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Abstract. We consider the scattering problem for the nonlinear Schr6dinger 
equation in 1 + 1 dimensions: 

iO,u + (1/2)OZu -- 2[ u[Zu + #[ u f -  lu, (t, x)E1R x IR, (.) 

where a = O/Ox, 2eN\{0},  # e R ,  p > 3. We show that modified wave operators for 
( . )  exist on a dense set of a neighborhood of zero in the Lebesgue space Lz(R) or 
in the Sobolev space HIOR). The modified wave operators are introduced in order 
to control the long range nonlinearity 21ulZu. 

1. Introduction 

In this paper  we consider the asymptotic behavior in time of solutions to the 
Schr6dinger equations with power nonlinearities: 

i~tu + (1/2)02u = f(u), ( t , x ) ~  x IR, (1.1) 

where u is a complex valued function on IR x N,  ~?t = d/&, 0 = O/dx, and f is a 
complex valued function on I~. A typical form of f(u) is the sum of two powers 

f (u) = 2/u[ q- lu + r lu (1.2) 

with p > q > 1, 2 ,#eN.  
There is a large literature on the equations of the form (1.1) from both 

mathematical and physical point of view, see/-1-4, 7-17, 19-26, 28-30]. Let H m'~ 
be the weighted Sobolev space defined by 

Urn's= {l~eSr II~'llm,~ = II(1 + [xlZ)~/2(1 - ~z)m/2Oll2 < oc}, m,s~R,  

* On leave of absence from Research Institute for Mathematical Sciences, Kyoto University, 
Kyoto 606, Japan 
** Laboratoire associ6 au Centre National de la Recherche Scientifique 



480 T. Ozawa 

where [l" lip denotes the norm in L p = LP(R). We denote by U(t) the free propagator 
exp(i(t/2)82). Concerning the Cauchy problem for (1.1), the following results are 
well known. 

(1) If 5 > p > q > l ,  then for any ~beL 2 (1.1) has a unique solution 
r fP+l"l with ,~r . -2,0 t t ~ , ~ . , ~  " '~loe , . . . .  , OtUELlo c (~,  H ) and u(0)= ~b 

([2, 16, 24]). Moreover, if ~bCH i'~ then ueC(~; H l'~ c~ CI(~;  H -  1.o)([2, 16]). 
(2) Assume one of the following three conditions: (a) 5 > p > q > 1. (b) 

p > 5 > q > 1 with # > 0. (c) p > q > 1 with 2, # > 0. Then for any q~sH l'~ (I.1) has 
a unique solution ueC(I~;Hl'~ -i'~ with u(0)= ~b ([2, 3, 8, 15, 16]). 

(3) If p > q > 5 with 2, # < 0, then (1.1) has blow-up solutions ([2, 10, 26]). 
Concerning the asymptotic behavior in time of solutions and the scattering 

theory, the following results are well known. 
(I) Ifp > q > (3 + V/~)/2,  then there exists e o > 0 with the following properties: 

For  any ~b+eH 1'~ with IIq~+ 111,o + 114~+ II(p+i)/p < ~o (1.1) has a unique solution 
ueC(I~; H 1'~ such that 

I[U(--t)u(t)--r as t ~ + o o .  (1.3)+ 

For  any ~b_eH 1'~ with II 4 - I I l , o  + II 4-II~p+l>/~ < to (1.1) has a unique solution 
ueC(P-,; H l'~ such that 

IlU(-t)u(t)-cP-Ill,o~O as t ~ - ~ .  (1.3)_ 

For  any ~beH 1'~ with IIq~lll ,o+[Iq~ll~p+l~/p<~o there exist unique ~b-+eH i'~ 
satisfying (1.3)• where u is a unique solution of (1.1) with u(0) = ~b ([9, 19]). 

(II) If p > q > 3 with 2,# > 0, then for any ~b eH l '~  ~ there exist unique 
cp -+ eL z such that 

[IU(-t)u(t)-q~_+ [12~0 as t ~  + ~ ,  (1.4)_+ 

where u is a unique solution of (1.1) with u(0) = ~b ([25]). If 5 > p  > q > 3 with 
2,# >0 ,  then for any q~eH ~ there exist unique qb_+eL 2 satisfying (1.4)_+ ([12]). 

(III) If 3 > q > 1 with 2 r 0, # > 0, then for any ~beHl'~ there do not exist 
any q~_+ eL  2 satisfying (1.4)_+. If 3 > q > 1, 5 > p > q with 2 r 0, then for any 
~beLa\{0} there do not exist any 4_+eL 2 satisfying (1.4)_+ ([7, 14, 23]). 

As we see above, a critical number of the L2-scattering theory is q = 3. In 
the case p > q > 3  with Z , # > 0 ,  any solution u of (1.1) with u(O)EH~'~ ~ 
behaves like free solutions U(t)q~_+ as t ~ _  m. This is because the dispersive 
effect is stronger than the nonlinear effect as t ~ + ~ when q > 3. In the case 
3 > q > 1 the nonlinear effect is dominant and any nontrivial solution does not 
behave like free solutions. If we regard the nonlinear factor 21 u I a- 1 + #l u l p- ~ as 
a potential, the L~-norm of the potential is estimated as O(Itl -(a-l)/a) as 
t ~ + ~ since II u(t) II ~o : O([tl - 1/2) when 2, # > 0. We then associate the borderline 
q = 3  with the decay rate O([tl - t )  of the potential. The same analogy works in 
the higher dimensional cases or in potential scattering. In n-dimensional cases the 
breakdown of scattering for the nonlinearity f(u)= tulq-~u occurs if and only if 
q < 1 + 2/n. The borderline q = 1 + 2/n corresponds to the decay rate O([tl -~) of 
the potential lul 2/", since Ilu(t)ll| = o([tl-"/2). For the potential V(x)= ,~lxl -~, 
x~P~", n > 3 ,  the existence and completeness of the usual wave operators 
s-limexp(it(Ho + V))exp(--itHo) break down if and only if ? _-< 1, where Ho = 
t---~ -+ o0 

-(1/2)A and A denotes the Laplacian in P~" [ 18]. The corresponding decay condition 
of the potential should be replaced by the estimate II Ix I- ~ exp ( -  itHo)(a II 2 = O(Itl- r) 
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for any  qb~L 2 with the Four ier  t ransform q~C~~ The borderl ine y = 1 then 
cor responds  t o  the same decay rate O(Itl -~) as before. I t  is cus tomary  that  
potentials  of  the decay rate O(Ixl -r)  as Ix]--* 0o with y < 1 are called long range 
potentials.  In  the long range case we know that  the compar i son  dynamics  U(t)4)_+ 
should be replaced by a modified free evolut ion in order  to take the long range 
interact ion into account.  

