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Abstract. We study the macroscopic limit of an appropriately rescaled stochastic 
Ising model with long range interactions evolving with Glauber dynamics as well 
as the corresponding mean field equation, which is nonlinear and nonloeal. In the 
limit we obtain an interface evolving with normal velocity OK, where ~c is the mean 
curvature and the transport coefficient 0 is identified by an effective Green-Kubo 
type formula. The above assertions are valid for all positive times, the motion of 
the interface being interpreted in the viscosity sense after the onset of the geometric 
singularities. 

1. Introduction 

Stochastic Ising models with long range interactions were introduced by KaY, 
Uhlenbeck and Hemmer in [KUH] (see also Lebowitz and Penrose [LP]) to justify 
the validity of the Van der Waal's phase diagram, as the interaction range 7 -1 
tends to infinity. For a very comprehensive description of the equilibrium theory of 
systems with long-range potentials we refer to the paper by Hemmer and Lebowitz 
[HL]. 

Stochastic Ising models with Ka6 potentials evolving in time with Glauber 
dynamics - each spin undergoes in a random way a finite number of flips - have 
a surprisingly rich structure and exhibit a great variety of  physically interesting 
effects like spinodal decomposition, development of interfaces, etc. We refer to the 
papers by De Masi, Orlandi, Presutti and Triolo [DOPT 1, 2, 3] for a systematic 
study of some of these properties as well as to the ones by Comets [C], Comets 
and Eisele [CE] and Lebowitz, Orlandi and Presutti [LOP] for other non-equilibrium 
properties for systems with Ka~ potentials. 

The mesoscopic limit of the ferromagnetic stochastic Ising model evolving with 
Glauber dynamics, i.e. the behavior of  the model as y -+ 0 when space is resealed 
by 7 and time is kept fixed, was studied by De Masi, Orlandi, Presutti and Triolo 
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in [DOPT1], who obtained a mean field equation, which is a nonlocal, nonlinear 
evolution equation, for the limitin9 averaged magnetization. Since in the meso- 
scopic limit time is not rescaled, each individual spin in a time unit undergoes only 
a finite, random number of  flips. The deterministic behavior described by the mean 
field equation is a mean field effect due to the scaling of the interaction: many 
spins (infinitely many in the limit 7--~ 0) feel essentially the same potential and 
while each of them behaves randomly, their average evolves deterministically, due to 
a law of large numbers effect. The full interaction only arises at longer times, when 
each spin, after many flips, reaches a (local) equilibrium distribution. 

Here we study the macroscopic limit, i.e. the behavior as y ---+ 0 when both space 
and time are rescaled simultaneously, of the ferromagnetic stochastic Ising model 
with Ka~ potentials and Glauber dynamics as well as the long time behavior of  the 
corresponding mean field equation and the propagation of the resulting interfaces. 

Before we describe our results we need to remind the reader of  some of the 
rather important progress, which has been made during the last few years, to 
describe 9eometric evolutions, i.e. motion of  (generalized) hypersurfaces, past the 
first time at which singularities occur. It is well known that surfaces evolving with 
normal velocity depending on the curvature tensor, the direction and the position 
may start smooth and yet develop singularities in finite time. It is, however, import- 
ant both from the mathematical point of view as well as for applications to find 
a way to interpret this evolution past singularities. One of the most successful ideas 
in this direction, known as the level set approach, is to represent the surface as 
a level set - for definiteness the zero level set - of the solution of a certain dege- 
nerate parabolic partial differential equation, known as the 9eometric pde associated 
with the motion. The mathematical theory of the level set approach was developed 
by Evans and Spruck in [ES] for motion by mean curvature and Chen, Giga and 
Goto in [CGG] for more general situations using the theory of viscosity solutions for 
second-order pde's. We refer to the User's Guide by Crandall, Ishii and Lions [CIL] 
for a detailed overview of theory of viscosity solutions as well as to the papers 
by Soner [Sol], Barles, Soner and Souganidis [BSS] and Ishii and Souganidis 
[IS] and the references therein for alternative formulations, extensions, discus- 
sion, etc. 

Our first result in this paper is about the asymptotic behavior of  the mean 
field equation. We prove that in the asymptotic limit 2 ~ 0, when space and time 
are scaled by 2 -1 and 2 .2 respectively, the mean field equation yields an inter- 
face, which propagates with normal velocity equal to OK + A, where ~c is the mean 
curvature, A is some appropriate constant and 0 > 0 is a transport coefficient, 
which is related to the mobility and the surface tension of the interface. This evo- 
lution is global in time; past the singularities it is interpreted in the viscosity sense. 
The novelty of the result, besides dealing with a highly nonlinear, nonlocal equa- 
tion, is the identification of 0, through a Green Kubo type formula, which does 
not appear either at the microscopic level (i.e. the Ising model) or at the level of  
the mean field equation and it is actually related to an averaging effect, which is 
taking place during the limiting process. 

Our second result states that in the asymptotic limit 7 --+ 0, when space and time 
,o* ._~  ___+ are scaled by 7-12-1(7) and 2-2(7) respectively, where 7-  2(7) oe as 7 0 

for some p* > 0, the average magnetization develops an interface which moves as 
the one for the mean field equation. We also prove that, with the same scaling, with 
large probability the spins align themselves to form clusters, which are separated 
by (random) interfaces close to the evolving macroscopic interface. 
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In addition to being interesting (at least we hope so) from the point of view of 
both mathematics and statistical mechanics, our results may be thought of as provid- 
ing a justification, from microscopic considerations, to phenomenological theories of 
phase-transitions like sharp-interface models derived by thermodynamic arguments 
(see Gurtin [G]) and sometimes by scaling of a Landau-Ginzburg model (see Allen 
and Cahn [AC]). Finally, our results may also be thought of as providing a theo- 
retical justification of the validity of some Monte Carlo-type methods, which have 
long been implemented in the physics literature, to approximate mean curvature 
evolution at any time. Notice that the stochastic spin dynamics are unaffected by 
the possible appearance of singularities in the flow. 

A result similar to ours about the asymptotic behavior of the mean field equa- 
tion was obtained, independently and at the same time, by Jerrard in [J] for 
a different nonlinear (but local) equation proposed by Penrose in [P], which is 
a local approximation of the mean field equation studied here. Our proof here applies 
to this equation as does the proof of [J] to ours. Macroscopic limits for stochastic 
Ising models with nearest neighbor interaction (in two space dimensions) have been 
studied by Spohn [Sp]. We also remark that the authors in [KS] studied the macro- 
scopic behavior for all times of an Ising model with Glauber-Kawasaki dynamics, 
which involve a nearest neighbor interaction spin flip delocalized by a rapid stirring 
mechanism. Finally, the asymptotic behavior of the mean field equation and the 
macroscopic limit of the Ising model for the specific scaling 2 ( y ) =  (log7-1) -1/2, 
under the assumption that the resulting interface is smooth, which, of course, is true 
only for small time in general, was also studied by De Masi, Orlandi, Presutti and 
Triolo in [DOPT1] and [DOPT3]. (See also Bonaventura [B] for a related result 
under the same smoothness assumption, for the macroscopic limit of the Glauber- 
Kawasaki model.) 

The paper is organized as follows: In Sect. 2 we describe the Ising model and 
the Glauber dynamics and recall the result of [DOPT1] about the mesoscopic limit. 
Section 3 discusses the properties of the mean field equation and recalls the weak 
theory of propagating fronts. In Sect. 4 we state and discuss in detail our results, 
which we then prove in Sect. 5 (asymptotics of mean field equation) and 6 (macro- 
scopic limit of the Ising model). In the last section we also state some consequences 
and generalizations of the results. 

2. Ising Models with Long Range Interactions and Glauber Dynamics 

Here we describe, in a rather brief way, general ferromagnetic Ising models, i.e. spin 
systems, with long range interactions, given by Ka~ potentials evolving according 
to Glauber dynamics. For a much more involved and considerably more enlightening 
discussion we refer, for example, to the papers by De Masi, Orlandi, Presutti and 
Triolo [DOPT1,2] and Comets [C] as well as the monograph by De Masi and 
Presutti [DP] and the references therein. 

Ising models are spin systems flipping between -4-1 at random on a lattice, 
which is chosen to be the N-dimensional hypercube 2g N. A spin configuration a is 
an element of the state (configuration) space 

X = { -1 ,1}  Zn . 

We write ~r = {or(x) I x E Z N} and call ~(x) the spin at x. 
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The dynamics of  the model consist o f  a sequence of  flips. I f  o. is the configu- 
ration before a flip at x, then after the flip the configuration is 

-o . (x ) ; ,  if  y = x ,  
o'X(Y) = o.(y) ,  i f  y + x .  

We assume that a flip occurs at x, when the configuration is 0., with a rate c~(x, 0.), 
given by: 

e-~hT(x)cr(x) 

c 7 ( x  , 0.) = e_Bh~,(x ) q- e~h.,(x ) , 

where fl > 0 is the inverse temperature and 

hz(x ) = h + ~ J~(x, y)o.(y) ; 
y4:x 

h > 0 is the external magnetization field, J~ is the Ka( potential 

J~(x,y) = yNJ(T]x -- y[) (x,y E 7~N) 

and 7 -1 > 0 is the interaction range. 
The potential J is assumed to satisfy: 

J : ]R u ---+ [0, o o )  has compact support and is symmetric i.e. 
J(x) =J(Ixl) (x c IRN). (2.1) 

The Glauber dynamics is a Markov jump process on S with generator given by 

L~f(o.) = ~ c~(x,o-)[f(o. ~) - f(o-)]  , 
xC~ N 

acting on cylindrical functions f on S. (See Liggett [L] for the precise definitions.) 
The solution of  the equation 

is given by 

d f = L ~ f ,  f o =  f 

f(o.) = ~-~er~'t(o., o.')f(o.'), 

where eL~'t(o-, o. ~) are the transition probabilities of  the process. 
The full-stochastic jump process o-t is constructed as follows: The initial con- 

figurations 0-0 are randomly distributed according to some measure #~ on X. Given 
a o -~ o-t = 0-0 for an exponentially distributed waiting time with rate ~ y  c(y, 0.~ o.t 
jumps to a new configuration 0-1 = o. x with probability c(x, 0 .~  c(y, 0.~ Then 

o.t = o- ~ for another exponentially distributed waiting time with rate ~-~y c(y,o-1), 
etc. Notice that, in view of  the positivity of  J ,  the probability of  a spin flip at x is 
higher when the spin at x is different from that o f  most o f  its neighbors than it is 
when the spin agrees with most o f  its neighbors. Thus the system prefers config- 
urations in which the spins tend to be aligned with one another. This property in 
the language of  statistical mechanics, is referred to as ferromagnetism. 

The particular choice of  the Glauber dynamics is made in order to describe the 
transition (evolution as t ---+ ~ )  of  the initial measure #7 on X towards the Gibbs 
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measures (equilibrium measures) of the ferromagnetic Ising model. It turns out that 
in the presence of an external magnetization field, i.e. when h ~ 0, there is a unique 
Gibbs measure. The same is also true when h = 0 but only for subcritical inverse 
temperatures/~ N //~, where fi~ is some constant determined by the specific model. 
On the other hand (see ([L]), when /~ > /~ there are more than one equilibrium 
measures, i.e. phase transitions take place. 

