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Abstract: Orthogonal polynomial random matrix models of N x N hermitian 
matrices lead to Fredholm determinants of integral operators with kernel of the 
form ( q ~ ( x ) O ( y ) - t ~ ( x ) ~ o ( y ) ) / x - y .  This paper is concerned with the Fredholm 
determinants of integral operators having kernel of this form and where the 
underlying set is the union of intervals J = I I ' ~  . ( a 2 , -  1, a20 .  The emphasis is on 
the determinants thought of as functions of~l~e endJpoints'ak. 

We show that these Fredholm determinants with kernels of the general form 
described above are expressible in terms of solutions of systems of PDE's as long as 
~0 and 0 satisfy a certain type of differentiation formula. The (~0, ~b) pairs for the 
sine, Airy, and Bessel kernels satisfy such relations, as do the pairs which arise in 
the finite N Hermite, Laguerre and Jacobi ensembles and in matrix models of 2D 
quantum gravity. Therefore we shall be able to write down the systems of PDE's for 
these ensembles as special cases of the general system. 

An analysis of these equations will lead to explicit representations in terms of 
Painlev~ transcendents for the distribution functions of the largest and smallest 
eigenvalues in the finite N Hermite and Laguerre ensembles, and for the distribu- 
tion functions of the largest and smallest singular values of rectangular matrices (of 
arbitrary dimensions) whose entries are independent identically distributed com- 
plex Gaussian variables. 

There is also an exponential variant of the kernel in which the denominator is 
replaced by e b x -  e by, where b is an arbitrary complex number. We shall find an 
analogous system of differential equations in this setting. If b = i then we can 
interpret our operator as acting on (a subset of) the unit circle in the complex plane. 
As an application of this we shall write down a system of PDE's for Dyson's 
circular ensemble of N x N unitary matrices, and then an ODE if J is an arc of the 
circle. 

I. Introduction 

It is a fundamental result of Gaudin and Mehta that orthogonal polynomial 
random matrix models of N • N hermitian matrices lead to integral operators 
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whose Fredholm determinants describe the statistics of the spacing of eigenvalues 
[28, 36]. Precisely, if a weight function w(x) is given, denote by { pk(x)} the sequence 
of polynomials orthonormal with respect to w(x) and set 

(pk(X) := pk(X)W(X)  1/2 . 

Then E(n; J), the probability that a matrix from the ensemble associated with w(x) 
has precisely n eigenvalues in the set J (n=0, 1 . . . .  ), is given by the formula 

E(n; J)= (-~)" d" 
d2" d e t ( I -  2KN)[ ~ = 1 , (1.1) 

where KN is the integral operator on d wiih kernel 
N--1  

K~(x, y):= 2 ~ok(X)~0k(y). 
k = 0  

It follows from the Christoffel-Darboux formula (cf. (6.3) below) that 2KN(x, y) is 
a particular case of a kernel of the general form 

(P(x) O ( y ) -  6(x) rp(y) 
K(x, y):= (1.2) 

x - - y  

This paper is concerned with the Fredholm determinants of integral operators 
having kernel of this form and where the underlying set is the union of intervals 

J := @ (a2j- 1, azj). 
j = l  

The emphasis is on the determinants thought of as functions of the end-points ak. 
If we denote the operator itself by K then it is well known that 

0 
- -  l o g d e t ( I - K )  =(-1)  k- 1R(ak, ak) (k= 1 . . . . .  2m), (1.3) 
Oak 

where R(x, y), the resolvent kernel, is the kernel of K ( I -  K)-1. This requires only 
that 2=  1 not be an eigenvalue of K and that K(x, y) be smooth. Jimbo, Miwa, 
M6ri and Sato [25] showed for the "sine kernel" 

s in (x -y )  

x - y  
that if we define 

rk. + := ( I - - K ) -  le +-iX(ak) , 

then the R(ak, ak) are expressible in terms of the rk, +_ and that these in turn, as 
functions of the al . . . . .  a2,,, satisfy a completely integrable system of partial 
differential equations. They deduced from this that in the special case when d is an 
interval of length s the logarithmic derivative with respect to s of the Fredholm 
determinant satisfied a Painlev6 differential equation. (More precisely, s times this 
logarithmic derivative satisfied the so-called o- form of Pv of J imbo-Miwa- 
Okamoto [24, 33].) We refer the reader to [37] for a derivation of these results in 
the spirit of the present paper. The discovery that Painlev6 transcendents can be 
used to represent correlation functions in statistical mechanical models first ap- 
peared in the 2D Ising model [1, 26, 41]. 
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The sine kernel arises by taking a scaling limit as N ~ oo in the bulk of the 
spectrum in a variety of random matrix models of N x N hermitian matrices. But if 
we take the Gaussian unitary ensemble (also called the Hermite ensemble; see 
below), and others as well, and scale at the edge of the spectrum then we are led 
similarly to the "Airy kernel" 

Ai(x) Ai ' (y)-Ai ' (x)Ai(y)  
x - y  

where Ai(x) is the Airy function [6, 19, 30, 38]. For  this kernel the authors found 
[38] a completely analogous, although somewhat more complicated, system of 
PDE's, and showed that for J a semi-infinite interval (s, oo) there was also a Pain- 
lev6 equation associated with the determinant - this time Pu.  Similarly, if we scale 
the Laguerre ensemble at the left edge of the spectrum or the Jacobi ensemble at 
either edge (see below for these ensembles also), then we obtain yet another kernel, 
the "Bessel kernel," where in (1.2) q) (x) = J~ (x/x), ~ (x) = xcp'(x) with J~ the usual 
Bessel function. Again we found [39] a system of PDE's for general J and, for 
J = (0, s), a Painlev~ equation associated with the Fredholm determinant - this time 
Pv (actually a special case of Pv which is reducible to pro).  

In looking for (and finding) analogous systems of PDE's for finite N matrix 
ensembles we realized that all we needed were differentiation formulas of a certain 
form for (p and ~, namely 

m (x) qo'(x) = A (x) (p (x) + B(x) lp (x),  

m (x) O'(x) = -- C (x) q) (x) - A (x) ~ (x),  (1.4) 

where m, A, B and C are polynomials. 
The ((p, ~) pairs for the sine, Airy, and Bessel kernels satisfy such relations 

(re(x) = 1 for sine and Airy, re(x) = x for Bessel) as do the pairs which arise in the 
finite N Hermite, Laguerre and Jacobi ensembles (re(x) = 1 for Hermite, re(x) = x for 
Laguerre and re(x) = 1 - x 2 for Jacobi) and therefore we shall be able to write down 
the systems of PDE's  for these ensembles at once as special cases of the general 
system. An analysis of these equations will lead in the cases of the finite N Hermite 
and Laguerre ensembles to explicit representations in terms of Painlev6 transcen- 
dents for the distribution functions for the largest and smallest eigenvalue. A conse- 
quence of the latter is such a representation for the distribution functions of the 
largest and smallest singular values of rectangular matrices (of arbitrary dimen- 
sions) whose entries are independent identically distributed complex Gaussian 
variables; for these singular values are the eigenvalues of a matrix from an 
appropriate Laguerre ensemble [17]. 

There is also an exponential variant of the kernel (1.2) in which the denomi- 

na tor i s rep lacedbyebX-ebr (orequ iva len t l y s inh~(x -y ) ) ,whereb i sanarb i t -  

rary complex number. With an appropriate modification of (1.4) we shall find 
a completely analogous system of differential equations. Observe that if b = i then 
we can interpret our operator as acting on (a subset of) the unit circle in the 
complex plane. As an application of this we shall write down a system of PDE's for 
Dyson's circular ensemble of N x N unitary matrices, and then an ODE if J is an 
arc of the circle. In case b is purely real our results have application to the so-called 
q-Hermite ensemble [9, 31]. 

Here, now, is a more detailed description of the contents of the paper. 
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A. The Differential Equations. In Sect. II we derive our general system of partial 
differential equations. To describe these equations we first define the functions 

Q:=(1-K)- I (o ,  P : = ( I - K ) - l O ,  (1.5) 

which depend also, of course, on the parameters ak, and then 

qk := Q(ak), Pk := P(ak)(k = 1 . . . . .  2m), (1.6) 

U i := (Q(x), x i ~ o ( x ) ) ,  V i := (Q(x), xit~(X)), Wi := (P(x), xiO(x)) (i = O, 1 . . . .  ) ,  

where the inner products are taken over J. These are the unknown functions in our 
system of PDE's. We shall see that for any operator with kernel of the form (1.2) we 
have for the resolvent kernel the formulas [22] 

R(a~, ak)-  qjpk-pjqk (j:,i=k), (1.7a) 
aj -- ak 

gqk @k (1.7b) 
R(ak, ak)= Pk -~ak--qe aak ' 

for the qj and pj the differentiation formulas 

~-~k=( - 1)kR(aj, ak)qk (j@k) , (1.8) 

~ =(--  1)kR(aj, ak)Pk ( j~k)  , (1.9) 

and for the u~, v j, wj differentiation formulas of the form 

~uj ~vj ~wj 
~ak' ~ak' ~ - - p o l y n o m i a l  in Pk, qk and the various ui, vi, w~. 

These equations are universal for any kernel of the form (1.2). What depends on 
(1.4) are the remaining differential formulas 

re(a1) ~ = polynomial in qi, PJ and the ui ,  /)i, wi 

- ~ (-- 1)kR(aj, ak)qk, 
k:4:j 

m(aj) ~ = p o l y n o m i a l  in qj, pj and the ui, vi, wl 

- ~ ( -  1)kR(aj, ak)pk, 
k+j  

and the representation 

m(aj)R(aj, aj)=polynomial  in q j, pj and the ul, vi, wi. 

The polynomials on the right sides are expressed in terms of the coefficients of the 
polynomials m, A, B, C in (1.4). We mention that in [25] no "extra" quantities ui, vl, 
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wi appear, but this is quite special. In general the number of triples (u, vi, w~) which 
occur is at most 

max(degA, degB, degC, d e g m - 1 ) ,  

although in practice fewer of these quantities actually appear. 

B. The Examples. First in Sect. III we quickly derive, as special cases, the systems 
of equations for the sine, Airy and Bessel kernels. Then in Sect. IV we derive and 
investigate the equations for kernels "beyond Airy". To explain this we replace the 
variables x, y in (1.2) by 2 and #, think of (a completely new variable) x as 
a parameter, and observe that for each x 

Ai(x + 2)Ai'(x + # ) -  Ai'(x + 2)Ai(x + #) 
(1.1o) K(2, ~). 2 -#  

has the same properties as the Airy kernel. (In the differentiation formulas (1.4) the 
variable is now 2 and x is a parameter in the coefficients.) Observe also that 
Ai(x + 2) is, as a function of x, an eigenfunction of the Schr6dinger operator vdith 
potential ~(x)= - x  corresponding to eigenvalue 2. 

