhagen, Rehren and Schroer 
[14, 15]. Its center is nontrivial, generated by a unitary element Y. The C*-algebra of 
the punctured circle ~/~(Ir where Iff = S I \  {~}, ff E S 1 an arbitrary point, has a trivial 

C* center and ~univ is generated by ~/~(I~) and Y. The local algebras ~ ( I )  are even 
subalgebras of (selfdual) CAR algebras over spaces L2(I). Also the global observable 
algebra ~ v  is the even subalgebra of a global field algebra, the universal Majorana 
algebra Maj. It has the structure of the direct sum of two selfdual CAR algebras 
over L2(Sa). Alternatively, it may be regarded as the algebra which is generated by 
an anticommuting universal Majorana field living on the double cover ~1 of the unit 
circle [24, 25]. For recovering the local algebras ~ ( I )  as even subalgebras of Ma] by 
explicit construction, we have to fix an arbitrary reference point ~ ("point at infinity") 
on the circle. 

C* The non-trivial center of the global algebra '~univ implies that its irreducible 
representations can no longer be faithful. This leads to some deviations from the 

C* customary DHR program. In particular, the vacuum representation 7r0 of '~univ cannot 
be faithful. There is another difference between the formalism used by Mack and 
Schomerus and the common DHR framework: The local algebras ~/~([) are defined as 
C*-algebras instead of von Neumann algebras. But the use of von Neumann algebras 
is crucial for the analysis of statistics and fusion. On the other hand, if one works with 
local von Neumann algebras (weak closures of ~4~([) in the vacuum representation), 
the universal algebra becomes even larger, in particular, its center is larger than that 

C* of ~univ ,  generated by Y. Such a universal algebra appears to be hard to handle. 

During our investigations, it turned out to be much more comfortable to formulate 
the theory on the punctured circle. Such a formulation is possible because in our theory 
Haag duality remains valid on the punctured circle. Having fixed a "point at infinity" 

E S 1, the set ~ of those open intervals such that ff is not contained in their closures 
("finite intervals") is directed by inclusion. So the theory can be developed close to 
the DHR program. We define local von Neumann algebras ~ ( I )  = 7r0(~/~(I))', and 
the net { ~ ( / ) ,  I E ~c~} generates a global C*-algebra ~r in the natural way; ~1r 
may be regarded as the algebra of quasilocal observables. The representations 7rj 
and the localized endomorphisms o~c we present are at first defined on local C*- 
algebras ~ ( 1 ) .  We show that they possess an extension to the net of yon Neumann 
algebras. A local normality relation is used for the proof. Using some results of CAR 
theory, we establish that indeed unitary equivalence 7r0 o p~c ~ 7rj holds. Finally, we 
manifestly prove the Ising fusion rules in terms of equivalence classes of localized 
endomorphisms, and we construct statistics operators and a left inverse. 

With respect to the proof of fusion rules, we believe to close a gap left in [24, 25]. 
Mack and Schomerus had already proven that their global endomorphisms obey Ising 
fusion rules. But caused by the use of local C*-algebras and a non-faithful vacuum 
representation, this result could not be generalized to all endomorphisms, which lead 
to equivalent representations. (There are counterexamples.) The existence of unitary 
intertwiners in the observable algebra, being essential for such a generalization, is not 
guaranteed if one does not work with von Neumann algebras. However, establishing 
a theory based on local von Neumann algebras on the punctured circle, we close the 
gap. But it should be mentioned that there exist also successful methods for prov- 
ing conformal field theory fusion rules without the use of localized endomorphisms, 
e.g. [22, 32]. 

Our paper is organized as follows. We present Majorana fields, local C*-algebras 
of observables and the global algebra ~ in Sect. 2. Using some ideas of Szlachfinyi 
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[31], we discuss the origin of its central element Y. We introduce the universal 
C* Majorana algebra Maj, we describe the representation theory of Maj and ~/~univ and 

we introduce the Mack-Schomerus endomorphisms. Section 3 begins with a brief 
recapitulation of the CAR theory and some results we need. Next we describe the 
representation theory of Maj and ~/~C~v in view of Araki's selfdual CAR algebra and 
quasifree states. We discuss the restriction to the algebra ~/~(Ir of the punctured 
circle. Then we introduce our examples of localized endomorphisms and we analyze 
the induced representations. In Sect. 4 we discuss the extension of representations and 
localized endomorphisms to local von Neumann algebras and to the global algebra 
~/~. In this framework, we prove fusion rules and give statistics operators and a left 
inverse. 

2. Algebras, Representations and Endomorphisms of the Chiral Ising Model 

In this section, we develop and analyze the formalism used by Mack and Schomerus 
to describe the chiral Ising model. 

2.1. Local C*-AIgebras and their Universal Algebra. We begin our investigations with 
a brief description of the field algebra, the local and the global observable algebras 
of the chiral Ising model. Our starting point is a Majorana field ~ on the unit circle 
S 1 which has anticommutation relations 

and hermiticity condition 

{r ~b(w)} = 2rciz6(z - w) (1) 

with 

f s  dz ~b(f)* = r (f, g) = ~ 2--~zlzf(Z)g(z). (5) 

As local algebras ~-~(I) with some open interval I c S 1, I r S a we define those 
unital algebras which are generated by bilinear expressions 

Bi(f ,  g) = r supp(f) C I, supp(9) C I 

in the Majorana fields. These generators are complex linear in both arguments and 
obey relations 

r  = zg,(z) .  (2) 

We consider smeared fields 

~(f )= fs~ ~ f ( z ) ~ ( z ) ,  f(z) E L2(S1). (3) 

These objects obey the canonical anticommutation relations (CAR) of the canonical 
generators of Araki's [1, 2] selfdual CAR-algebra g~(~d', F) over the Hilbert space 

= L2(S 1) with the antiunitary involution/7 of complex conjugation. We have 

{~b(f)*, ~b(g)} = (f, g)l  (4) 
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2 B ; ( f , f )  = (Ff ,  f ) l ,  (6) 

2B1(f ,g)Bi(g,h)  = (Fg, g)Bt ( f ,h) ,  (7) 

Bi(f ,9)* = BI(Fg, F f ) ,  (8) 

where f ,  9, h E L2(S 1) are functions with support in I. Next we consider the algebras 
~/~(I) as defined only by these abstract relations. Since the set ~ of open, non-void 
intervals I r S 1 on the circle is not directed there is no inductive limit for the algebras 
~/6(I), I E f t .  But with the additional relation 

Bi( f ,  9) = B j ( f ,  9), I C J (9) 

one can construct a global algebra ~/~[v which is generated by all Bi( f ,  g), f ,  9 E 
L2(S 1) and [ E ~ [31, 15, 5]. Perhaps one could expect that the result is the even 
subalgebra of the selfdual CAR algebra over the whole circle S 1. We will show that 

C* this is actually not the case; instead there occurs a central element Y E "~univ which 
C* will finally lead to the fact that '~univ is the direct sum of two of those even CAR 

algebras. Let now Ii and I2 be two disjoint intervals and let J+ and J_ be intervals 
containing both of them, one from the left side and one from the right side, so that 
J+ U J_ = S 1. Choose real functions f j  C L2(S 1) with II/jlf 2 = 2 with supp(fj) c Jj, 
j = 1,2. Then define 

Y = BJ+(fl ,  f2)BJ_(f2, fl). (10) 

One finds that Y is unitary, self-adjoint and independent of the special choice of 
C* S1 f l ,  f2,11,/2, or+, J - .  Moreover, Y is in the center of ~/~ni~. For every ff E and 

Ir = S 1 \ {~}, the global algebra ~ / ~  is generated by ~/~(&) and Y [31, 15, 5J. 
C* We now want to reconstruct the global, or, "universal" algebra ~/~univ by a global 

field algebra, the universal Majorana algebra. 

Definition 2.1. The universal Majorana algebra MN is defined as the direct sum of 
the selfdaal CAR algebra over (L2($1), F) with itself, i.e. 

Maj = ~ ( L 2 ( ~ l ) ,  F )  O ~C~(L2(~l), F) .  (11) 

The center of Maj is generated by the element 

Y : ( -1 )  �9 1 (12) 

and we have the two subalgebras 

MajN s = ~(1 -- Y)Maj, 
1 

MajR = ~(1 + Y)Maj. (13) 

The universal Majorana algebra is a well defined C*-algebra since ~(L2(SI) ,  F) is. 
For clarifying the connection between our definition and the definition of Maj given 
by Mack and Schomerus [24] we consider the following two orthonormal bases of 
L2($1): 

{e , . , r  C 2~+ ~ }  and { e n , n E ~ } ,  

1 where e~(z) = z a for z = e i4 E S 1, -~r < ~b < 7r, a C ~G. We define the elements of 
Maj (Fourier modes) 
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1 

by = r174 r ~ + 5 ,  

b~ = 0 G r  n E ~. 

Then we have 

- MaiN s is generated by the modes by, r E 25 + �89 
- Maja is generated by the modes bn, n E Z, 
- Maj is generated by the modes b~, a E �89 

and the Fourier modes satisfy relations 

1 2 a  * 
{ba~ be} = ~(1 + ' ( -1)  Y)(~a,-c, ba = b-a, (14) 

Yb~=(-1)2%~, [Y,b~]=0, Y = Y * ,  y 2 = l .  (15) 

It is convenient to understand the elements of Ma] as smeared fields as well. We 
define the Hilbert space 

= L2(S 1) �9 L2(S 1) 

which may be identified with L2($1), where $1 denotes the double cover of S 1. Hence 
each element f E ~ has the unique decomposition 

f = fNs �9 f~, fNs, fR e L2(S~). 

On ~ we have the antiunitary involution 

We define the field ~ ( f )  eMaj by 

~(f) = r �9 r 

so that we have the conjugation 

anticommutation relations 

1 1 

{~(f)*, r : 2 ( 1 -  Y)(fNs,gNS)+ 2 (1 + Y)(fR, gR), 

boundary condition 

Y~(f) = ~(yf), y = (-1) �9 1 e ~ ( . ~ )  

and 
~', 6 (J ) ]  = 0. 

We now want to redefine the local generators Bi( f ,  g) E ~ ( [ )  as even elements of 
Maj. For that we have to fix an arbitrary point ( E S 1. We distinguish between two 
cases: 
Case 1: For all intervals [ ~ ~ with ~ ~ I we set 

Bi( f ,  g) = ~(f)~(9) ,  f = f Q f E ~ ,  ~ = 9 Q g E .~7-. (16) 
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Case 2: For every interval I E ~ with ( E I the point ( splits I in two disjoint 
intervals I1 and I2 so that I = I1 U {(} U I2. Let Xj be the characteristic functions of 
Ij  and set f j  = x j f ,  9j = %j9, J = 1,2. Then we set 

Bz(f,9) = ~ ( f l ) ~ ( # , ) + ~ ( L ) ~ ( # ~ ) +  Y~(fl)~(02)+ Ytb(f2)t}(Ol), (17) 

f j = f j |  [Tj=gj| j=l ,2 .  

It is an easy but less beautiful work to control that these Bz(f, 9) satisfy the relations 
(6) - (9), and that relation (10) is fulfilled with the Y of Definition 2.1, also independent 
of the functions and intervals [5]. It is not hard to see that the identifications (16),(17) 

C* define an isomorphism between ~A~i~ and the even part Maj + of Maj, too [31]. Thus 
we are allowed to identify the global observable algebra ~ '~ iv  with the even part of 
Maj. 