A very basic question in the theory of stochastic Ising models with Ka6 
potentials is the behavior of the system as the interaction range tends to infinity, 
i.e. 7 ~ 0. The passage in the limit 7 --+ 0 of quantities like the thermodynamical 
pressure, total magnetization, etc. is known as the Lebowitz-Penrose limit (see 
[LP, HL, DP], etc.). 

Along these lines De Masi, Orlandi, Presutti and Yriolo (see [DOPT1]) studied 
the asymptotics, as 7 ~ 0, of the averaged magnetization 

mT(x,t) = ]E~,at(x) ((x,t) E 7~N X [0, co)) (2.2) 

of the system, where IE~ denotes the expectation of the Glauber process starting 
from a measure #~, and obtained a mean field equation 

m t + m - t a n h f l ( J * m + h ) = O  in ]R N x [0,r  (2.3) 

where J �9 m denotes the usual convolution in JR. N. 
This equation is one of the points of interest of the paper. For completeness we 

state below the theorem of [DOPT1] which relates (2.2) and (2.3). To this end, we 
need to introduce for each n E 7/,+ the sets 

Z N = {x = (xl . . . . .  xn) E (71N) n I x 1 * . . .  * x n } .  (2.4) 

Theorem 2.1. ([DOPT1]). Assume that the Glauber process has as initial measure 
a product measure t ~ such that 

]E~7(o'(x)) = mo(~)x ) (x E ~ N ) ,  

where mo is Lipschitz continuous and (2.1) holds. Then, for each n E Z +, 

lim sup at(xi - m(Txi, t) = O, 
7----~Ox_E zN 

where m & the unique solution of  (2.3) with initial datum mo. 

Theorem 2.1 was proved in [DOPT1] under the assumption that in addition to 
(2.1) J is also in C 3. A more careful look at the proof reveals, however, that (2.1) 
suffices. 

3. The Mean  Field Equation - Generalized Mot ion of  Hypersurfaces 

(i) Properties of  the mean field equation. We begin rewriting the mean field equa- 
tion as 

m t + m - t a n h f l ( J * m + 2 a ) = O  in ]R N • [ 0 , ~ ) ,  (3.1) 
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where 2 ,a  E IR. The reason for setting h = 2a  in (2.3) will become clear later in 
the paper. Equation (3.1) is, o f  course, nonlinear and nonlocal, due to the presence 
of  the convolution. Nevertheless, since J > 0, (3.1) admits a comparison principle 
between solutions, i.e. i f  wl,w2 solve (3.1), then 

i f  W 1 ~ W 2 on ]R N x {0}, then wl ~ W2 on ]R N x (0, c o ) .  (3.2) 

In this paper we will need a more detailed comparison, which we state later in this 
section. 

The mean field equation admits three steady state solutions mfl, a2 < mOil, a2 < 

m + , i.e. solutions of  the algebraic equation /~,a;o 

m = tanh fl(Jm + a2) (3.3) 

provided 

where 

and 

In the case 2a  = 0, 

f lJ  > 1 ,  (3.4) 

.] = f J ( r ) d r  = fJ(Irl)lrlN-'dlrl, (3.5) 
IR N P,_ 

la2l ~ a0 for some a0 > 0 .  (3.6) 

m• E0 = 0 .  (3.7) ~ ,0=4-m~ and m ~ 

Observe that the steady state solutions are equilibria of  the underlying ordinary 
differential equation, with m + B,a~ being the stable and m~,a; ~ the unstable one. 

An issue which we will study in this paper is whether solutions of  (3.1) converge 
to the stable equilibria, as t ~ cx~, and, if  yes, to identify the regions in IR N x 
(0, c~), where they converge to m~,ax and m~_a;. 

A crucial tool towards studying this question is the existence of  special solutions 
of  (3.1), known as traveling waves, of  the form 

m(r, t) = q(r - c~(a)t, a2) (3.8) 

which connect the stable equilibria, i.e. 

c) > 0 in IR and q(ztzoc, a2)  = m~a 2 . (3.9) 

The existence of  such solutions is equivalent to the existence of  a pair (q, cA(a)) 
solving 

c ;~ (a ) ( t (~ ,a2 )+q(~ ,a2 )= tanh f l [ J*q ( r  (4 E IR),  (3.10) 

where 

j ( ~ ) =  f j ( ( ~ 2 + l r t l 2 ) l / 2 d r , .  (3.11) 
1R N 1 
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It turns out (see Theorem 2.4 of  [DGP]) that there exist positive constants al,  a2 
and a3 such that the following hold uniformly for all 2 sufficiently small: 

r e a~l~l q(~, a 2 ) -  [m ifl,a2 • a2e-a'l~l]al j : 0 ,  

l i m e  aJl~l I@(~, a).) - a2e -a~l~l] = 0 ,  

l i m e  alIbI 1~(~, a2) 4- ala2e-a2lr = O, 

J * @(~, a2) 
> a31 , 

4(~, a2) 

(i) 

(ii) 

(iii) 

(iv) a3 

and 

(V) a3 > 
4(4, a,~) 

for all unit vectors e E ]R N 

and 

{ 
fJ(lyl)(t(r § e �9 y, a2)(e �9 y)2dy >= a31 

(i) c2(a)-+ O,q( �9 , ta2) ~ q( �9 , 0 )  and @( �9 ,a2)  ~ q( �9 ,0)  as 2--~ 0 ,  
the last two limits being uniform in IR, 

(ii) 2-1eJ~(a) --+ c(a) as 2 -+ 0 

(3.12) 

and 

(iii) c(a) ~ 0 as a --+ 0 . (3.13) 

We conclude our discussion about the basic properties of  the mean field equation 
with a lemma about a strict local comparison between solutions of  equations like 
(3.1). Since its proof  is a straightforward modification of  an analogous result in 
[DOPT2] we omit it. 

Lemma 3.1. Let  the bounded functions m and ~ satisfy 

mt ~- m -- tanh fi[J * ~ + h] > 0 in ]R N • [a, b] 

and 
m t + m - t a n h  fl[J * m - h] < 0 in ]R u x [a, b ] ,  

where h,h ,b  - a 6 [0, 1]. There exists C = C([[~[[oo, [[m[Ioo) < fl such that for  all 
L > 0 and all (r , t)  6 B(O,L) • [a,b], 

m(r , t )  -- ~ ( r , t )  < [[Jll~2lspt(J)le (l+~)(t-a) [ sup (m(r ' , a )  - ~ ( r ' , a ) )  + 
LI'I sz  

+ (L - Irl)-l/2e (L-I'l)t'-l~ [fl(t - a)] L-Irl - fl(h + h)C(t  - a ) .  

[] 

(ii) Weak front  propagation. Next we recall the definition of  generalized motions 
of  surfaces with normal velocity 

V = 0~c + A ,  (3.14) 

where 0 > 0,A E R and x is the mean curvature. 
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As mentioned in the Introduction such evolutions can start out smooth and yet 
develop singularities at a later time. A great deal of work has been done over 
the last few years in order to interpret the evolution past singularities, the main 
idea being representing the surface as a level set, for definiteness the zero level 
set, of  the solution of a certain degenerate parabolic partial differential equation. 
The mathematical theory of the level set approach was developed by Evans and 
Spruck in [ESp] for motion by mean curvature and Chen, Giga and Goto in [CGG] 
for more general situations using the theory of viscosity solutions. We refer to the 
User's Guide by Crandall, Ishii and Lions ([CIL]) for a detailed overview of the 
theory of viscosity solutions as welt as to the papers by Soner [S], Barles, Soner 
and Souganidis [BSS], Ishii and Souganidis [IS], Katsoulakis and Souganidis [KS], 
etc. for alternative formulations, extensions, discussion, etc. 

Let ~20 C ]R N be open and 

ro = ~N\(~O U ~ ) .  (3.1S) 

The generalized evolution Ft of F0 is defined as 

I" t ~-- { r  E ]R N : w(r,t) : 0},  (3.16) 

where w is the unique viscosity solution of 

{ / wt - Otr I iDw[ 2 j DZw-  A IDwl = 0 in ]R N x (0, oQ) ,  

w : do on ]R u x {0}, (3.17) 

and 
dist (r, F0) if r E (20, 

do(r) = -d is t ( r ,  F0) if r E ~ .  (3.18) 

For the details and justification of the above definition we refer to the references 
mentioned above. 

4. The Main Results 

(i) Asymptotics of the mean field equation. The first result of the paper is about 
the asymptotics, in the limit 2 - +  0 +, of the following rescaled version of (3.1): 

;~+2-2[m~-tanhfl(J2*m)'+2a)]=O in IRNx(0 ,  cx~) (4.1) mt  

where 
J2(r)  = )~-NJ(~-lr) (r E IRN). 

Equation (4.1) follows from (3.1) by writing 

m~~ = m(A-~r,2-zt) ((r,t) E ]R N x (0, oo)) .  

In the limit 2 ---+ 0 and for supercritical inverse temperatures fl, i.e. when (3.4) 
holds, we show that there exists a transport coefficient 

fl "~, (4.2) (q(~, 0)) 2 
0 = ffJ(lYl)o(~,O)(t(~+e" y , 0 ) ( 6 ,  y ) 2 d y d ~ / f l ~ q ~ , ~ ) a r  
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where e, ~ are two orthogonal unit vectors in IR N, such that the solution m ~ of 
(4.1) converges at each point of IR N x (0, cx~)\ Ut>0 F, x {t} to the stable steady 
solutions m~0 of (4.1). The surface Ft, which is known as the antiphase boundary, 
is moving with normal velocity 

V = O~c § c(a), (4.3) 

where e(a) is given by (3.13). As a matter of fact we show that m ~ ---+ m~, 0 inside 

the front and m;~--+ m~, 0 outside. Note that due to the symmetry of J,O in (4.2) 
is independent of the particular choice of e and ~. Finally, all the above will be 
proved under the assumption the system begins at a local equilibrium, i.e. that 

m ) ~  on ]RN x {0} , (4.4) 

where do is the signed distance function from a closed set F0 C IR N and q is the 
traveling wave associated to (4.1) such q(O, a2)= 0. We will discuss in a future 
work how to eliminate this restriction. The precise result is: 

Theorem 4.1. Assume (2.1) and (3.4) and let m ~ be the solution of  (4.1) with 
initial datum (4.3), where F0 = ~(20, 12o C ]R N being open. Then, as 2 ~ 0 +, 

reX0 {w > 0}, 
m ~ ---+ locally uniformly in 

m~, 0 {w < 0},  

where m~ o are given by (3.3), w is the unique solution of(3.17) with initial datum 
do, 0 is 9iven by (4.2) and A = c(a), the latter 9iven by (3.13). 

As mentioned in the Introduction, under the additional assumption that F0 is 
smooth and only for the time interval during which the evolution (l't)t>=O remains 
smooth, Theorem 4.1 was proved (for a = 0) by De Masi, Orlandi, Presutti and 
Triolo in [DOPT3]. 

A result analogous to Theorem 4.1 but for a local approximation of (4.1) in [P] 
was proved independently by Jerrard (see [J]). We remark that results analogous 
to Theorem 4.1 but for the reaction-diffusion equation were first obtained in this 
generality by Evans, Soner and Souganidis in lESS] (see also [BSS]). We refer to 
these works for the history of the problem as well as more recent papers. 