In the hermitian matrix models of 2D quantum gravity [8, 7, 13, 12, 21] 
solutions to the so-called string equation 

[2, ~] = 1 

determine the functions ~p and ~. In the simplest case of the KdV hierarchy, the 
operator ~ is the SchrSdinger operator (note our convention of sign of D~) 

= D 2 + { (x) 

and the differential operator ~ (in x) is 

~=(~(2~-  1)/2)+ (1= 1, 2 . . . .  ) .  

where (.)+ is the differential operator part. The potential ~ then satisfies a differen- 
tial equation determined by the string equation and go(4, x) is the eigenfunction 

(D 2 + ~ (x)) r (2, x) = 2cp (2, x) (1.11) 

satisfying 

Setting 

the kernel [6, 30] is then 

-•-2 = ~ o  (2, x).  (1.i2) 

tp(2, x)= Dx~o(2, x) (1.13) 

~o(2, x)O(~, x)-4,(2, x)~o(u, x) 
K(2, ~,)- 

2 - p  

- o(2, y)~o(~,y)dy. 
x 

(1.14) 
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These are the kernels which we say are "beyond Airy" since for l=  1, N=Dx,  
~ ( x ) = - x ,  (1.14) reduces to the generalized Airy kernel (1.10). From (1.11) and 
(1.12) it follows that for general I the functions ~0(2, x) and ~b(2, x) satisfy differenti- 
ation formulas (in 2) of the form (1.4). (Again in the differentiation formulas (1.4) the 
variable is now 2 and x is a parameter in the coefficients.) In Sect. IV we illustrate 
these methods for the case l=  2. 

In Sect. V we study in some detail the finite N Hermite, Laguerre, Jacobi, and 
circular ensembles. In orthogonal polynomial ensembles one is given a weight 
function w(x) and then, for any symmetric function f on R N, we have 

g(f(Zt . . . .  , 2N) )=CN~' '~ f ( x~ , . . . ,  XN) I-I W(X~) l~ I x z - x j l 2  d x x  . . . dxN , 
i< j  

(1.15) 

where "E"  denotes the expected value, 21 . . . . .  2N are the eigenvalues, and CN is 
a constant such that the right side equals one when f =  1. In the Hermite ensemble 
w(x) = e-x2 and the integrations are over R, in the Laguerre ensemble w(x)= x~e-X 
and the integrations are over R +, and in the Jacobi ensemble w(x)= (1 -x)~(1 + x) a 
and the integrations are over ( -  1, 1). In the circular ensemble w(x) = 1 and the 
integrations are over the unit circle. 

The size parameter N will appear only as a coefficient parameter in the 
equations we obtain; and we find that the equations for both bulk and edge scaling 
limits emerge as limiting cases. Our equations also make the study of large 
N corrections to the scaling limits tractable. 

For the Hermite, Laguerre and Jacobi ensembles there are natural intervals 
depending upon a single parameter s - for Hermite J=(s ,  ~ )  or ( - ~ , s ) ,  for 
Laguerre J=(s, oo) or (0, s), and for Jacobi d =(s, 1) or J = ( -  1, s) - and in all these 
cases we shall find an associated ordinary differential equation. For Hermite and 
Laguerre these will be of Painlev6 type. Observe that taking n = 0 in (1.1) shows that 
the Fredholm determinant in each of these cases is precisely the distribution 
function for the largest eigenvalue, or 1 minus the distribution for the smallest 
eigenvalue. 

C. General Matrix Ensembles. In this final section of the paper we show that there 
are differentiation formulas of the form (1.4) when Hermite, Laguerre, or Jacobi 
weights are multiplied by e- v(x), where V(x) is an arbitrary polynomial. (Of course 
it must be of such a form that the resulting integrals are convergent.) It is the finite 
N matrix models corresponding to Certain V(x) which, in an appropriate double 
scaling limit at the edge of the spectrum, lead to the kernels beyond Airy. (Strictly 
speaking this is true only for the universality classes l=  1, 3, 5 . . . .  as it is well- 
known that the cases 1=2, 4, 6 , . . .  require coefficients in V(x) that make e-V(x) 
unbounded.) 

II. The General System of Partial Differential Equations 

In this section we derive the system of partial differential equations that determine 
the functional dependence of the Fredholm determinant d e t ( I - K )  upon the 
parameters ak where K has kernel (1.2). After some preliminary definitions and 
identities in Sect. IIA, in Sec. IIB we derive those equations which are independent 
of the differentiation formulas (1.4). In Sect. IIC we assume ~0 and ~ satisfy the 
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differentiation formulas for the case re(x)= 1. Then in Sect. IID we indicate the 
modifications necessary for the general case of polynomial m. Finally, in Sect. IIE 
we derive the exponential variant of the system of equations. 

A. Preliminaries. Our derivation will use, several times, the commutator  identity 

[L, ( I - K )  -1 ] = ( I - K )  -1 [L, K ] ( I - K )  -1 , (2.1) 

which holds for arbitrary operators K and L, and the differentiation formula 

d K)_ 1 dK ( I - K ) - 1  (2.2) 
da ( I - K ) - I = ( I -  da ' 

which holds for an arbitrary operator depending smoothly on a parameter a. 
It will be convenient to think of our operator K as acting, not on J, but on 

a larger natural domain ~ and to have kernel 

K(x, Y))~s(Y) , (2.3) 

where ;~s is the characteristic function of J and K(x, y) is the kernel (1.2). For  
example, for the sine and Airy kernel ~ = R, for the Bessel kernel ~ = R +, and for 
the Jacobi kernel ~ = ( -  1, 1). The set J will be a subset of ~.  We will continue to 
denote the resolvent kernel of K by R(x, y) and note that it is smooth in x but 
discontinuous at y = ak. We will also need the distributional kernel 

p(x, y ) =6( x - - y ) +R( x ,  y) 

of ( I - - K ) - 1 .  The quantities R(aj, ak) in Sect. IA are interpreted to mean 

lim R(aj, y ) ,  
y---* ak 
y ~ J  

and similarly for pj and qj. 
The definitions of ui, etc. must be modified. Before doing this it will be 

convenient to introduce 

Qj(x) := ( I - K ) -  lxJcp(x), Pj(x):=( I - K ) -  lxJtp(x) , (2.4) 

which for j = 0  reduce to (1.5) (Qo=Q, Po=P) .  Then we define 

uj := (Q, xJq~)o) = (Q j, q~zs), (2.5a) 

vj := (Q, xJ~zs) = (Pj, ~oxs ) , (2.5b) 

zTj := (P, xJrpZj) = (O~, (P)O) , (2.5c) 

w~ := (P, xJO)O)= (Pj, O)O), (2.5d) 

where the inner product ( ", �9 ) is now over the domain ~.  That  these definitions for 
u j, vj and wj are equivalent to those of Sect. IA and the above equalities are left as 
exercises. They follow from the fact that 

{(I - K ) - ~ f  on J 
( I - K ' ) - l f ) ~ s = ( I - K ) - ~ f z J =  0 on jc  (2.6) 
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for any s m o o t h f  Here K ~ is the transpose of the operator K. (Note that K takes 
smooth functions to smooth functions while its transpose takes distributions to 
distributions.) We also observe that go = vo. A final bit of preliminary notation is 

L -L(x ,  y) , 

which means the operator L has kernel L(x, y). 

B. The Universal Equations. In this subsection M denotes multiplication by the 
independent variable. If we consider the commutator of M with K and use the 
representation (2.3), we have immediately 

[M, K] - ((o(x)tp(y)--O(x)<p(y))zs(y) , 

and so by (2.1) 

[M,(I -K)- l] -Q(x)( I -Kt) - l tp)~j (y) -P(x)( I -K*)- l~o)~j(y) .  (2.7) 

(The transpose here arises from the general fact that if L-U(x )V(y )  then 
Tt LT2- T~ U(x)~ V(y).) It follows immediately that 

[M, ( I - K )  -1] "-(x- y) p (x, y ) = ( x -  y)R(x, y) , 

and hence referring to (2.6), we deduce 

Q(x) P ( y ) -  P(x)Q(y) 
R(x, y ) =  (x, yeJ)  . 

x - y  

In particular we have deduced (1.7a) (recall definitions (1.6)) and the representation 

R(x, x)=Q'(x)P(x)-P'(x)Q(x) (x~J).  (2.8) 

We remark that the generality of this expression for R(x, y) was first, as far as the 
authors are aware, stressed by Its, et al. [22] though it appears, of course, in the 
context of the sine kernel in the earlier work of JMMS [25]. 

We have the easy fact that 

0 
- -  K ____' (-- 1)kK(x, ak)6 (y-- ak), 
Oak 

and so by (2.2) 

O 
- -  ( I - K ) -  t _ ( _  1)kR(x, ak)p(y, ak) . (2.9) 
Oak 

At this point we use the notations Q(x, a), P(x, a) for P(x) and Q(x), respectively, to 
remind ourselves that they are functions of a as well as x. We deduce immediately 
from (2.9) and (1.5) that 

0 O 
Oa~k Q(x, a ) = ( -  1)kR(x, ak)qk, ~kak P(x, a)=(--  1)kR(x, ak)Pk. (2.10) 

Since q j =  Q(aj, a) and pj=P(aj ,  a) this gives 

~?P~ k ~akOqJ=(--1)kR(aj'ak)qk" ~ak=(--1) R(ai, ak)Pk, (j~:k) 
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These are Eqs. (1.8) and (1.9). We record for use below 

~a j=(~xx+~aj )  Q ( x , a ) x - , , '  @t  _ c3aj--:\c?x c?a j JP(x ' a j )  x=,,j" (2.11) 

To obtain (1.7b) observe that (2.8) gives 

R(ak, ak )= ~-~ [Q(x,  a)pk--  P(x ,  a)qk] x=,,k " 

But the expression in brackets above vanishes identically when x = ak and so the 
above is equal to 

c~ a) qk x=~k - (3a~k [Q (x, a)pk -- P (x, 

If we use (2.10) in the computation of this partial derivative, (1.7b) results. 
We now show that the g~ can be expressed in terms of the other quantities ui, vi 

and w~ (we could do vk just as well) and that the Pk and Qk c a n  be expressed in terms 
of these quantities and P, Q. From 

xk __ yk 
= 2 

x - - y  i + j = k - 1  
i,j>=O 

we get 

and so 

xiy j 

[ M  k, K ]  "-- 

i + j = k - 1  
i,j~O 

( x i q ) ( x ) y i O ( y ) -  x iO(x)yJ(p(y)  ) x s (y )  , 

[ M  k, ( I - K ) - 1 ]  _ ~ ( Q i ( x ) ( l _ K t )  - l y j • ( y ) x j ( y  ) 
i + j = k - 1  

i,j>O 

-- Pi(x)( I -- K t) - l y j cp (y )x j ( y )  ) . 

