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Abstract: We prove in this work that under suitable assumptions, the solution of the 
spatially homogeneous non-cut-off Kac equation (or of the spatially homogeneous 
non cut-off 2D Boltzmann equation with Maxwellian molecules in the radial case) 
becomes very regular with respect to the velocity variable as soon as the time is 
strictly positive. 

1. Introduction 

In the upper atmosphere, a gas is described by the nonnegative density f ( t , x ,  v)  of 
particles which at time t and point x, move with velocity v. Such a density satisfies 
the Boltzmann equation (cf. [Ce], [Ch, Co], [Tr, Mu]): 

of 
c3~ + v �9 V x f  = Q ( f ) ,  (I.1) 

where Q is a quadratic collision kernel acting only on the variable v and taking in 
account any collisions preserving momentum and kinetic energy: 

2~ 

Q(f)(v)= f f {f(v')f(v',) 
V . C ~ 3  0=0  ~b=O 

with 

- f ( v ) f ( v . ) } B ( l v  - v . l , O ) s i n O d ( ~ d O d v .  , (1.2) 

v ' - -  v - - v .  + / l ' v  v . ~ c ~ , -  (1.3) 
2 2 

, v + v ,  I v - v , [ G  
(1.4) 

2 2 

V - -  / ) .  
cos0 = a �9 (1.5) 
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and B is a nonnegative cross section. When the collisions in the gas come out of 
1 (with s > 2), the cross section writes an inverse power law interaction in 7 = 

s--5 
B(x, O) = x ~-~ b(O), (1.6) 

where b E Llo~ ~]) and 

s+ l  
sin 0 b(O) ~ K(s)O s--1 (1.7) 

for some K(s) > 0 when 0 ---+ 0. 
Most of the mathematical work about the Boltzmann equation is made under the 

assumption of angular cut-off of Grad (cf. [Gr]), which means that b in Eq. (1.6) 
is supposed to satisfy sinOb(O)E Ll([0, rr]). Note that for inverse power laws in 
L with s > 2, this assumption never holds (because of the singularity appearing in r s  

Eq. (1.7)). 
For example, the existence of a global renormalized solution to the full Boltz- 

mann equation (1.1) is known under this assumption (cf. [DP, L]), but it is also 
the case with most of the works concerning the spatially homogeneous Boltzmann 
equation (cf. [A 1], [A 3], [Ee], [De 1]): 

~t  (t,v) = Q(f ) ( t ,v )  , (1.8) 

with the noticeable exception of [A 2], where existence is proved for the non-cut-off 
equation (1 .2) - (1 .8)  when s > 3. 

We shall now concentrate on this spatially homogeneous equation (1.8). When 
the cut-off assumption is made, it is possible to write 

Q ( f )  = Q + ( f ) -  f L f , (1.9) 

where 

27~ 

Q + ( f ) ( v ) =  f ? f f ( v ' ) f ( v ' . ) B ( l v -  v.[,O)sinOdq~dOdv. , (1.10) 
v.  E~ 3 0=0 r 

and 
L f  = A . f ,  

with 

A(x) = 2re f B([x[, 0) sin 0 dO. 
0=0 

Then, the solution f ( t , v )  of Eq. (1.8) can be written under the form 

1.11) 

1.12) 

t t 

-- f L f (z ,v)dz t -- f L f (z ,v)dz 

f ( t ,  v) = f(O, v)e o + fQ+( f ) ( s ,  v) e ~ 
o 

ds .  1.13) 

But the operator Q+ is known to be regularizing with respect to the variable v 
(at least when f C L2(]R~), and when B satisfies some properties) (el. [L 1]). 
Therefore, if f (0 ,  v) is not regular (for example if it belongs to LZ(IR~) but not to 
HI(IR3)), the solution f ( t ,  v) of Eq. (1.8) will at best keep the regularity of f (0 ,  v) 
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when t > 0. In particular, no regularizing effect is expected for the solution of the 
cut-off homogeneous Boltzmann equation (1.8). 