Notice that Theorem 4.1 yields no information for the limit of m )~ on the 
front, which may have, in principle positive N-dimensional Lebesgue measure, i.e. 
fattening may occur. For general conditions for non-fattening we refer to [BSS]. 
In the case of the reaction-diffusion equation, information about the limit where 
fattening occurs was obtained by Ilmanen in [I] (see also Soner [So2]). We hope 
to return to this issue for the problem at hand in a future paper. 

We conclude the first part of this section with a brief discussion about the ideas 
involved in proving Theorem 4.1. The proof is based partially on refinements of 
a number of ideas introduced by Barles, Soner and Souganidis in [BSS] to study 
asymptotic limits of general reaction-diffusion equations. The approach of [BSS] is 
different from the one introduced by Evans, Soner and Souganidis in [ESS] to study 
the asymptotics of the Allen-Cahn equation. The difference is that [ESS] constructs 
super- and sub-solutions of the reaction-diffusion equations. On the contrary [BSS] 



70 M.A. Katsoulakis, P.E. Souganidis 

studies the problem at the level 2 = 0 using a number of  sophisticated and new 
techniques to compensate for the lack of estimates. There is, however, a serious 
difficulty to apply directly [BSS] to (4.1). This is due mainly to the highly nonlin- 
ear form of the equation and to some extent its nonlocal character and is related 
to the identification of the transport coefficient 0 in (4.3). This coefficient comes 
up because of an averaging effect occurring in the limit 2 J. 0 of  the jump process, 
corresponding to the linearization of (4.1) around q. To study this averaging from 
the analytical point of  view, we need to employ ideas from the theory of homoge- 
nization for viscosity solutions, which were introduced by Lions, Papanicolaou and 
Varadhan [LPV] and further developed by Evans [E]. The combination of analytic 
techniques from both propagation of fronts and homogenization is nontrivial. Our 
paper as well as Jerrard's ([J]) are the first ones in this direction. 

(ii) Macroscopic limits o f  the ferromagnetic Ising model. The second major result 
of  the paper is about the existence of a macroscopic scaling of the form 

(x,t)  ---+ (7}.(7)x,~2(7)t) (x E 7~N) , 

where 2(7) is to be determined, so that in the limit the appropriately rescaled aver- 
aged magnetization yields an interface moving according to a macroscopic equation 
of the type given by (4.3). As a matter of fact one would like to obtain, and we 
do so below, a propagation of  chaos type result at this scaling. Such a result, of 
course, should be global in time, i.e. to hold past the geometric singularities, since 
the spins, by definition, are not sensitive to the regularity of  the macroscopic profile. 

As in the case of the asymptotics of  the mean field equation, here we will assume 
that our initial measure is at a local equilibrium. More precisely, we assume: 

(i) tt 7 is a product measure on 2; 

and 

(ii) E 7yr t~x') ---- q ~{d~ ,0 ~) (X C 7IN), (4.5) 

where q is the traveling wave corresponding to (3.1) with a--= 0 and q ( 0 , 0 ) =  0, 
do is the signed distance function from a closed set F0 C IR N and 2(7 ) will be 
specified below. 

To state our result we 
end, for 7 > 0, and Pl > 

where Pl is to be chosen 
Let w be the solution 

I W t -- 

W ~  

need to introduce some notation and special sets. To this 
0 set 

Q~ = 7-1[_7-P1, 7-Pl ]N [--] ~N , (4.6) 

and [ -R ,  R] N denotes the hypercube of side R in ~N.  
of  the geometric pde 

Ow ~ Ow ~ IR N (0, 0(3 ) 0tr I [Dw] 2 j D2w ~- 0 in • , 

d0 on IR N x {0} ,  (4.7) 

and define, for t > 0, the sets 

Py = {x E 7~,N : W(Tf~(7)X ,t)  > 0},  

and 

Nt 7 ~-- {x E 7Z. x : w(7~(7)x,t) < 0},  (4.8) 
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and 

M. n = { x C Z  N :xiCQrM(P~tUN~t)} (t > 0) (4.9) 7,t 

where 2~ u is given by (2.3). 
Our result is: 

Theorem 4.2. Assume (2.1) and (3.4). There exists a p* > O, 9iven by Lemma 6.4, 
such that for any 2(7) such that 7-P'2(7) ---+ + ~  as 7 --+ 0, if  (4.5) holds then, 
for all t E (0, ~ ) ,  

n 
lim sup Er~ 1--~O't2(7)--2(X) ) r~~ t u/=1 - m ~  I~ ( - 1  = O(2) ,  

xi E)Vy 

with the limit local uniform in t, where N 7 and M~, t are 9iven by (4.8) and (4.9). 

Before we continue we remark that the critical p* in Theorem 4.2 is independent 
of the particular value of the inverse temperature ft. Finally, notice, as in Theo- 
rem 4.1, Theorem 4.2 yields no information when fattening occurs. We hope to 
return to this issue in a future paper. 

Theorem 4.2 is the first 9lobal result showing the convergence (macroscopic 
limit) of the scaled averaged magnetization of the ferromagnetic Ising model with 
Ka6 potential to the mean curvature flow with the appropriate transport coefficient 
past the first time geometric singularities occur. A short time result, i.e. the con- 
vergence as long as the geometric flow is smooth, was proved in [DOPT1]. An 
analogous result but for nearest neiyhbor interaction Ising models in two dimen- 
sions (where the curvature motion is always smooth) was obtained by Spohn in 
[Sp]. When the dynamics of nearest neighbor model are coupled with Kawasaki 
dynamics at infinite temperature, which tend to delocalize the interactions, the 
macroscopic limit was studied by Bonaventura (see [B]) for smooth motions (i.e. 
for small time) and by the authors (see [KS]) in the generality of Theorem 4.2 and 
even when fattening occurs. 

We conclude with a brief discussion of the proof of Theorem 4.2. We show, see 
Sect. 6 below, that the spin dynamics are close with respect to some seminorm and 
for short times to the solution of a discrete version of the mean field equation. On the 
other hand, this solution is close (in the L~-norm and for short times) to the solution 
of the mean field equation-all  the above are made precise in Sect. 6. In summary, 
we show that the spin dynamics are equal, in a heuristic sense, to the solution of 
the mean field equation for short times plus an error. This suggests that we should 
discretize in time (as it was done before in, among others, [DP, B, KS, DOPT1], 
etc.); the errors, however, add up! To overcome this difficulty, we introduce mean 
field equations with a#:0, i.e. we speed up (or down) the geometric motion or in 
the language of statistical physics we introduce a small external magnetization field. 
Using the sharp comparison principle stated in Sect. 3 we are then able to absorb 
the error at each time step and to conclude using Theorem 4.1. 

5. Proof  of Theorem 4.1 

Here we present the proof of Theorem 4.1. Since it is rather long, we are going to 
split it into a number of propositions and lemmas with the hope that in this way 
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it will become more transparent. Throughout this section we will be using x, y etc. 
to denote points in IR N. Since there will be no mentioning of the particle systems 
here, this will not create (we hope) any confusion. 

Proof  o f  Theorem 4.1. 1. The comparison principle for Eq. (4.1) and assumption 
(4.4) yield that 

m "~ E (m~,a;,m~,a,~) in ]R x x (O, oc ) ;  (5.1) 

hence we can introduce the change of variables 

m ;~ = q ~-,a2 on • [0, oo) . (5.2) 

2. Next we define the upper- and lower-semicontinuous functions 

z*(x,t) = lim z~(y,s) and z.(x,t)= lim z~(y,s), (5.3) 
O',s)---*(x,t) (y,s)---+(x,t) 

240 ).40 

as well as their regularizations (in x) 

{ ~(x,t) = sup {z*(y,t) - Ix - y[) 
y E ~  N 

and 

z(x, t)  inf {z , (y , t )  + Ix Yl}. 
y C ~  N 

(5.4) 

3. Let t, be the extinction time of the front (Ft)r evolving according to 
(4.3), i.e. 

t, = sup{T: {x C ]R N "w(x, t )  • 0}:~=~ for t E [0, T )} ,  

where w is as in the statement of the theorem. 
Below we use the following proposition. Since its proof is rather long and 

complicated, we postpone it until after the proof of the theorem. 

Proposition 5.1. Under the assumptions o f  Theorem 4.1, the function ~ A 0 (resp. 
z_ V O) is a sub- (resp. super-) solution o f  the geometric pde (3.17) with A = c(a) in 
~ U  X (0,t,]. Moreover, ~ A 0 = do A 0 and z_ V 0 = do V 0 o n  IR x X {0}. Hence, 
by the standard comparison principle for viscosity solutions, 

z A 0  ~ W A 0  ~ W A 0  ~ z V 0  on ]R N x [0, t , ] .  (5.5) 

[] 

4. The conclusion of Theorem 4.1 follows now immediately in ~-~.Nx (0,t,]. 
Indeed, (5.3), (5.4) and (5.5) yield 

z* < w i n  {w < 0) and z. ~ w i n  {w > 0} .  (5.6) 

We can now conclude using (5.1), (5.2) and the fact that 

]lrnoq ,)oa = - m ~  if  r < 0 and l imq ~,2a =m~ if ~ > 0.  (5.7) 
2---+0 
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5. To go beyond the extinction time t,, we argue exactly as in [ESS], observing 
that 

{ (x , t ) :w(x , t )  < 0 } =  U { ( x , t ) : w ~ ( x , t )  < 0},  
8>0 

where, for each 6 > 0, w ~ is the unique solution of (3.17) with A = c(a) and 
initial datum do + 6. This together with the fact that distance between two surfaces 
evolving according to (4.3) increases in time, concludes the proof. . [] 

We continue preparing the grotmd towards the proof of Proposition 5.1, which 
is, of  course, the heart of  our argument and which will follow from the two lemmas 
we state below. 

To this end, if 

T = sup{T' : [z*[,]z.I < e~ in ]R N x [0, Tt)} , 

then we have: 

Lemma 5.2. Under the assumptions of Theorem 4.1, T is positive. 

Lemma 5.3. Under the assumptions of Theorem 4.1, the conclusions of Proposi- 
tion 5.1 hold in ]R x X [0, T]. 

We postpone the proofs of Lemmas 5.2 and 5.3 for later in this section and we 
continue with the proof of  Proposition 5.1. 

Proof of Proposition 5.1. 1. If  2 A 0 (resp. z V 0) is a sub- (resp. super-) solution 
of (3.17) in ]R N x [0, T), then ~ A 0  is a sub- (resp. super-) solution of (3.17) in 
IR N x [0, T]. 

This is a standard observation in the theory of parabolic equations, provided 
A 0 and z V 0 are bounded. In our context we can always reduce to this situation 

by considering the functions ~b(~ A 0) and ~b(z V 0), where q~ : IR --+ IR is strictly in- 
creasing and continuous and using the fact that the scaling properties of  (3.17) imply 
that ~b(z A 0) is also a sub- (resp. super-) solution. We conclude by applying q5 -1. 

2. In view of Lemmas 5.2 and 5.3 and the above observation, it suffices to show 

T > t .  

recall t. is the extinction time of the front (Ft)t__>0. 
3. Suppose that 

T <  t , .  