O u r  purpose  in this pape r  is to find a compar i son  dynamics  for solutions of 
(1.1) in the critical case q = 3. In  order  to state the main  results we m a k e  the 
following hypotheses  and  definitions. In  the following we assume that  the nonl inear  
term f (u)  takes the form 

f ( u )  = ,~lul2u + ~lul~- ~u (1.5) 
with 2 e R \ { 0 }  and  yeN..  Fo r  4~_+eL z we define the phase  functions S+-(t,x) and 
S o (t, x) by 

S+-(t,x)= -T-21ogltllqb_+(t-ax)12 +_(2#/(p- 3))ltl-~V-3)/2l(o_+(t-lx)l p-1. (1.6) 

So ( t , x )=  -T-21ogltll(o •  ax)l 2, (1.7) 

respectively, where ~ denotes  the Four ier  t ransform defined by 

~(~) = (2r0-1/21 exp ( -  ix~)O(x)dx. 

For  any function (t, x)~-~ w(t, x) we denote  by w(t) the function x ~ w(t, x). 

Theorem 1. Let 3 < p < 5. Then there exists ea > 0 with the followin# properties: 
(1) For any q~+eH ~ with II~+[Ioo<~ (1.1) has a 

ueC(~;L2)nL~o , (N;L  ~176 such that for any ~ with 1/2 < 0~ < 1, 

II u(t) - exp (iS + (t)) U(t)dp + I] 2 = O(t- ') ,  

Uu(~)-exp(iX+(~))g(~)c~+H4d~ = O ( t  -~) as 

(2) For any ~ b _ e H  0'2 with ] ]q~_]]oo<el  (1.1) has a 
ueC(~-~;L2)~L41or ~176 such that for any ~ with 1/2 < c~ < 1, 

II u(t) - exp (iS-(t)) U(t)(o_ [I 2 = O(] t l - ' ) ,  

()oo ,,1/4 Ilu(T)--exp(iS-(O)g(T)~b_ I I ~ & )  = O(Itl -~) as 

Corol lary 1. Let c~ -+ and u be as in Theorem 1. Then: 
(1) For any ~ with 1/2 < ct < 1, 

II u(t) - exp (iS o (t))U(t)O-+ I[ 2 = O(I t I-  ~) 

where 8 = min  (e, (p - 3)/2) if y r 0 and 8 = ~ if # = O. 
(2) For any ~ with 1/2 < ~ < 1, 

II lu(t)l 2 - [ U(t)~b_+ [ 2 Ila = O(I t l - ' ) ,  

II lu(t)l - I U(t)4~-+ I II2 = O(I tl-~/z) as (:. 
(3) j" Ilu(v)ll~& =O(It1-1/4) as 

t 

unique solution 

(1.8)+ 

t ~  +oo .  (1.9)+ 

unique solution 

(1.8)_ 

t ~ -- ~ .  (1.9)_ 

(1.11)_+ 

t ~  _+ oo. (1.12)_+ 

t ~  + oo. (1.13)_+ 

as t ~  4-0% (1.10)_+ 
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Theorem 2. Let p > 3. Suppose p >= 0 when p >= 5. Then there exists 2 2 > 0 with the 
following properties: 

(1) For any t ~ + ~ H ~  with l l~+l l~o<~2 ( l l ~ + l l o ~ + ~ + l [ o o < ~ 2  /f 
p > 5) (1.1) has a unique solution u~C(R;  H 1'~ n Ll4oc(R; W t'~176 such that for any 
with 1/2 < ~ < 1, 

II u(t) - exp (iS+(t))U(t)(~ + [[ 1,o = O(t-~), (1.14)+ 

I Ilu(~) exp(iS+(z))U(r)c~+ II_I,~dT '114 - = O ( t  - ~ )  (1.15)+ 
t 

as t -*  +c~, where WI'~~ = (~bEL~176176176 II~'llwl,~--II~'lloo+ II~,Iloo. 
(2) For any (a_ ~H ~ n H 1'2 with II q~- II 0o < ~2 (11 q~- II o~ + II ~4~- II ~o < ~2 / fp  = 5) 

(I.1) has a unique solution u~C(~;Hl '~176176  ) such that for any 
with 1/2 < ~ < 1, 

]J u(t) - exp(iS-(t))U(t)c~_ II 1,o = o(Itl-~), (1.14)_ 

l lu(T)-exp(iS+(~))g(z)@_ll~, .~d~ --O(It l  -~) as t - - , - o o .  (1.15)_ 
- c o  

Corollary 2. Let  ~o • and u be as in Theorem 2. Then: 
(1) For any ~ with 1/2 < c( < 1, 

I lu(t)-exp(iSg(t))U(t)dp• -~) as t - - , + o o .  (1.16)_+ 

(2) Ilu(t)llo~ =O(Itl -~/2) as t ~  + ~ .  (1.17)_+ 

Remark. (1) By the inequalities 

II ~ II co < (21r)- 1/2 II ~' II1 

< (2re)- 1/2 inf II (p2 + x 2) - 1/2 II 2(P 2 II r ~ + II x@ II ~)1/2 
p > 0  

= II ~'112~/2 II x ~  21/2<= II ~'110,1, 

w e s e e  that  q~• I1~o < ~  fol low f rom ei ther  IIq~.+ I11 < ~  or IIq~• Ito,x < 2  and  that  
11 ~q~ • II oo < ~ fol lows from either II ~4~ • I1~ < ~ or  II ~q~.+ II o,1 < 2. 