On the other hand, one can hope some regularizing properties for the solution 
of the non-cut-off homogeneous Boltzmann equation (1.8), (1.2) (when (1.6), (1.7) 
holds). 

One of the reasons of assuming such a conjecture is that an asymptotics of 
the Boltzmann equation when the cross section is concentrating on the grazing 
collisions (these collisions are those that are neglected when the cut-off assumption 
is made) leads to the Fokker-Planck-Landau equation (cf. [De 2], [Dg, Lu]), which 
is known to induce regularizing effects (or at least compactness properties, even in 
the spatially inhomogeneous case (cf.[L 2])). 

This article is devoted to the proof of such a conjecture in the simpler case of 
spatially homogeneous Kac equation. We recall that the original Kac model is used 
to describe a one-dimensional spatially homogeneous gas in which the collisions 
preserve the mass and the energy, but not the momentum (cf. [K], [MK]). 

Note also that the theorems of Sects. 2, 3 and 4 hold for the spatially homo- 
geneous non cut-off 2D radially symmetric solutions of the Boltzmann equation with 
Maxwellian molecules, as is shown in Appendix C. 

In the Kac model, the nonnegative density f ( t ,  v) satisfies 

~t  (t,v) = K( f ) ( t , v )  , (1.14) 

where 

and 

K(f)(t,v) f f " " } ~  = { f ( v  ) f ( v . )  - f ( v ) f ( v , )  dr. , 
v,  CN_O=--~ 

(1.15) 

where 

with 

f f 
v .  C N  0=--~z 

When x ---+ 0 + and c~ E] 1, 3]. 

~t  (t,v) = K~(f)( t ,v)  , (1.18) 

I I  t l  { f ( v  ) f ( v , )  - f(v)f(v,)}f i( lOl)dOdv, , (1.19) 

fl(x) ~ x -~ (1.20) 

This kernel is obtained by analogy with the non cut-off kernel (1.2), (1.6), (1.7) 
of Boltzmann equation. 

v" = v c o s 0 -  v. s in0,  (1.16) 

v'. = vsin0 + v. cos0 . (1.17) 

The analysis leading to Eq. (1.13) still holds in this case. Therefore, one can at 
best hope that the regularity of f (0 ,  v) is conserved for the solution f ( t ,  v) of 
Eq. (1.14) when t > 0. This affirmation is indeed easily proved when f (O,v) E 
LI((1 + ]v[2)dv) (cf. Theorem A.1 of Appendix A), but also in the more difficult 
case when f (0 ,  v) lies in some H61der spaces (cf. [G]) (note also the results in the 
same spirit for the Boltzmann equation of [We]). 

We will therefore concentrate in this work on the equation 
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However, the analysis in the case when e = 3 (corresponding to the Coulombian 
interaction in the case of the Boltzmann equation (cf. [Dg, Lu])) is very different 
from the analysis when c~ Ell,  3[. Therefore, we will only consider in the sequel the 
latter case. 

We begin in Sect. 2 by proving that the existence of a solution holds for 
Eq. (1.18)-(1.20).  We prove then in Sect. 3 our main theorem. Namely, if f ( 0 , v )  E 
LI(IR~,(1 + IriS)dr) for all 7 > 0, the solution f ( t , v )  of Eq. (1.18)-(1.20)  lies in 
C~176 for all t > 0. Finally, in Sect. 4, we consider the case when only a fi- 
nite number of moments are known to be initially bounded for f The reader will 
also find for the  sake of completeness some classical results used throughout this 
work in Appendix A and B at the end of the paper, Appendix C being devoted to 
the extension of the results to the 2D radially symmetric Boltzmann equation with 
Maxwellian molecules. 