Then Lemma 5.3 and the observation above yield that 

{ ~AO < wAO and zVO > wVO on ]R N X {T} 

and 

{x E ]RN'w(x,T) < 0}:~0 and {x C ]P~N:w(x,T) > 0 } ~ 0 ,  

i.e. there exist ~,x E ]R N sllch that 

7(2, T) < 0 and z_(x_,T) > 0 .  

Since ~ and z_ are respectively upper- and lower-semicontinuous functions, there 
exists an e0 > 0 such that 

~'(~Y,T+~) < .0  andz_(x ,T+e)  > 0 for e =< e0. 
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But then the definitions of  ~,z~z* and z ,  yield, for all y E ~N and e E (0,e0], 

- I ~ -  yf <__ z , ( y , T  + e) <= z*(y ,T  + e) < I ~ - y l  

which, of  course, contradicts the definition of  T. [] 

To prove Lemmas 5.2 and 5.3 we will need a technical lemma, which we state 
and prove below. 

L e m m a  5.4. Assume that J satisfies (2.1) and let 4--+ q(4 ,a2 )  be the unique 
travelin9 wave solution o f ( 3 . 1 )  with q(0 ,a2 )  = 0. I f  e is a unit vector in IR N and 
4, z E IR are such that sgn(4)(z - 1) __< 0, then 

fJ([y[)q(4 + ze . y, a2)dy > fJ([y l )q(4  + e  . y, a2 )dy .  (5.8) 

Proof  1. In view of  the symmetry of  J ,  it suffices to assume that e = ( 1 , 0 , . . . , 0 ) ,  
in which case (5.8) reduces to 

f( 'c) = fJ ( ly l )q(~  + zy l )dy  > fJ([Y])q(4 + y l ) d y  = f ( 1 ) ,  

where to simplify the notation we dropped the dependence of  q on a2. 
2. To conclude it suffices to show 

s g n ( ~ ) f ( v )  < 0 .  

To this end, assume ~ > 0 (the argument for ~ < 0 is similar) and compute 

f l ( z )  = fJ(lY[)(t(4 + z y l ) y l d y  = f J([Y[)[0(~ + zYl) - q(~ - zy l )y l ]dy  
{yl_->0) 

= f J(lY[ )[0(~ + zyl ) - (t(~ - zyl )]yldy 

+ f J ( [ y [ ) [ ( t ( 4 + ~ y l ) - O ( 4 - z y a ) ] y l d y .  
{Yl>~} 

For  Yl E [0,2~/'c] we have - 4  < ~ - z Y l ,  so 0 ( ~ - ' c y l )  > c ) ( ~ + ' c y l )  and on 
[2~/ 'Cl ,+ec) ,  ~ - ~Yl < - 4  < 0, thus c)(4 + ~Yl) = c) ( -4  - zYl) < c)(~ - ~Yl)- 
Hence f ' ( r )  < O. [] 

Next we prove Lemma 5.2. 

Proof  o f  Lemma 5.2. 1. Let ~ : IR N ~ IR be a smooth approximation of  do from 
below such that, for some 6 > 0, 

sign(M0)(IDMM_0]- 1) < 0 on ]R N and IDM01 = 1 if 0 < M 0 < ~ .  (5.9) 

2. Define the function 

M_M_;o(x, t ) = q ( M---~ - ~-t, 2a)  , 

where _~ > 0 is to be chosen below and t E [0, t], where _t > 0 is so small that 
_~t < 6 for t E [0,t]. 
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3. We claim that M ~ is a subsolution of (4.1) for 2 < 20(_~,6). Indeed insert 
M ;~ in (4.1) and compute- to  simplify the notation we drop the dependence of q 
on a2-recal l ing that q satisfies (3.10): 

~ ( M  ;~) = M~ ~ + 2-2{M '; - tanhfi[d ;~ * M ;~ + a2]} 

= ~ [ g l ( M ~  ( -~_+ex (~ ) )  -~A;~(x,t)B;~ 

where 
1 

AX(x, t) = flftanh' fl[J * q + a2 + a(J ;~ * q - J * q)]da 
o 

and 

B~(x,t)= f j ( [ y l ) ( q ( ~ ( x  + 2 y ) - ~ - t )  

here /3 denotes the unit vector in the direction of p, J is given by (3.11) and 0 is 
evaluated at 2 - 1 ( M 0 ( x ) -  _~t). 

The properties of q and tanh yield the existence of a constant b > 0 such that 

0 <= A;~(x,t) < b. (5.10) 

Rewriting BZ(x, t) as 

- . 

. 

and using Lemma 5.4 together with (5.9) we get: 

1 (MO(X~ __ (Z t 
B2(x,t) >= 2 f  fJ(ly])O - + DM___o(x) . y 

o 

+pM___o(X__ + 2y) - M___o(X ) - DM___o(X) �9 y'~ dp 
2 J 

l l  
• ff(D2Mo(x + 2a#y)y, y)adad#dy. 

0 0  

Using the above inequality and (5.10) together with the fact that 

c~(~ + A )  = 4(~)(1 + O(A)),  (5.11) 

which follows immediately from the properties of the traveling wave and, finally, 
employing (3.12)(iv) and (3.12)(ii), we get 

1 m 

2~(M_)) -_< =0[-_~ + b] for ,~ __< &(~,6), 
A 



76 M.A. Katsoulakis, P.E. Souganidis 

where the constant b depends on the b in (5.10), the constants in (5.11) and 
(3.12)(iv) and, finally, the second-derivatives of  M___ 0. Choosing ~ > b we conclude 

~~ < 0 for 2 < 20(a, 6 ) .  

3. Since, by construction M0 < do, we have 

M ~ _< m ;~ o n  ]R N X [0, t_]. 

The definition of  M ;~ and (5.2) then yield 

Mo(x ) - c~t < z;'(x,t) for (x , t )  C IR N • [0, tA . 

4. A similar argument shows that 

z~(x,t) <= -Ho(x) - ~ t  for (x,t) ~ IR N • [0 , t7 ,  

where M0 is an approximation f rom above of  do and ~ and 7 are chosen appropri- 
ately. 

5. It is immediate that for all (x , t )  c ]R u x [0, t A t ] ,  

Mo(x ) -  at < z . ( x , t )  < z*(x, t )  < M o ( x ) - ~ t ,  

hence T > 0. [] 

An immediate consequence of  the last inequalities in the proof  of  Lemma 5.2 
is the following lemma. 

L e m m a 5 . 5 .  z* = z .  = d o  on lR N x { 0 } .  

Proof  1. It is immediate from (4.4), (5.2) and (5.3) that 

z* => do >= z.  on ]R. N X { 0 } .  

2. The last inequalities, in the proof  of  Lemma 5.2 also yield 

M o _-< z,  _-< z* _-< Mo on lR N X {0}, 
where M o and Mo are approximations of  do from below and above respectively. 
Letting M___ 0 T do and M0 .L do, we conclude. [] 

We are finally in a position to proceed with the proof  of  Lemma 5.3, which 
again will be split into two parts. Before we go into this, however, we need to 
introduce some new auxiliary functions. 

To this, define 

r z~(x,t) = inf {z~(y, t )  + [x - y[} 
y E ~  N 

and 

5~(x,t) = sup {z~(y, t )  - Ix - y [} .  (5.12) 
y C ~  N 

The following lemma plays a fundamental role in the analysis below. 

Lemma 5.6. Under the assumptions o f  Theorem 4.1 and for  any T ~ C (0, T), the 
functions z ~, z and z.  satisfy the following: 

(i) [Dz_~[ < 1, and [Dz[ __< 1 in ]R N X [0, T'], 
(ii) lira z/'(y, s) = z_(x, t) in IR N x [0, T'], 

2-+0 
( y , s )~ (x , t )  
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(iii) sgn(z,)(lDz.I- 1) _> 0 in ]R N X [0, Tt], 
(iv) ]Dz_] = 1 on IR N x (0, T']  N {z > 0}, 
(V) I f  y ( x , t )  C ]R u is such that z(x,t) =z.(y(x,t))+ Ix-y(x,t)[ for some 

(x , t )  C ]R u x [0, T t] n {z_ > 0}, then z.(y(x,t),t) = 0 and 

z_(x, t) = dist(x,{y:z,(y,t) -- 0 } ) .  

The corresponding dual statement holds true for ~;~ ~ and z*. 
Proof 1. (i) and (ii) are immediate from the definitions of  z_ ;~, z and z. .  

2. In view of  (3.10) and (5.2), we have 

2(~ (z--~2 ) Iz~t - 2cJ~(a)] +tanhfl [J * q ( ~ ) +a2] -tanhfl IJ * q (Zl-f2 ) +a2] = 0 ,  

where to simplify the notation we suppressed the explicit dependence of  q on a2 
and z ~ is evaluated at (x, t). 

After some elementary manipulations, the expression above can be written as: 

2q ( #  - _ _  c2(a)) - flfotanh'[fifJ([y[)q(ZLf +e �9 y) dy+a2 

- q ( ~ + e .  y) dy)lda 

x fJ(iYi)fq + e. y 
0 

(z~(x ~ 2Y) z2(x) 
+P - 2 

[z~(x ~ Zy) z~(x) 
• 2 e. y]dy=O, 

for any unit vector e in ~ N  where again we suppress the arguments of  z 2 when 
this does not create any confusion. 

3. I f  (x , t )  E ]R N X (0, T t] is such that 

z,(x_,_t) > 0 ,  

then there exists (x)~,t2) ~ (x, t )  such that z;~(x;~,t)~) --~ z.(x_,t) as ~ oo. 
Evaluating the above equality at (xa, t2), expanding z ~~ around this point up to 

second order in x and using the asymptotics of  q and (3.13) as well as the fact that 

fo  tanh'[  �9 ] da is positive and bounded away from zero and sending 2 .[ 0, we get 

sgn(z.) f J(lyl)[e -sgn(z.)a~Dz. " y -  e-sgn(z*)ale" y]dy = O, 
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or equivalently 

f J ( [ y [ ) [ e  -alDz* " Y - e  - a l e "  Y]dy  >= 0 for all lel = 1. (5,13) 

Now pick e such that D z .  =- [Dz.le and consider the function 

G ( z )  = f J ( l y l ) [ e  -aIde " y - e - a l e "  Y ] d y .  

It is immediate that G is convex, G(1) = 0 and G'(0)  = 0. Hence G('c) >= 0 if and 
only if z > 1, thus (5.13) yields 

IOz, I >_- 1 at (x_,_t). 

Of  course, all the arguments above must be interpreted in the viscosity sense -  
here to simplify the presentation we chose to argue as if all functions involved were 
smooth. 

An analogous argument in {z. < 0) concludes the proof of  (iii). 
4. I f  the minimum in (5.4) is achieved at y ( x , t ) 4 : x ,  (iv) is immediate. I f  

y ( x , t ) = x ,  then (iv) follows from (i) and (iii), since, in this case, z . ( x , t ) =  
z_(x,t) > 0. 