2.2. Representations and Endomorphisms. Each of the algebras Main s and MajR pos- 
sesses a faithful cyclic representation (3"Uns, 7rNS, I X?NS)) and (O~gR, 71"R~ I ~R)) which 
is characterized by 

1 
7rNs(br)[X?NS) : 0, r > 0, ?" E 7/, + ~,  (18) 

wR(bn)If2R) = 0, n > 0, n C Z, (19) 

respectively. The NS-representation is uniquely characterized (all matrix-elements can 
be computed and the vector l Y2NS) is defined to be cyclic). In the R-representation, the 
action of the self-adjoint b0 on the cyclic IX?R) is not completely fixed. To determine 
the R-representation uniquely too, we require in addition that the vectors IX?R) and 
7rR(b0)lx?R) are orthogonal in ' -~R,  

{X?RITrR(b0)IX?R) = 0. (20) 

One can consider these representations as those of Maj on the space o~Ns O ~ R  by 
the requirement 

7rNS(Y) = --1,  

which leads automatically to 

7rR(Y) = 1, (21) 

1 
~-Ns(b~) = 0, n E Z and 7rR(b~) = 0, r E Z + {, (22) 

i.e. 7rNS lives only on MajN s and IrR on MajR. Of course, both representations are 
then no longer faithful. The NS-representation is irreducible, the R-representation is 
not; it decomposes into two irreducible subrepresentations ( ~ ,  7r~) and (o~O~R - ,  7r~-) 
(see below) which are generated by the action of 7rR(Maj) on vectors IX?~) and ]Y2~), 
respectively, where 

1 
Ix? ) = Ix?R) =L  rR(b0)IX?R). 

These states are eigenstates of 7rR(b0) with eigenvalues zk2-�89 [30]. We are now 
interested in what happens, when the representations of Maj, 7rNS and ~rR, are restricted 
to the observable algebra which is the even subalgebra of Maj, ~/~u,ivC* = Mal+. It is 
known that the NS-representation splits into two irreducibles, 
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and the R-representation decomposes into two equivalent ones, 

I 
71" R c* ]'J~univ = 71"1/2 @ 71"1/2, ' - ~ R  ---- ~ @ ' a ~ ; / 2 "  

The subspaces .~,~g%, ~ 1 ,  o~gl/2 and ~ [ / 2  are spanned by vectors 

rCNs(b--~2N " " " b-~)IONS} 

rCNs(b--~2N+, " "  b-,-m )1Y2NS) 

7rR(b-n~ - - - b_~, )127R) 

7rR(b_~+,-.- b_~,)lXgR) 

1 
~ 0 ,  ri 6 H 0 + ~ ,  r2N > " "  > rl ,  

1 
~ l ,  ri 6 H 0 + ~ ,  r2N+I > " "  > rl, 

oc~'1/2, ni 6 N0, n2N > "'" > nl,  

E oc~;/2, ni 6 N0, n2N+l > "'" > nl, 

(23) 

(24) 

It is shown [24] that these endomorphisms fulfill 

7I'NS o C01/2 ~ 7l-R, (28) 
(29) 71"NS o cO 1 = 7rNS ~ 

1 1, (30) rrooOj  ~ 7rd, J = 0 , 2 ,  

where relation (29) is the most trivial one because 01 is inner in Maj, implemented 
by the unitary self-adjoint 

R =  x/2bo + b�89 + b_�89 E Maj. 

We can define these endomorphisms by the formula 

o.J( ) = 6( J i ) ,  

where lb  are the following isometries on ~ = L2(S 1) | L2($1), 

(25) 

Q1/2(Y) = - Y ,  (26)  

, ~Ol(Y) = Y. (27) 

on the generators as follows, 

6o = id, { 1 ibm+�89 a _> 

Q1/2(ba) = -~2 (b�89 - b_�89 ) a = 0 , 
1 - ib~  ~ a <_ - ~  

i ~ l ( b a )  = b-a a = O, •  

with N 6 No. We remark that the subspaces ,~,qgl/2 and ~ [ / 2  do not coincide with 

~ and oc~g~ -. How is that possible? The reason is that the subrepresentations rc~ 
C* and rc R, when restricted to the observable algebra "-/~univ, become equivalent [30], 

and see below. Therefore the decomposition into invariant subspaces is not unique. 
Mack and Schomerus [24, 25] defined the following endomorphisms of Maj which 

restrict to endomorphisms of the global observable algebra ~ v .  

Definition 2.2. The endomorphisms O J, J = O, �89 1 o f  Maj are defined by their action 
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~o= o 1 '  v(/2 o , o r ( '  

the isometries (Bogoliubov operators, see below) R/z,  ~/2 ,  V1, V 1' 6 ~r are 
defined by 

i ~ 
VV2 - ~ ( l e � 8 9 1 8 9 1 8 9 1 8 9  

",/2 ~=1 
o~  

n = l  

o ~  

v, _- ie~//e_~i+ e_�89189189189189189 
n = l  

n = l  

It is worthy to note that the two non-vanishing entries, each in ~ /2  and l~], are 
actually different. 

3. Localized Endomorphisms 

In this section we present our localized endomorphisms in terms of Bogoliubov trans- 
formations. After a brief summary of mathematical results which we will use, we 
introduce them as endomorphisms of the algebra of the punctured circle. 

3.1. The Selfdual CAR Algebra: Some Useful Results. For a better handling of our 
techniques we give a brief repetition of Araki's selfdual CAR algebra ~ ( ~ r ,  F) and 
quasifree states [1, 2]. We consider a Hilbert space ~ with an antiunitary involution 
F (complex conjugation),/.2 = 1, which fulfills 

(/~f, Fg) = (g, f ) ,  f ,  9 c ~ .  

The selfdual CAR algebra ~(.~.4",/") is defined to be the C*-norm closure of the 
algebra which is generated by the image of a linear mapping ~b which maps elements 
f E ~ to canonical generators ~(f) ,  so that 

~(f)* = $ ( / . f ) ,  {~P(f)*, ~P(g)} = (f, 9)1 

holds. The C*-norm satisfies [2] 

In particular, we have the inequality 

[[r I[f[[. (32) 

Elements of the set 
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~(3~6 ~, F)  = {V c c~(&'~) I [V, F] = 0, V * V  = 1) 

of F commuting isometries on ~ are called Bogoliubov operators. Every Bogoliubov 
operator V E ~ ( ~ ,  F) defines an endomorphism Pv of ~(,~C, F), defined by its 
action on the canonical generators, 

Ov(r = r  f ) .  

Moreover, if V E , ,~ (~ ' ,  F)  is surjective (i.e. unitary), then ~v is an automorphism. 

Definition 3.1. A state cu of ~ ( ~ g ' ,  F) is called quasifree if for  all n E ~ 

~z(r162 = 0, (33) 
n 

w(r = ( - 1 ) ~  ~ signer Hw(r162 (34) 
cr j = l  

holds. The sum runs over all permutations cr E ~2~ with the property 

or(l) < ~r(2) < ..- < or(n), er(j) < cr(j + n), j = 1 , . . . ,  n. (35) 

Quasifree states are therefore completely characterized by their two point function. It 
is known that there is a one to one correspondence between the set of quasifree states 
and the set 

~ ( ~ C ,  F) = {S  c ~(.~S'~ ) [ S = S*, 0 < S < 1, S + F S F  = 1}, 

given by the formula 
co(r162 = ( f  , Sg). (36) 

The quasifree state characterized by Eq. (36) is denoted by ws. A quasifree state, 
composed with a Bogoliubov endomorphism is again a quasifree state, namely we 
have cos o 0v = c0v*sv. The projections in ~ ( ~ ,  F) are called basis projections. 
If P is a basis projection then the state cop is pure and is called a Fock state. The 
corresponding GNS representation (~cc~p, 7rp, [Y2p )) is irreducible, it is called the Fock 
representation; the vector I f2p) E ~v~, is called the Fock vacuum. Araki proved [1, 2] 
that a state co of ~(57~', F) which satisfies 

w(~( f )~ ( f )* )  = O, f E P J T  (37) 

for a basis projection P is automatically the Fock state co = wp. 
We now come to an important quasiequivalence criterion for quasifree states. It 

was developed for the case of gauge invariant quasifree states by Powers and StCrmer 
[26] and generalized for arbitrary quasifree states by Araki [1]. Unitary equivalence 
(denoted by "~--") or quasiequivalence (denoted by "~")  of states means always that 
the corresponding GNS representations are unitarily equivalent or quasiequivalent, 
respectively. 

Theorem 3.2. Two quasifree states wsl and ws2 of ~ ( ~ ,  1") are quasiequivalent if 
and only if  

1_ 1_ 

s~ - s~ ~ r  (38) 

where ~ 2 ( ~ ' )  denotes the ideal of Hilbert Schmidt operators in ~,~(~-~'). 
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We now can conclude that two Fock states COp, and coP2 are unitarily equivalent, if  
and only if/91 - P2 is Hilbert Schmidt class, or, if cop is a Fock state and 0v  is a 

Bogoliubov endomorphism, that cop o 0v  ~ cop if and only if P -  (V*PV)�89 is Hilbert 
Schmidt class. But in most cases we study representations of the form 7rp o ~v, where 
pv  is a Bogoliubov endomorphism and 7rp a Fock representation of ~ ( ~ ' ,  F).  Such 
a representation 7rp o Pv is in general not cyclic but it is equivalent to a multiple 
of  the GNS representation 7rv*pv of the state cov*PV = cop o Qv. The multiplicity 
is given by 2 NV where N v  is the dimension of the intersection of kerV* a n d / 9 ~  
[4, 28], i.e. 

7rp o Ov ~ 2NVrcv*Pv, N v  = dim(kerV* N P~b").  (39) 

This is a decomposition of rcp o &v into cyclic subrepresentations but in general 
not into irreducibles. A decomposition into irreducibles is provided by the following 
theorem which was proven in [6] and, in a different way, in [4]. 

T h e o r e m  3.3. Let V be a Bogoliubov operator with M y  = dim kerV* < oo. If  M v  
is an even integer we have (with notations as above) 

M V 

rcp o Ov ~' 2 2 rcp,, (40) 

where rcp, is an (irreducible) Fock representation. If  M v  is odd then we have 

M V --1 

r~p o Pv ~ 2 - T -  (rr+ ~3 re_), (41) 

where re+ and re_ are mutually inequivalent, irreducible representations. 

The representations 7r• occurring in Eq. (41) are called pseudo Fock representations 
[1]. Consider the automorphism a _ l  of  g~(5~C, F)  which is defned  by c~_l(~b(f)) = 
-~b(f) .  We define the even algebra ~ ( ~ / ' ,  F )  + to be the subalgebra of  a_l-f ixpoints ,  

~ ( 5 ~ f ,  F )  + = {z E ~ ( ~ ,  F ) l a _ l ( z )  = x}. (42) 

We now are interested in what happens when our representations of  ~ ( ~ ,  F )  are 
restricted to the even algebra. For basis projections P1, P2, with P1 - P2 Hilbert 
Schmidt class, Araki and D.E. Evans [3] defined an index, taking values •  

ind(P1, P2) = (-- 1) dirn(P''~71(l-P2)'~). 

The automorphism a - 1  leaves any quasiffee state cos invariant. Thus a _ l  is imple- 
mented in 7rs. In particular, in a Fock representation ~rp, a - 1  extends to an automor- 
phism &-i  of  7rp(~( , ,~d ' , / ' ) ) "  = ,5~(o~p) .  The following proposition is taken from 
[2]. 

Proposi t ion 3.4. Let U E g ( . ~ g ,  F) be a unitary Bogoliubov operator and let P be 
a basis projection such that/9 - U*PU is Hilbert-Sehmidt class. Denote by Q(U) E 
~ ( ~ p )  the unitary which implements Qu in rcp. Then 

&_~(Q(U)) = r  ~r(U) = •  (43) 

In particular, 
~r(U) = ind(P, U*PU). (44) 

Furthermore, one has [3, 2] 
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T h e o r e m  3.5. Restricted to the even algebra ~ (J~ ' ,  P)+, a Fock representation 7rp 
splits into two mutually inequivalent, irreducible subrepresentations, 

7tel ~(,~',v)* = 7@ | 7rp. (45) 

Given two basis projections P1, P2, then 

7r-- ~ 7r • (46) Pl P~ 

if and only if P1 - P2 6 f~(3~ ' )  and ind(P1, P2) = +1, and 

7rpi~ ~ 7rq=p2 (47) 

if and only if  P1 - P2 E ~ 4 ( ~ ' )  and ind(P1, P2) = - 1 .  