Applying this to q~ shows that 

Qk(X)=xkQ(x )  - 

and applying it to ~, shows that 

Pk (x) = xkp  (x) - 

(vjQi(x) - ujPi(x) ) , (2.12) 
i + j = k - 1  

i,j>O 

Y, (wjO, i ( x ) -~ jP i (x ) )  . (2.13) 
i + j = k - 1  

i,j>=O 

These are the recursion relations for Qk, Pk. Taking the inner product of both sides 
of the first one with 0:~J gives 

Vk = Vk-- ~ (Vjgi -- UjWi) , (2.14) 
i + j = k - 1  

i,j>=O 

recursion formulas which can be used to express the fk in terms of the ui, v~, w~. 
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Finally, using the definition of uj in (2.5a), the fact 

- -  Zs (Y )=( -  1)k3(y--ak) , 
(~ak 

and (2.10) we find that 

(?uj 
~a~ = ( -  1)k(R(x' ak), xJ(pxs)qk +( - 1)kQ(ak)a~q)(ak) 

= ( -  1)k(p(x, ak), xJq))~j)qk 

= (-- 1)kQj(ak)qk 

= (-- 1)kqjkqk . 

where qjk = Qj(ak) (qOk = qk)" Similarly, 

~ = (-- 1)kp~(ak) Q(ak) = (-- 1)kpjkqk , 

(~ak -- 1)kQj(ak)P(ak)= ( -  1)kqJkPk 

~ = (-- 1)kp~(ak)P(ak)= (-- 1)kpjkPk , 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

Then 

A(x)--A(y)  
-- Z ~j+k+lXJy k, etc .  

X - - y  j,k>=O 

A ( x ) = ~  c~jx j, B(x)=Zfl jxJ,  C(x)= Z yjx j . (2.21) 

where Pjk=Pi(ak) (pOk=Pk). From (2.12), (2.13) and (2.14) we recall that qjk and 
Pjk are expressible in terms of the qj, pj, ui, vi, and w~. 

C. The Case re(x) = 1. In this section we derive those partial differential equations 
that depend upon the differentiation formulas (1.4) in the special case re(x) - 1. We 
let D denote the differentiation operator with respect to the independent variable 
and recall that if the operator L has distributional kernel L(x, y) then 

[D, L ] -  ( ~--~+~ ) L(x, y) . (2.19) 

Using the differentiation formulas it follows that 

(~---s K(x'y)=A(x)-A(y)x-y ((p(x)~(y)+~(x)~o(y)) 

B(x)--B(y) C(x ) -  C(y) 
-~ O(x)O(y)~ q)(x)cp(y) . (2.20) 

x - y  x - y  

Let us write 



Fredholm Determinants, Differential Equations and Matrix Models 4 3  

and we obtain the identity (recall (2.3) and (2.19)) 

[D, K ] -  ~ aj+k+I(XJ~O(x)yaO(y)+xJO(x)ykq~(Y))ZJ(Y) 
j ,k>O 

q- ~ fij+k+lXJ~(x)yk~(Y)ZJ(Y) 
j , k~O 

+ ~ 7j+k+ ~XJ~O(x)ykqo(Y)ZJ(Y)--~, (-- 1)kK( x, ak)b(y--ak), 
j,k>=O k 

from which it follows that 

[D, ( I - K )  -1]  - ~ ,  ai+k+l(Qj(x)(I--K')-lyk~(y)Zs(y) 

+ Pj(x)(I -- K t) - ~ykqg(y)z.r(y)) 

+ ~ fij+k + l Pj(x)( I-- Kt)- lyk~(y)zj(y) 

+ ~ ?j+k+l Q~(x)(I - K  t)- lykq~(y)zj(y ) 

- Y, (-1)kR(x, ak) p (ak, y) . (2.22) 

We now use this last commutator to compute Q'(x) and P'(x): 

O'(x)=D(I-K)-lcp(x)  

= ( I -  K)-  ~Dq~(x) + [D, ( I -  K)- I  ] ~o(x) 

=( I -  K )- I Dcp(x) + ~, aj+k + I (VkQj(x) + uk P j(x) ) 

+ Z fit+k+ ,VkPj(x)+ ~ 7j+k+ lukQ~(x) 

- ~  ( -  1)kR(x, ak)qk , 

and similarly 

P ' ( x ) = ( I - K )  1DO(x)+ y " Ct;+k+ 1 (WkQj(x)+~kPj(x)) 

-- ~ (-- 1)kR(x, ak)pk . 

Finally we use the differentiation formulas (1.4) and representations (2.21) to 
deduce 

( I -  K)-lDqo(x) = ~ (~zjQj(x) + fijPj(x)), 

(I-- K)-  1De(x) = • ( -  ?;Q2(x)- ~jPj(x)) , 

and so substituting into the above gives 

j ~ O  \ k~O k~O 

j>o _ k>0 
2m 

- -  ~ (--1)kR(x, ak)qk, (2.23) 
k = l  
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( ~o ~ ~ ~'j+k-~xZT~,) Qi(x) P'(x)= ~ - T j +  k k>=O j>o 

j>=o \ k>=o k>O 
2m 

- -  ~ (-- 1)kR(x, ak)Pk . (2.24) 
k = l  

From (2.10), (2.1 l) and these last identities we deduce the equations 

t~qi-- ~ (O~J-t- E O~J+k+lVk"}- E 'J+k+lUk) 
(3ai--j~_u \ k~O k>=O 

"1- Z (flj-t- E Cgj+k+lblkq'- E flj+k+lVk)Pji 
j>=O k>--O k>=O 

- -  ~ (-- 1)kg(a~, ak)qk , (2.25) 
k@i 

 P'-v ( 
cgai--j~o= --71+k>0 ~ CCJ+k+lWkq-k>=O ~ ~/i+k+tVk qji 

i>=O \ k>=O k>=O 
--  ~ (-- 1)kR(ai, ak)pk . (2.26) 

i#,i 

Using (2.28), (2.23), and (2.24) we deduce 

R(ai, ai)= 2 (o~jq- ~ ~j+k+lVk+ ~ ~;j+k+lUk) qjlPl 
j>=O k>=O k>=O 

1>o k > = O  

j>o k>O 

1>o k k>O k>O 

+ ~ (-- 1) k (qiPk--P~qk)2. (2.27) 
k,~ a~--ak 

We end this section with two differentiation formulas for R(ar at). From (2.9) 
and (2.22) we d e d u c e  that for x, y6J, 

Z+L+L) Oa i ~x OyJ R(x'y)= ~'ej+k+ I(Qj(x)Pk(y)+ Pi(x)Qk(y)) 

+ ~ fi.i+k+ lPj(xlPk(y) + ~ 7j+k+ lQj(x)Qk(Y) 
-- ~ (-- l)~'R(x, ak)R(aa, y). 

k+i 
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Hence, using the chain rule, 

ioa--R(ai'ai)=2 Z O~J+k+lqJ ipki+ s flj+k+lPjiPki 
j,k>=O j,k~O 

+ ~ Y~+k+lqjiqkl-- ~ (--1)kR(ai, ak) 2. (2.28) 
j,k~O k:,(=i 

A variant of this follows from it and (2.9) by the chain rule: 

d 
dtRts(tai, tai)=2ai ~ ~j+k+lqjiPki-}-ai 2 flj+k+lPjiPki 

j,k>=O j,k>=O 

+ai ~ 7~+k+lqjiqki+~ (--1)k(ak--ai)Rta(tai, tak) 2. (2.29) 
j,k>=O k~i 

Here the subscripts tJ indicate that this is the underlying interval. 

D. The Case of Polynomial m. Now let us see how the above derivation has to be 
modified if re(x) is an arbitrary polynomial. In this section M denotes multiplica- 
tion by re(x) and D continues to denote differentiation with respect to the indepen- 
dent variable. In place of the commutator [D, K] we consider the commutator 

[MD, K] - (m(x) ~---~+ m(y) -~y+ m'(y) ) K (x, y)zj(y) 

- ~  ( -  1)km(ak)K(x, ak)6(y--ak) , 

while using (1.4) we compute that 

re(x) ~x + re(y) ~y -~ K(x, y) = the right hand side of (2.20). (2.30) 
x - y  / 

Therefore if re(x) is linear and we replace D by MD on the left side of (2.22), then the 
right side has to be changed only by insertion of factors m(ak) in the last summand. 
It follows from this that (2.25) and (2.26) require only the following modifications: 

Insert on the left sides of (2.25) and (2.26) the factor m(ai) �9 

Insert in the last summands on the right sides of (2.25) and (2.26) 

the factors m(ak), (2.31) 

while (2.27) and (2.28) require the following: 

Insert on the left sides of (2.27) and (2.28) the factor m(ai) in front of R(ai, ai). 

Insert in the last summands of (2.27) and (2.28) the factors m(ak). (2.32) 

For general re(x), if 

m (x )  = y / ~  x ~ , 

then 

x~y  x--y / j,k>=o 
j+k<=degm-2 

(k + 1)#j+k+ 2xJy k . 
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It follows from this and (2.30) that 

( m ( x ) ~ - - ~ + m ( y ) ~ + m ' ( y ) ) K ( x , y ) = t h e  right hand side of (2.20) 

- ~ (k + 1)ll~+k+ 2 x@k(~p(X)~(y)--t~(x)q~(y) ) . 

So for re(x) of degree greater than 1 the right sides of (2.23) and (2.24) must also be 
modified by the addition, respectively, of the terms 

- ~ (k + 1)I.9+k + Z(VkQj(x)-- Uk Pj(x) ) , 

- - Z  (k + 1)I~+k+ z(WkQj(x)--~kPi(x)) . 