2. Existence for the Non cut-off Kac Equation 

We prove in this section the following theorem: 

Theorem 2.1. Let f o >_ 0 be an initial datum such that 

f fo(v)  (1 + Iv[ 2 + [logfo(v)l) dv < + ~ ,  (2.1) 
y E N  

and let fi >-_ 0 be a cross section satisfying the following property: 

3rio, ill > 0,~ E]l,3[, Vx E]0,~], fio[Xl -~ < fi(x) <<_ fil[xl -~ . (2.2) 

Then, there exists a nonnegative solution f ( t , v )  EL~([O,+~[t;LI(]R~,(I + 
[v]2)dv)) to Eq. (1.18), (1.19), (2.2) with initial datum fo in the following sense: 

For all functions ~ E W2'~(IR~), we have 

0 ~ t, &v jf(E~ v)(o(v)dv= f f n4 ' ( v , v , ) f ( t , v ) f ( t , v , )dv ,dv ,  (2.3) 
vEIR v.  EP.- 

where 

K~(v,v,) = f {~(v") -  O(v)}fl(lOI)dO. 
0----7~ 

The conservation of  mass 

f f ( t ,  v) dv = f fo(v)  dv 
v E ~  yEN 

holds for these solutions, but the energy may decrease. 
Moreover, i f  for some p E N,  there exists C2.1 > 0 such that 

f fo(v) (1 + Ivl 2p) dv __< C21, 
vCN. 

one can find C2.2 > 0 such that for all t > O, 

f f(t ,v)  (1 + Ivl 2p) dv __< C22. 
yEN. 

(2.4) 

(2.5) 

(2.6) 

(2.7) 
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Finally, if assumption (2.6) holds for some p > 2, the conservation of energy 

f f(t,v)lv]2dv = f fo(v)lvl2dv (2.8) 
vCN vCN 

holds. 

Remark. The analogue of this theorem is proved in [A 2] for the Boltzmann equa- 
tion (with s > 3). The proof given is very similar to that of [A 2]. 

The sense to give to the right term of Definition (2.4) will become clear in the 
sequel. Note however that because of the singularity of fi, this term is not defined 
if 4) is not regular (W 2, o~). 

Proof of Theorem 2.1. We introduce for all n E N* the truncated sequence 

fin = fl A n.  (2.9) 

Note that because of assumption (2.2), there exists for all 7 > ~ -  1 a strictly 
positive C2.3(7) such that for all n E N*, 

(11-cosOr~/2+lsinOl~)Pn(lOI)dO <= C23(7). (2.10) 
0----7z 

It is also clear that 

(11 - cosOI y/2 + IsinO/~) I/~(101) - ~n(tOI)ldO - - ,  o (211) 
0=--~" n---++oo 

Then, we consider the (unique) nonnegative solution fn(t,v) of the classical 
Kac equation 

afn(t, v) -~ K~,(fn)(t, v) (2.12) 

with initial datum y~ (for the existence and uniqueness of such a solution, cf. 
Theorem A.1 of Appendix A). This solution is known to satisfy the conservation 
of mass and energy, and the entropy inequality (cf. Theorem A.1 and A.2 of 
Appendix A): 

f f~(t,v)dv = f fo(v)dv,  (2.13) 
vCN vc1R 

f fn(t,v)lv[2dv = f fo(v)lvlZdv, (2.14) 
vGN yEN 

f f~(t,v)logf~(t,v)dv < f fo(v)logfo(v)dv.  (2.15) 
vEIR yEN 

It is now classical (cf. [De 3] for example) that Eq. (2.13) - (2.15) ensure the 
existence of a constant Cz4 such that 

f f~(t,v) (1 + Ivl 2 + [logfn(t,v)l ) dv <= Cz4. (2.16) 
yEN. 