On the other hand, it was proven in [6] that pseudo Fock representations 7r+ and 7r_ 
of Theorem 3.3, when restricted to the even algebra, remain irreducible but become 
equivalent. Summarizing we obtain 

Theo rem 3.6. With notations of Theorem 3.3, a representation 7rp o Oy restricts as 
follows to the even algebra ~( ,~S,  P)+: If M v  is even we have 

7rp o 0vI~(,~,v)+ ~ 2 M---s ' '  �9 7rp,) (48) 

with 7r+p, and 7v~, mutually inequivalent and irreducible. If M y  is odd, then 

I ~ 7r ( 4 9 )  71-p 0 ~0 V ~,~(~.,F)+ = 2 

with 7r irreducible. 

3.2. Restriction to the Algebra of the Punctured Circle. Let us consider the algebra 
of  the punctured circle ~ ( I < ) .  There is no Y in ,~/~(/ff) and the generators are of the 
form 

B h ( f , g ) = r  f = f |  g = g |  

Thus we identify ~/~(Ir as the even algebra ~(L2(S1) ,  F)  + and we are allowed to 
denote the generators by 

Bi ( f ,  g) = r 1 6 2  f , g  6 n2(I), I C I<, 

i.e. we work with common CAR algebras. By construction (16) and (17) it is easy to 
C* see that our representations 7r j ,  being non-faithful on ~/~univ, fulfill 

1 l, 7rg(~(Ir = 71"j(~/~C~v), g = 0, ~, 

C* the representation theories of  ~ ( I r  and "-/~univ are obviously the same. Since 
, ~ ( I r  ~ ~(L2(S1) ,  F)  + we can identify representations ~-NS and 7rR with GNS 
representations of quasifree states of ~ ( L 2 ( S  1), F )  and, correspondingly, representa- 
tions 7to, 7rl/2, 7rl with associated restrictions to the even subalgebra. This works as 
follows. Consider SNS, SR 6 ~(L2($1) ,  F) ,  the Neveu Scbwarz operator 
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SNs= (50) 
rEN0+�89 

is a basis projection, the Ramond operator 

1 

nCN 

(51) 

is not. By (o~6SNS, 7CSNS, IX2SN~)) and ( ~ S R ,  7rs~, IS2S~)) we denote the GNS triples of  
the corresponding quasifree states a~S,s and wsR, respectively. We have 

1 

and therefore, corresponding to Eq. (18), 

~rs.~(r = 0, 
1 

r E N0+  ~, 

as well as 

ws~@(e~)*~(e~)) = (e,~, SRe~) = O, 

and therefore, corresponding to Eq. (19), 

n ~ N ,  

7cs.(vS(e~))ls2s.) = 0, n ~ I~. 

Since cosa is quasifree we obtain cos~(r = 0 as the correspondence to the ad- 
ditional requirement (20). Consider an arbitrary element x = XNS | x n  of  Maj, 
XNS, XR E ~ ( L 2 ( S I ) ,  F).  By (18), (19) and (22), and taking into consideration that 
7rNS and 7rR are defined as cyclic representations of  Maj, we identify 

7TNS(X ) = 71"SNS (XNS), 7TR(X) = 7rSR(XR). 

Now , ~ ( I r  is generated by bilinear expressions of  Maj with xNS = xR. Therefore, 
with identification of . ~ ( I r  and ~ (L2($1) ,  F)  +, we have to identify 7rNS with ~SNs, 
~rR with 7rS~, and with notations of Theorem 3.5, ~r0 with 7r+ sNs and 7rl with 7r~ s . Con- 
sider our isometry VV2 (the Bogoliubov operator defined at the end of Subsect. 2.2): 

The kernel of its adjoint Va} 2 is one-dimensional, spanned by the vector 2 -  �89 (e �89 +e_  �89 
i.e. Mv,/2 = 1. By Theorem 3.3 we find 7rs~s o Or,/2 ~ 7r+ �9 7r_ with inequivalent, 
irreducible pseudo Fock representations ~r+, becoming equivalent in the restriction 
to the even algebra by Theorem 3.6. Since SR = VI*/2SNsVt/2 the states wsR and 
cJSNs o ~vl/2 coincide. By Eq. (39), 7rs~s o ~v~/2 is indeed a GNS representation of 
~OR, the Fock vacuum IX?SNs) is cyclic for ~rsNs o gv~/2 since N v  = 0. This establishes 
lrs~ --~ ~rSNs o ~�88 ~ 7r+ | ~r_. We conclude that the equivalent restrictions of  ~r+ and 
~r to the even algebra correspond to the representations ~rt/2 and C1/2. 
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3.3. Examples of Localized Endomorphisms. We have seen that, when working on 
the punctured circle, one has to deal with even CAR algebras. Thus we are allowed 
to define endomorphisms of ~ ( / r  simply as Bogoliubov endomorphisms of the un- 
derlying algebra ~(L2(S1), F). We remark that our endomorphisms Q1/2 and Q1 of 

C * ~univ do not restrict to endomorphisms of ~ ( I r  because of the different entries 
Vj and V~ in matrices Vj, J = �89 1 of Eq. (31). For constructing localized endomor- 
phisms, we admit as localization regions all open intervals such that their closure is 
contained in Ir i.e. elements of the set 

= {I  �9 K I r �9 I'}. (52) 

(F  always denotes the interior of the complement I c = S s \ I.) As usual, we define 
an endomorphism ~ of ~ ( I r  to be localized in some interval 1 �9 ~,~ if Q(A) = A 
for all A �9 ~/~(Is), Is �9 ~,~, Is N [ = 9. We present localized endomorphisms 
as Bogoliubov endomorphisms which are induced by pseudolocalized isometries. A 
Bogoliubov operator V �9 ~(L2($1),  F) is called pseudolocalized in I �9 ~ if for 
all f �9 L2(S s) 

(Vf ) ( z )  = a•  z �9 I• a• �9 {-1 ,  1}, 

where I+, I_ denote the two connected components of F A Ir Moreover, V is called 
even, if a+ = a_,  and odd, if a+ = - a _ .  Clearly, a pseudolocalized Bogoliubov oper- 
ator induces a localized endomorphism of the even algebra ,~ ( I r  = ~(L2(S1),  F) +. 
We give the following examples 

Definition 3.7. Let h �9 L2(S s) be a real (i.e. F-invariant) function, [[h[[ = 1 and 
supp(h) C I for some I �9 ~ .  Define W E J (L2(Ss ) ,  1), 

W =21h)(h [ - 1 (53) 

and the automorphism ~oc = Ow of ~(L2(Ss),  F). 

Obviously, W is even pseudolocalized and 0] ~ therefore, when restricted to ~:~(Ir 
localized in [. 

Lemma 3.8. The automorphism Q]oc is inner in ~(L2($1),  F). In restriction to the 
even algebra ~ ( I r  it leads to 

7r0 o 0 ~ = 7rs. (54) 

Proof One easily checks that Pw is implemented in ~(LZ(SS), F)  by the unitary 
self-adjoint q(W) = v~r  for all f C L2(S s) we have 

q(W)r  = 2r162162  

= 2{~b(h),~b(f)}~b(h)- 2~(f )~(h)~(h)  

= 2(h, f}~b(h) - r  

= ~ , ( 2 ( h , f } h -  f )  

= ~ ( W f ) .  

Thus Qw is implemented in 7rs~ by Q(W)  = 7cs~(q(W)). Obviously we have 
5z_s(Q(U)) = - Q ( U )  and SNS -- W*SNsW is Hilbert Schmidt class. By Proposi- 
tion 3.4 and Theorem 3.5 we conclude 
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71.+ r-., 
SN S 0 ~ W  -~ 71-SN S 

which proves the lemma, q.e.d. 
In the following we are searching for a localized endomorphism ~1~ which leads 

to a representation being equivalent to 7q/2. It turns out that the discussion becomes 
much more complicated. First we fix our point ~ to be ~ = -1 ,  without loss of 
generality. Further, we choose the localization region I to be/2, 

i2 = { z = ei r E S 1 __~ < r 2 }  

so that the open complement I~ is divided by ~ into I and [+, 

[_ = z = e  i C E S  1 < r  , 

/+ = { z = e i C e S 1  7r } . 

The Hilbert space L2(S 1) decomposes into a direct sum, 

L2(S ~) = L2(I_) | L2(I2) | L2(/+). 

By PI+, t:)I_ we denote the projections on the subspaces L2(/+), L2(L) ,  respectively. 
Define functions on S 1 by 

= { 

With 

v~z 2~ z E 12 1 
0 z E S  1 \ / 2  ' a E  ~Z. 

{ e~),r r 2~+ 

we then obtain two orthonormal bases 

Definition 3.9. We define 1 Bogoliubov 

of the subspace L2(I2) C L2($1). 

operators V~ V'  r ~7(L2(S1), F) as follows: 

i 
v = t"i-PI++  

o o  

k, 
n = l  

oo  

V'  = P,_ - P •  (lef))/e(2) (2) ( e ) )  \ n_�89 [e ~}(e_~+_{[ , (56) 
rL=I 

and let g~i~ and c~ll~ 2 be the endomorphisms of ~(L2(S1),/7) defined by 8~~ 2 = gv 

and Crll~ 2 = ~v'. 

Obviously, V and V ~ are odd pseudolocalized and ~1ff2 and ~rll~ ~ therefore, when 
restricted to ~ ( I r  localized in/2.  

i The definition of V ~ was already suggested by Mack and Schomerus [24]. 



280 J. BSckenhauer 

3.2. Analysis ofplff2 and (r11~ ~. In this subsection we establish that 71- 0 O ~01/21~ is unitarily 
equivalent to 7q/2. Furthermore we identify the unitary equivalence class of 7r0 o 

loc loc PW2Q1/2" The first step is the following: 

L e m m a  3.10. The following operators are Hilbert Schmidt class: 

V*SNsV - SR E ~.q~(L2(S1)), (57) 

VSNSV* - SR E ~,~(L2(S1)), (58) 

vt*SNS Vt  -- SR E ~Z2(L2(S1)), (59) 

V / S N S V t * - - S R  C ~ ( L 2 ( S 1 ) ) .  (60) 

Because the proof is ugly work it is banished to the appendix. For drawing our first 
conclusions of Lemma 3.10, we remember an estimate which was given by Powers 
and Stermer [26]: For positive operators A, /3  E ~ ( ~ )  the following inequality 
holds: 

]/A �89 - B�89 - LIA - Bll~,  (61) 

where for T E ~ ( L 2 ( $ 1 ) )  by IlTlll is denoted the trace norm 

IITll, : tr ( ( T ' T ) � 8 9  , 

and by IITll2 the Hilbert Schmidt norm 

]]Tll2 = (tr(T*T))�89 

This estimate will be used to see that the operators V*SNsV and V'*SNsV' differ 
from their positive square roots only by Hilbert Schmidt operators, 

, ! , g 2 II(V SNsV) 2 g SNS ll2 --< IIV*SNsV-(V*SNsV)2II~ 
= IIV*SNs(1-VV*)SNsVIIa 

_< IIVII211&sll2111-VV*lll. 

Since 1 - VV* is a rank one projection and therefore trace class, the right-hand side 
is finite. Obviously, the same calculation runs for V'. More easily one finds 

, ( 1  ~) leo) (e0 l  2 1 1 IIS -&ll2-- 2 

It follows immediately from Lemma 3.10: 

, l ! ! 
(V SNsV) ~ -- Sl~ E ~ ( L 2 ( S 1 ) ) ,  (Vt*SNsV' )  �89 - S~ E ~ ( L 2 ( ~ 1 ) ) .  

Applying Theorem 3.2 this yields wv*&sV ~ wR and thus 

"~'SN S O ~ V  ~ 7~SR, 

the same holds for @v,. We have already discussed that ~& decomposes into two 
inequivalent pseudo Fock representations. Using Theorem 3.3, the same is true for 
WSNs O ~V and Ir&s o Qv, since M y  = My,  = 1. Thus we have 

7I-SN S 0 ~)Y = 71"+ @ 71"__ t ~  "]]'SNS O ~ V  t . 