A(2) In the case where ~.+ have compact  support ,  the assumptions II ~ • I[ ~ < ~ and 
II~q~• I]~ < ~ may be replaced by the condit ion Iq~_+(0)l < ~ for some 6 > 0. This 
follows from a slight modification of the proof  given in the next section. Note  that 
~.+ are cont inuous on R .  

Theorems 1 and 2 show that in the long range case (1.1) has solutions which 
behave like exp (iS_+(t))U(t)(a • as t ~ + oo. The only difference from the short  range 
case p > q > 3 is the presence of the phase functions S_+, which modula te  the free 
dynamics in order  to take the long range nonlinearities into account.  Since the 
additional factors exp(iS_+) have no contr ibut ion  to the ampli tude of the free 
dynamics U(t)4~+, the probabil i ty density [u(t)l z and the ampli tude l u(t)[ behave 
like those of the free dynamics as t ---* + oo, as described in part  (2) of Corol lary  1. 
A similar proper ty  is well known in the Cou lomb scattering [18]. 

By Theorems 1 and 2, the modified wave operators  W• ~--~u(0) are 
well-defined maps from a ne ighborhood of zero in H ~ to L ~ or from a 
ne ighborhood of the zero in H 1'2 ~ H  ~ to  H 1'~ The Cauchy problem is therefore 
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solved so that the asymptotic behavior in time of solutions is described as (1.10)_+ 
or (1.16)_+ when the initial data are in the ranges of the modified wave operators. 
Of course our definition of the modified wave operators is only one of the possible 
ones, as is in the scattering theory for Schr6dinger operators with long range 
potentials. We should mention here that from a different point of view Flato, 
Simon & Taflin [5] constructed modified wave operators in order to solve the 
Maxwel l -Dirac  equations globally in time. 

We now describe how to find the modified asymptotics for the long range case. 
By the analogy with the Coulomb case it is reasonable to except that there is a 
solution u such that [llu(t)l-lU(t)ck+ll[2--,O as t ~  +oo  for some q~_+. By the 
formula U(t)4) + = M(t)D(t)(M(t)qS_+) % where M ( t ) ~  exp (ix2/2t), and (D(t)~b)(x) = 
( i t ) - l /2~b( t - lx~  we have that IIIU(t)4~_+l-IO(t)@_+lLI2-'O, as t ~ + o o .  Hence 
II lu ( t ) l -  ID(t)4~+ I IL2-,0, as t-~ __ ~ .  This leads to the observation that u tends to 
the solutions u_+ of the equations 

iStu+ - + (1/2)dEu-+ =s +# l t l - t p - l~ /E l2p ( t - l x ) lP - lu+  - (1.18) 

as t ~  _ oo. We are thus reduced to looking for approximate solutions for (1.18) 
which are written explicitly in terms of ~b_+. This is the reason why the factors 
exp(iS -+) appear in front of the free dynamics U(t)(o+_ in the theorems. In fact, the 
first candidates exp(iS_+(t))U(t)(o_+ do not give a satisfactory approximation for 
(1.18). Rather, a good approximation is given by the second candidates 

v _+ (t) = exp (iS • (t)) U( t )M(  - t)q~ _+ = exp (iS +- ( t ) )M(t)D(t )~  _+, 

which are shown to satisfy (1.18) up to the rate O(It l -2( logl t[)  2) in the L2-norm 
as t ~ _ o0, essentially because of the facts that q5 + are involved in v_+ (t, x) in the 
form q~_+ ( t -  i x) and that the phase factors exp (iS + ) give an appropriate cancellation 
for the long range potentials )~[tl-lldp_+(t-lx)[2-1 - #[ t l - (p-1) /2 l~_+( t - lx ) lp-1 .  The 
second candidates v_+ have another advantage that 11 v +_(t) - exp (iS*-(t))U(t)dp_+ I I 2 ~ 0 
as t ~ _ oo. This suggests that we should start with v_+, construct a solution u of 
(1.1), and then go back to the first candidates exp (iS+-(t))U(t)4)+_. 

We prove the theorem in the next section. The proof  proceeds in three steps. 
The first step is to solve the integral equations 

_+oo 

u(t) = v_+(t) + i ~ U(t - z ) ( f (u (z ) )  -- ( i~  + (1/2)~2)v_+(z))dz (1.19)+ 
t 

in neighborhoods of t = + ~ by a contraction method. To this end we define 
a function space and a suitable metric so that the space is complete and the 
right-hand sides of (1.19)+_ are contraction maps of u in the space. That  space is 
constructed as a closed ball centered at v-+. The proof  uses the space-time estimates 
of the Strichartz type for the propagator  U(t). We remark here that the solutions 
of (1.19)-+ also satisfy (1.1) near t = _+ ~ .  The second step is to extend the solutions 
to the whole real line. We use the well known results on the Cauchy problem 
described as above to obtain global solutions. In Theorem 2 the restriction/~ > 0 
comes from obtaining the described a priori estimates from the conservation of 
the energy. The last step is to prove the estimates described in the theorems. 