5. We introduce the auxiliary functions t/n E C2(IR) such that 

1 
t/n(0) = 0, t7'.(0) = 1, t/. > - n ,  0 < r/" < - on IR and t/n(~) I ~ as n --+ cx~ , 

n 

and define 

z_.(x,t) = i n f N ( ~ l . ( z . ( y , t ) )  + [x - y [ ) .  
y C ~  

It is immediate that z__. ~. z as n ~ cx~ and IDzn [ < 1 on IR N • [0, T']. Finally, 
if  y . ( x ,  t )  E IR N is such that 

Z__n(X,t ) = t l n ( Z . ( y . ( x , t ) , t  ) + ]X -- y . ( x , t ) [  , (5.14) 

then, passing if necessary to a subsequence, 

y . ( x , t )  ~ y ( x , t )  and z(x,t)  = z . ( y ( x , t ) , t )  + [x - y (x , t ) [  . 

Observe now that the definitions of  z_ n and y . ( x ,  t )  yield 

t f . ( z . ( y . ( x , t ) , t ) ) l D z . ( y . ( x , t ) , t ) [  < 1,  

which in turn, in view of  the choice o f  the r/n'S, contradicts (iii), unless 

z . ( y . ( x , t ) , t )  < 0 ;  

the case z . ( y . ( x , t ) , t )  < 0 is ruled out similarly using (iv). 
All the above need, of  course, to be interpreted in the viscosity sense if t > 0. 

As a matter o f  fact (iii) holds in {z. 4:0}; a simple and standard argument in the 
theory o f  viscosity solutions then yields that (iii) holds on {z.( �9 , t )4 :0}  for all 
t E (0, T']. Finally, if t = 0, the conclusion follows from the fact that z.  = do on 

• {o).  
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6. Finally observe that the arguments of  steps 4 and 5 above prove the claim 
for any minimizing y(x,t), which can be obtained as a limit of  yn(x,t). On the 
other hand, a more careful look and routine arguments involving making minima 
to be strict one's, yields the claim for any minimizing y(x, t). [] 

The last but also very important issue remaining towards completing the proof 
of  Lemma 5.3 is the identification of the transport coefficient 0 in (3.15). T h i s  
unfortunately cannot be done at the level of  the za's. Instead we need to introduce 
correctors, as it is done when studying problems in homogenization. This, of course, 
is not unreasonable, since, as mentioned in Sect. 4, an averaging is indeed taking 
place at the level of the underlying stochastic process, which corresponds to the 
linearization of (4.1) around q. 

Below we introduce the correctors; as usual to simplify the notation we will 
suppress the explicit dependence of q on a2. 

For d , ~  E IR,2 > 0, and for all e,d E ]R u such that le[ = [d[ = 1 ande  �9 d = 0  
a corrector QX : N ~ IR is the unique solution of 

fl [fJ(lyl)4(4 + e �9 y ) (~ .  y)2dy] 4(4) d -  
1 - (q(~) + c~(a)4({)) 2 

= /3 fa ( ly l )4 (~  + e �9 y)  [Qa({ + e �9 y)  - O~({)] dy (5.15) 

with the properties 

Q~(0)  = 0, IQ~(~)I ~ Cl~l, 10~1 ~ c (5.16) 

for some constant C. The existence of such a Q~ follows - its uniqueness is deter- 
mined by (5.16) - using Fredholm alternative type of arguments provided 

d = OZ~, (5.17) 

where 

0 "~= ~ [ffJ(lY[)(t(~)4(~ + e .  y ) (~ .  y)2dyd4] 

(c)({))2 d~] 1 .  (5.18) F 
x i f  1 - (q(~) + c2(a)q(~)) 2 J 

In view of the properties of the traveling waves 4 H q(~, a2) at the limit 2 ~ O, 
it follows that 

0 ~ ---+ 0 as 2 --+ 0 ,  (5.19) 

with 

Q (0(4)) 2 , ~.,~ --1 
fl [ f  fJ(lyl)gl(g)(t(4 + e . y)(d . y)2dydr f f S  q - ~ a g )  (5.20) 0=~ 

where now in (5.20), 
q(4) = q(~,0) .  (5.21) 

In preparation for the proof of  Lemma 5.3 we state and prove the following 
lemma; its proof goes along the lines of analogous results in [BSS], which, however, 
need to be modified to account for the COl'rectors. 
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L e m m a  5.7. Under the assumptions of  Lemma 5.3, z_ (resp. -f) is a super- (resp. 
sub-) solution of (3 .17 )  with A = c(a) in {z > 0} AlR N x (0, T ' )  (resp. {7 < 0} N 
IR N x (0, T ' )) .  

Proof 1. Let (xo, to)C {z > 0} A]R N X (O,T I) be a strict minimum of  z -  ~b, for 
some smooth test function q~. Without any loss of  generality, we may  assume 

z > ~b on lR N x [0, T']  with equality only at (x0, to).  (5.22) 

We want to show 

I D ~ _ D q S ]  
qSt - 0 tr ]D~bl2 j O2~b - c(a)lD~l > 0 at (xo, to). (5.23) 

2. In view of  Lemma 5.6 (iv), we have 

[Dq~(x0, t0)l = 1. (5.24) 

3. Consider the corrector Q;" defined by (5.15) and (5.17) for 

-1 4 (5.25) ~4=~t(xo, t o ) - c (a )  and ~ =  0; ~ , 

where 0 "~ is given by (5.18). Again recall that we will be writing q for q( �9 , a2 )  
throughout this proof. 

4. In view of  the properties of  Q)~, the map ~ ~ ~ + 22Q~(~/2) is 1-1 and onto, 
hence we can write 

z~=w'~ + 22Q;~ (w~;,z ) on IRN x [O,T'], (5.26) 

for some functions w ~ : ]R N X [0,  T t] ----+ ]R and 

w. = z.  and w* = z* . (5.28) 

Define 
w;~(x,t) = inf  {wr + Ix - Yl}.  (5.29) 

yEIR N 

Our assumptions on T '  immediately deliver, for all (x, t) c ]R N X [0, TI], 

lim w~(y,s) = z(x,t) . (5.30) 
2-+0 

(y,s)---+(x,t) 

5. Lemma 5.6, (5.22) and (5.30) yield the existence of  and (x ~, t ~) ~ (Xo, to) as 
2 --~ 0, such that 

(x~,t ;~) is a minimum of  w ~ -  q~ and w;~(x~,t~)--+ z_(x0,t0) ; (5.31) 

actually (5.30) yields the existence of  (x M, t M ) --+ (xo, to) along a sequence J~m ---+ 0, 
but for notational simplicity we only write 2 --+ 0 below. 
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Let (y;~,t ~) and (yo, to) be points at which the inf is attained in (5.29) and 
(5.12) respectively. Without any loss of generality we may assume that 

{ (y~,t ~) -+ (yo, to) as 2 ---+ 0 

and (5.32) 

w ;~ > ~;~ with equality at (y;~,t~), 
where 

~)~(x,s) = ~(x + x ~ - y'~,s) . (5.33) 

Using now Lemma 5.6(v) and (5.28), it is easy to see that 

lira w~(y ~, t ~) - 0 .  (5.34) 
2--~0 

Arguing as in Step 4 of the proof of Lemma 5.6 we also get 

sgn(w)~(y ~, t'~))(lDw;~(y "t, t)~)l - 1 ) < 0 ,  (5.35) 

and using (5.24) and (5.34), 

[OTJ;~(y~,t;~)l = [Offg(x~,t;~)l --+ 1 as 2 ---+ 0 ,  (5.36) 

the latter following from (5.31) and (5.24). 
6. We now turn to the equation satisfied by the wZ's, which we evaluate at 

(y~,t; O. In everything that follows below to simplify the notation we will not be 
writing the arguments of z ;~ and w ;~ and almost never write the t-argument, unless 
it is necessary. We will also write q, (1, q and Q, 0 without their arguments, which 
are z;~/2 and w;~/2 respectively - recall z ~ = w ;~ + 22Q(w2/2) - and as before we 
will not exhibit the dependence of q and Q on 2. Finally, all the calculations below 
must be interpreted in the viscosity sense. On the other hand, keeping in mind that 
eventually the paper must end at some point, we present them as if everything were 
smooth. 

A simple computation and Eq. (3.10) yields, at (y;~,t~): 

gl[(~+Oo) w~--ffc'~(a) 1 -~{tanh[fl[J~*q+a2] 

- tanh [fl[(J * q) + a2]} = 0.  

Rewrite the above equality as 

gl[ (2 + Q) w~- -~c~(a)l - ~{tanh[fl(S~ *q +a2)] 

-tanh[fl(fJ(lyl)q(W~2+2Q(W---~)+Dw )~. y )dy+a2) ] }  

>=~{tanh[fl( fJ(lYl)q(~ +Dw)~ "Y)+a2)dY  1 

- - tanh[f l ( fJ( ly l )q(~+Dw "-'~z . y) dy+a2) l}  , (5.37) 

where Dw ~ is the unit vector in the direction of Dw x. 
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The inequality in (5.37) is not a misprint. It is there, due to the ellipticity of  
the nonlocal equation, when we use the test functions 7 ~ instead of  the wa's. 

7. Set Dw ~ = e and write Dw ~ = re. In view of  (5.35) we have 

sgn(w;~)(v-  1) < O. 

On the other hand, since ~ ~-~ ~ + 22Q(~/2)  is 1-1 and Q(O) = O, 

sgn(w ~) = sgn(z;~). 

Applying Lemma 5.4 with { = z~/2 and using the above, we see that the 
expression in the right-hand side of  (5.37) is nonnegative. 

Hence 

11{ 0 + Q w~ ~ - )@2c;~(a) - • tanh [fl(j2 , q + a2)] 

- tanh[ f i ( f J ( l y l )q (W~+kQ+L~ ;~. y)  dy+a2)]}  >0 ,  

and, after some elementary calculus, 

where 

' { ) A ~ = f f l t a n h '  fl fJ(lY[)q +2O+Dw x . y  dy+a2 
o 

(5.39) 

(5.4o) 

=fJ(lyl)f(l  w;t r + 2 Q  +Dw "~ �9 y +pC "~ dpC'~dy, 
o 

8. We concentrate for the moment  on the term multiplying A )~ in (5.38), which 
for definiteness we call B;~: 
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with 

c A _ 

= 2  

w;~(y )~ + 2y) + 2Q (W~CY~_ + 2y)) 

w;~ ( y ~ ) o w , ,  

{ l(D2w'~(y)~)y,y)+Q(W'~(YX) +DwX . y) - Q ( ~ ) )  } 

+O(22)+ 2 {Q(w2(Y'l) q-Dw)o . y+O(2)) 

-Q (wa(Y~) + Dw~' . y) } . (5.41) 

Notice that the last curly bracket in C J~ is of order O(2), since IQI < C. Finally, 
we remind the reader that all the above calculations are done for the smooth test 
function ~uz and not for w )~, hence we obtain the 0(2)  in C )~ by expanding the 
smooth test function. 