In restriction to the even algebra ~(L2(S1) ,  F )  +, the representations ~r+ and ~r_ be- 
come equivalent and have to be identified with ~-W2. This means ;r}N s o Py ~ ;rsNs o Pv 

and 7r+&s o ~v' ~ 7rsN s -  o L)v'. We have proven 
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Theorem 3.11. The representations of .~( Ir  obey 

Ioc ~ ~loc 
7r0o01/2 = 7q o 1/2 = 7rl/2, (62) 

loc ~-~ loc r,v 
re0 o 0.1/2 = 7q o ~1/2 = 7rl/2. (63) 

Let us now consider the squares ~2 = ~v2 and ~2, = 0v,2" 

Proposi t ion 3.12. The representations of ~ ( [ r  obey 

loc ]oc 
71" 0 0  01/2tQ1/2 = 71" 0 | r q ,  (64) 

loc 1oc ,--o 
71- 0 o 0"1/20"1/2 ---- 71" 0 | 7q.  (65) 

Proof If  we multiply the operator in relation (58) with V* from the left and with V 
from the right we get 

V * S R V  -- SNS E a ~ ( L 2 ( S 1 ) ) .  

*S Since relation (57) holds we can replace SR by V ysV,  this yields 

V*V*SNsVV - SNs C ~ ( L 2 ( S 1 ) ) .  

In the same way one obtains 

V I * V t * S N S  V I V t  --  SNS C a ~ ( L 2 ( S 1 ) ) .  

Now the operators 1 - (VV) (VV)*  and 1 - (V 'V ' ) (V 'VI )  * are rank two projections, 
so that we can again conclude 

(V*V*SNsVV)�89 - SNS e a~(L2(S1)) ,  

and 
( V t * V I * S N s V / V t )  �89 --  ~NS E o , ~ ( L 2 ( S 1 ) ) .  

By using Theorem 3.2 we obtain for the states 

~osNs o 6 2 ~ wsNs, ~osN~ o 0 2 ,  ,~ ~sN~. 

Moreover, the kernel of  V* is spanned by the F-invariant, normed vector 

f(2)___ ~2~2 (g~2)_t_ e(2~),  

and the kernel of  V'* is spanned by e~ 2}. Thus, ker(V*) 2 (resp. ker(V'*)  2) is spanned 

by orthonormal vectors g2) and V g 2) (resp. e~o 2) and V'e~o 2)) i.e. Mv2 = Mv,a = 2; 
we conclude 

2 ~ ~ o 
7]-SN S O ~) = 7"I'SN S ~ )  7I'SN S = 7"~SN S 

by Theorem 3.3. In restriction to the even algebra, identified with ~ ( I ( ) ,  this reads 

01oc 01oc loc loc 71" 0 o 1/2 1/2 @ 71-1 o ~01/2LOl/2 = 71" 0 @ 71-1 @ 71" 0 @ 71"1, 

loc loc loc loe ,--,a 
7r 0 o 0.U20.1/2 | 7q o 0.1/20.1/2 = rCo Q rrl �9 7ro G rCl. 

We have to assign the irreducible representations on the right-hand side to the 
representations on the left. By Theorem 3.11 we find 7r0 o 0'1~ ~ 7rl o 011~ and 

loc loc ,-.o loc loc therefore 7to o ~1/201/2 = 7rl o 01/20t/2- Using the same argument, one obtains 
loc loc ~ loc loc 7to o 0-1/20.1/2 = 7rl o ~rl/20.1/2, q.e.d. 
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4. Extension to von Neumann Algebras. 

In the DHR theory one usually works with local von Neumann algebras instead of 
local C*-algebras. This formalism allows to discover intertwiners in the observable 
algebra and this is crucial for the analysis of statistics and fusion. It is our aim to find 
a description of the chiral Ising model as close as possible to the DHR formalism. 
Therefore we have to extend our local C*-algebras ~ ( I ) ,  to their weak closures in 
the vacuum representation. 

4.1. The Net of Local von Neumann Algebras. For intervals I C ~,~ with non-empty 
open complement, we define local von Neumann algebras 

~ ( I )  = ~0(~'~(/))", I E ~ ,  I '  r O. 

By M6bius covariance (some details are presented in the appendix), this defines a 
so-called covariant precosheaf on the circle. In particular, we have Haag duality on 
the circle [7, 9], 

~.~(I)' = ~ (66) 

Since the set of intervals {I  c ~,~,I' r (~} is not directed we cannot define a global 
algebra as the C*-norm closure of the union of all local algebras. Following Fre- 
denhagen, Rehren and Schroer [14], one could instead introduce the corresponding 
universal algebra. But in our model it seems to be much more comfortable to define 
a quasilocal algebra of the punctured circle. (The set ~ ,  Eq. (52), is directed.) This 
works as follows. We fix again our point at infinity, without loss of generality, to be 

= - 1 and admit only intervals / E ~,~. Then we define our algebra 92r of quasilocal 
observables to be the norm closure of all such local von Neumann algebras, 

9ffr = U ~ ( I ) .  (67) 
Ic~r 

Now choose some interval I E ~,~r Let us denote the von Neumann algebra generated 
by all .~(I0) ,  I0 E ~ ,  I0 n I = 0 by ~ r  Obviously we have 

, ~ r  c , ~ ( I ' ) .  

We claim that equality holds, that means Haag duality holds also on the punctured 
circle. 

Lemma 4.1. We have Haag duality on the punctured circle. For I E ~r  the following 
relation holds: 

~ ( / ) '  = .~,r (68) 

Proof We have to show ~ g ( I ' )  = ~ ( I ' ) .  It is sufficient to show that each gen- 
erator 7r0(~(f)~)(9)), supp(f),supp(9) C I '  of ~.~(I') is a weak limit point of a net 
constructed out of elements in ~ r  Let I0 E ~ ,  Io D I be an interval such 
that I t is a small neighborhood of C. Let Xo be the characteristic function of I0 and 
fo = xof ,  90 = Xo9. Since r converges in C*-norm to Ir0(~(f)~(9)) by 
inequality (32) if I t shrinks to the point ~ it suffices to show that 7r0(lb(f0)~(90)) is 
such a limit point for all such/0. Now let us denote the two connected components 
of I '  \ {~} b y / +  and I_ .  Define X~- to be the characteristic functions of I •  and we 
write f+  = X• 9• = X• Then 
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7ro(O(fo)O(go)) = 7ro(O(f+)O(g+)) + r162162 
+~ro(r + 7ro(O(f_)O(g+)), 

Clearly, the first two terms on the right hand side are elements of  ~ r  We show 
that the third (then, by symmetry,  also the fourth) is a weak limit point described 
as above. Choose sequences {h(~),n E N}, where h(, ~) E L2(S 1) are functions, 

IIh(,~)ll = 1, supp(h~ )) C [(n/, and I~ n) E ~ are intervals, I~ n) c I• M I~, shrinking 
to the point ~. Then define for n E N 

Z,~ = r162162 ~ ,~(I ' ) .  

By M6bius covariance of the vacuum sector (appendix), we can choose the h(, '0 such 
that the Zn are related by M6bius transformations (dilations). For all n we have 
IIZ~ll _< 1. It follows that there exists a weakly convergent subnet {Xa ,c t  E c}, 
that means there is a function F : c ---+ N (c a directed set) with the property that 
X~ = ZF(~) for all c~ E c, and that for each n ~ E N there is an cg E c such that c~ ~- cd 
implies F(c~) _> n '  [27]. The weak limit point of  the net {X~, oz E c} in , ~ ( F )  will 
be denoted by X ,  

w- lim X~ = X. 
OL 

For each I i  E ~ all elements R E ~ ( I 1 )  commute with Z~ for sufficiently large n, 
thus IX, R] = 0. It follows 

[X, A] = 0, A E .~r 

and, by irreducibility of  the vacuum representation, X is a complex number, X = A1. 
We have 

by MSbius invariance of the vacuum. We claim that we can choose h(+ 1) and h (1)_ such 
that A r 0. Recall the definition of the Hardy space 

H 2 = { f  E L2(S l) ] (e_~, f )  = O, n = 1,2, . . .} .  

A Theorem of F. and M. Riesz (see e.g. [12], Th. 6.13) states that 

f E H 2, f r 0 ==> f(z)  r 0 almost everywhere. (69) 

For example, for a given non-zero function k E SNsLa(S 1) we find that k / E H 2, 

where k1(z) = z � 8 9  So k / and hence k cannot vanish on a set of  non-zero measure. 
Now we have 

A = <9olZ11~o)= ~o(r <rh(+ ~), SNSh(1)>._ 

Define k = Sysh(_ 1) for a given h ~  ) as above. We find k r 0, otherwise FhO ) E 
SNsL2(S 1) in contradiction to the fact that h~ ) and hence Fh~ ) vanishes outside I ~  ). 
It follows k(z) r 0 almost everywhere and hence 
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If  we define, for instance, h(1)(z) = c-�89 where XI(+~) denotes the charac- 

teristic function of  I (1) then indeed A = c�89 r O. So we can compute 

Tr0(r162 = /~-lTro(r162 

= A-~w-limTro(r162 
c~ 

--= . ~ - - l w - l i m T r o ( r 1 6 2  

----  .~-- 1 W- liam 7r0(r162162162 

= A-~W - lira 7ro(r162162162 

= A-~w _ lim~ro(~(f+)~(h(+~(~))))~ro(r 

i.e. 7c0(r162 is indeed a weak limit point of  a net of elements in ~ r  q.e.d. 

4.2. Extension. Because we work on the punctured circle the vacuum representation 
is faithful, i.e. 7r0 acts faithfully on ~ ( I r  Thus we are allowed to use the common 
convention of  identifying observables A with their vacuum representers 7r0(A). Passing 
over to von Neumann algebras, we consider the vacuum representation acting as the 
identity on ~2~(I), and in the same fashion, we treat local C*-algebras ~ ( I )  as 
subalgebras of  ~ ( I ) ,  I E ~ .  Now we have to check whether we can canonically 

loc j = I extend our representations ~rj and endomo~phisms 0 j ,  ~, l, to the von Neumann 
algebras . ~ ( / ) ,  I E ~ ,  and the global (quasilocal) C*-algebra 92r they generate. 
Thus we are looking for isomorphisms 

~-a : ~/~(I)"  = ~ ( I )  > 7c jG/~( / ) ) "  

satisfying ~rj(A) = 7rj(A) if A E ~/g(/), I E ~,~, J = �89 1. This means exactly that 
we have to check whether the representations 71-j are quasiequivalent to the identity 
(vacuum representation) on local algebras ~/g(I). 

Theorem 4.2 (Local Normality).  In restriction to local C*-algebras ~/g(I), I C ~ ,  
the representations 7c j are quasiequivalent to the vacuum representation 7to = id, 

1 
~rjl~(~) ~ 7r0l~(~), ir E r  J = ~,  1. (70) 

Proof First we consider the case J = 1. We have to show that 

- ~ 7r + o ~ w  on ~ ( L 2 ( S 1 ) , F )  +. We show that We have already proven that 7rsN s SNs 
~r + o ~w and 7r + when restricted to W(L2(I),  F)  +, are unitarily equivalent ( I  E 

SNS ~NS ~ 

~,q~). In ~(L2($1) ,  F),  Qw is implemented by the unitary q(W) = x / ~ ( h ) .  Choose 
a real function h' e L2(S 1) such that IIh'll = 1 and supp(h') C Io for some Io E ~q~, 
Io M [ = !3 and set U = v/2r Then q(W)U is a unitary element of  ~(L2($1) ,  F)  + 
and for x e ~ ( L 2 ( I ) ,  F )  + we have 

q(W)Ux(q(W)U)* = q ( W ) U x U q ( W )  = q (W)xq (W)  = ~w(x) ,  
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and therefore 

71 -+ &s o Ow(x) = 7r~N s (q(W)U)Tr+SNs ( x ) ~  s (q(W)U)-I,  

t By the following Lemma 4.3 we which proves the statement. Now consider J = g. 
have quasiequivalence of 7rs~s and 7rs~ on ~ ( L 2 ( I ) ,  F).  In restriction to the even 
subalgebra, the irreducible 7rSNs splits into 7r + SNs | 7rSNs, and the two irreducible sub- 
representations 7r+ and 7r_ of 7r& become equivalent to an irreducible representation 
7r. Thus locally one obtains 

7i -+ 

where 7c corresponds to the representation 7q/2. Having already established the local 

equivalence of 7r+&s and 7C&s- this proves the theorem, q.e.d. 