In the sequel different positive constants might be denoted by the same letter 
C, and if necessary, by C( ,  . . . .  ,*) in order to indicate the dependence on the 
quantities appearing in parentheses. 
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2. Proof  of  the Theorems 

In this section we prove Theorems 1 and 2. In the following we only consider the 
case t > 0. The other case is treated analogously. We start by recalling the following 
lemma concerning the space-time estimates for the integral operator 

(Gv)(t) = S U(t - z)v(z)dz. 
t 

Lemma 1 ([2, 15, 26]). Let (q,r) satisfy 2 < q < oo, 4 < r < oo, and 1/2 - 1/q = 2/r. 
Let I = (t o, oo) with t o > O. Then G:v~--, Gv is a bounded operator from LI(I;L 2) to 
15(1; U) with norm uniformly bounded with respect to to. Moreover, if veLI(I;LZ), 
then Gv~C([to, oo); L2). 

We next give preliminary estimates for an approximate solution v+( t )= 
exp ( iS+(t))U(t)M(- t)~b + = exp (iS +(t))M(t)D(t)~+. We define the remainder term 
F by F(t) = iStv+(t) + (1/2)82v+(t) --f(v+(t)). 

L e m m a 2 .  (1) I f  ~b+~H ~ then v+~CI(P~+;H~ 2'-2) and 
F~C(P~+;L2). Moreover, there exists C > 0 and T > 1 such that for any 49+ EH ~ 
and any t > T, 

II F(t)Ih < ct-2 (log t) 2 II 4+ 11o,2( 1 + II 4+ 2.P~- 2), (2.1) 

(2) I f  flp + ~H 1"2, then v + ~CI(F,.+; H~ I)nC(IR+; HI"~ n H 2 ' -  I). I f  dp + ~Hl'2 n 
H ~ then F~C(R+;HI '~  Moreover, there exists C > 0 and T > 1 such that for 
any ~b+~Hl 'ZnH ~ and any t > T, 

IIF(t)lll,o < Ct-2(logt)2(][q~+ 111,2 + 114+ 11o.3)( 1 + 114+ o2P~ 2) 
av- 3~ (2.2) + Ct-S(log 0 3 II 4+ 112,3( 1 + II 4+ 110,1 ,. 

Proof. Let ~b + EH ~ and let S(t, x) = x2/2t + S+(t, x). Then" v + (t, x) = (it)- 1/2 x 
exp (iS(t, x))~(t-  ' x). By a straightforward calculation we see that v + ~ CI(N +; H ~ 2)n 
C(R+;  L 2 n n 2' - 2) and F(t, x) = (it)- 1/2 exp (iS(t, x))~p(t- ix), where 

~p = i(2/2)t- 2 log t q~ + 02 [q~ + [ 2 + i(#/(p - 3))t-(v + 1)/2q~+ 82 [ q~+ iv-1 

- (22/2) t -  2(log t)2~+ I~1~+ 1212 - (#2/2(p - 3)2) t - tp-  1)~+ 101~+ I ~- 112 

+ (22#/(p - 3))t-(v +1)/2 log t6  + 8] 6 + 12016 + I v-1 

- i2 t -210g t t3~+Sl~+ 12 + i(2#/(p - 3) )t-(v+ l)/2 8(o + 8[ ~ + I v-1 

+ (1/2)t, 282~+. 

By HSlder's inequality and the Gagl iardo-Nirenberg inequality of the form 
II 0O ]14 < C II ~z~, 1/2 II ~' II ~z (see [6]), we have = 2 

[I F(t)112 < C t - 2  log t( II 02~§ 112 11 ~§ II 2 + II ~ §  1124 II ~§ II ~) 

+ Ct-(v+l)/2([182~+ ll2 ]1 q~+ l[ p-1 + II0~+ 112411~+ 11~-2) 

+ C t -  2(log 0 2 II ~ + 112 II ~ +  II 3 + Ct-  (p-1)II ~ + II 24 II ~ § II 2~- a 

+ Ct-(v+l)/21ogtllS~+ 112411 ~§ [1~ -1 + t -2 11~2~§ I1~ 

< Ct-  2(log t) 2 II ~2~+ 112( II ~§ II 2 + II ~§ II~ -1 + II ~§ II 4 
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+ I1~§ 112~ p-2 + I1r247 I1% + 1) 

< Ct-2(log 0 211~2r247 II 2(1 + II r247 II 27-2) 

for all t > Twi th  T > 1 sufficiently large. This proves (2.1) since II d2r 112 < II r247 110,2, 
I1r I1~ _-< I1r Ilo, x. Similarly, we have F~C(R+;L2). We turn to part  (2). By a 
straightforward calculation we see that v+ eCI(P,+; H ~ - 1)c~ C(R+ ;11 1"~ n H 2' - 1) 
for r + ~ n  1'2. Let ~b + e H  1'2 n n ~ Then dF(t, x) = (it)- 1/2 exp (iS(t, x ) )~( t -  11), 
where 

~(y) = i y r  i2t-1 log tr r  12(y) 

+ i(2p/(p - 3))t - tp-  1)/2r I r I p- l(y) + t -  10r 

Accordingly, we decompose OF into four terms and denote them as I-IV. We 
estimate the first term in L 2 in the same way as above: 

l] 1112 = IIx~112 _-< CIIx~+ II~o(t-2 log t II ~21q~+ 12 ll2 + t-tP+x)/2 [1~21r I p-1112 

+ t -  2(log 0 2 II a[q~ + 1 2 II 24 + t - (P-  1)II ~1r + I p-1 II 24 

+t- (~+l) /210gt l l~+ 1124 IIr I1% -1 + t-210g t II ~ +  1124 

+ t-(~§ 1)/2 II ~r247 II 42 II r247 I1% -3) + t -2 II x~2r247 112 

< Ct-2(logt)  2 IIxr247 I1~o 11~2~§ 112(1 + II ~§ II 2~-3) + t -2 II ~(x2r247 

< Ct-2(logt)211r II1,1(1 + I1r 02.P22) + Ct-211r 111,2 

< Ct - 2 (log t) 2 II r § II1,2(1 + II 4~ + II 2p- 2) = 0,2 

for all t > T with T > 1 sufficiently large. The next two terms are estimated as 

II II + I I I  II 2 _-< C(t-1 log t ll ~1r § 12 II co + t -~p-1)/2 II ~1~ + I ~ -1 II ~)11F(t)II 2 