It is also clear that 

C ~< = 0 ( 2 ) .  (5.42) 

The properties of Q and (5.34) also yield 

2Q(wx(y~'t~)) = o(1) .  (5.43) 

In addition, (3.12) implies, for some constant C and all { E IR, 

4({) < C and O({+o(1 ) )  _ 1 + o ( 1 ) .  (5.44) 
0-75 = 0(r 

Combining all the above and once more (3.12) we obtain 

B~ = O ( ~ )  o(1 ) . (5.45) 

Finally, using (5.36), (5.42), (5.43) and (5.44) we conclude 

gl ( ~  + 2o (W'~Y'Z~ )) + Dw "~ �9 y + pC "~) 

=cl +Dw~.y (1 + o(1)) .  (5.46) 
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8. We now return to (5.39). A combination of (5.36), (5.40), (5.42) and (5.45) 
delivers 

A;~=ffltanh ' fi J([y])q + 2 Q + D w  ; ~  d y + a 2 +  ~B ~ dcr 
0 

=fltanh'{fllfJ([y[)q(W--z~+Dw-"--)'. y+o(1))dy+a2+gl(W~)o(1)J} 

=fltanh'{fl[J*q(W-z~)+a21}+(l(W---~)o(1) 

=fl{1- [q(W~)+c;~(a)~,(w---~)12}+~,(w;~(Y;-s (5.47) 

Notice that in the above expression q and 0 are now evaluated at w'~/2 instead of 
za/2. 

Now using (5.41) and (5.46),  B ~ becomes 

B;~= fJ(ly[)o (w---~ + Dw~;~ " y) (l + o(1)){ 2[~(D2w~y,y) 

+Q(W~+~o . y) _Q(2)]dy+o(2)}dy" (5.48) 

Substituting (5.47) and (5.48) in (5.38) and using (3.12)(ii) we get 

12 [ f l { 1 - - [ q ( ~ [ ~ ) + c ; ' ( a ) f l ( W - ~ ) ] 2 } + o ( w ~ 2 ) ~  

• ~ " Y)(l+o(1)){2[~(D2w~y,y) 

( ~ - -  ) (~ ) l  '}+ +Q + Dw ~ . y - Q +o(2 => 0,  

where the last inequality is of course interpreted in the viscosity sense. 
9. Replacing w ~ by ~;~ (see (5.33)) and making the obvious simplifications we 

obtain: 

(~ (w2(Y)"t;) ~ 
\----7;--~ j 2 [q bt(x;~' t~) - c(a)] 

(w~(y;~'t~) y) [I(D2~p(x/~,t~)y,Y) 1 -flfJ([Y[)(t k, 2 + ~ ( x ~ , t  ~) �9 x 

+ [Q (W~(2~'t~) +-~(x;~,t;O) . y) _Q (W'z(Y)~'t~)) +o(l)t dy 

+r ( ~ ) o ( 1 ) > 0 .  (5.49) 
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We may now replace ~Pt(x;~,t'~), DtP(x;~ "~) and D27J(x;~,t "~) by 7Jt(xo, to), 
D~(xo, to) and D2tp(xo, to) respectively by making an error, (see (5.44)), of the 

order 0 ( ~ )  o(1). 

Recall now that Q solves 

1 - (q(~) + c~'(a)gl(~)) 2 [Ot(xo, to) - c(a)] 

[ f J(lyl)4(~ + e .  y)(Y.  y)2dy] ~(4)~(Xo, to ) -  c(a)) 2 
= flfJ([Y[)O(~ + e �9 y)[Q(~ + e �9 y) - Q(~)]dy, 

for 

e =DO(xo, to) and somed E IRN such that[E I = land e �9 ~ = 0.  

Substituting in the previous inequality we get 

2 1 
~ f J('yl)O (w---~ + DO(xo, to) " y )  [(~ " y) -o[(at(xo, to) - c(a)] 

-(D2(a(xo, to)y,y)]dy>= o(1)c) ( ~ )  , (5.50) 

where w ;~ is evaluated at (yX,  t;~ 
10. We now turn to the term 

f J(lYl)gl(~ D4(xo, to) �9 to)y,y)dy. y )( D2 d?(xo, + 

n Assuming for simplicity, in (5.50) D4)(xo, to) = en, writing y = }-'~i=1 yiei and using 
the symmetry of J ,  for any r E IR, we obtain 

n--1 

fJ([yl )0(4 + en . y)(D24)(xo, to)y, y)dy = ~ fJ(lyl)4(4 + e, . y)y2Oxixi(Xo, to)dy 
i=1 

+ fJ(I Yl)il(~ + e~. y))y2Oxnx,(xo, to)dy. 

Inserting the above identity with ~ = 2-1w;~(y;~,t ~) in (5.50), yields 

2 1 
~ fJ(,y,)(t  (w-w~2 + D~)(xo, to) . y )  (~ . y) dY{-o C~t(xo, to) 

- t r ( I  D ~ |  t o ) } - ~ f J ( l y l ) { l  + to) 

(en.y)2dy{(D2~)Dff)(xo, Yo),Ddp(xo, to)}>= o(1)0 ( ~ )  , (5.51) 

where again w ;~ is evaluated at (ya, t'l). 
Recalling (see 3.10(v)) that for all r E ~ ,  

0 < a31- < fJ(lyl)4(~ + e �9 y)(e �9 y)2dy < a3 
= 4 ( ~ )  - 
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and 

0 < a3 1-  < f J ( l Y l ) O ( r  �9 y ) ( d .  y)2dy < a3, 

= 0 ( 4 )  = 

as well as the Lipschitz continuity of  Q, we let 2 1 0 and obtain, for some # > 0, 

Dz | Dz  \ 2 
Z t - 0 t r  1 ~ - ) D z - - c ( a ) l D z  I >= #(D2zDz, Dz)  in {z > 0} .  (5.52) 

To conclude we argue exactly as in the proof  of  Lemma 5.2 of  [BSS] in order 
to drop the right-hand side of  (5.52). This is based on the observation that since 
IDz_l = 1 in {z > 0}, then roughly speaking 

D2zDz = 0 a.e. 

For all the details we refer the reader to the proof  of  Lemma 5.2 of  [BSS]. 
11. The arguments for ~ are similar. 
We are finally ready for the proof  of  Lemma  5.3. [] 

Proo f  o f  L e m m a  5.3. 1. For 6 > 0 consider the smooth functions ~P6 : IR ---+ ]R 
such that 

06 = 0 on ( - o c , - c 5 ] ,  0~ > 0 in IR and lim O6(s) = s + (5.53) 
= 6---+0 ' 

and define 
v6 = ~6(z_). (5.54) 

2. Let (x0, to) C IR N x (0, T ~) be a strict minimum of  v6 - (a for some smooth 
function ~b. I f  z_(xo, to) > 0, we conclude easily using the fact that (3.15) is geo- 
metric, i.e. invariant under increasing changes. 

Let now (x0, to) E {z_ < 0} n IR N x (0, T~). The Lipschitz continuity of  v6 in x 
implies that v6 = 0 in a ball around x0, hence 

In this case we may  assume 

hence we only need to show that 

Set 

and notice that 

Dc~(xo, to) = O . 

D2q~(x0, to) = 0 ,  

Ct(x0, to) > 0 .  

~(y, s)=0,(~ ~) 

lim 
(y,s)~(x,t) 

2 4 0  

v~(y, s)  = v6(x, t) . 
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2 Thus v~ - r has a local minimum at (x ~, t a) such that (x ;~, t x) ~ (x0, t0) as 2 ~ 0. 
Furthermore, using (5.49) with Q - 0 we get 

>a~(x~,y~,t~)fJ(lYl)o(~+e" y){l(DZr t;~ 

where aa(x ~, y2, t r > 0 and z ;~ is evaluated at (y;~, t;~). 
Sending 2 + 0 we obtain 

Ct(x0, to) > 0 .  

The above yield 

~bt - 0 tr (1 
\ 

D e  |  
iDr 2 D2r - c(a)lDr ~ 0 at (xo, to) ,  

hence v6 is a supersolution in {z >__ 0}. We conclude letting 6 ~ 0. [] 

6. Proof and Corollaries of Theorem 4.2 

(i) Proof of Theorem 4.2. As before we organize the proof of  Theorem 4.2 in a 
series of  lemmas, which we give and prove below. At the end of  the section we 
also state some immediate corollaries. 

At this point we want to remind the reader that we return to the convention 
of  Sects. 2 -4  denoting points in 7~ N by x, y, etc. and points in ~ N  by r , / ,  etc. 
Finally throughout this section we will denote all uniform constants by C, keeping 
of  course in mind that they may change from place to place. 

An important ingredient in the proof  will be the mean field equation 

mt+m-tanhfl(J*m)=O in I R N x ( 0 ,  oo ) ,  (6.1) 

and its discretized version 

m~ + m s - tanhfl(@ o m ~) = 0 on 7~ N x (0, o c ) ,  (6.2) 

where Jr o f is the discrete convolution on T N, i.e. 

J~ o f(x) = ~ @(x,y)f(y). (6.3) 
yE2g N 
y 4 x  

We write m( �9 , l a)  and m~( �9 , I a)  to denote the solutions of  (6.1) and 
(6.2) respectively with initial datum 

m(r, 0 ] ~) = g(r) 

and 

where, for x E 7~,N, 

respectively. 

(r  E IR N) (6.4) 

m~(x, 0 I o -) = or(x) (x E 7z~N), (6.5) 

9(7x) = a ( x ) ,  (6.6) 
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The first 1emma estimates the difference of  the solutions of  the discrete and 
continuous mean field equations. Since its p roof  is a straightforward application of  
Gronwall ' s  inequality, we omit it. 

L e m m a  6.1. There  ex i s t s  a cons tan t  C > 0 such that  f o r  all  t > O, 

sup [mY(x, t l 0 )  - m(Tx, t I 0)1 < Ce~ �9 
xETs N 

[] 

Next we state an estimate on the fluctuations of  the stochastic process {at}t__>0 
around the solution mY( �9 , ] o)  of  (6.2) in terms of  the correlat ion func t ions ,  
also known as the v- funct ions,  

where, for each n E ]hi, x E 7/N - see (2.4) for the definition of  Z N. The following 
estimate on the v-functions is proved in [DOPT1] under the condition that the 
potential J is C 3. A careful examination of  its proof, however, reveals that (2.1) is 
enough. 

L e m m a  6.2. A s s u m e  (2.1). Then f o r  any  6 > 0 and  n > 1 there is a cons tant  
cn > 0 such that  

Nn 
sup sup sup ]v~(x_,t[ o)[ < CnT-:- . 

xET/~ " tE[0,ya] o-EZ" 

It is important to have an L ~ - n o r m  type estimate on the difference o t - -  

mY( �9 , t ]  or). Lemma 6.2, however, does not yield such an estimate, since it does 
not allow a straightforward application of  Chebyshev 's  inequality. To overcome this 
difficulty, following [DP, B, KS], etc., we introduce the following 7-seminorm on 
~N: 

I l f l ly , s  = s u p  ITY(S)f(x)I, (6.7) 
x E S  

where 

> ,5, (6.8) 

with 6 as in Lemma 6.2. Here, S is a subset o f  7IN and t ~ TY(t)  is the semigroup 
associated with the equation 

u~ = ~yu y + fl(J~ o u y - jy ,ou y) in ~N X (0, o o ) ,  (6.9) 

where 

~7 = fiJy,o - 1 and Jy,0 = ~ J y ( O , y ) ,  (6.10) 
Y 

which is the linearization of  (6.2) around m y = 0. For a given f E L~176 

e aTt Y X T Y ( t ) f ( x )  = ~ P t (  , Y ) f ( Y )  ; (6.11) 
y 
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here 
{ Ft(x, Y) = p~(O,x - y) and 

_c. , . ~  (Pt ) % , ~  . 
pTt(O,x) = e 2~=o-7~. a ~ to, x) (6.12) 

with 

c* = flJT,0 and J~(O,x) = Y~, J~(O, xl) . . .Jy(Xn-l ,X),  
Xl ,'", Xn -- 1 

i.e. p~t(x, y)  is the transition probability of  a jump process with intensity flJ~(x, y). 
I n  preparation for the statement of  the next lemma and for each t > O, we 

introduce the sets 

.~/'~ = {k E ~ / ' :  k ~ k(y) = s - ly-~:*t~-2} , (6.13) 

where 2 is as in the statement of  Theorem 4.2, re* > 0 is to be chosen below, 
s E [1, 2), and 

OT,k = [ - - ~ ) - I - p l  __ 7"1(k(7) - k ), y-l-Pl q- 7-1(k(7)  - k )] N fq 7Z N 

(k E W~ U {o}) ; (6.14) 

notice that Q~,k(r) = Qr, the latter given by (4.6). 