L e m m a  4.3. For I C ~,~r we have the local quasiequivalence 

71-~'NS ] ~C~(L2(/),/" ) ~,~ 7I'SRI~'~(L2([),/~). (71) 

Proof We first claim that ts?SNs) and IS?&) remain cyclic for rCSNs(~(L2(I), V)) and 
r r & ( ~ ( L 2 ( I ) ,  F)), respectively. Denote by PI the projection onto L2(/ )  C L2(S1). 
Then for rCsNs the statement is a consequence (of the arguments in the proof) of  
Araki 's  Lemma 4.8 in [1], because 

(1 - PI)L2(S 1) UI SNsL2(S 1) = {0}. 

(If  k C SysL2(S1), k r 0, then k'(z) = z�89 is a function in H e arid hence again 
by Eq. (69) k and k'  cannot vanish in the whole interval I . )  An analogous argument 
runs for 7r&, because it is a direct sum of inequivalent pseudo Fock representations 
rr+ and re_ which restrict to Fock representations (see [1] for details) ~rp, of  fC~((PR + 
FPRF)L2(S1), F) each, where 

pR = r e - , d ( e - , d  
n=l  

is a basis projection of L2(S 1) = (PR + FPRF)L2(S1). If  p/(O) denotes the projection 
onto L2(I) = L2(S l) n L2(I)  one finds again 

(1 - n PRL2o(S 1) = {0} 

because we have P1 (~ = PI - (eo, Pr-eo)-aPfleo)(eolrz and thus a function k E 
(1-P(p))L2(S 1) is constant in I, k(z) = e, z E I and c C C. On the other hand, for k E 
PRL2(S 1) we find Fk --~ E H 2. Now F k - ~  vanishes in I ,  so it follows by Eq. (69) 
that F h - ~  = 0, i.e. k is constant on the whole circle, k = c. But we have (eo, k) = 0 for 
k E Pp.L2(S 1) and hence h = 0. So we conclude that the GNS vector ]s?p~) remains 
cyclic for rCpR(g:~(Lg(I), F)), thus vectors IX)i) ~ ]S?PR) for rc+(~(L2(I ) , /~) ) .  By 

inequivalence of re+ and re_, the GNS vector IS?&) = 2-�89 ~ IS?_)) remains 
cyclic for rr&(~:~(L2(I), F)). Thus, for proving the lemma, we have to show that 
states CO&s and co& are quasiequivalent on ~ ( L 2 ( I ) ,  F).  We have to show 

(PlSNsPI) �89 -- (PlSRPI) �89 E a,~(L2(S1)). 
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Using the inequality (61) it is sufficient to show 

l l P z & s P ~  - P~&P~I] ,  < oo. 

We use the parameterization z = e io, -Tr < 0 -< ~r of  S 1. Recall  that Hilbert Schmidt 
operators A E fi~(L2(S1)) can be written as square integrable kernels A(0,  0 ') .  For 

instance, a rank-one-projection le~)(e~ I has kernel e >(~-~'~. For (small) e > 0 define 

operators in ~NSq~(e)' ~(R e) E ~.~(L2(S1)) by kernels 

o o  

(e) ' E ~ " ' SNS(0, 0 ) = e--(n+g)O+--i+ +e) = 

rt=0 

and 

e -  �89 (i+-ir 

1 -- e -(i4~ i0'+e) 

o o  

1 + E e-n( i4  ir = 1 1 
S(e)(q~, ~b') = ~ 1 -- e -(iq~-i4)'+e) 2" 

r ~ = l  

Note that e regularizes the singularities for ~b - ~b' = 0, -4-27r. Using Cauchy 's  integral 
formula, it is easy to check that for r,  s E Z + �89 

lim (er, ~(~)~'~Ns%/ = l i m ~  __dz Js dz' z-r-�89 
~N0 ~ \ 0 J s ,  27riz ~ 2xiz  I 1 - ~-e -C 

l im~\0  eS~5~,8 r, s < 0 
= 0 otherwise = <er, Syses) .  

Because e sC < 1 for s < 0 this result can be generalized to 

/r S( ~)-\ <f, SNsg ) l im w,  NSY/ = 
e\O 

for arbitrary f ,  g E L a ( s  1) by an argument of  bounded convergence. So we have weak 
�9 ( e )  convergence w- h m ~ \ 0  S~s = SNs. In an analogous way one obtains w- lim~No S (~) = 

SR. Thus the difference A (C) = S (~) - ~(~) with kernel ~NS 

1 1 
A(~)(O, 0') = 

1 + e - � 8 9  (i4-ir 2 

converges weakly to A = Sa  - SNs. We have to show that X = PIAP~ is trace 
class. The operator P I  acts as multiplication with the characteristic function X~(~b) 
corresponding to z = e i r  I .  Now X (e) = Pi,J(e)Pi, converging weakly to X ,  has 
kernel 

X(~)(0 , ~b') = xz(0)  1 + e-�89 XI(0') 

and is no more singular for e ~ 0. Hence 

lim <f,X(~)g)= y dO ~ dO' ~%o ,~ ~ ~ 2~ f(eiO)X(e=~ 0' )g(ei4 ' ) '  f '  g E L2(S1), 

by the theorem of  bounded convergence. It follows X = X (~=~ E ~,~2(L2($1)). Let 
; ~  be a smooth function on [-7r,  7r] which satisfies 2x(0)  = 1 for z = e ie E I and 
vanishes in a neighborhood of  0 = +Tr. We define 
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( 1 
X(qS, qS') = 2I(~b) 1 + e-�89 2i(~b') 

such that X = P• and hence 

Ilxll~ = I IP ,2Pz I I1  _< IlPzlll lX/lllIPzl[ = 11211a. 

Since )?(qS, q5 ~) is a smooth function in q5 and 6' it has fast decreasing Fourier coef- 
ficients which coincide with matrix elements (en, 2e~), n, m E g. This proves the 
statement IlXlla < oc, q.e.d. 

We have proven local quasiequivalence of our representations fro, 7rl/2 and 7rl. 
Thus we have an extension to local von Neumann algebras ~ ( I )  and to the qnasilocal 
algebra ~1r they generate. By unitary equivalence 0~ ~ --~ rcj on u~(Ir i.e. there are 
unitaries Uj ".~o ~ ~Cj satisfying pl~ ~ d  j =  Uj-17rj(A)Uj for all A E , ~ ( I )  and 
all I E ~,~, we have an extension of 0~ ~ to 9Ar too, J = �89 1. These extensions, 
denoted by the same symbols, fulfill 

ioc Oj (A)  = A,  A E ' -~( I1) ,  I1 E a ~ ,  [1 N ] = 0 

([  denotes the localization region) and also 

loc 0a (Jg(I0)) C ~,@(I0); I0 E ~ ,  I C I0, 

because these endomorphisms satisfy the corresponding relations on the underlying 
C*-algebras .-/~([1) and ~//~(I0). We have established that our endomorphisms 0~ ~ 
J = 2 l-, 1, are well-defined localized endomorphisms in the common sense. In addition, 
these endomorphisms are transportable. This follows because the precosheaf { ,~(I )}  
is M6bius covariant. Thus 9,1r is covariant with respect to the subgroup of M6bius 
transformations leaving (, the point at infinity, invariant. 

4.3. Fusion Rules of Localized Endomorphisms. The main advantage of working with 
local von Neumann algebras is that one can manifestly prove fusion rules in terms of 
equivalence classes of localized endomorphisms. Let 0~ and 0b be endomorphisms of 
92r localized in intervals [~, Ib E ~r respectively. Then there is an interval [ 6 ~,~, 
I~UIb C I, such that 0~ and 0b are localized in I. Suppose that 0~ ~ 0b, i.e. that there 
is a unitary U ~ ,P2(o~f0) such that &(A) = U*&(A)U for all A ~ 92r Exploiting 
Haag duality one finds U c ~ ( I ) ,  i.e. U E ~ .  This is an important tool which 
enables to derive fusion rules in the algebraic framework: If also ~ (A )  = U*~b(A)U, 
A E ~r for localized endomorphisms ~ ,  ~b then ~0~  ~ ~b&, realized by the 
well-defined unitary ~b(U)~r. So we can deduce fusion rules in terms of equivalence 
classes by computing it for some special representatives. Obviously, this procedure 
fails for global endomorphisms 0a, J = �89 1, of ~uCniv by two reasons: The first one 

C* is that ~/~univ is generated by local C*-algebras. But local intertwiners may lie only in 
their weak closures; there is a rather small number of endomorphisms which are inner 
equivalent in the C*-algebras. The second reason is that the vacuum representation 
does not act faithfully c* on ~/~univ" In the vacuum representation, too much information 
gets lost. For example, the equivalence class of rco o 01/2 does not depend on the 
isometry V[/2 at all but the representation fro o 02/2 does. Counterexamples can be 
constructed; there is, for instance, an endomorphism #V2 such that % o #1/2 --~ 

of  '~univ [5]. re0 o ~t/2, but ~r0 o/1,2/2 ~f 71- 0 o 02/2 as representations c* 
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It is no problem to compute the fusion rules for our special examples of localized 
endomorphisms, we just have to summarize some of our previous results. Proposition 
3.12 gives us the first fusion rule, we have established 

61oc loc 
71" 0 o 1 / 2 6 1 / 2  = 7I-0 @ 71"1' 

loc ,--o We obtain the second fusion rule by the fact that rq o 61/2 = rrl/e (Theorem 3.11). 
Hence we conclude 

6loc 61oc ~.~ loc 
71" 0 o 1 1/2 --'-- 71-i 0 L01/2 = 71"1/2 . 

Since p~oc and 611~ commute if w e  choose the localization region of 6] ~176 disjoint to 
Aoc that of et/2 we also obtain 

LolOC _loc 
71" 0 0  1/2&)1 = 71"1/2. 

Trivially, the fact that (6]~ 2 = id leads us to the third fusion rule 

~ ~ ~ 
71" 0 0 c c = 71.0. 

Denoting by 60 the identity endomorphism (everywhere localized) and by [6J] the 
equivalence class of localized endomorphisms being unitarily equivalent to p ~  in the 
vacuum representation, we summarize 

Theorem 4.4 (Fusion rules of localized endomorphisms). 

[02/21 = [60] + [611, (72) 

[61/201] = [Pt0t/z] = [61/2], (73) 

[612] = [P0], (74) 

i.e. the localized endomorphisms obey the Ising fusion rules. 

4.4. Statistics Operator and Left Inverse. According to the general theory of super- 
selection sectors [11, 13, 18], we expect that for each endomorphism Q which is 
localized in some interval I c ~,~ there exists a unitary ce E Jg ( [ )  which commutes 
with ~2 (~Q), 

C o E 62(~r ' 

and fulfills 
e~6(~o)eo = 0(eQ)eo6(eo). (75) 

Therefore the elements 7-i = 6i-l(ee), i = 1 , 2 , . . . ,  satisfy the Artin relations and 
determine a representation of the braid group Boo [11, 13]. The statistics operator is 
given by the formula 

e o = U - l p ( U ) ,  (76) 

where U is unitary such that the (equivalent) endomorphism ~, defined by 

~(A) = UQ(A)U -1, A E 9dr 

is localized in some interval I0 c ~,~, -To c F.  The statistics operator is independent 
of the special choice of 0 as far as Io varies in one of the two connected components 
of I '  \ {~} but it may depend on the fact whether I0 lies in the left or the right 
complement of I with respect to our "point at infinity" ~. The computation of r is 
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straightforward for p = 0~ ~ Let ~ be induced by a real function h c L2(S 1) with 
support in some interval I ,  []h[[ 2 = 1, as described in Definition 3.7. Analogously, let 

be induced by a real function ho, [[ho[[ = 1, with supp(ho) C Io, Io A I = ~. Since 
these endomorphisms are unitarily implemented we find 

and 

so that 

U = 2r162 U -~ = 2r162 

0(U) = 2 r 1 6 2  = - U  

expressing nothing but anticommutativity of Majorana fields. We now want to con- 
]oc struct the statistics operator e~ for our localized endomorphism (r = (71/2" It seems to 

be very difficult to do that by the formula (76) but to be much easier to determine 
it by its properties. The statistics operator commutes with (72(92r The commutant 
(72(~);  is spanned by elements 1, H where the projection H is defined by 

1( ) 
H = r162 e• = ~ e~ 2) • . 