Because of the Dunford-Pettis theorem (cf. [B]) and of estimate (2.16), one can 
extract from ( f~ ) , c~  a subsequence still denoted by ( f , ) , c N  and converging to a 
function f in L~176 weak * 

Moreover, for all q E L1([0, +oc[)  and all ~ E L~o~([0, +ec[t• such that 

IO(t,v)l 
lim sup - -  -- 0 (2.17) 
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we have 

+oo +oc 
f q(t) f f,(t,v)~(t,v)dvdt > f q(t) f f(t,v)~(t,v)dvdt. (2.18) 
0 yEN_ n---++~ 0 vCl(  

Denoting for all r C W2'~(IR~), 

K4~(vlv,) = f { q S ( v ' ) -  O(v)}fln(lO[)dO, (2.19) 

it is clear that (using the change of  variables (v, v,, 0) -+ (v I/, v~, - 0 ) ) ,  

~ f fn(t,v)O(v)dv = f f I(,~(v,v.)f,(t,v)f,(t,v.)dv.dv. (2.20) 
yEN- vEIR v.  E N  

We shall now prove that when q5 E W2'~(IRo), it is possible to pass to the limit 
in Eq. (2.20) and to obtain Eq. (2.3). We begin by the 

Lemma 1. There exists a constant Cz5 > 0 (depending on c~) and a sequence 
C2.5(n) converging to 0 such that the following estimates hold: 

1. for all 0 6 W2'~(IR~), 

]K4n(v,v,)l <= C2.5 (1 + IvlZ~ + l v ,  l~)I[(~lIW2, Oo(~.v) , (2.21) 

2. for all 0 E wz'~(IR~), 

IK~(v,v,) I ~ ( ~  ~ )  I C2.5(n) (1 + Ivl ~ + Iv, l ~ )  It~lIw2,oo<~,) �9 (2.22) 

Proof of Lemma 1. Note that 

q~(v/') - qS(v) = ~b(v cos 0 - v, sin 0) - ~b(v) 

= (v(cos 0 - 1) - v, sin 0) qS'(v) + (v(cos 0 - 1) - v,sin 0) 2 

1 
x f (1 -u)O"(v+u(v(cosO- 1 ) - v ,  sinO))du. (2.23) 

u=0 

Therefore, for all 5 c]0,  1[, 

[qS(v") - qS(v) + v, sinO(o'(v)] < jqS(v") - ~b(v) + v,sinO4)'(v)l I-~ 

x Iv(cos 0 - 1)qS'(v) + (v(cos 0 - 1) - v,sin 0) 2 

1 
x f (1 - u)cy'(v + u(v(cos 0 - 1) - v, sin 0)) duf 

u=0 

=< 8(1 + [v.l'-'~) (3 II,bllw~.~(m~))~-'~(Icos 0 - II ~ + Isin OI e~) 

x(1  + Ivl =a + [v.I ='~) II 

~- (72.6 [1 ~ II~z,~<~o) (Icos0- lta+lsinOl2O)(l+lvll+6+lv,]l+5) (2.24) 
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for some strictly positive constant C2.6. But 0 --+ sin 0 is odd and therefore 

423 

) dO ]K~(v,v. )[ = =f { 4)(v") - q)(v)}fl.(lO[ 
0 

7: 

= __f_ {q~(v") - qS(v)+ v.sinOO'(v)}fl~(]O])dO 
0 

=< c2.6 II~bllw=,~(~o~ f (Icos0 - 1[ ~ + ]sin0] 2~) fl~(lOI)dO 

x (1 + Ivl a+~ + Iv.[~+~). (2.25) 

We now use Eq. (2.10) with c~ = 1+~ ~ - ,  and obtain 

IK~(v.v.)l ~ 2 G 3  ( 1 - 2 ~ ) C 2 . 6  (1 § ~+--:: -I-Iv.I@)Ilqsllw2,~(~=~, (2.26) 

which clearly implies estimate (2.21). In order to get estimate (2.22), we use exactly 
the same proof, except that Eq. (2.10) is replaced by Eq. (2.11). 