< Ct-3(log 0 3 I[r 110,2(1 + IIr § I1~ 2) II F(t)112 

< Ct-S(log t) 3 II ~b+ o 3 2(1 + II r  03.Pl -4)  

< Ct-3(logt)3[[r [[o 2 3( 1 + [1r sp-3l 
-- , 0,I ;~ 

where we have used (2. I) and the inequalities l[ ~lq ~ + I q-t11 ~ _-< C ll O q~ + I I o~ I I r + l[ ~-2 __< 
Cl] ~b+ [Io,2 11 ~b+ 1]~_12 for q > 2 and ]l r  I]o,2 < II r  12/3 I~b+ 1121/3. F o r  the last term, 
we have 

IlIVll2 = t-111~r 

< c t -a log t ( l [~r  [163+ II a2~§ ll3 II ~r [161l ~+ II~ + 11~3r ]12 I[~+ II 2) 

-I- Ct-(P+ 3)/2( II ~r247 II 63 II r247 I1% -3 + II ~2~+ 113 II ~r247 II 6 II r247 11% -2 

+ 1[~3r 1t2 lie+ [1% -1) 

+ ct-3(log 02(11 e ~  § II 63 II r247 II 2 + II ~2~+ 113 II ~r § II 6 I1 ~§ 11 3)  

+ Ct-'([[~9r tl63 [[r [I 2v-4 "{- 1[~2~+ [13 II ~/~+ [16 If~+ [[2p--3) 

+ ct-(p§ 3)/2 log t(ll ~r247 1163 II r247 I1% _2 + 11,~2~§ II 3 II &P§ II 6 II r  I1~- 1) 

+ Ct-3  1t~3(~+ 112 
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Ct-3(logt)Zllr IIm(ll~+ 112 + I1~§ I1~ -1 + rl~§ II 4 + I1~§ I1~ p-2  

+ II $+ IJ~ + 1) 

=< Ct-S(logt)  2 II $+ 110,3( 1 + II $+ N0,,2"-2), 

where we have used H61der's inequality and the Gagl ia rdo-Nirenberg  inequalities 3 2/3 (see [6]) l[ ~9~s j] a --< C [] O3~s [J ~/a t] 0 ]] 2oo/3 H ~z!/s [[ 3 < C ]J t9 !/s ]J 2 1[ ~ ][ loo/3. Collecting these 
estimates, we obtain (2.2). Similarly, we have F ~ C ( ~ + ; H  1, o). Q.E.D. 

For  eE(1/2, 1), R > 0, T > 1, and q$+ e H  ~ we introduce 

= X~(T) = fu~C([T,  oo); L 2) n L4(T, oo; L~176 X M 
(i  \ 1 / 4 \ }  supt~(l[u(t)-v+(t)[lz+ [[u(z)-v+(z)[[:dz) ) < R  

t ~ T  \ 

and define on X the metric d(Ul,U2)= Illux -u=lllx, where 
\ : / 4 \  Illulli=:upe(llu(,)ll2+ 7ilu( )ll:a ), ). 

With this metric X becomes a complete space. We define the map  J by 

(du)(t) = v + (t) + i 7 U(t - z)(f(u(z)) - (ia, + (1/2)r (z))dz 
t 

= v+(t) + i 7 U(t - z)(f(u(z)) - f (v+(z))  - F(z))d'c. (2.3) 
t 

Proof of Theorem 1. Let r + ~H ~ and let u~X~(T). We have 

IIv+(01l~& = z-~ll<J+ll~dz) =t-'*115+11oo, (2.4) 

( i  )1/4 ( i  )1/4 ( i  )1/4 I1 u(w)II~& _-< II u(r) - v+(~)It 4 & + I[ v+(~)II 4 & 

<- R t  -~  + II $+ [loot -1 /4  (2.5) 

We prove that J maps  X~(T) in to  itself and is a contract ion in the metric on X 
if T is sufficiently large and II r  IIoo is sufficiently small. By Lemma 1 and (2.3), 

II(Ju)(t)- v +(t)[,2 + ( i II(Ju)(z)- v +(z)ll: dz f / 4  

5 c ~ II f(u(z)) - f (v  + (r))[[ 2 dz + C 7 [[ F(r)i[ 2 dz. (2.6) t t 
By H61der's inequality, (2.4), and (2.5), 

7 IIf(u(z)) - f(v+('c))112& t co 
__< c .[ (11 u(~)I1~ + II v+(z)I1~ + II u(z)li~ -~ + II v+(r)II ~- ~)tl u(z) - v+(~)112dr t 
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(7 ,4 j �9 11 u(~) - o+(~)I I j ( s -P)& "~(s 

/oo \1 /2  
< C R ( R Z t  - 2~ + I1 q~+ II~ t - , /2)1 1 z-  2"dz) dr 

\ t  / 

/ oo \ (5  - p)/4 

=< CRt-'(R2tl/2-2~+ RP-lt(5-P)'-(P-I" + fl~+ [1~ + t[O+ P-lt-~P-3)/21~ . ( 2 . 7 )  

We note here that 1/2 - 2c~ < - 1/2, (5 - p) /4  - (p - 1)e < - 1/2. By (2.1), 

11F(z) llzdr < C t - *  (log 0 2 II ~9+ z 2( 1 + I14)+ oZ.P~ -2) (2.8) 
t 

for all t > T with T > 1 large enough. By (2.6), (2.7), and (2.8), 

IIIJu - v+ II[x _-< C R  II ,~§ I1~ (2.9) 

for T > 1 large enough. In the same way as above, for u t ,  u 2 e X ~ ( T ) ,  

( i  _ \~/4 [ [ (JUl-Juz)( t ) l l2+ II ( Jua - Juz ) (v ) l l~dz )  