(We remark that the orthonormal vectors 6• span the kernel of  (WV;) * and satisfy 
e+ = / ' e _ . )  This leads us to the ansatz 

e~ = (~(1 + 7H) ,  c~, 7 E C. 

Now e~ is unitary, 
c ~ ;  = 1~12(1 + (7 + ~ + 7~)H) = 1. 

Therefore 7 + "~ + 77 = 0, In[ 2 = l, we write c~ = e k~ w real. The statistics operator 
satisfies Eq. (75); we exclude the case 7 = 0 and find 

0 = e -3 i~7 -1 (e~ (7 (e~ )e~ - (7 (~ )c~ (7 (eo ) )  

= (7 + 1)(H - (7(H)) + 72(Ha(H)H - (7(H)H(7(II)). 

It is not hard to see that H and (7(H) can be written in the following way: 

1 (1 + 2ir 1 (1 +2i~(V'e~2))f(e(02))), a(H)= ~ 

The fields obey 

~ ( C )  ~ = ~ ( v '  C )  ~ = r  2 C )  ~ = ! 
2 '  

and 

{ ~ ( v ' C ) ,  ,(6~o23)} = {r  r  = {~((v')Vo2b, w(v'  6~o2b} = o. 

Using these relations one finds 2 

2 With the identification En = ern-l(H), n = 1, 2,..., this is nothing else but the Tempefley-Lieb-Jones 
algebra relation 

E n E n + l  En  = d(cr)-2En 

with statistical dimension d(o-) = V~. 
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so that we obtain 

~ ( r t ) n  = 1-1'I 
2 ' 

1 
cr(H)Ha(H) = ~a(H), 

Since H - ~r(H) r 0 we have 

7 2 + 2 " , / + 2 = 0  ~ ' y = - - I  •  

and therefore 
e~ = ei~(1 - (1 • i)H). 

According to the general theory [11, t3, 18], we expect that there exists also a left 
inverse q5 to our endomorphism cr such that ~5o o ~ = id. The left inverse is a unital, 
positive mapping from 9,1r to 9.1r which satisfies ~5~(o@(I)) C , ~ ( I )  if I D I2. Since 

is not an automorphism r  does in general not respect products but 

,P~(cr(A)Bcr(C)) = AqS~(B)C 

holds for A, B,  C E 9.1r In the following we want to derive an explicit description 
for ~5.  We introduce an arbitrary orthonormal basis {v~, n E Z} of L2(S 1) with 

v0 = e(02) and Fv~ = v_~. It suffices to consider elements A of 92r which are sums of 
monomials X of the form 

X = ~ ( V ~ l ) ~ / ~ ( v , 2 ) . "  V(v,~2~).  

Using the anticommutation relations, 

{~(v~), ~(v~,)} = 6~, ~,1, 

in particular r 2 = �89 we can write every monomial X such that r appears 
at most once. If  every monomial X is written in that way we define ~b~ as the linear 
mapping which preserves the unit and fulfills 

~ ( x )  = ~ ( V ' * v ~ , ) r  . . . r  ). 

It is no problem to check that q~o is well defined and has the required properties. The 
general theory says 

~P~(e~) = wo 1, 
d(~) 

where w~ is a phase factor ("statistical phase") and the positive real number d(a) is 
called statistical dimension. Since a = 6~~ 2 belongs to the sector [gU2] we expect that 

d(a) = V~. Using our formula for q5 we find (respecting that V@0 2) is orthogonal to 

* ~ ( / / )  = 4~= ( ~  (1 +2ir 1-1"2 

We conclude 

- -  

in agreement with d(~) = x/2. At the end we find 

ei(~:  ~) 

v~ 
, 
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(.~o" 
c~ = ---~_ ((1 • i) l  T 2il l) .  

x/2 
(77) 

By the spin and statistics theorem [14] we expect that the statistical phase is given 
by w~, = e 27ris, where s is the infimum of the spectrum of the conformal energy 
operator L0 in the representation 7r0 o a. Since cr belongs to the sector [01/2] we 

have s = ~ and therefore w~ = e ~ .  However, we did not succeed in computing w~ 
directly. Moreover, we observe the freedom to choose the +-sign in our formula for 
the statistics operator e~. The change of  this sign corresponds to the replacement of  
c~ by e ; .  The fact that e~, r e~ goes back to the non-trivial spacefime topology which 
is the origin of  braid statistics. At the end we remark that the same calculations we 
have done for (7 = ~r11) ~ run for the endomorphism 011)~2; we just have to replace V '  

by V and e(0 z) by f0 (2). 

A. Appendix: MSbius Covariance of the Vacuum Sector 

We will briefly discuss MSbius covariance here. Related topics can be found in the 
book of  Lang [21]. The MSbius symmetry on the circle S 1 is given by the group 
Mob = SU(1, 1)/Z2, where 

{(~ s u ( 1 ,  1) = g = 

Its action on the circle is 

EGL2(C)  Ic~l 2 - ] f l l  2 = 1  . 

~ z  - 
z E S  1. 

g z  - - 3 z  + c~' 

Each element 9 E SU(1, 1) can be decomposed in the product of  a rotation r(t) and 
a transformation g / = r ( t ) - 1 9  leaving the point z = - 1  invariant, 

9 = r( t )g ' ,  r( t )  = e - 7  0 t E IR, 91 = 
0 e~ ' 3'  c~' ' 

such that (ce' +/31)(ce t + fll)-1 = 1. Since r( t  + 27r) = - r ( t )  we can determine -27r < 
t _< 27r uniquely by the additional requirement Re(c~/) > 0. Then a representation U 
of  SU(1, 1) in our Hilbert space of  test functions L2(S 1) is defined by 

( U ( g ) f )  (z) = e(9; z)(cx + 3-2)- ~- (~  + 3 z ) -  1 f \ ~---+-~J , (78) 

where for z = e i4, -~r < r _< 7r, 

e(g; z) = - sign(t - 7r - r sign(t + 7r - r 

and sign(x) = 1 if x > 0, sign(x) = - 1 if x < 0. We observe that e(g; z) is discontin- 
uous at z = - 1  and z = g ( - 1 )  = - ( ~ +  ~)(c~ +/3) -1. Up to this e-factor, Eq. (78) is 
a well-known definition of  a representation of  SU(1, 1). So it remains to be checked 
that 

e(91; z)e(92; 9~1z)  = e(9192; z).  
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Since both sides have their discontinuities at z = - 1  and z = 9192(-1) they can 
differ only by a global sign. But this possibility is easily excluded by arguments of  

1 LZ-continuity in 9. Moreover, by computing (U(g)e~, U(g)e~) = 6~,8 for r, s E Z + 
(NS-base) we can also check that U is unitary, 

U(g)er, U(g)e~) fS1 dz ~ )_ l (~ .k .  3Z)_ 1 (OZX'I-~ 8-r 
2-~z (~ + \ ~---~/ 

- 2~ril fs~ dz (ozz+~)s-~-l(3z+~)r-s-1 

{ 0 
= o~S-7"-I d~--s 

(r--s)] dz  ~ - s  ( 3 z  "1" - ~ ) r - - s - - 1  ] z=_ 

8 > r  
s < r  

by Cauchy's  integral formula, respecting that Io~l 2 > 1312 since [al 2 -1312 -- 1. Since 
the prefactor on the right-hand side in Eq. (78) is real we observe [U(9), F]  = 0 and 
hence each U(9), 9 E SU(1, 1) induces a Bogoliubov automorphism OZg = Pu(g) of  
~:~(L2(S1), F).  Hence SU(1, 1) is represented by automorphisms of ~(L2(S1) ,  F) ,  
and this restricts to a representation of Mob by automorphisms of ~(L2(S1), /~)+.  In 
order to establish MSbius invariance of the vacuum state and hence covariance of the 
vacuum sector we show that 

[SNS, U(g)] = 0, g E SU(1, 1), 

i.e. that U(g) respects the polarization of L2(S 1) induced by Sis .  It is sufficient to 
show that 

1 
(e-r, U(g)es) = 0, r, s ~ I~0 + ~, g E SU(1, 1). 

The functions er(z), r C Z + �89 are smooth on S 1 except at their cut at z = - 1 ,  
The prefactor ~(g; z) in Eq. (78) achieves that (U(g)er)(z) remains a smooth function 
except at z = - 1 ,  i.e. that the cut is not transported to g ( - 1 ) .  Hence we have 

(U(g)er)(z) = +(~ + 3 ~ ) - : ( ~  + 3 z ) - :  \ ~ T ; - - g /  ' 

where all the half-odd integer powers are to be taken in the same branch with cut at 
z = - 1 .  So we can compute as follows: 

(e-r, u(9)~) 
= ~ : ~  dz - , ~ ~ ( c ~ z + ~ )  ~ 

~izzr(~z  + 3)-~ z~(~ + 3z)-: \ ~7T-fi / 

r - L  - -  s 1 _ s _ L  = • 1 dz z : ( a Z + 3 ) -  ~ ( a + 3 z )  2 = 0 ,  
2wi 1 

again by Cauchy's  formula, respecting Io~] 2 > 1/312 and that r, s are positive half-odd 
integers here. 
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B. Appendix: The Proof of Lemma 5.3 

An essential fact we use for the proof of Lemma 3.I0 is presented in the following 

Lemma B.1. The difference of the two odd pseudolocalized Bogoliubov operators, 
given in Definition 3.9 is Hilbert Schmidt class, 

V - V r E a ~ ( L 2 ( S 1 ) ) .  ( 79 )  

Proof Since 1 P0 (2) is Hilbert Schmidt class, where 

(2<3 

po~", = 1.-14',><,s = e,+ + P,_ + ~ le~'><e~'l + k - ~ J , ~ - , , I ,  
n=l 

it is equivalent to prove 

Zo = IIpo<2)(V- 1/1"~D(2)112 v ] . 0  1t2 ~ 00.  

We remember that the square of the Hilbert Schmidt norm is the sum over the squares 
of all matrix elements in any Hilbert space basis. Obviously, the Bogoliubov operators 
V and V' differ only on the subspace L2(/2) C L2($1). We compute 

}2 ~ ,/e~2),,, Ve~>,,,., - <4L V'~b ~ 
r,,Cg to., E ~  
nr ,7,,740 

Z i/p(2) ~(2) \ i/p(2) p(2)\ 

n=l  m=l 
oo - o o  

+ Z  Z -i(e~)'~(2) , ,_ i (e~)  ,o(2)\2 %~_�89 _1, - . , /  
n=l  m=--I  
--oo oo 

+ Z Z i(e(2) _(2) i/e(2) e (2)\ 2 

n = - - I  m = l  

- - o o  - - o o  

+ E E - i(e~)'e~)-�89 } + i/e<2) \ n+�89 '~rnl'~ 2. 
n=--I  m=-- i  

Since \/e (2)n+�89 e(2)\m / = (e~), e ~  �89 } the first and the fourth summation vanishes, so that 
one finds by substituting to positive summation indices 

= E (e(2) e(2) /~(2) ~(2) xl 2 /' . . . . .  �89 + '%-�89 
~=1 r/z=1 

(e(2) e(2) \ /~,(2) 0(2)\ 
+ E  \ --n~ m+ l l  "1- \~ n + l ~ m l  

r~=l m=l 
oo oo 

= : 2 ~  ~ ~e ~2' e ~2~' ~ e~// [ 
rt=l ri~=l 
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we used @(2)_,~+~,, e~)) = (e~)_ ~,_ e(_2L). The remaining matrix elements are easily com- 

puted, 

@2) ~(2) , [ ~  ( -  1)"+~ 1 e N, ~ +�89 = 2 j _  e 2i(~+n+-)r162 } = +  1, 
27r 7~ m + n + ~ 

(2) ,~(2) \ / _~  e2i(~+n_ �89162 dqb ( - 1 )  m+n 1 
~ n + � 8 9  = 2 -2-~ - rr m + n 1 

It follows 

~0 ---- ~ Z....~ Z...~n=l m=l ( (n  + ?g~) 2 -- 1) 2 --= ~ Ek=l ((k + 1) 2 _ �88 < oc, q.e.d. 