The upshot is that in this general case (2.25) and (2.26) require, in addition to (2.31), 
the following modifications 

Add to the right side of (2.25) 

(k + 1)#~+k+ 2(vkqji--ukpii) �9 - 2 
j,k>O 

j+k<degm-  2 

Add to the right side of (2.26) 

- -  2 (k + 1 ) # j + k + 2 ( W k q j i - - g k P j i  ) . (2.33) 
j,k>=O 

j+k<degm-  2 

And for general re(x) we must modify (2.27) and (2.28), in addition to (2.32), by the 
following: 

- Z 
],k>O 

j+k<degm-  2 

+ 2 
j,k>O 

j+k<degm-  2 

Add to the right side of (2.27) 

(k + 1 ) #~ + k + 2 (Vk qji - -  Uk Pji)  P i 

(k + 1)#~+k+ 2(Wkqji-- VkP]i)qi �9 (2.34) 

E. The Exponential Variant. Here we consider kernels of the form 

~0(x) O(y)- O(x)~o(y) 
K(x,  Y)ZJ(Y):= ebX_eOy ZJ(Y) , (2.36) 

where b can be an arbitrary complex number. Because of the different denominator 
it turns out that the differentiation formulas should now be of the form 

m(x )cp ' ( x )=(A(x )+bm(x ) )  qo(x)+ B(x)~(x)  , 

m(x)~'  (x)= - C(x)~o(x)--( A (x)--b m(x) ] tp (x) , (2.37) 
\ z / 

Add to the right side of (2.28) ~, (j--k)l.tj+k+zpjiqk i . (2.35) 
j ,k>O 

j+k<degm-2  

The identity (2.29) also requires modification if we do not have re(x) = 1, but since 
we shall only use it in this special case there is no need to write down the 
modification. 
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where A(x), B(x), C(x) and re(x) are "exponential polynomials," finite linear 
combinations of the exponentials e kbx (k = 0, _+ 1, _+ 2 , . . .  ). We compute, as the 
analogue of (2.30), that 

0 0 b re(x) ~x + re(y) ~y+~ (m(x)--m(Y) )(ebX + eb')'] K (x, y) 
e bx _ ebY / 

=the  right hand side of (2.20) with denominator x - y  
replaced by ebx--ebY. (2.38) 

Now, of course, we write 

A(x) = ~, eje bjx, etc., 
J 

the summations summing over negative and nonnegative indices, and 

A (x) - A (y) eJb x ekby ebx ebY - -  Z ~j+k+l -- 2 o:j+k+leJbxe kby, etc. (2.39) 
j,k>=O j,k<=- I 

What arise now are functions Q k , . . . ,  Wk defined, for negative as well as non- 
negative values of k, by replacing x k by e kbx in the earlier definitions. Analogues of 
(2.12) and (2.13) hold for negative as well as positive values of k so all the Q k  and Pk 
are expressible in terms of Qo, Po, as well as the Vk in terms of the Uk, Vk, Wg. 

Notice that if re(x) is constant then the third term in the large parentheses in 
(2.38) vanishes and so we obtain in the end the analogue of (2.25) and (2.26); in 
addition to the change in the range of indices now and the fact that the double sums 

b 
have two parts, as in (2.39), we must in the single sums overj add ~ #j to the terms c~j 

and flj in (2.25) and the terms -T j  and - c  9 in (2.26). For general re(x) we must 
insert factors m(ai) on the left sides of (2.25) and (2.26) and factors m(ak) in the last 
summands on the right, and then add terms coming from the difference 

1 Im,(y ) b (m(x)--m(y))(ebx+ebO] 
ebx--e by ~ 2 ~ ] [(r , (2.40) 

as at the end of the preceding section. We shall not write these down since in the 
only case we consider later we have re(x)--1. Two of the equations involving 
R(x, y) must also be modified. We see first that in (1.7a) the denominator must be 
replaced by cbaJ--ebak. Second, (2.8) must have the factor b e bx inserted on the left 
side, with the result that (2.27) must have the factor b e bai inserted on the left side. 
Note that (2.29) is unchanged. 

Remark 1. The product of the first two factors in (2.40) is an exponential poly- 
nomial in e bx and e by. It was precisely to achieve this outcome that we required the 
formulas (2.37) to have the form they do. 

Remark 2. In case b is real the change of variable x ~-~ e bx transforms the operator 
with kernel (1.2) acting on the set e bJ t o  an operator with kernel of the form (2.36) 
acting on J, with the new ((p, 0) pair satisfying (2.37). So we see that there is more 
than simply an analogy between the two situations. In fact we could have allowed 
the various coefficients in (1.4) to be linear combinations of negative or nonnegative 
integral powers of x, and then the two situations would have been completely 
equivalent for real b. 
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III. Sine, Airy and Bessel 

A. Sine Kernel. The simplest example is the sine kernel 

2 s in (x -y )  
K(x, y ) -  - -  , 

rc x--  y 

where we take 

~0 (x) = ~/~ sin x, 

The differentiation formulas hold with 

C O S  X . 

m(x)=l ,  A(x)=0,  B(x )= l ,  C ( x ) = l .  

(It is useful to incorporate a parameter 2~[0, 1] into K; cf. formula (1.1).) The 
partial differentiation equations are (1.8), (1.9) (the universal equations along with 
universal relation (1.7a)), and the specialization of (2.25) and (2.26) which now read, 
respectively, 

0qi 
~ - = P l -  ~ ( -  1)kR(ai, ak)qk , (3.1) 
cai k:~i 

@i 
- - =  --qi-- ~, (-- 1)kR(ai, ak)Pk , (3.2) 
Oa~ k+~ 

along with the specialization of (2.27), 

R(a~, at)= p{ + q2 + 2 ( -  1) k ( q~Pk- P~qk) 2 (3.3) 
k*i a i lak  

These are the equations of JMMS [25] though they appear here in a slightly 
different form due to our use of sines and cosines in the definitions of ~0 and 

rather than the alternative choice of e + ~x, which we could have taken just as well. 
(They also appear slightly different in [37] due to out convention here not to put 
a factor of rc into the definition of the sine kernel.) 

For the case of a single interval J = ( - t ,  t), s =  2t, these equations imply that 
o-(s; 2):= - sR( t ,  t) satisfies the J imbo-Miwa-Okamoto  a form of Painlev6 V. We 
refer the reader to the literature for a derivation of this, properties of the solution of 
this equation, and the implications for random matrices [2, 16, 25, 29, 27, 37, 40]. 

B. Airy Kernel. For the Airy kernel we have (again inserting a parameter 2 into K) 

~o(x) = , ~ A i ( x ) ,  O(x)=x/22Ai'(x), 

from which it follows that 

m(x)-- 1, A(x)=0,  B(x)-- 1, C(x)= - x ,  

since Ai"(x)=xAi(x). For notational convenience we write u=uo and V=Vo. In 
addition to the universal relations (1.7a)-(1.9), we have two additional equations 
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for u and v, viz. (2.15) and (2.16) for j = 0 .  Using the recursion relation (2.12) for 
k = 1, we deduce that (2.25) and (2.26) reduce to 

Oqi 
- u q i + p z -  ~ (--1)kR(ai, ak)qk, (3.4) 

c~a~ k , i  

@__2 = (al -- 2v)qi + upl-- ~ (-- 1)kR(ai, ak)pk , (3.5) 
c~a~ k:,l:i 

and (2.27) reduces to (again using the recursion relation (2.12) for k =  1) 

R(a~, a~)=p~-a~qZ-2uqzp~+2vq{+ 2 ( - 1 )  k(qipk-p~qk)2 (3.6) 
k + i  a i - - a k  

These are the equations derived in [38]. We mention that in addition to these 
equations, two first integrals were derived which can be used to represent u and 
v directly in terms of the q~ and pj (see (2.18) and (2.19) in [38~). We also remark that 
in the case J=(s ,  oe), the quantity R(s, oe) was shown to satisfy the second order 
nonlinear o- DE associated to Painlevb II. Again we refer the reader to [38] for 
details. 

C. Bessel Kernel. For the Bessel kernel 

from which it follows (using Bessel's equation) that 

m(x)=x,  A(x)=0,  B (x )= l ,  C ( x ) = ~ ( x - c d ) .  

Again using the recnrsion relation (2.12), we deduce that (2.25) and (2.26) become, 
with the additional insertions (2.31), 

63qi 1 
a l -  = -  uql + Pi-- 2 (--1)kakR(ai' aa)qk , 

c~ai 4 k4:i 

Opl 1 2 1 
ai - -  = -  (~ - a i  + 2v)qi--~ u p i -  ~ ( -  1)~a~R(ai, ak)Pk 

c~ai 4 k :t= i 

and (2.27) with insertions (2.32) becomes 

1 1 ( 1)ka k (qlpk--piqk) 2 aiR(al, ai) = --~ (c~ a -- ai + 20 qi +-~ uqlpl + p2 + ~ _ 
k , i  a~--ak 

(As before, u = uo and cv = vo.) These are the equations derived in [39]. As was the 
case for the Airy kernel, two first integrals were derived which can be used to 
express u and v directly in terms of the qj and pj. For  the case J = (0, s), the quantity 
a(s) = sR(O, s) was shown [39] to satisfy the cr DE for Painlev~ III [23, 35]. 

IV. Beyond Airy 

In this section we give as an example of our general system of partial differential 
equations the simplest case "beyond Airy' in the sense discussed in the Introduction. 
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In the language of 2D quantum gravity matrix models (see 1-7] for a review), we are 
considering the case of pure gravity. Thus we take 

= D 2 + {(x), 

~=(~3/2)+  

3 3 3 
=Dx +~ ~(x)D:,+~ ~'(x), 

where Dx is differentiation with respect to x. The string equation implies that ~(x) 
satisfies 

'"(x) + 64(x) r + 4 = 0 

which when integrated is Painlev6 I [8, 13, 21]: 

r + 3 ~ 2 (x) + 4x = 0 .  

(Without loss of generality we may set the constant of integration to zero since it 
corresponds simply to a shift in the variable x. And, of course, the "3" and "4" can 
be changed by scale transformations to give the canonical form of Painlev6 I.) 
Exactly what solution ~(x) one chooses for pure gravity is still of some debate (on 
this point see [11] and references therein). The function (0(2, x) satisfies (1.11) and 
(1.12) which implies that if we define ~,(2, x) by (1.13), then the differentiation 
formulas are 

1 1 
m()0=l  , A ( 2 ) = - ~ ' ( x ) ,  B ( ) 0 = 2 + ~ r  

2 1 1 2 1 c(,~)= -,~ +~ ~(x),~+~ ~ (x)+~ r 

where we remind the reader of the change of notation in the independent variable 
(see Introduction). 

Since C(2) is quadratic in 2, the equations will involve uj, v~-, and w; for j = 0 ,  1. 
Using the recursion relations (2.12), (2.13), (2.14), Eqs. (2.25) and (2.26) specialize to 

Oai Pi Pi i Pk ' 

where J/(al)  is the 2 x 2 matrix whose elements are given by 

Iv ,  1 
Jd l l (a i )=  --~ ~ - w + ~ ~u + u v -  ul - a i u  , 

~ / ~ 1 2 ( a l )  = al--u 2 + 2v +~  ~, 

1 2 1 1 
dCzl (a i )=a2--~  ~ - ~  { " -  2alv + 3 v 2 -  2vl - 2 u w - ~  ai{ + v~ , 

./'/r = - ~ 1 1  (a3 . 
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Similarly, (2.27) specializes to 

R(ai, ai) = 2Jgl ~ (a,)qipi + ddlz(ai)p 2 -///[21 (ai)q 2 + ~ ( -  1) k ( qiPk-- Piqk) 2 
k~i ai--ak 

The universal equations are (1.7a)-(1.9) and (2.15)-(2.18). 
For the case J =(s, ~ )  (this should be compared with the analogous case in Airy 

[38]), we are able to find two first integrals that allow us to eliminate the quantities 
ul and vl. (It is natural to take the boundary condition that all quantities evaluated 
at oo vanish.) We denote by q = q(s), etc. the quantities corresponding to the first 
endpoint al = s. The first relation is quite simple, 

z 1 1 qZ--2UUlq-V + 2 V l + ~  {U2"{- ~V--~ ~'U=0 , 

but the second one we found is rather messy, 

_p2 + sq2 + u + 2pqu + xu z + q2u2--2u3ul - -  u 2 -  2XO 

- -  4qZv + 6UUl V + 3U ZV2 -- 8V 3 -- 2U3W-- 2Ul W + 6UVW-- W 2 

2 1 

( 1 3 1 1 )  
+ 4' u 3 - f f  ul = 0 ,  

where q, p, u, etc. have argument s and { has argument x. (The variable x appears 
since we used Painlevh I to eliminate {"(x) in our equations.) 