< C t - ~ ( R 2 t X / 2 - 2 ~  + R P -  lt(5-P)/4-(v-1)e _[_ II q~+ I1 ~ + II ~+ I1~- 1 t - (P-  3 ) / 2 )  

"sup z" II (u~ - u2)(~)II z ,  

which leads to 

Ill Ju~ - ']/"/2 IIIx < C II ~+ II ~ III u~ - U 2 Illx (2.10) 

for T >  1 large enough. We see from (2.9) and (2.10) that if I1~+ Iloo is sufficiently 
small, J has a unique fixed point u in X~(T). Therefore u solves the integral equation 

u(t) = v+(t)  + i ~ U( t  - z)(f(u(z)) - (iO, + (1/2)O2)v+(z))dz (2.11) 
t 

for all t >  T. Let t > t o >  T. Using (2.11), we obtain 

U ( -  t)(u( t) --  v + (t) ) = U ( -  to)(U(to) - v + (to)) 

+ i i U ( - ~ )  ( f (u(T))  - (ig, + (1/2)~2)v+ (z))d~. (2.12) 
to 

Noting that 

v +(t) = u ( t  - to)V+(to) - i i u ( t  - ~)(i~, + ( i / 2 ) ~ ) v  +(~)cI~, 
to 
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we deduce f rom (2.12) that  u solves the integral equat ion  

t 

u(t) = U(t - to)U(to)U(to) - i ~ U(t - T)f(u(T))dz. (2.13) 
to 

I t  is well known that  (2.13) has a unique global  solution in C(R;  L2 )n  L~oc(R; L ~~ 
and therefore the solution u of  (2.11) extends to all times and satisfies (2.13) for 
all tER .  By a s tandard  argument ,  u satisfies (i.1) in H -2"~ for a lmost  all tER.  We  
now prove  ( 1.8) + and (1.9) +. By the inequali ty l exp ( - ix2/2t) - 11 < x2/21 t I, we have 

II u(0 - exp (iS + (t)) U(t)~ + [I 2 

< II u(0 - exp (iS + ( t ) ) U ( t ) M ( -  t)~p + II 2 + II exp (iS + ( t ) ) U ( t ) ( M ( -  t)ck + - ~ +)ll 2 

< Ct  - ~ + l[ M(  - t)~b + - ~b + II 2 < Ct -~  + t -1  II 4~ + II 0,2- (2.14) 

This proves  (1.8)+. By the inequalities II U(t)@ II oo _-< t -  1/2 II @ I[x and 
[ e x p ( - i x 2 / 2 t )  - 11 < 21xlZ/2-~lt[ -3/4+~/2 for 0 < e < 3/2, we have 

1[ u(t) - exp (iS+(t))U(t)c~ + 1t | 

< [ [u ( t ) - exp ( iS+( t ) )U( t )M( - t ) c~+ I1~ + Ct -5/4+~/2 I Ix3 /2 -~+  [11, (2.15) 

and therefore 

( i "u(z ) -exp( iS+(z) )U(z )c~+ ]'4 d~ )  1/" 

<~ C t-~ + Ct-l+~/2llxz/2-e~b+ II1 _-< C t - ~ +  C(~)t -1+~/2114+ 11o,2. (2.16) 

Choos ing  e > 0 so tha t  e < 2(1 - ~ ) ,  we have (1.9)+. We finally prove  the uniqueness. 
Let ul and u2 be solutions of (1.1) satisfying (1.8)+ and  (1.9)+. In  the same way 
as in (2.14)-(2.16) we have ul,u2~X~R(T) for some R > 0, T > 1. In  the same way 
as in the der ivat ion of (1.1) f rom (2.11) we see that  ul and u2 solve (2.11). By the 
uniqueness of solutions of(2.11) we have ul(t) = u2(t)for all t > T. By the uniqueness 
of  solutions of (2.13), we have ul(t)  = u2(t) for all t~lR. Q.E.D. 

Proof  o f  Corollary I. Let ~b+ and u be as in Theorem 1. By (1.8)+, 

II u(t) - exp (iS~ (t))U(t)c~ + II 2 

_-< I[ u(t) - exp (iS + (t) )u ( t )~  + 112 + II (exp (is + (t) ) - exp (is o ( t)))u(t)~ + 112 

<-_ c t - ~ +  II exp(i(S+(t)  - S ~ ( t ) ) ) -  1 II ~ II U(0~+  112 

< c t - "  + II S +(t) - S o (t)II ~o II ~ + II 2 < Ct -~  + f i r  t i t -  (~- 3)/2 II ~+ II ~- 111 ~ + [I 2.  

This proves (1.10)+. By (1.8)+ and the conservat ion law of the L2-norm 
II u(t)112 --[I u(0)112 for all t~lR, we have 

III u(0)II 2 - II ~ + II 21 -- Ill u(t) II 2 - II exp (iS + (t)) U(t)e~ + II 2 I 

< [[u(t)-exp(iS+(t))U(t)c~+ll2---'O as t - - , + ~ ,  

and therefore [1 u(t)[12= IJ u(0)[t 2 = [I ~ + II 2 for all t ~ R .  Then, by (1.8)+ 

II In(t)] 2 - I  U(t)~ + I 2 II1 

= [I lu(t)l 2 - [exp(iS+(t))U(t)dP+ 12 Ill 
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< (11 u(t)II 2 + II exp (iS + (t)) U(t)r + II z)II u(t) - exp (iS + (t)) u(t)e~ + ]l z 

= 2 II 4~ § II 2 II u(t) - exp  (iS + (t)) U(t)qb + II 2 = O( t -  ~) 

as t--* + oo. This  p roves  (1.11)+. Similarly,  deno t i ng  by  (. ,  .) the  L2-scalar  p roduc t ,  
we get 

111 u(t) l - ] U(t)qb + ][I ~ = II U(t)~b + II ~ - 1[ u(t)l[ ~ + 2(lu(t)1, l u(t)[ - ] U(t)(o + [) 

= 2(lu(t)l,  [u(t)L- lexp(iS+(t))U(t)4+ I) 

< 2 II u(t)II, II u(t) - exp (iS +(t)) U(t)e~ + II 2 = O( t -  ~) 

as t--* + oo. This  p roves  (1.12)+. W e  have  

I[ exp  (iS+(t))U(t)~b + [I oo = 11 U(t)qb + l[ oo =< t -1/2 [1 • + I11 ~ t-1/2 [I 4+  ]10,1, 

so tha t  by  (1.9)+, 

+ ~ I1exp(iS+(~))u(~)eh+ I I ~ &  < c t - ~ + C t - 1 / 4 l l  #9+ 11o,1. 
t 

This  p roves  (1.13)+. Q.E.D.  