Now we can start proving Lemma 3.10. We introduce the following notations: 

B = V * S N s V - S R ,  

P0 = I~ - l ) ( e - l l  + le0)(e01 + I~1)(e11, 

/'1 = ~ 1 e - 2 ~ - 1 ) ( ~ - 2 ~ - 1 1 ,  
n=l 

P2 = ~ l e x n + l ) ( e 2 , + l l ,  
n=l 

83 = ~ le_en)(e_anl, 
~=1 

P4 = ~ lez~)(e2~l, 
n=l  

such that we find 

4 

g P~ -- 1, FP~ = PzP, FP3 -- P4F. 
/=0 

At first we have to show, that HBII2 < oo. Since Po is Hilbert Schmidt class it is 
equivalent to prove that 

i,j=~ P~ B Pj 4 IL(1 - P0)B(1 - r0)ll2 -- < ~ IIP~BPjII2 < oo. 

2 i , j = l  

This will be done by estimating each term IIP~PsII2 for its own. Since B = B* we 
find 

IIP~BPj/12 = II(PiBPj)*I[2 = IIPjBP~H2, 

so that we are allowed to treat only those ten of sixteen terms with i _< j .  Further, by 

F B F  = V * F S N s F V  -- F S R F  = V*(1 - SNs)V -- (1 -- SR) = - B  

we find the identity 
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llp2 v'* &s V' P21{2, 
IIP=V'&sVP~ll=, 

At first we consider 

I/P~BPllf2 = [[rP1BPlr]]2 = IIP2rBcP2112 = IIP2BP2[12, 

and in the same way 

IIPNBPNII2 = IfP4Brelf2, HP2BP3][2 = IIP1BP4112, HP~BPNII2 = IIPNBP4112. 

In each term on the right-hand side one of the projections P2 or/94 appears, but since 

P2SR = SRP2 = P4SR = SRP4 = 0 

we have only to prove the finiteness of  the six norms 

[IP2V*SNsVPzII2, IIP1V*SNsVP2Ir I[P1V*SNsVP4112, 

IIFRV*SNsVP41[2, I[FNV*&sVP4112, IIPdV*SNsVP4112, 

and, since V - V t is Hilbert Schmidt class, this is equivalent to prove the finiteness 
of  

[tP1V'*SNSV'P2[[2, [[P1Vr*SNsVP4112, 

[[P3V*SNsVP4II2, IIP4V*SNsVP4112. 

$1 
oo ~ Vt*S ~rl e \~2 = IIP2V'*SNsV'P21122 = ~ I(e2~+1, NSV 2ra+l/I 

n=l m=l 

o~ rCNo+~ 2 

n=l ra=l 1 

/ (2) 1 
Since /era+�89 ezn+l) = 2--~6n,m the action of V r on odd basis vectors e2~+1 is simple, 

one reads by definition 

e2n+l(Z) z C [-  
(V'e2n+l)(Z) = ie2n+2(z) z C I2 

- -e2n+l(Z ) Z E L  

n C N .  

This leads us to 

@ - r ,  V;e2n+l )  = 

f_--~ ~ de  ~ ei(2n+l+r)r de  = e i(2n+l+r)q5 dq~ + i e i(2n+2+r)r -- - -  
27r ~ 27r 27r 

1 
- -  - -  s i n  

iv (2n + 1 + r ) (2n + 2 + r)  

Substituting to integer summation indices we obtain )2 
~'1 ~ n=l m=l l=O 

where 
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(i) 1 
0-~,.~,z = (4n + 2l + 3)(4n + 21 + 5)(4m + 21 + 3)(4m + 21 + 5)" 

We put off the estimate of this summation for some time and pass over to the next 
sum, 

rCI%+�89 V ' e - 2 n - 1 )  (e-r, Vt eam+l) 2 ~2= IIP1VI*~NsVIp2]I2--~-~ Z (e-r'  
n=l m=l 

The action of V '  on vectors e-2n-1 is 

e-2n-l(Z) Z E [ -  
(V'e-2n-t)(z) = - i e - 2 n - 2 ( z )  z C / 2  n E N. 

- - e_an_ l (Z)  Z E I+ 

This leads us to 

so that 

where 

(e-r, V e - 2 n - l )  = - -  
i ( - 1 ) n  sin ( rTr )  1 

rr -2- ( 2 n + l - r ) ( 2 n + 2 - r ) '  

~V'2 = ~ n=l m=l k/=0 

a(2) 1 

,~,r~,Z = (4n - 21 + 1)(4n - 21 + 3)(4m + 2l + 3)(4m + 21 + 5) '  

Analogously,  

= ][]91V SNsVP4112 = ~ ~3 t* 2 

n=l m=l 

The action of V on basis vectors e2~ is 

This leads to 

vEgo+�89 

(e-r, Vte-2n-1)(e-r, Ve2ra) 2. 

so that 

where 

e2n(z) z C k 
(Ve2~)(z) = iez,~+,(z) z ~ 12 n ~ N. 

- e2n (z )  z E I+ 

(e-r~Ve2n) = i(--1)n-- COS (r~) 1 
7r (2n + r ) (2n  + r + 1)'  

64 ~ ( ~  _(3))2 
~3 =- -~ n=l rn=l l=O ~ n,m,l 

_(3) (-- 1 )l 

*~,.~,Z = (4n -- 21 + 1)(4n -- 2l + 3)(4m + 21 + 1)(4ra + 2l + 3)" 
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Further, 

= 

where 

~ rENo+�89 2 
tlP2Vt*SNsVP41122= ~_a @-r ,V 'e2n+l)@-r ,  Ve2m 

n=l m=l 

6 4 ~ ( z _ ~ o  ( 4 ) ) 2  
7r4 0_n,m,1 

n=l m=l 

_(4) ( - - 1 )  / 

~,~,Z = (4n + 21 + 3)(4n + 2l + 5)(4m + 21 + 1)(4m + 21 + 3)" 

In the same way we compute 

$5 = II 3 v  SNsVP4112 
n=l m=l 

The action of V on basis vectors e-2n is 

Z 
rCNo+�89 

(e_~, Ve-2n)(e-r, Ve2m) 2 

e-2n(z)  Z C I_  
(Ve_2n)(z) = -- ie-2n-1(z)  z E [2 n E N. 

--e-2n(Z) Z E I+ 

This leads us to 

~6 

so that 

where 

Finally, 

where 

(e_~, V e _ 2 ~ ) -  i ( -1 )~  cos ( rTr)  1 
7r -2- ( 2 n - r ) ( 2 n - r + l ) '  

n=l m=l l=O ~n,m,1] 

-(5) 1 
n . . . .  L = ( 4 n  - 2 / -  1 ) ( 4 n  - 21 + 1 ) ( 4 m  + 21 + 1 ) ( 4 m  + 21 + 3)" 

r~o+ 1 Ve2~){e_r ,  Ve2~)  2 
r~=l m=l  

64 _(6) 
,.IT 4 Or ~r r ~ l  1 

n=l m=l /=0 / 

.(6) 1 

,~,m,l = (4n + 21 + 1)(4n + 21 + 3)(4m + 2l + 1)(4m + 21 + 3)" 

Next, we turn to the discussion of the operator 
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C = V S N s V *  -- & .  

For showing that IICII2 < ~ we prove that 

i,j=~ PiC Pj I1(1 - P o ) C ( 1  - Po)[12 = < lIP~CPslb2 < oe. 
2 i , j=l  

Because C = C* we have again only to treat those terms with i < j .  Further, by 

FCF = V(1 - SNs)V* - (1 - SR) = ( V V *  - l )  - C, 

and since 1 - VV* is a rank one projection (i.e. IIVV* - 1112 = 1), we find 

I l P ~ C P l l l 2  = I I F P x C P l V l I 2  = I IP2FCFP2112  = I I P 2 ( V V *  - 1 - c ) P 2 I I 2  

< IIP2cP211~ + 1. 

In the same way one obtains 

IIP3CP3112 <<_ IIP4CP411~ + 1, IIP2CP3112 <_ IIPxCP4112 + 1, 

and 
IIP1CP3II2 < IlP2CP4112+ 1. 

Again, SR is annihilated by P2 or P4 in these terms. Using once more that V - V '  is 
Hilbert Schmidt class, we conclude that it is sufficient to prove the finiteness of the 
following six terms: 

IIP2VSNsV*P2112, 
I[P2VSNsV'*P4II2, 

Now we have to work again, 

$ 7  = I l p N V S N s V * P 2 1 l ~  = , ,  
n=l m=l 

The action of  V* on basis vectors e2n+l is 

e2n+l(Z) 
( V * e 2 n + l ) ( Z )  = --ie2n(Z) 

--ezn+l(z) 

This leads us to 

( e - - r ,  V * e 2 n + l )  - i ( -1 )~  
71" 

so that 

where 

[IplvSNsV*P2]I2, IlPlV&sV'*p4112, 
HP3V'&sV'*p4][2, IIP4V'&sV'*p41]2. 

Z 
r e d o  +1 

2 

zCI_  
z E I 2  n E N .  

z E L  

( r~r )  1 
- - s i n  ~ -  ( 2 n + r ) ( 2 n + r + l ) '  

$7 -= Crn,m, 1 
" fe=l  rrz=l 
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0.(7 ) 1 
n,m,t = (4n + 21 + 1)(4n + 2l + 3 ) (4m + 21 + 1)(4m + 21 + 3 )  

Further,  

~'~o+�89 V*e-2n-1)@-~., V*e2m+l} 2 ~8= ] ] P 1 V ~ N s V * P 2 H 2 = ~  E (e-r' 
n=l m=l 

The action of  V* on basis vectors  e - 2 n - 1  is 

e - 2 ~ - l ( z )  z E I _  

(V* e-2n-1)(z) = ie-2n(Z) z E I2 n E ~. 
--e-en-l(z) Z E I+ 

This leads us to 

so that 

where  

Further,  

(e-r, V*e-2n-1) = i ( - -1)~ " ( r r c ) - s l n  1 
7r 2 -  (2n  - r ) (2n  - r + 1) '  

= ~n,m,1 
$ 8  ~ n=l m=l 

o.(8) 1 
n,-~,~ = (4n  -- 21 - 1)(4n - 2l + 1)(4m + 21 + 1)(4m + 21 + 3 ) '  

t* 2 ~ ~ re1%+ (e_r, g,e_2n_l)@_r, V,*e2m) 2. ~'9 = [IP1VSNsV P4112 = 
n=l m=l I 

The  action o f  V '*  on basis vectors  e2n is 

e2n(Z) z E I _  
(V '*e2~)(z)  = - i e 2 ~ - l ( z )  z E / 2  n E N. 

-e2,~(z) z ~ I+ 

This leads us to 

so that 

where  

( e - r ~ t *  ( )  V e 2 ~ } -  i ( -1)n--cos  rTr 1 
7T 2 -  (2n + r ) ( 2 n  + r - 1) '  

$9 0-n,mfl 
" '  n=l m=l \ 1--O ] 

0-(9) ( -1 )z  
n,m,Z = (4n  -- 21 -- 1)(4n -- 21 + 1)(4m + 21 -- 1) (4m + 2l + 1)" 
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Further ,  

Zlo 
L oc vCNo+�89 2 

= V e2m ) II P2VSNsVI*P4II~ = ~ Z ( e - r '  V*e2n+l) @--r '  /* 
n=l m=l 

- -  ~T4 ~ ~ n , m , 1  ' 

n=l m=l l=O 

w h e r e  

Fur ther ,  

T(lO) (--  1)t 
n,m,1 = ( 4 n  + 21 + 1 ) (4n  + 21 + 3 ) ( 4 m  + 21 -- 1 ) ( 4 m  + 21 + 1)" 

n=l m=l 
E 

rCNo+�89 

2 

The  ac t ion  of  V I* on  bas is  vec tors  e_2n  is 

e-2n(Z) 
(g"*  e - 2 n ) ( z )  = ie_>-,,< (z)  

- e - 2 , a ( z )  

z E I _  
ze I2  
z C K  

n E 1"~. 