Using the first integrals to eliminate Ul and v, (note that w also drops out) we 
obtain the system of equations: 

q"=(XSq-S3ff-~.X~q-g 13~ q-~l (~') 2)  q+p+(4S--4V--~)q 3 +4uq2p--eqp 2 , 

p " = ( 2 s - - 2 v - ~  ~ ) q + ( x s + s 3 + ~ x { + ~  ~3 + 1  (~')2 + 2 u )  p 

+ ( 4 s -  4v-- {)pqa + 4uqp2 _ 2p3 , 

and, of course, we still have the universal equations 

U '  = - -  q 2 ,  V '  = - -  q p .  

Letting R(s)=R(s, oo) we find from (2.28) and (2.35) that 

Clearly, further analysis of these equations is needed to be able to analyze the 
associated Fredholm determinant. For example, can one derive a differential 
equation for R itself? 
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V. Finite N Hermite, Laguerre, Jacobi and Circular 

A. Hermite Kernel 

1. The partial differential equations and a first integral. It follows from the 
Christoffel-Darboux formula that the kernel 2KN(x, y) for the finite N Gaussian 
Unitary Ensemble (GUE) is of the form (1.2) provided we choose 

[" N~114 1/ N~114 

with ~Ok(X) the harmonic oscillator wave functions 

1 (pk(X)= e -XZ /2Hk(X) ,  k=0,  1 
,/2kk!  

and Hk(X) are the Hermite polynomials [18]. This is well-known and we refer the 
reader to [28] for details. From the differentiation and recurrence formulas for 
Hermite polynomials it follows that the differentiation formulas for ~o and ~ hold 
with 

m(x)=l ,  A ( x ) = - x ,  B ( x ) = C ( x ) = x / ~ .  

We can therefore immediately write down the equations 

Oqt _ 
m m r Oat atqt+(x/ / - f~_2u)pt_ y, ( _  1)k qjPk--Pjqk 

k + j  a t - -  ak 
qk, (5.1) 

Op~ = atPt -  (x I- ~ + 2w) q j -  ~ (-- 1) k qjPk - Pt qk 
Oat k + j a j  - -  a k 

pk (5.2) 

along with 

R(at, a j)= - 2ajpsq j + ( x / ~ -  2u)pf + ( x / ~  + 2w)qf 

+ ~ (-- 1) k (qJPk--Ptqk)2 , (5.3) 
k+j aj--ak 

3 
- -  R(at, aj)= -- 2ptqt-- ~ (-- 1)kR(aj, ak) z , 
Oat k+j 

(5.4) 

d 
dt R*x(tat' tat) = - 2atpt qt + ~ ( -  1)k(ak-- at) Rtj(tat, tag) 2 " 

k+t  
(5.5) 

These follow from formulas (2.25)-(2.29). 
We now derive a first integral involving u, w, pj and q j; namely we show 

~ ( u -  w) + 2uw = - ~, ( -  1)Jpjqj . (5.6) 
i 



Fredholm Determinants, Differential Equations and Matrix Models 53 

Observe that 

- - (k  ~a~) p j q J - - ( x / ~ + 2 w ) q ~ - ( ~ - 2 u ) p f  

and 

( x / ~ ( u -  w) + 2uw) = ( -  1 ) J ( x / ~  + 2w)q 2 - ( -  1 ) J ( x / ~ -  2u)pf . 
Oaj 

Multiplying the first equation by ( -  1) J and summing both equations over j, results 
in 

~ 0 1)ipjq.i)=(~ f "](x//~(u_w)+2uw) 

It follows that the two sides of (5.6) differ by a function of ( a l ,  . . . , a2m ) which is 
invariant under translation by any vector (s . . . .  , s). Since, clearly, both sides tend 
to zero as all al --* 0% their difference must be identically zero. 

2. Bulk scalin 9 limit of finite N equations. We now show how (5.1)-(5.3) reduce to 
the sine kernel equations (3.1)-(3.3) in the "bulk scaling limit." For a fixed point z, 
i.e. independent of N, the density p(z) in the GUE is asymptotic to V/2-Nfiz as 
N ~ oo. The bulk scaling limit corresponds to measuring fluctuations about this 
fixed point z on a stretched length scale proportional to ~ and then taking 
N -~ oo. Denoting for the moment the bulk quantities with a superscript B, this 
means we set 

B aj 
a j = z -F x / / ~  

and consider the limit N ~ o% a~ ~ z such that ay is fixed and O(1). In this limit we 
deduce from the asymptotics of the harmonic oscillator wave functions (see, e.g., 
Appendix 10 in [28]) that both ~o and ~ are O(1) quantities in the bulk scaling limit. 
From this and the fact that it is K(x, y)dy which is O(1), we deduce that both qj and 
pj are 0(1) quantities in the bulk scaling limit. An examination of the inner 
products defining both u and v shows that these too are O(1) quantities. Thus if we 
formally replace 

B 

aj ~ z-F---a2 qj __+ q~, pj ~ pf , ' R(aj, a af)  

in (5.1)-(5.3) (and replace all derivatives by derivatives with respect to a}~), take 
N ~ 0% we obtain (3.1)-(3.3). 

3. Semi-infinite interval and PainIevk IV. In this section we specialize the finite 
N GUE equations to the case of m=  1, al =s  and a2 = o% i.e. J=(s, oo). We write 
q(s), p(s), and R(s) for ql, Pl, and R(al, al), respectively, of the previous section. 
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The differential equations reduce to ( ' =  d/ds) 

q '= - sq + ( v / ~ -  2u)p , 

p ' = s p - ( x / / ~  + 2w)q , 
u'= _q2  , 

W1= _ p 2  , 

(5.3) reduces to 

C.A. Tracy, H. Widom 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

R(s)= - 2 s p q + ( x / ~ - 2 u ) p  2 + ( x / ~ + 2 w ) q  2 , (5.11) 

and the first integral is now 

x / ~ ( u - w ) +  Zuw=pq .  (5.12) 

We proceed to derive a second order differential equation for R(s) and show 
that it is a special case of the J imbo-Miwa-Okamoto  a form of Painlev6 IV 
[24, 34]. Relation (5.4) is now 

R ' =  - 2 p q  , (5.13) 

while (5.7) and (5.8) give 

(pq)' = ( x / ~ - -  2u)p z - - ( x / ~  + 2w) q 2 . 

Differentiating one more time gives 

( pq)" = 2 s ( x / ~ -  2u) p z + (x/-2-N + 2w)q 2 - 8pq(N + x / / ~  (w - u) - 2uw) + 4p2 q 2 

= 2 s { ( x / ~ - Z u j p  2 + ( x / ~  + 2 w ) q 2 } - 8 U p q  + 12pZq 2 , 

where we used the first integral (5.12) to obtain the second equality. Referring back 
to (5.11) we see that the term in curly brackets in the last expression is R + 2spq. 
Using (5.13) to eliminate all terms involving pq in the last equation we find 

R"'  = - 4s(R - sR') - 8NR'  - 6(R')2. 

This third order equation can be integrated (the constant of integration is zero) to 
give 

(R")2 + 4(R')2 (R' + 2N) - 4 ( s R ' -  R) 2 = 0 .  (5.14) 

Comparing this with (C.37) of [24] (see also [34]), we see immediately that this is 
the a version of Painlev6 IV with parameters (in notation of [24]) v l = 0  and 
v2 = 2N. Explicitly in terms of the Painlev6 IV transcendent y = y(s) we have 

S 2 S 2 1 3 1 ,2  
R ( s ) = N y - - f  y - ~ y  - ~ y  + ~ y ( y  ) (5.15) 

with P~v parameters a = 2 N - 1  and fi=0.  Recall that w=w(z)  is a Painlev6 IV 
transcendent with parameters ~ and fl if it satisfies the Prv equation 

d2w 1 raw 2 3 +-~ w3 + 4zwZ + 2(zZ_e)w + fl / - - !  
dz 2 - 2 w  \ dz J w " 

We are, of course, interested in the family of solutions that vanish as s ~ + co. 
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This particular Pw has been studied by Bassom, et al. [3] (see also [101). To 
make contact with their notation define 

t/({):=2-3/4 y x / ~ ,  {:=,r 

(y is the above P~v transcendent) so that q satisfies 

dZt/ 3 ~ 1 a~2-3~5+2~ + n, 

with v = N -  1. They analyze the one-parameter family of solutions ~k({; V) satisfy- 
ing the boundary condition q(oe)= 0. The parameter k is defined uniquely by the 
asymptotic condition: 

rlk(~;v),,~k~Vexp(--~---4) as ~ o e .  

In terms of our parameter 2 we have 

2 
k 2 

23/2(N- 1)!,f~" 

(This identity is derived by examining the large positive s asymptotics of R(s), 
which is easy because of the rapid decrease of the kernel as s ~ + 09.) These 
authors prove that for all positive integers N > 1 the solution t/k(~, N--  1) exists for 
all ~ whenever 2<  1, and that t/k(~, N--1) blows up for a finite ~ whenever 2>  1. 
These results are in complete agreement with what one expects from the spectral 
theory of the Fredholm determinant. There are formal, but not rigorous, results 
that solve the connection problem for the aysmptotics as ~ ~ - c~; in particular, 
for 2=1,  

t/k(~; N -  1)~ - as ~ ~ - oe . (5.16) 

Using (5.16) (and computing higher order terms by using the differential 
equation) we find that 

N 2 N Z ( l + 9 N  2) N3(10+27N 2) 
R ( s ) = - 2 N s - N ~  s3 ~ +.  . . as s ~  - o c  

s 4s 5 4s v " 

(5.17) 

4. Distribution functions for ~'max and 2mi,. If we denote the smallest and largest 
eigenvalues of a matrix from the GUE by '~mln and 2 . . . .  respectively, then in the 
notation of (1.1) we have 

P(/~max < S) =- E(0; (s, ct3)) = det (I - K) . 