For k E JV'~ let tk = sT~*k and denote by a ce) the spin configuration at time 
t = tk. Then, given any ~ > 0, define 

HJ = {~<o> : iI~<k/_ mr( . ,s7~* I ~<~-*>)II~Q,,~ < ~ for all k E ~ } ,  (6.15) 

Hi  = (~<0) : i1~r _ ~,~<O>lb,o,, ~ < ~r (6.16) 

and 
= H~ NH~ . (6.17) 

L e m m a  6.3. Assume (6.8). Then for any T > O, s e l l , 2 )  and all ~ < ~* = 
m:_lN 2r and ~ > to*, there exist Cm > 0 such that, for all m > 1, m ~,~, - -T-)  = 

" 7 - - 7  lnf P r ( H t )  > 1 - Cmy m . 
tG[0,T] # = 

(6.18) 

Proof 1. It is obvious that it suffices to establish (6.18) f o r / f J  and H i separately. 
2. For y E 7~N write 

7 0 . p~(y) = pTr , y) (6.19) 

Then 

-mY(y ,  q la(~ > 7 ~  , (6.20) 
/ 

where 

]Q7,o[ = (7  - p l - 1  q - S - - 1 7 - - K * t " ~ - - 2 7 - - i )  N "  (6.21) 
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Using Chebyshev's inequality with power 2n we get 

P~(~p~(y)[(7(1)(y)-m~(y, tl'(7(~ ~) 

[2i_I~ 1 )] [ ~Q2i=I~l{ )})] <= 7 -2n( ~ P>'(Yi ]E (7(1)(yi)_  mT(yi, tl 1(7(o) . 
Yl  , '" ,Y2n "= "= 

(6.22) 

3. Lemma 6.2 yields 

2n 2n 
P~(Yi) lE~ {(70)(yi)_ m~(yi, tl ](7(o))} < C 2 n ~  N n  . (6.23) 

Y l  4="" :t= Y2n "= 

4. The term on the right-hand side of (6.22) with the y~'s pairwise equal is 
bounded as follows: 

[irI1 ( I  I (i_l~I1 { )}t 2 ] E p ' ( y i ) )  2 E~ (7(1)(yi) _ m'(yi,  tl I (7(0) 
Y l =t= " " =t= Y n "= "= 

=< 22n ~ p~(yi)) 2 , (6.24) 
Y l  #= " "  @ Yn "= 

where 22~ follows from the obvious fact that 

supsup[l(7(x)l + Ime(x, t l(7)l] ~ 2. 
a ( x , t )  

To estimate the right-hand side of (6.24) we write 

/ ( x )  = = g ( x )  + 

where 

(6.25) 

roT(x) -c ~ . . . .  ~ . . . . . .  / = e ,~--1 n! a~ iv, x) and l~(x) = 0e-C%~ otherwiseif x 0 ,  . (6.26) 

Using (6.25) and (6.26) and performing the obvious algebraic manipulations we 
get 

Pe(Yi)) 2 = < Cn 7zT(Yi)) 2 , (6.27)  
Y l  =}= "'" =]= y n  "= 

where ~, = O(n). 
Applying Minkowski's inequality to the right-hand side of (6.27) and using 

(6.26) we obtain 
~--~,(Tz~/(y)) 2 =< C ?  2 r  + N  . Y 

In view of the above, (6.27) becomes 

PT(Yi))2 <= 
Y # : ' " # ~ Y n  "= 
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hence, going back to (6.24), 

p~(yi) ) 2 ]E a(1)(yi) - mT(yi, tl ] a (0) 
y14= �9 4=yn "= 

where again c, denotes a uniform constant of order n. 

2] Cn7 (2~+N)(n-1) < 

(6.28) 

5. Since all the other terms appearing in the sum on the right-hand side of 
(6.22) can be bounded by a combination of terms as in (6.23) and (6.28), using 
(6.20) and (6.21), we obtain 

7 c * p~(o)((H t ) ) <= Cn[tN(y-~ y--1/~--2)N .jr y -N(p l+ l ) ]max  [yNn,y(2@+N)(n--1)] y-2n~. 
(6.29) 

By choosing 

and taking n large we conclude. 
6. The inequality for Hg follows as above, the only difference being that, in 

view of (4.5) (i), step 4 is trivial. [] 

The next lemma is the basic step in the proof of Theorem 4.2. To state it we 
need to introduce the solutions M ~ and M~ of the initial value problems 

M t +-M "~ -tanh[fl(J*-M;~ = 0  in IR ar x (0 ,oc ) ,  (6.30) 

M~(r,O) = q ( ~ ,2a) (r E ]RN) , 

and 
( M ~ t + M 2 - t a n h [ f l ( J , M 2 - a 2 ) ]  = 0  in ]R N X (0, OO), 

/ ( ) M Z ( r ' 0 )  = q d0(~)-~, 2a (r E IRN), (6.31) 

where a, e > 0, do is as in (4.3) and the traveling waves are normalized so that 

q(0,a2) = q ( 0 , - a 2 )  = 0.  

In view of the asymptotic properties (3.12) of the q's, for each fixed a and e, 
we may choose 2o = 20(a,e) so that for all 2 < 20, 

q - - ,  2a < q ,0 =< q ,2a on F-~ N . (6.32) 

Lemma 6.4. For any 6 > 0, choose ~ > 6, ~ < ~*=min[N,L~Y-]  and 1s < 

min(( ,~ , l )  and 2 = 2 ( 7 )  such that 7-P*2(7)--++cx~ as 7--+0, with p * =  

min[1 - ~ * , ( -  tc*,~ - K*]. Let M~, M ;~ be solutions of  (6.30) and (6.31) and 
choose 2 small enough so that (6.32) holds. Then there is 70 > 0 such that, for 
all 7 E (0,70) and k E {1 . . . .  ,k(7) - 1}, 

sup sup (m~(x, tk+l - t k l a  (k)) --M'~(Tx, tk+l)) 
~E-~ ~' x~Q~.,k+l 

=< ee O+/~)~tk+~-tk-~r sup sup (mT(x, t k -  tk-1 l a (k-l)) -- M---~;~(7x, tk)) + 
~r@~' xEQT,k 
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a n d  

sup sup (M~(Tx ,  tk+~) - mr(x ,  tk+~ -- tk [ a(k) ) )  
a E ~  ~ x E Q T , k + l  

<ce(~+~)(t~+~-t~-7r sup sup (M_~(x, t~ i t~_~ la (k-l)) 
~E-ff" xEQ~i,k 

- mY(x, t~ - &_~ la(~-~))  + . 

P r o o f  1. We only prove the first inequality, the second follows similarly. 
2. Applying Lemma 3.1 on NN x [tk +7~, tk+l]  we obtain 

m(Tx,  tk+l)  - -H'~(TX, tk+l)  < ce  (l+fl)(tk+l-q'-7~-) 

• [ sup (m(vy,7 r [ a (k)) -- M)~(Ty, tk + 7~)) + + (7 -p~ + (k(7) - k) 
I_YEQT, k 

-Pl  _Tlxl)-V2e[rlP~+(k(~)-~-71xl)][1-1n(~ +(k(~')-k)-wlxl)] 

• -- tk -- 7~) ~ ;~ +(k(Y)-g))-~lxl/ -- Cfi2a(tk+l -- t~ -- 7 ~-) 
/ 

Since x E Q~,k+l, we have 

m(Tx, tk+l ) - M~(Tx ,  tk+l ) < ce  (l+#)(tk+~ -tk-y~) 

[xSUp (m(Tx ,7r  (k)) - - H 2 ( T x ,  tk + 74)) + + fl(tk+l -- tk -- 7r 
[_ "-- ~'~', k 

- Cfl2a(tk+l - t~ - 7~). (6.33) 

3. Employing the variation of  constants formula associated to the semigroup Tr, 
as well as Lemma 6.1, we get 

m(~x,  ~ [ a (k)) = [T~(7~)a(k)](x)  + 0(7 ~ + 7) ,  (6.34) 

and 

~r2(Tx, tk + 74) = [T~(7r �9 , tk)](x) + 0(74 + 7) .  (6.35) 

4. Thus 

sup (m(Tx, 3) r [ a (k)) - - ~  - M (7x, tk + 7r 
xCQT, k 

< sup (T~(7~-)[cr(k)( �9 ) --M'~(7 " , t k ) ] (x ) )  + + O(7 ~ + 7)- 
xCQ;, ,~r 

(6.36) 
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Furthermore (6.33), (6.36), the definition of  H~ and Lemma 6.1 yield, 

- -2  
sup (mr(x, &+l - tkla (k)) - m (7x, tk+l)) 

x E Q'/k + 1 

I - - 2  + _-<ce O+~)(t~+l-t~-~) sup (m~(x, tk - tk_~la (k-~)) - M (~x, tk))  

+ fl(tk+l -- tk -- 74) + 0(74 + 7) + 7; ] -- Cfl2a(tk+l -- tk -- 7~), 

for all a E H~. 
5. The choice of  2 implies the result for 7 sufficiently small. [] 

Lemma 6.5. There exists 7o > 0 such that for  any 7 E (0,70) and all x c Qr,k, a c 
H~ and k = 1 . . . . .  k(7), 

M'~(TX, tk) > m~(x, tk - t~-ll a(k)) > M__;~(yx, tk) �9 

Proo f  1. In view of  Lemma 6.4, we only need to prove 

M't(TX, tl ) > mT(x, h la  (~ > M'~(TX, tl)  for x E Q~,I - 

Next we only prove the first inequality, the second following similarly. 
2. Arguing as in the proof  of  Lemma 6.4, using the definition of  H~ and (6.32), 

which of  course needs 7 small, we get 

sup (mS(x, tl la (~ - m~(Tx, tl )) 
hrT,XEQT,1 

H' x~Q.~, o 
L , , 

+ fl(tx - 7 4) § 0 (7  4 + 7)] - fl2a(tl - 7 ~-) 

-<ce ( 1 + ~ ' - ~  [~: + ~(tl - ~ )  + o ( ~  + ~)] - c~,~(t~ - ~ ) .  

Choosing 7 sufficiently small we conclude. [] 

We are now in a position to present the proof  of  Theorem 4.2. 

Proo f  o f  Theorem 4.2. 1. Let t > 0 and consider the partition of  the interval 
[0,t2 -2] given by (6.13). 