Th i s  leads  us  to 

i ( - 1 )  n [ rzv ) 1 
@--r,  t* -- - -  COS V e - 2 n }  

~r ~ ) 2 -  ( 2 n  - r ) ( 2 n  - r - 1 ) '  

so tha t  

whe re  

)2 
~ l l  = ~-~ n=l m=l l=O ~  ' 

.(11) 1 
n ,~ , l  = ( 4 n  - 2l - 3 ) ( 4 n  - 21 - 1 ) ( 4 m  + 2l - 1 ) ( 4 m  + 21 + 1) '  

F inal ly ,  

~12 = I I P 4 V ' & s V ' * P 4 t l ~  = ~ '~  
n=l rr~=l 

 455(  
7i-4 Crn,ra,l J , 

n=l m=l 

Z 
rENo+ I 

V e2ra) 2 {C_r, V'*  e2z~} (e_g,  '* 

w h e r e  
1 (12) 

~Tn'&'t = ( 4 n  + 2l - 1 ) (4n  + 21 + 1 ) ( 4 m  + 21 - 1 ) (4m + 21 + 1) '  
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We have the following estimate of absolute values of the 0-(J) for j = 1,4, 6, 7, 10, 12: 

0 -(1) > (J) n,m,1 --  0-n,m,l+2 ' J = 4,6,7, 10, 12, n, ra E N, 1 E N0. (80) 

If we omit in our summations l = 0 and l = 1 terms, this corresponds to the replace- 
ment of SNS by 

- -  e J e I - -  

Since the difference SNS--S~S is obviously Hilbert Schmidt class, this has no influence 
of the property of 2 j  to be finite or infinite. Hence the estimate (80) tells us that for 
the proof of Zj  < ec, j = 1,4, 6, 7, 10, 12, it is sufficient to prove it for j = 1. We 
compute 

64 ~ 1 
71-4 (4T~ + 21 + 3)(4n + 2l + 5)(4ra + 21 + 3)(4ra + 21 + 5) 

n,m=l l=O 

6 4 ~  1 1 
< 71-4 ~ ~ (2m + 1) 4 (4n + 21 + 3) 2 

n=l rn=l /=0 

= 1 

3 n=t z=0 (4n+21+3)  2 

2 ~ (~0c~ dl )2  
--< 3 n=l (4n + 21 + 1) 2 

2 ~ - ' (  1 ) 2 

3 n=l 2(4r~+ 1) 

1 ~ 1  

r*=l 

71.2 

= 576' 

~i  is finite. On the other hand we find for n, ra E N, 1 E No, 

(11) (2) 0-(11) 0_(3) 
0-n,m,l > IO'n,m,l+2l' n ,m,l  > n,rn 1+21~ 
-(11) I (8) (1i) 0 -(9) I 

n,m,l l  ~ O'n,m,/+l ~ 0-n,m,1 > I n,m,/+l I" 

o . ( 1 1 )  ( 5 )  
n , m l  > 10-n,m,/+l[, 

By the same argument, for the proof of ~ j  < oo, j = 2, 3, 5, 8, 9, 11, it is sufficient 
to prove that 

2 l l  ~ n = l m = l  /=0 

For this purpose, we decompose the sum over the index l into three parts, 



302 J. B 6 c k e n h a u e r  

2 n - - 2  
(II) (II) (11) a_ (II) 

fin,m,1 = ~ + Crn,m,1 O ' n , m , 2 n - -  1 --  Crn,m, l 
l=O l=O l=2n 

2 n - - 2  
~ _(11) _(II) _(11) 

= On,m, l - -  o n , m , 2 n _ l  + On,m, 1. 
l=O l=2n 

We begin with estimating the first part. By reversing the order of summation we 
obtain 

2 n - - 2  
(11) . 

l--O 
2 n - 2  

l 

z=0 (2l + 1)(2/+ 3)(4m + 4n  - 21 - 3)(4m + 4n  - 21 - 5) 

2 n + 2 m - - 3  
1 

< ~ (2 /+ 1 ) 2 ( 4 n + 4 m -  2 1 -  5) 2 
/=0 

n+m--2 
1 

= Z (2 /+  1 ) 2 ( 4 n + 4 m -  2 1 -  5) 2 
l=O 

2 n + 2 m - 3  
1 

+ ~ ( 2 1 + l ) 2 ( 4 n + 4 m - 2 1 - 5 )  2 
l=n+m--1 

n+m--2 
1 

= 2 Z ( 2 / + l ) 2 ( 4 n + 4 m - 2 1 - 5 )  2 
l=O 

2 + 2 i n+m--2  dl < 
(4n + 4 m  - 5) 2 - ao (2 /+  1)2(4n + 4 m  - 21 - 5) 2 

2 + /,2n+2m--3 dx 

( 4 n + 4 m - 5 )  2 al x 2 ( 4 n + 4 m - 4 - x )  2 

2 1 
= + 

(4n + 4m - 5) 2 (4n + 4m - 4)2(2n + 2m - l) 

1 

(4n + 4m - 4)2(4n + 4m - 5) 

1 

(4n + 4m - 4)(2n + 2m - 3)(2n + 2m - 1) 

1 _ 2 In ( 2 n + 2 m - 1 )  
+ 

(4n + 4m - 4)(4n + 4m - 5) (4n + 4m - 4) 3 \ 2n + 2m 

2 
+ ln(4n + 4m - 5) 

- 4)3 

< 

(4n + 4m 

6 

(2n + 2m - 3 )  2 .  

The last estimate is very rough but correct. In our computation we have used the fact 
that in an area of strict decrease a summation can be estimated by an integral plus 
the first summand. Next we consider the only negative term, 
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1 1 _0-(11) 
n,~,2~-1 = (4n  + 4 m  -- 3)(4n + 4 m  -- 1) < 

and finally the remaining  summation,  

(2n  + 2 m  - 3) 2, 

O(3 OO 

Z  tl, E 1 
crn'~'z = (2l + 1)(2l + 3)(4n + 4 m  + 21 - 1)(4n + 4ra  + 21 + 1) 

l=2n l--O 

(4n + 4 m  - 1) 2 l=0 (2l + 1 ) (2 /+  3) 

1 

(4n + 4 m  - 1)2 

1 
< 

(2n + 2 m  - 3) 2. 

We now can conclude  that 

6 4 ~ (  8 ) 2 

211 ( ~'4 n=l ram (2n + 2 m  -- 3) 2 

< 

4096 ~ k + l 
~r 4 (2k + 1) 4 < oo, 

k=o 

the p roof  o f  L e m m a  3.10 is complete ,  q.e.d. 

Acknowledgement. I am grateful to Prof. K. Fredenhagen for discussions. He supported this investigation 
with many ideas. Thanks are also due to C. Binnenhei for a careful reading of the manuscript. 

References  

1. Araki, H.: On Quasifree States of CAR and Bogoliubov Automorphisms. Publ. RIMS Kyoto Univ. 6, 
385-442 (1970/71) 

2. Araki, H.: Bogoliubov Automorpbisms and Fock Representations of the Canonical Anticommutation 
Relations. In: Operator Algebras and Mathematical Physics, Am. Math. Soc. 62, 23-141 (1987) 

3. Araki, H., Evans, D.E.: On a C*-Algebra Approach to Phase Transitions in the Two-Dimensional 
Ising Model Commun. Math. Phys. 91, 489-503 (1983) 

4. Binnenhei, C.: Implementation of Endomorphisms of the CAR algebra Rev. Math. Phys. Vol. 7 No. 6, 
833-869 (1994) 

5. BSckenhauer, J.: Lokale Normalit/it und lokalisierte Endomorphismen des chiralen Ising-Modells. 
Diplomarbeit, Hamburg (1994) 

6. BSckenhauer, J.: Decomposition of Representations of CAR Induced by Bogoliubov Endomorpbisms. 
DESY 94-173 (1994) 

7. Brunetti, R., Guido, D., Longo, R.: Modular Smacture and Duality in Conformal Quantum Field 
Theory. Cornmun. Math. Phys. 156, 201-219 (1993) 

8. Buchholz, D., Mack, G., Todorov, I.: Localized Automorphisms of the U(1)-Current Algebra on the 
Circle: An Instructive Example In: [20], 356-378 (1990) 

9. Buchholz, D., Schulz-Mirbach, H.: Haag Duality in Conformal Quantum Field Theory. 
Rev. Math. Phys. 2, 105-125 (1990) 

10. Doplicber, S., Haag, R., Roberts, J.E.: Fields, Observables mad Gauge Transformations I & II. Com- 
mun. Math. Phys. 13, 1-23 (1969), and 15, 173-200 (1969) 

11. Doplicher, S., Haag, R., Roberts, J.E.: Local Observables and Particle Statistics I & II. Com- 
mun. Math. Phys. 23, 199-230 (1971), and 35, 49-85 (1974) 

12. Douglas, R.G.: Banach Algebra Techniques in Operator Theory. New York, London: Academic Press 
1972 



304 J. B6ckenhauer 

13. Fredenhagen, K., Rehren, K.-H., Schroer, B.: Superselection Sectors with Braid Group Statistics and 
Exchange Algebras I. Commun. Math. Phys. 125, 201-226 (1989) 

14. Fredenhageu, K., Rehren, K.-H., Schroer, B.: Superselection Sectors with Braid Group Statistics and 
Exchange Algebras II. Rev. Math. Phys. Special Issue, 113-157 (1992) 

15. Fredenbagen, K.: Quantum Field Theory on Nontrivial Spacetimes. In: [17], 153-157 (1994) 
16. Fuchs, J., Ganchev, A., Vecsernyds, P.: Level 1 WZW Superselection Sectors. Commun. 

Math. Phys. 146, 553-583 (1992) 
17. Gersten, A., Sen, R. (ed.): Mathematical Physics Towards the 21st Century. Beer Sheva: Ben Gurion 

University of the Negev Press 1994 
18. Haag, R.: Local Quantum Physics. Berlin, Heidelberg, New York: Springer 1992 
19. Haag, R., Kastler, D.: An Algebraic Approach to Quantum Field Theory. J. Math. Phys. 5, 848-861 

(1964) 
20. Kastler, D. (ed.): The Algebraic Theory of Superselection Sectors. Singapore: World Scientific 1990 
21. Lang, S.: SL2(N ). Berlin, Heidelberg, New York: Springer 1985 
22. Loke, T.: Operator Algebras and Conformal Field Theory of the Discrete Series Representations of 

Diff(sa). Dissertation, Cambridge (1994) 
23. Liischer, M., Mack, G.: The Energy Momentum Tensor of Critical Quantum Field Theories in 1+1 

Dimensions. Unpublished manuscript (1976) 
24. Mack, G., Sehomems, V.: Conformal Field Algebras with Quantum Symmetry from the Theory of 

Superselection Sectors. Commun. Math. Phys. 134, 13%196 (1990) 
25. Mack, G., Schomems, V.: Endomorphisms and Quantum Symmetry of the Conformal Ising Model. 

In: [20], 388-427 (1990) 
26. Powers, R.T., St0rmer, E.: Free States of the Canonical Anticommutation Relations. Com- 

mun. Math. Phys. 16, 1-33 (1970) 
27. Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Vol. 1: Functional Analysis. New 

York, London: Academic Press 1972 
28. Rideau, G.: On Some Representations of the Anticommutation Relations. Commun. Math. Phys. 9, 

229-241 (1968) 
29. Schroer, B.: A Trip to Scalingland. In: Ferreira, E. (ed.): V. Brazilian Symposium on Theoretical 

Physics, Vol. I, 288-321 (1974) 
30. Szlachfinyi, K.: Chiral Decomposition as a Source of Quantum Symmetry in the Ising Model. KFKI- 

1993-16/A preprint (1993) 
31. Szlachfinyi, K.: The Universal Algebra of Local Even CAR and Majorana Algebras on the Circle. 

Unpublished manuscript (1993) 
32. Wassermann, A.: Operator Algebras and Conformal Field Theory. To appear in: Proceedings of the 

International Congress of Mathematicians, Ztirich 1994, Birkh~iuser 

Communicated by H. Araki 

This article was processed by the author using the I~TEX style file pIjourl from Springer-Verlag. 