Thus, using (1.3) we deduce the representation 

"  max   =exPf l'd  } 
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where R(s; 2) denotes the function R(s) of the preceding section with parameter 
value 2. This is our representation of the distribution function for 2max in terms of 
a Painlev6 transcendent. There is of course a similar representation for the distribu- 
tion function for )'rain" 

The authors of [3, 10] give an algorithm to compute the quantities t/k((, V), 
V = positive integer, of the last section exactly in terms of the error function 

That such elementary solutions of the Piv transcendent exist, at least for the case 
2 = 1, is now clear from the random matrices point of view since E(0; (s, oe)) is 
expressible in terms of integrals of the form 

i xj e X2dx. 
- - o 0  

This follows from (1.15) with f the characteristic function of ( -  0% s). 

5. Edge scaling limit from Painlev~ I V  equation. The edge scaling limit [38] 
corresponds to the replacements 

s ~ x / ~ _  ~ 2 __. v/~N1/6 R 
,J2Na/6 and R 

in (5.14) and retaining only the leading order term as N ~ oe. The result of doing 
this is 

(R") 2 + 4(R') 3 + 4R'(R - sR') = 0 (5.18) 

which is the equation derived in [38]. We remark that (5.18) is the a form for 
Painlev~ II, see (C.17) in [24] and Proposition 1.1 in [34]. 

6. Symmetric single interval ease. In this section we specialize the finite N GUE 
equations to the case of m=  1, al = - t  and a2=t, i.e. J = ( - t ,  t). We denote by q(t) 
and p(t) the quantities q2 and P2, respectively. Since ~0N(-x)= (-1)urpN(x) and 
K ( - x ,  - y ) = K ( x ,  y), we have qa =(-1)Nq and pa = - ( -1)Np.  We further set 

R(t) := R(t, t) = R( - t, - t), R(t):= ( -  1)NR(-- t, t) = (-- 1)NR(t, -- t) 

and record that 

d log D( J; 2) 
- - 2 R ( t ) .  

dt 

Now ~0 is even or odd depending on whether N is even or odd, with ~ having the 
opposite parity. It follows from this fact, and our choice of sign in the definition of 
/~, that (1.7a) specializes in this case to 

/~(t) = - ~ P ,  (5.19) 
t 
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while (5.3) and (5.5) specialize to 

R(t) = - 2tpq + ( x / ~ -  2u)p 2 + ( x / ~  + 2w)q 2 - ~  pZq2 , (5.20) 

dR 2t/~ + 2/~ 2 (5.21) 
dt 

The last is the finite N analogue of the Gaudin relation. (See, e.g. [28, 37].) The 
differential equations specialize to 

dq ~q2 . ~q2 ,,~. 
dt Oa~ t _ ? a 2 = Z ~ q _ t q + ( v ~ , _ 2 u ) p  ~/~V (5.22) 

d pp = _ 2 R p  + t p - ( x / ~  + 2 w ) q ,  (5.23) 
dt  

du 
-d-~= 2q 2 (5.24) 

dw 
dt - 2p2 " (5.25) 

And the first integral (5.6) is now 

, ( / ~ ( u - -  w) + 2uw = - 2pq . (5.26) 

7. Differential equations for R and R. It follows easily from (5.19), (5.20) and (5.21) 
that 

d (t/~)= 9~(, 2) (5.27) 
dt 

d 
Z (tR)= I , I  2 + 4t2/~, (5.28) 

where 

r= qx /  x / ~  + 2w + ipx/  x / ~ -  2u . 

Equations (5.27) and (5.28) are the finite N analogue of those derived by Mehta 
[29]. (See also discussion in [-37].) 

We now eliminate the quantity r. For this derivation only, we write a(t):= tR(t) 
and b(t):= tR(t). We begin with the obvious 

I r 14 = 9~(r2) 2 + ~(rZ) z �9 (5.29) 

Now 

,3(r 2)2 = 4p2q2 ( , , / ~  _ 2 u ) ( x / ~  + 2w) 

= 4pZq 2 (2N + 4pq) 

=4b2(2N-4b)  . (5.30) 
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We now use (5.27) and (5.28) to obtain expressions for 9t(r 2)2 and I r 14, respectively, 
and the above identity for ,3(r2) 2. These expressions, when used in (5.29), give an 
equation for a, b, and their first derivatives. If we use the generalized Gaudin 
relation (5.21) to eliminate the appearance of da/dt (the one appearing to the first 
power), we obtain 

(da~ 2 +(db~ 2 
dtJ =8ab+8Nb2 \ d t J  (5.31) 

and together with (5.21), which in the a and b variables reads 

t -d-[ =a+2b2+2tZb' (5.32) 

we have two differential equations for R and/~. 
Eliminating a, we obtain a single second order equation for b and therefore/~: 

(t/~" + 2/~' - 24t 2/~ 2 ~_ 8Nt/~)2 __ 4(2/~ -- 02 (8t2/~ 2 ( N -  2t/~) + (/~ + t/~') 2) = 0 .  

(5.33) 

This last equation is the finite N analogue of(1.18) of Mahoux and Mehta [-27]. We 
could, in a similar way, eliminate b and so obtain a second order equation for R, 
but the result is messy and we shall not write it down. 

8. Small t expansions of R and R. The boundary conditions at t = 0  for (5.21) and 
(5.33) follow from an examination of the Neuman expansion of the resolvent kernel. 
Setting Po := K(0, 0), the density of eigenvalues at 0, we find 

R(t)=po+2p2t+po(4p2+(--1)N)t2+ (9p2-2N+(--1)u)t 3 

P~ (5.34) 

and 

( -  1)N/~(t) = Po + 2po 2 t + ~2 (12po 2 _ a N - ( -  1) N) t 2 + ~ (9p 2 - 2N + ( -  1) N) t 3 

Po (1440p~ + 200p2 (( - 1) u -  2N) + 48N 2 

+ 12(-- 1)NN+9)t 4 + O(t s) . (5.35) 

9. Level spacing probability density pN(t). For m = 1 if we let Es(0; al,  a2) denote 
the probability that no eigenvalues lie in the interval (al, a2) and pN(0; al, a2)da2 
the conditional probability that given an eigenvalue at a~ the next one lies between 
a2 and a2 + da2, then the two quantities are related by 

1 02EN(0;al, a2) 
pN(0; al,  a 2 ) -  - -  

p(al) ~ax~a2 
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where p(al) is the density of eigenvalues at al .  F rom the expression for the 
logarithmic derivative of the determinant (with 2 = 1), we have 

t?2EN(0; as, a2) 6~R(al, al)  EN_R(al, al)R(a2, az)EN . 
~al Oa2 Oa2 

Differentiating (5.3) (with m = 1 and j = 1) with respect to a 2 we obtain 

OR(al,as)=(qsP2--P__~lq2] 2 
-~a2 \ as--a2 / 

which when evaluated at a s  = - t ,  a2 = t becomes 

c?R(as, al)  "1 = =(/~)2 . 
~a2 - - t , a  z = t  

Calling pN(t):=pN(0; - t ,  t) we thus obtain 

pN(t) =p@t) ( /~2(t)-  R2(t))EN(t) ' 

where En(t) = EN(0; -- t, t) (we used also p ( -  t) = p(t)). 
Using the expansions of R, R and EN(t) we find 

p~(t) = ~  (N + ( -  1)N)po t 2-8,~ (16N 2 + 2 9 ( -  1)NN + 13)po t 4 

4 
+ 3 ~  (128Na + 452( - 1)NN 2 ._}_ 529N + ( -- 1)N205)po t 6 +" " " . 

Not  only does this hold for fixed N and t, but it also holds uniformly in N and t as 
long as t=O(N-1/2). The reason is that in this range of the parameters the 
operator  K has norm less than a constant which is less than 1 and has bounded 
Hilbert-Schmidt  norm. Thus the Neumann series for the resolvent kernel con- 
verges to trace norm. 

To compare with the bulk scaling limit we replace t by t/po, and deduce (recall 

po,,~x/~/n as N ~ oo) that 

1 t n2 2 2n4 t 4 p(t) := lim - -  PN po t 6 +  

which is the well-known result [28]. Observe that the large N corrections to these 
limiting coefficients are O(1/N). (Note that we inserted a factor of n in our 
definition of the new t variable so as to have the same normalization as in [28].) 

B. Laguerre Kernel 

1. The partial differential equations. Again by the Christoffel-Darboux formula it 
follows that the kernel for the finite N Laguerre Ensemble of N x N hermitian 
matrices is of the form (1.2) provided we choose 

~(x)=x/~2(N(N+oO)S/4~N_l(X), ~(x)=x/2(N(N+oO)~f4~s(x) (5.36) 
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(aN in (6.3) is negative now) where 

~ok(x)= r ( k  + ~ +  1) xC'/2e-X/2L~(x) ' 

and L~(x) are the (generalized) Laguerre polynomials [18]. See Chap. 19 of [28] 
and [32] for further details and references. From the differentiation and recurrence 
formulas for Laguerre polynomials it follows that we have differentiation formulas 
(1.4) for cp and r with 

1 
m(x)=x, A ( x ) = ~ x - ~ - N ,  B ( x ) = C ( x ) = ~ .  

We therefore have the equations 

Oq~ /1 c~ \ + ( ~ a ) + u ) p j  

- Y', ( -  1)kakR(aj, ak)qk, (5.37) 
k+j 

) aj - -  = c~aj ~ a j - ~ - N  pj 

- 2 (-- 1)kakR(aj' ak)Pk, (5.38) 
i:4: j 

a t R ( %  a j )=  (a j-- ~-- 2 N ) q j p j + ( ~  + u)p2 + ( ~ _  w) q2 

+ ~ (-- 1)kak (qJPk--PJqk)2 (5.39) 
k+j aj--ak 

0 
Oa~ a~R(a~, a~) = qjpj-  ~ ( -  1)kakR(a~, ak) 2 . (5.40) 

k:~j 

These follow from formulas (2.25)-(2.28) as modified by (2.31) and (2.32). 