F o r  c~e(1/2, I), R > 0, T > 1, and  ~b + � 9  1'2 n H ~ we i n t r o d u c e  

Y = Y ~ ( T )  = { u � 9  c3u �9  ]][u - v+ ]llx + ]lieu - 0v+ Illx <_- R} 

a n d  define on  Y the  met r i c  d ( U l , U 2 )  = Illul - u2111Y, where  Illulllr = Illulllx + [ll0ulllx. 

P r o o f  o f  T h e o r e m  2. Let  ~b + � 9  1'2 n H ~ and  let u �9 Y~(T) .  W e  have  Ov + (t, x) = 
( i t )-  1/2 exp (iS(t, x))O + ( t -  lx) ,  where  

0 + (Y) = i y ~  + (y) - i 2 t - x  log tq~ + (y)~3 ] q~ + 12(y) 

+ i(212/(p - 3))t-(P + 1)/2q'~ + (y)0] q~+ ] ' -  l(y) + t -  tOq~ + (y), 

so tha t  

[I ~v + (t)I[ o0 <~ C t -  1/2( II xq~+ II | + t - a  log t I[ ~+  II ~ II ~,~+ l[ ~o 

+ t- iv+ 1)/2 II q~+ I1~- 111 ~q~+ II ~ + t -  111 ~qS+ II 

< ct-'/211x(o+ Iloo + Ct-3/Zlogtllx#)+ I1,(1 + I1~+ 11~ -1) 

< c t -  1/2 II xq;+ II ~ + c t  -3/2 log tMl(q~ +) (2.17) 

for  all t >  T wi th  T >  1 large enough ,  where  M l ( q S + ) =  [l~b+ IIo ~_(1-t-lib+ P ~ l l )  �9 
Then ,  for  all t > T, 

< R t - ' + C l l x ~ + l l o o t - x / 4 + C M , ( ~ ) + ) t - 5 / 4 1 o g t .  (2.18) 
M o r e o v e r ,  

l[ u(t)[I 0o ----< II u(t) - v+(t)II oo + II v+(t)II | 

< C l l u ( t ) -  v+(t)ll~,o § II q~+ Iloot -1/2 < C R t  -~  + ll4~+ II~ot -1/z. (2.19) 
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By (2.19), 
co 

1[ f (u(z))  --f(v + ('c))I[ 2 d2" t 
co 

<= C ~ (R2z-2~+RV-lz-(P-1)~+ IIq~§ [12co~-1+ IIq~§ I1~- xt -(p- 1)/2) 
t 

"11 u ( ~ )  - v + ( ~ ) I I  2aT 

< CR(R2t 1-3~ + RV-l t l  -v~ + 1[ q~+ l[ 2cot-~ + II q~§ I1~- lt-(P-3)/2-~) (2.20) 

Again by (2.19), 

II O(f(u(t)) - f ( v  + (t)))I12 

__< C( JI u(t)II ~ -2  + [I v + (t)II ~-2)II 0u(t)11 co I[ u(t) - v + (t)II 2 

+ C I[ v+( t ) I1~-  111u(t) - v+(t)112 

+ C( II u(t)t l  co + II v+ (t)II co)I1 On(t)I1 co II u(t)  - v+ (t)II 2 

+ C II v+(t)I1~ II u(t) - v+(t)1[2 

< C( Rp-2t-(v-2)~ + R t - ~  + II ~+ ~-2 -(~-2)/2 + II co .t 11 ,P + II | t -  ~ / 2 ) R t -  ~ II On(t)II co 

+ C(ll ~+ t1~- : t  -~p- x)/z + II ~+ II~t-1) Rt -~ ,  

which together with (2.18) implies 

II O(f(u(z)) - f ( v  + (T)))II 2 d r  t 
( i  )1/4( ( i  )3/4 ( i  )3/4 < CR I[ 0u(v) lJ4d~ R p-2 z-4(v-1)~/3dz + R z-sa/3dz 

co A //co "~ 3/4"~ 
\ t  

+ C I[ q~+ II ~-1Rt-~-(p-  3)/2 .~_ C II q~+ N 2 R t - ~  

< CR(Rt  -~ + IIx~+ II~t -a/4 + Ml(q~+)t-5/~log t) 

.(RP-2t3/4-(p-1)~ + Rt3/4- 2a + il q~+ I1~-2tl/4-~-(P-3)/2 + II q~+ II co?/4-~) 

+ C II q~ + II ~ -a  R t -  ~- ( ' -  3)/2 + C 11 ~ + ~ R t  -~  

< CR2(1 + R p-2 + II ~+ 11~-2)t -~-  1/4+ CR(1 + R p-2) II xq~§ II cot a/2-2~ 

+ CRI l~§  Ilco(ll ~§ IIo~ + IIx~+ II co)t -~ 
+ CRMI((a+)(1 + R p-2 + II q~§ II~- 2) t-1 - ' l o g  t (2.21) 

for all t > T with T > 1 large enough. By (2.2), 

II 0F(v)II 2 dz < C t -  1(log t)2M2(q~ +) (2.22) t 
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for all t > T with T > 1 large enough, where 

3p- -3-  I M2(q)+)---(/4~§ I[x,2 + 114,+ 110,3)(1 + 114>+ II~,px-2) + limb+ No23(1 + II 4~+ 01 ,. 