2. Fix x C 7Z~. Then 

IE~ at;_2(x ) - I-[-H~(7x, tf1-2) 
_ xEx 

f [ . 
-- IE~, - Z~t, lE (~(~,)_1) [Im~(x, s7 ~ [a (k(~)-~)) 

LxEx_ 

[ * 'a (k (~) - ' ) ) ] - - I ]M~(Tx ,  t 2 - ~ ) }  + Z-~i'~(~(~,)_~ ) [ Im~(x,  s7 ~ 
Lx~x_ x~x  

I = E~>, (1 - Z~,)x~xaO-2(x) 
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+ ]E~. (1 - ZN)IE (~(~,~_,)riM (Tx, t)~ -2) . 
xCx_ 

We denote the terms in the right-hand side of  the last equality by (I), (II), (III) 
and (IV) successively. Below we analyze each one of  them separately. 

3. For each n E N,  Lemma 6.3 yields a uniform constant C, such 

and 

( I V )  = ]ELy 1 -- Z ]E (.~.(7)_1) ( ~ Cn~ n . 

4. Using Lemma 6.2 we obtain the following, uniform in y, bound on (II): 

(II)----1E.~, ZN t~t2-2(x ) - ~[m~(x, sy ~ It7 (k(~)-l) < 2nc~-~ . 
xCx 

5. Finally 

- M  (Txi, t2 -  )] , (III) < lE~r Z-~}E ~k~'~,)-o r  sTX io.(k(7)_l) ) --2 2 
1, [ , i= l  

for some constants ci. In addition, Lemmas 3.1 and 6.5 and the fact, in view of  
(6.32), that 

M 2 < ~;~ ~ N  _ on • ( 0 ,  ~) ,  

yield 

Thus 

imT(xi, s~  ] o.(k(~)_l) ) - - 2  2 * - M (yxi, t 2 -  )] < -M2(Txi, t2-2 ) - m 2 ( T x i ,  t,,~-2 ) . 

(III)  <= Z~  ci[M (Txi, t2 ) - M  2 

Lemma 3.1 again yields 

0 <= M2(Txi, t2 - 2 )  - m2(yxi, t)~ - 2 )  = o(1) ,  (6.37) 

as y ~ 0, e --+ 0 and a ~ 0 successively and locally uniformly in Ut>0(P~ UN~), 
provided that ]72x I stays bounded. 
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6. Summing up the estimates for the terms ( I ) - ( IV) ,  we obtain, for x C P ;  U N[ 

at;0-2(x) - M;~(Tx, t2 -2 =< 2(Cn7 n + nc17 ~ ) Jr o(1 ) .  (6.38) 

Using Theorem 4.1 we conclude as soon as we estimate the o(1) in (6.38). 
4. To this end assume that (x, t) E Z N x (0, oe) is such that x c Pt ~ - if  x E Nt ~ 

we argue similarly - and observe that the proof o f  Theorem 4.1 yields 

-M~(Tx, t2-2)-M_M_;(7x, t2 -2 ) <=q(Wa(72x '~)+~ 

- q ( w-a(72xkt ) + ~ - 2a) , 

with the o(1) uniform for I72x[ bounded. 
An elementary estimate also shows: 

w - 6 - e(a)t < W-a < wa < w + 6 + c(a)t on IR o X (0, OO). 

Let us now assume, without any loss o f  generality, that 72x -+ r E ]R x and that 
w(r, t)  = q > 0. Choosing e,a and 7 sufficiently small and using (3.12) and (3.13) 
we then have 

(45) M~(Tx, t2-Z) - M;~(Tx, t2-2 ) < m~,;a - q , - 2 a  < m~,;,~ - m# + - - e  4). 
al  

a2 al q 
= O(2a) + - - e  4), , 

at  

where the estimate on m~,:~ - m~ is an immediate consequence o f  the fact that they 
satisfy (3.3). 

We conclude remarking that the dominant term in the error on the right-hand 
side of  (6.38) is o f  order 2. [] 

The following is an immediate consequence o f  the previous proof and 
Lemma 6.3. 

Corollary 6.6. Under the assumptions o f  Theorem 4.2, 
# \ 

sup P (  sup T 7 ( y ~ ) [ c r t 2 - z ( x )  - ( l ~ t ( x ) m ~ -  1Nt(x)m~))] > Y( + )~(7)~ 
[6<t<t.] \ xEQ~,O(PyUNt~' ) / 

en? n , 

for  all n and cn as in Lemma 6.3 and t. is the extinction time o f  Ft.  [] 

TO prove Corollary 6.6 we argue as in the proof  o f  Theorem 4.2. The only 
difference is that we use H~-type sets which are defined for one time step but k(7)- 
times together with a variance of  Lemma 6.5 at each iteration. Finally we can get 
a uniform estimate in time after a careful look at the proof  o f  Lemma 6.3. 

(ii) Remarks and 9eneralizations. In the case of  non-zero external magnetization 
field h one obtains different limits. More precisely, if h = 2a, as 7 ---+ 0, a straightfor- 
ward modification o f  the proof of  Theorem 4.2 will yield a front, at the macroscopic 
limit, moving with normal velocity 

V = O~c + c(a) ,  
where c(a) as in (3.13). 
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If  on the other hand, Ihl ~ h0 as ? -+ 0, then we need to use a different scaling, 
namely (x,t)---+ (72x, 20, in which case, the resulting front moves with velocity 

v = c ( n ) ,  

i.e. there is not a transport coefficient. The proof of  this statement goes along the 
lines of  the proof of Theorem 4.2, hence we choose not to present any details. 

Acknowledgements. We would like to thank E. Presutti for making his papers available even at a 
preliminary form and L.C. Evans for bringing to our attention Jerrard's results. 

References 

[AC] 

[B] 
[BSS] 

[C] 

[CE] 

[CGG] 

[cm] 

[DD] 

[DGP] 

[DOPT1] 

[DOPT2] 

[DOPT3] 

[DOPT4] 

[DP] 

[E] 

[ES] 

[ESS] 

[a] 

[HL] 

[i] 

[is] 

Allen, S., Calm, J.: A microscopic theory for antiphase boundary motion and its appli- 
cation to antiphase domain coarsening. Act. Metall. 27, 1089-1095 (1979) 
Bonaventura, L.: Motion by curvature in an interacting spin system. Preprint 
Barles, G., Soner, H.M., Souganidis, P.E.: Front Propagation and Phase Field Theory. 
Siam J. Cont. Opt. 31, 439-469 (1993) 
Comets, F.: Nucleation for a long range magnetic model. Ann. Inst. H. Poincar6 23, 
135-178 (1987) 
Comets, F., Eisele, T.: Asymptotic dynamics, noncritical and critical fluctuations for a 
geometric long range interacting model. Commun. Math. Phys. 118, 531-568 (1988) 
Chen, Y.-G., Giga, Y., Goto, S.: Uniqueness and existence of viscosity solutions of 
generalized mean curvature flow equations. J. Diff. Geom. 33, 749-786 (1991) 
Crandall, M.G., Ishii, H., Lions, P.L.: User's guide to viscosity solutions of second order 
partial differential equations. Bul. AMS 27, 1-67 (1992) 
Dal Passo, R., De Mottoni, P.: The heat equation with a non-local density dependent 
advection term. Preprint 
De Masi, A., Gobron, T., Presutti, E.: Traveling fronts in nonlocal evolution equations. 
Preprint 
De Masi, A., Orlandi, E., Presutti, E., Triolo, L.: Glauber evolution with Ka6 potentials: 
I. Mesoscopic and macroscopic limits, interface dynamics. Preprint 
De Masi, A., Orlandi, E., Presutti, E., Triolo, L.: Glauber evolution with Ka6 potentials: 
II. Spinodal decomposition. Preprint 
De Masi, A., Orlandi, E., Presutti, E., Triolo, L.: Motion by curvature by scaling non 
local evolution equations. Preprint 
De Masi, A., Orlandi, E., Presutti, E., Triolo, L.: Stability of the interface in a model 
of phase separation. Proc. Royal Soc. Edinb., to appear 
De Masi, A., Presutti, E.: Mathematical Methods for Hydrodynamic Limits. Lecture 
Notes in Mathematics, Berlin, Heidelberg, New York: Springer, 1991 
Evans, L.C.: The perturbed test function method for viscosity solutions of non-linear 
PDE. Proc. Royal Soc. Edinb. l l l A ,  359-375 (1989) 
Evans, L.C., Spruck, J.: Motion of level sets by mean curvature I.J. Diff. Geom. 33, 
635-681 (1991) 
Evans, L.C., Soner, H.M., Souganidis, P.E.: Phase transitions and generalized motion by 
mean curvature. Comm. Pure Appl. Math. XLV, 1097-1123 (1992) 
Gurtin, M.E.: Multiphase thermomechanics with interfacial structure. 1. Heat conduction 
and the capillarity balance law. Arch. Rat. Mech. Anal. 104, 185-221 (1988) 
Hemmer, P.C., Lebowitz, J.L.: Systems with weak long-range potentials. In: Phase tran- 
sitions and critical phenomena, Vol 5b, Eds Domb, C., Green, M.S., London: Academic 
Press, 1976 
Ilmanen, T.: Convergence of the Allen-Cahn equation to Brakke's motion by mean 
curvature. J. Diff. Geom. 38, 417-461 (1993) 
Ishii, H., Souganidis, P.E.: Generalized motion of noncompact hypersurfaces with ve- 
locity having arbitrary growth on the curvature tensor. Tohuko Math. J., in Press 



Generalized Motion by Mean Curvature 97 

[J] 

[KS] 

[KUH] 

[L] 
[LOP] 

[LP] 

[LPV] 

[P] 

[Sol] 

[So2] 

[Sp] 

Jerrard, R.: Fully nonlinear phase field equations and generalized mean curvature motion. 
CPDE to appear 
Katsoulakis, M.A., Souganidis, P.E.: Interacting particle systems and generalized mean 
curvature evolution. Arch. Rat. Mech. Anal., to appear 
Kac, M., Uhlenbeck, G.E., Hemmer, P.C.: On the Van der Waals theory of vapor-liquid 
equilibrium. I. Discussion of an one-dimensional model. J. Math. Phys. 4, 216-228 
(1963) 
Liggett, T.: Interacting particle systems. Berlin, Heidelberg, New York: Springer, 1985 
Lebowitz, J.L., Oflandi E., Presutti, E.: A particle model for spinodal decomposition. 
J. Stat. Phys. 63, 933-975 (1991) 
Lebowitz, J., Penrose, O.: Rigorous treatment of the Van der Waals Maxwell theory of 
the liquid vapour transition. J. Math. Phys. 98, 98-113 (1966) 
Lions, P.L., Papanicolaou, G., Varadhan, S.R.S.: Homogenization of Hamilton-Jacobi 
equations. Preprint 
Penrose, O.: A mean field equation of motion for the dynamic Ising model. J. Stat. 
Phys. 63, 975-986 (1991) 
Soner, H.M.: Motion of a set by the curvature of its boundary. J. Diff. Eq. 101, 313-372 
(1993) 
Soner, H.M.: Ginzburg-Landau equation and motion by mean curvature, I: Convergence. 
J. Geom. Anal., to appear 
Spohn, H.: Interface motion in models with stochastic dynamics. J. Stat. Phys. 71, 1081- 
1132 (1993) 

Commtmicated by T. Spencer 