2. Single Interval Cases (0, s) and (s, o9). We consider first the interval (0, s). We set 
al =0, a2=s, qz=q, p2=p,  R(s, s)=R(s) and find that Eqs. (5.37)-(5.40) with j - - 2  
specialize to 

( 1 ; )  
sq= ~s-- --N q+(x/N(N+a)+u)p,  (5.41) 

s p ' = - - ( ~ - w ) q -  ~ s - ~ - N  p,  (5.42) 

sR (s) = (s -- c~ -- 2N )qp + ( ~ + u)p 2 (5.43) 

+ ( ~ - - w ) q  2 , (5.44) 

(sR(s))' --= qp (5.45) 
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(notice that the terms corresponding to k = 1 in the double sums on the right sides 
of (5.37)-(5.40) are equal to zero), while (2.15) and (2.18) specialize to 

u'=q 2, w'=p e . (5.46) 

Tedious but straightforward computation using (5.41)-(5.46) gives 

s(pq)'= ( x / - ~  + ~) + u)P 2 - ( ~ -  w)q 2,  (5.47) 

s2(pq)"=(2N + c ~ - s ) { ( ~ + u ) p 2  + ( x / ~  +cO-w)q2 } 

--  { ( ~  -}- u)p 2 - - ( ~  00-- w)q 2 } + 2sp2q 2 

- 4N(N + c~)pq + {uw + ~ ( w  - u)} 4pq. (5.48) 

Now it follows from (5.45) and (5.47) that 

sR (s) - sqp (5.49) 

has derivative 

( ~ + u ) p 2 - ( x / ~  +oO--w)q 2 �9 

But it follows from (5.46) that 

uw + 

has exactly the same derivative. Hence the two must differ by a constant. This 
constant must be 0 since (5.49) clearly vanishes when s = 0, and so do u and w. Thus 
we have derived the identity 

uw + ~ ~) ( w -  u) = sR(s)-  sqp . (5.50) 

Now we can see that that every term in (5.48) can be expressed in terms of R(s) 
and its derivatives (up to order 3). By (5.45) this is clear for all products pq and its 
derivatives. This is true of the first expression in curly brackets in (5.48) by what we 
just said and (5.44), of the first expression in curly brackets by (5.47), and of the last 
expression in curly brackets by (5.50). 

Thus we have derived a third-order differential equation for R(s). In terms of 
a(s) :=sR(s) it reads 

s2a'"=(2N +o~-s)a +(c~2 + s2 -4Ns -2~s )a ' - sa"  +6s(a')2-4aG' (5.51) 

It follows from this that the two sides of a purported identity 

(SO'") 2 = 4s(a') 3 + o "2 -~ (2e + 4N - 2s)a~r' 

+ (~2 _ 2c~s - 4Ns + s 2) (o-') 2 - 4G(a') 2 (5.52) 

differ by a constant. (The third-order equation is equivalent to the two sides' here 
having the same derivative.) Now it is clear that if e is sufficiently large then a is 
twice continuously differentiable up to s = 0 and a(0)= a '(0)= 0. Hence both sides 
of (5.52) vanish at s = 0 and so the difference in question equals 0. Thus the identity 
is established for e large. But both sides of the identity are (for s > 0) real-analytic 
for ~ > - 1 and so if they agree for large ~ they must agree for all e. 

Comparing (5.52) this with (C.45) of [-24] we see that - a ( s )  satisfies the 
a version of Painlev6 V with parameters Vo = vl = 0, v2 = N and v3 = N + ~. 
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The boundary condition at s = 0 for a depends, of course, on the parameter 2 in 
(5.36), and we write a(s; 2) instead of a(s) to display this dependence. With the help 
of the Neumann series for the resolvent kernel, we compute the small s expansion 

where 

a(s;2)=2c~ 1 2 + - ~ - s + ' ' ' )  

.jr 22 ~C20 S2a+ 2 ( (2c~+3) (c~+2N)  s+ '  �9 " ) 1  (2 ~- ~)2 

+,~3 C03 S3~+3(1 + " )  

+ .  �9 . , 

F ( N + e +  1) 
Co = F(N)F(e + 1)C(e + 2)" 

And now, as in the case of the GUE, we have a representation 

P()~min>s)=exp ~--i  Cr(t; l) dr}.  (5.53) 
I o t 

There are only minor changes required in the above analysis when we take 
J=(s, oo) and this leads to an analogous representation for the distribution 
function of 2max. 

3. Singular values of rectangular matrices. If A is an N x M rectangular matrix 
(N < M )  whose entries are independent identically distributed complex Gaussian 
variables with mean 0 and variance 1 then the N x N matrix AA* (whose eigen- 
values are the squares of the singular values of A) belongs to the orthogonal 
polynomial ensemble associated with the weight function 

w(x) = x M- We- x/2 . 

(See [17], Cor. 3.1.) It follows that the distribution of the smallest singular value of 
A is given by the right side of (5.53) with s replaced by x/s/2 and, of course, 

= M - N .  There is a similar representation for the distribution function of the 
largest singular value of A. 

C. Jacobi Kernel. The situation here is so similar to the preceding that we shall 
only indicate the main points. For the finite N Jacobi ensemble 

w(x) = (1 - x)~(1 + x) p 

with e,/3 > - 1 and we must take in (1.2), 

where 
1 f N(N+o:)(N+fi)(N+o~+~) 

an - N+(c~+/?)/2 ~ / i 2 ~ - ~  +~-~- 1)~N ~ + 1)" 
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From the differentiation and recurrence formulas for the Jacobi polynomials we 
have the differentiation formulas (1.4) with 

m ( x ) = l - - x  2, A ( x ) = % + o q x ,  B(x)=f lo ,  C(x)=~o,  

where 

/ •2  __~2 

~ ~  ' 

/ 2 N + c ~ + f l +  1 
flo 2N+~2 + fi x / N ( N  +oO(N + fi)(N +c~ + fi ) x/ 2 N - + ~ - - ~  - 1  

. 2 
~ / N ( N  +~) (N  + fi)(N +~ + fl) I 

1 Y ~  

Using these the interested reader could without difficulty write down the Jacobi 
analogues of the general equations (5.37)-(5.40) in the Laguerre ensemble. We shall 
restrict ourselves here to the case J = ( - 1 ,  s), the analogue of the interval (0, s) in 
Laguerre, and find the following Jacobi analogues of (5.41)-(5.46): 

(1 - s 2 ) q  ' = (o~ o + o: 1 s Jr- v ) q  q- ( f lo  + (2el - 1)u)p, (5.54) 

(1 - s2)p ' = ( -  70 + (2el + 1 )w)q -  (C~o + ~1S -~-/))p, (5.55) 

(1 -- s2)R(s) = 2(~o + ~1 s + v)pq + ~4 + ~ , (5.56) 

((1 - s 2)R (s))' = 2cq pq , (5.57) 

v' =pq  , (5.58) 

where 

sg = (rio + (2~1 -- 1) u)p2, 

From (5.57) and (5.58) we deduce 

~'@ =(70 --(2~1 + 1)w)q 2 �9 

(1 -s2)R(s)  = 2~1 v (5.59) 

(note that both sides here vanish when s =  - 1 )  and (5.54) and (5.55) give 

(1 - s2)(pq)'= a g -  ~ . (5.60) 

Another differentiation gives 

(1 - s2)(pq) " = - 2(C~o + ~i s + v ) ( d  + ~ )  + 2 s ( d  - ~ )  

+ 4~1 (1 - s2)p2q 2 4 d M .  (5.61) 
Pq 

Now (5.57) and (5.59) show that pq and v are expressible in terms of R and its first 
derivative. And so, using (5.56) and (5.60), we deduce that d and M are expressible 
in terms of R and its two derivatives. Finally, using (5.61), we obtain a third order 
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equation for R. Instead of this we write down the analogue of (5.51). If we define 
now a(s) :=(1-s2)R(s) ,  then we have 

(O-'q2 
(1 --Si)2a ''' =(1--S2) 2 5 2 ~ - -  2S(1 --se)a " --2(1 --S2)(a') 2 

- - 2 ( 1  2C~2"~ 2 - - -~-  ) ~ -4cq  (O~o + cq s)cr . (5.62) 

For the boundary condition at s = - 1 we compute the small s + 1 expansion to 
be (with an obvious notation) 

2) = 2co(1 + s) 1 +e (1 Jr/3(1- e ) -  2N(e +/3 + N) (1 + s ) + ' . - )  G(S; 
\ 2(2+/3) / 

,~2cg 
+2(-i-T~ (1 +s)2+ 2~ 

where 

2 + 6/3 + 3/32_(3 + 2/3)(2N2 + 2Ne ) 
x lJc 2(2+/3)2 +2N/3+c~/3)(l+s)+... 

~'3C03 (1 +s)3+3P(1 + . . . ) + . . .  
-~ 4(1 +/3)~ 

F(N +cz+fi+ I)F(N + fl+ I) 
Co = 2e v(/3 + 1)r(/3 + 2)v (N)F (N + ~) " 

We have not been able to find a first integral for (5.62), in other words a second 
order equation which is analogous to (5.52). 

D. The Circular Ensemble. 

1. The partial differential equations. If ~#(N) denotes the group of N x N unitary 
matrices, then the finite N circular ensemble of unitary matrices (sometimes 
denoted CUE) is this set ~#(N) together with the normalized Haar measure. Just as 
for the orthogonal polynomial hermitian matrix ensembles, the level spacing 
distributions are expressed in terms of a Fredholm determinant of an integral 
operator defined now on the unit circle. All of this is well-known and we refer the 
reader to either Dyson [14] or Mehta [28] for details. 

The integral operator for the finite N CUE is 

N 
2 sin~- ( x - y )  4)(x)~(y)-O(x)r  

K - 2 n  1 ZJ(Y) = eiX_eir )~s(Y) , 
s i n ~ ( x - y )  

where 

f •  iN+lx f ~  _iN--ix 
~o( x ) =x /~e  2 , ~ ( x ) = x / ~ e  2 . 
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Thus the differentiation formulas (2.37) hold with b = i and 

i 
m(x)=l ,  A(x)=-~N, B(x)=C(x)=O, 

and so from the considerations in Sect. IIE we deduce that 

and 

R(aj, ak) = qjPk--Pjqk 
eiaJ _ eiak ( j  4= k), (5.63) 

iei"JR(aj, aj)=iNpjqj-  ~ ( -  1)kR(aj, ak)( qkPj--pkqj) , (5.64) 
k4:j 

gq__d= N + I  
Oaj i ~ - -  q j -  ~ (-1)aR(aj, ak)qk, 

k:~ j 

@j_ N-- 1 
0aj i - T -  p j -  ~' ( -  1)ke(aj' ak)pk. (5.65) 

k4:j 

2. Single interval case. Now we specialize to J = ( - t ,  t) and take al = - t ,  a2=t. 
Write p, q for P2, q2 and note that since (p(x)= (p(-x) and K(x,y) is even we have 
Pl =P, ql =q. Let's also write 

R(t):=R(t, t), R(t):=R(- t , t )=R(t ,  - t ) .  

Then (2.29) with J = ( -  1, 1) and i = 2 gives 

(5.64) gives 

(, R' = 2/~ 2 = ~  , (5.66) 

eitR(t) = Npq --iR(t)(@ -/~q), 

whereas (5.63) with j = 2, k = 1 gives 

qi0- p q  = 2i sin t /~ .  

Substituting (5.68) into (5.67) and using (5.66) give 

eitR(t ) = N p q -  sin t R' (t) . 

N o w  

, . N + I  i N ~ _ p q _ ~ .  q = t ~ - - q + R g l ,  p ' = -  

Using these and (5.68) we get 

- ,  / . N + I  

- 5 -  q + t~ q ) 

=ig(  q~--pgl) . 