I t  follows f rom (2.8), (2.20), (2.21), and (2.22) that  if T >  1 is large enough, 
J u  - v + ~ C ( [ T ,  o o ) ; H l ' ~  oo; W 1,+~ and for all t > T, 

( i  \~i4 II(Ju-v+)(t)lll,o+ l ( au -v+) (~ ) l l  4, & 

< C R  It ~ II ~( It ~+ II ~ + II x ~ +  II ~)t -~- (2.23) 

We now distinguish between two cases: (1) p < 5. (2) p > 5. 
(1) When  p < 5, we a l ready know that  J has a unique fixed point  u in X ~ ( T ) .  

F r o m  the a rgument  above we show that  if ~ + ~ H I ' 2 c ~ H  ~ then the solution u 
belongs to Y ~ ( T ) .  

(2) When  p > 5, in the same way as in the der ivat ion of (2.23) we have 

IIIJul - 3 u z l l l Y < =  CII~+ II,o(11 ~+ IIoo + IIx~+ Iloo)lllu~ - u211lr (2.24) 
for any u 1, u2c Y ~ ( T ) .  By (2.23) and (2.24), if II 0g+ II ~ + II x ~ +  II ~ is small enough, 
then J maps  f rom Y ] ( T )  into itself and is a contract ion on Y ~ ( T ) .  Therefore J 
has a unique fixed point  u ~  Y ~ ( T ) .  

In either case the solution u o f J u  = u also satisfies (1.1) in H -~ '~  for all t > T 
by the same method  as in the p roof  of  Theorem 1 and u extends to all t imes by 
the well known  method  of the Cauchy  p rob lem for (1.1) in the energy space H L~ 
We now prove  (1.14)+ and (1.15)+. In the same way as in (2.14)+, we obtain  

II a(u(t)  - exp ( iS + ( t) ) U  (t)gp +)112 

< ] ]O(u ( t ) - exp ( iS+( t ) )U( t )M( - t )O+)] ]2  + ]]SS+(t) 'exp(iS+(t))U(t)(~)+ - M ( -  t)q$+)]12 

+ l[ exp(iS + (t))U(t)8M( --  t) 'd) + II 2 + II exp(iS + ( t )U( t ) (~O + - M (  - t)a4) +)ll 2 

< R t  -~  + C(t -1 log t ll 0q~+ II co II q$+ II ~ + t -(p 1)/2 II a~+  II =o II q~+ I/~ -2)  

�9 11~+ - M ( - t ) ( o +  112 + II OM(-t) -~b+ 112 + Ilar - M ( - t ) ? ~ +  1[2 

< R t  -~  + C ( t  -~  log t ll ~ +  II ~o II ~+ II =o + t - ' -  1)/2 il c~+ If ~ II ~+ l l ~ -2 ) t  - X ll ,D+ 11o,2 

+ t -~ I1~+ IIo,1 + t -1  II~+ 11~,2, 

which together  with (2.14) proves  (1.14)+. In the same way as in (2.15), we obtain  
for 0 < e < 2(1 - ~ ) ,  

ii a(u( t )  - exp ( i s  + (t) ) u  (t)q~ +)11 oo 

_-< II #(u( t )  - exp ( i s  + ( t ) ) U ( t ) M ( -  t)ck +)11 ~ + II Os + (t) 

�9 exp (iS + (t)) U(t)(q5 + - M (  - t)c~ + )11 ~o 

+ II exp ( i s  + (t)) U(t)~3M( - t).  ~9 + II co + II exp (iS + (t)) u (t)(~34) + - M (  - t)O 4) + ) II =o 

< II ~?(u(t) - exp ( i S + ( t ) ) U ( t ) M ( -  t)cb + )ll ~o 

+ C(e)(t-1 log tll ~ +  II| II0~+ II 0o + t-~p-1)/2 I1~r Iloo I1~+ ]lv-2)t-5t~+~12]iq~+ llo.2 

-{- C t  - 312 Jl ~) + 11 o, 2 -it- C ( ~ ) t  - 5/4  + el2 II ~ + II , ,  2. 
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This and (2.16) prove (1.15)+. The required uniqueness follows in the same way 
as in the proof of Theorem 1. Q.E.D. 

Proof  o f  Corollary 2. Let 4 + and u be as in Theorem 2. In the same way as in 
the proof of (1.10)+, we have 

II ~(U(t) - exp ( iS g (t) ) U (t)4 +)112 

< I[ a(u(t) - exp (iS+(t))U(t)4+)II z + II (exp (iS+(t)) - exp (iSo(t)))U(t)a4+ Ilz 

+ [I (tOg + (t) --  (~S o (t)) U ( t ) 4  + II 2 + II ~Sg- (t)(exp (iS + (t)) - exp ( iS~ (t))) U ( t ) 4  + II 2 

< Ct-~+fl~l t-~'-3)/21[~+ I1~ -111g4§ 112+Cl~lt-r II~oll ~§ 11~-2 II 4+ 112 

+ Cll~lt-r ~ +  I1| II ~+ I1~ 114§ 112, 

which together with (1.i0)+ proves (1.18)+. In the same way as in the proof of 
(1.13)+, we have 

11 u(t)l[ ~ < I1 u ( t ) - e x p ( i S + ( t ) ) U ( t ) 4 +  [[o~ + [ ] e x p ( i S + ( t ) ) U ( t ) 4 +  [1o~ 

__< C II u(t) - exp(iS+(t))U(t)4+ I1 o + II 4§ II it-1/2 

< Ct-~ + 114+ 111 t-1/2. 

This proves (1.19)+. Q.E.D. 
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