(5.67) 

(5.68) 

(5.69) 
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This and (5.68) may be written 

(sin t /~) '= N~tl(qi6), 

sin t/~=.~(q/~), 

and (5.69) may be written 

eitR(t) + sin t R'(t) = Npq.  

Thus (taking the square of the absolute value of both sides) 

(cos t R (t) + sin t R'(t)) z + sin2t R(t) 2 = (sin t/~),2 + N a sin2t/~ 2 . 

Using 
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where 
2N 

DO ~ -  . 

If we denote by EN(0; s) the probability that an interval (of the unit circle) of length 
s contains no eigenvalues (modifying here the notation of (1.1)), then 

E N ( O ; s ) = e x p { - 2 i R ( x ,  1)dx } (s=2t)  . 

Using the expansion (5.71) with 2 =  1 (and additional terms computed from the 
differential equation (5.70)) we find that 

2n n2(1  1 7c4(1 5 3 '  6 

14 7 ,o)  
+1--76~ 1 - 3 N ~  N 4 3N -6 s S + ' ' "  (s-*0), 

2n 
where we have replaced s by ~ - s  so that the N ~ o o  limit is clear. This converges 

uniformly for all N and bounded s. Observe that the corrections to the limiting 
coefficients are O(1/N 2) as N--, oe. 

/72 1 , ~ /~,2 1 R  "2 
= ~ R ,  /~'/~= R", - 8  R' ' 

which follow from (5.66), we get the second order equation 

R(t) 2 + 2sin t cos t R(t)R'(t) + sin2t R'(t) 2 

= -  sin2t ....~ +s in tcos tR"( t )+(cosZt+N2sin2t )R ' ( t )  . (5.70) 
2 R (t) 

From the Neumann expansion of the resolvent kernel R(t; 2) = R(t) we obtain 
the expansion 

R(t, 2 )=po+2p~t+4p~t2+~(1-N2+36pZ)p~t~+ ' ' '  , (5.71) 



Fredholm Determinants, Differential Equations and Matrix Models 67 

VI. Generalizations of Hermite, Laguerre and Jacobi 

In this final section we shall show that there are differentiation formulas of the form 
(1.4) for very general orthogonal polynomial ensembles, and that if the weight 
function is the standard Hermite, Laguerre, or Jacobi weight function multiplied by 
the exponential of an arbitrary polynomial then the coefficients re(x), A(x),  B(x) 
and C(x) in (1.4) are themselves polynomials. Some, but not all, of our derivation 
can be found in the orthogonal polynomial literature [4, 5] but our presentation 
will be self-contained. 

Throughout, we shall write our weight function as 

w(x) = e -  V(x) . 

As stated in the Introduction, the polynomials orthonormal with respect to w(x) 
are denoted pk(X) (k=0, 1 , . . . ) ,  and we set q~k(X)=pk(X)W(X) 1/2 SO that {~0k} is 
orthonormal with respect to Lebesgue measure. The underlying domain ~ of all 
these functions we take to be a finite or infinite interval. We are interested in 
differentiation formulas (1.4) when, up to constant factors, 

p(x) = (pN(x), 0(x)= ~0N-l(x). (6.1) 

It is well-known that if kN denotes the highest coefficient in pN(x), and if 

kN-  1 
a N - -  kN  

then there is a recursion formula 

xpN(x) = aN + 1PN + 1 (x) + bNPN (x) + aNpN- 1 (X) (6.2) 

as well as the Christoffel-Darboux formula 

N - 1  pN(x)pN- I (y ) - -PN-  I (X)pN(y) 
pk(X)pk(y) = aN (6.3) 

k:0 x- -y  

(See Chap. 10 in [18].) 
We shall always assume that our weight function satisfies 

xkw(x) is bounded for each k=0,  1 , . . . ,  

and that V(x) is continuously differentiable in the interior of 9 .  And we assume 
that 

lim w(x)=0 
x~ON 

although this will be relaxed later. We define [-4, 5-[ 

V'(x)- V'(y) 
U(x, y)= 

x - - y  

Au(x)  = a, S ~ou(y)~Ou-l(y) U(x, y)dy, 

(6.4) 

BN(X) = a, ~ cpu(y) 2 U(x, y)dy  . 
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Proposition. If(6.4) holds and (fi and ~ are given by (6.1) then we have (1.4) with 

1 
re(x)= 1, A(x)= --AN(X)---~ V'(x) , 

B(x)=BN(x), C(x)= aN BN-I(x).  
a N -  1 

Proof. If 
N - 1  

/~(x, y):= ~ pk(x)pk(y), 
k = 0  

then for any polynomial re(x) of degree at most N -  1, 

TO(X) = j K(x,  y)zc(y)w(y)dy . 

Apply this to TC(x)=p'N(X) and integrate by parts, using (6.4) to eliminate any 
boundary terms. We obtain 

p'~(x) = - ~ ~/((x, y )  p s ( y ) w ( y ) #  + I Y~(x, y) V'(y)pN(x)w(y)dy . 
Oy 

Now both OK/~y and/( ,  as polynomials in y, are orthogonal (with respect to w) 
to PN(Y) since they have degree at most N -  1. It follows that the first integral above 
vanishes and that we can write the resulting identity as 

p'N(X) = ~ K.(x, y ) ( V ' ( y ) -  V'(x))pN(y)w(y)dy 

= -- aN ~ [pN(X)pN- I(Y)--PN- I(X)pN(y)]PN(y) U(x, y)w(y)dy 

by (6.3) and the definition of U(x, y). We have shown 

p'N(X) = -- AN(X)pN(X) + BN(X) pN- i (X). (6.5) 

It follows from this, of course, that 

P~- i (x) = - AN-1 (x)pN- 1 (X) + BN- 1 (X)pN- 2 (X). 

We use the recursion formula (6.2) (which holds also if each PN is replaced by (fiN) 
and find that this is equal to 

-- j (fiS- l (Y)[y(fiU- l (Y)--aN(fiu(y)--bN- l (fiU- l (y)'] U(x, y)dy pN- I(X) 

+ ~ (fi~V- I(Y) U(x, y)dy [xpN- I(x)--aNpN(x)--bN- lPs -  I(X)] 

= ~ (fi~- 1 (y)(x--y)  V(x, y)dy PN- l(x) + AN(x)pN- l(x)-- as BN-1 (x)pN(x). 
a N -  1 

The last integral on the right side equals 

p2_x(y ) (g ' ( x  ) - V ' ( y ) )w(y )dy= V'(x)+ j p2_l (y )w ' (y )dy  . 

The last integral vanishes, as we see by integrating by parts and noting that p~_ 1 is 
orthogonal to Ps-1. Thus we have shown 

p'n-x(X)=[AN(x)+ V ' ( x ) ] p s - i ( x ) -  aN BN-I(x)pN(x).  (6.6) 
a N -  1 
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The statement of the proposition now follows from (6.5) and (6.6) if we use the 
fact that 

gO'N=P'NWl/2--}--~ pNW 1/2 , 

and similarly for q)~v-1. �9 

Remark. The assumption (6.4) is not just a technical requirement. The conclusion 
of the proposition is false without it. (Consider, for example, the Legendre poly- 
nomials on ( -  1, 1), where V(x) = 0 and the conclusion of the proposition reads 
q)',(x) = 0.) Nevertheless, we shall be able to handle some cases where (6.4) fails. 

Example 1 (generalized Hermite). Here V(x) is a polynomial of even degree (at least 
2) with positive leading coefficient and @ = ( - 0 %  oo). The conclusion of the 
proposition holds and so we have (1.4) with re(x)= 1, with A(x) a polynomial of 
degree at most deg V -  1, and with B(x) and C(x) polynomials of degree at most 
deg V -  2. 

Example 2 (generalized Laguerre). Here 

w (x) = x~e- w<~), 

where ~ > -  1 and W is a polynomial of degree at least 1 with positive leading 
coefficient, and N=(0,  oo). In this case 

W'(x)- W'(y) 
U(x, y) =-- -~  (6.7) 

xy x--y 

Now (6.4) is satisfied if c~ > 0 and the proposition tells us that in this case we have 
(1.4) with 

cg x 
m(x)=x, A ( x ) = - x A N ( x ) + ~ - ~  W'(x), 

aN B(x)=xBN(x), C(x)= XBN-t(x) ; (6.8) 
aN- 1 

now A(x) is a polynomial of degree at most deg W while B(x) and C(x) are 
polynomials of degree at most deg W -  1. 

To extend this to all c~ > -  1 we see that there are problems in the integrals 
defining AN(x) and BN(x) arising from the term c~/xy in (6.7). The contribution of 
this term to the integral defining AN(x), say, equals (we assume now c~ >0) 

aN- pN(y)pN-l(y)e-W(r)y~-ldy. 
N o  

Integration by parts shows that this equals 

aN (pN(y)pN-I(y)e w(Y))'y~dy �9 
x o 

This expression is well-defined for all e > - 1  and in fact represents a function of 
c~ which is real-analytic there. (The coefficients of the PN are clearly real-analytic 
functions of e.) 
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This a rgumen t  shows that  bo th  sides of (1.4), with the coefficient polynomials  
given by (6.8), are (or extend to be) real-analyt ic  for ~ > - 1. Since they agree for 
c~ > 0 they mus t  also agree for e > - 1 .  

Example 3 (generalized Jacobi). Here  

w(x) = (1 - x)~(1 + x)Pe- W(x) , 

where ~, fl > - 1 and  W is a polynomial ,  N = ( -  1, 1). In  this case 

c~(1 +x) (1  + y ) + f i ( 1 - x ) ( 1 - y )  W'(x) -  W'(y) 
U(x, y ) =  (1 - x 2 ) ( 1  _y2) F x - y  ' 

and the propos i t ion  tells us that  for c~,/~>0 we have (1.4) with 

, 1 - x  2 
m ( x ) =  1 - x  2, A ( x ) =  --(1--x2)AN(x)--~z (1 + x ) +  ( 1 - - x ) - - ~  W'(x), 

B(x)=(1-x2)BN(x), C ( x ) =  aN ( l - - x2 )BN_I (X) ;  
aN- 1 

now A(x) is a polynomial of degree at most  deg W +  1 while B(x) and C(x) are 
polynomials of degree at most  deg W. The identity can be extended to ~, ~ > - 1 as 
in Example 2. (It is convenient to express the integrals defining AN(x) and BN(x) as 
sums of integrals by using a representat ion 

1 = u(x) + (1 - u ( x ) ) ,  

where u = 1 in a ne ighborhood  of x = - 1 and  u = 0 in a ne ighborhood  of x = 1; this 
separates  the difficulties at the two end-points.  The  details are left to the reader.) 

Remark. I t  is clear tha t  the last examples  can be generalized to any weight function 
of the form 

I-[ Ix--ai[~,e-W(x), 

where W(x) is a po lynomia l  and for each at which is in the closure of ~ we have 
~i> - i. 
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