Lemma 2. There exists a constant C2.7 > 0 (depending on cr such that when 
(~ C W2'e~ satisfies 

1114111 = s u p  I~'(v)l ~Ia  1 + [ v ~  < + o o ,  (2.27) 

one has the following estimate: 

IK~(v,v.)l ~ C27 ( l lqr  +lllq~lll) (1 + Ivl 2 + Iv.I 2) . ( 2 . 2 8 )  

Proof of  Lemma 2. According to Eq. (2.23), 

[qS(v') - (,b(v) + v, sinOd/(v)[ = Iv(cos 0 - 1)qSz(v) 

1 
+ (v(cos 0 - 1) - v.sin 0) 2 f (1 - u)O'(v + u(v(cosO - 1) - v.sinO))du[ 

u=0 

Icos0 - l l lvll~'(v)l + 4([cos 0 - 11 + [sin01Z)(Ivl 2 + Iv.I 2) II ~" IIL~(~> 

< C2.8(1COS 0 -- 11 + [sin0[2)(1 + IV[ 2 -~-[V.[2)(]I q~"llL~(~av) +llfq~lll) (2.29) 

for some constant (72.8 > 0. 
Using now the oddity o f  0---+ sin 0 

7 = 2, we get estimate (2.28). 
as in Lemma 1, and estimate (2.10) for 
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We now come back to the proof of  Theorem 2.1. 
Suppose that qb E W2'~ q E LI([0,+CO[), and v E IR. Then, because of  

Lemma 1, 

4-00 4-00 

f f K~(v,v.)f .( t ,v.)dv.q(t)dt-  f f Kr 
t--0 v. CP,- t=0 v .@R 

4-00 

< f f ]K~(v,v,)-K4(v,v,)lf~(t,v,)dv, q(t)dt 
t - 0  v. EN, 

+00 

+ fo f~t Kr176 f(t,v.)}dv, q(t)dt 
I V .  

C 2 . 5 ( n )  Ilqll~l(t0,+~E,)ll~llw~,~(~,) f (1 + I~1 ~ + I~.l ~ )  f ,(t ,v,)dv, 
v, EN. 

4 - ~  
+ f f K~(v,v,){s - f(t,v,)}dv, q(t)dt (2.30) 

t--0 v. EN 

But the first term of  Eq. (2.30) tends to 0 because of  estimate (2.16). Moreover, 
because of  Lemma 1, we have for all v C IR, 

lim IK~(v'v*)l -- O. (2.31) 
Iv, l~+00 [v,] 2 

Therefore, estimate (2.18) ensures that the second term of  Eq. (2.30) tends to 
0. Finally, we obtain for all 4> E W2'~ and v E IR, the convergence in 
L00([0, +co[ t )  weak * of  

L~(t,v)= f K~(v,v,)fn(t,v,)dv, (2.32) 
v .  C ~, 

towards 
L4~(t,v) = f K4)(v,v,)f(t,v,)dv,. (2.33) 

v . E N  

We now observe that for all ~b E wZ'oo(lRv) and v E IR, the sequence 

~ 2 K ~  
O~(v,v,) = ~-v2, (v,v,) (2.34) 

is bounded in L00(IRv). More precisely, 

sinZOd/' (v")fin(lOI) dO 

Moreover, 

I 
-g~S. (~'~*) = 0=-~ 

( 7 2 3 ( 2 )  " �9 IIq~ I I L ~ < ~ v >  �9 

~ ( v , ~ . )  sin dO = 0qs'(v")B~(10l) 
0=--r~ 

= 0.i___ - sin0{qS'(v") - 4/(v)}fi~(lOl)dO 

(2.35) 
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<= ] IsinOl{IvllcosO- 11 + Iv, llsin01} 
0~--7~ 

1 
• f 14"(v + u(v(cos 0 - 1) - v, sin 0)) I du~,(lOI)dO 

u=0 

< 2 C2.3(2)114"IIL~ (1 + Ivl + Iv, I) 

because of  estimate (1.10). 
Therefore, using Lemma 2, for all 4) E W2'~(1R~) and v E IR, 

r v) ~ f K~(v,v.)f,(t,v.)dv. ~-( t ,  = c~t~.~ 

= f f Kff~(v'')(w,v.)f,(t,w)f,(t,v*)dv*dw 
wEP. v. EIR 

5 wcIR f v. CN. f C2.7 t -~-u2* (v' ~ -t-IllK~(v, �9 )ill 

• + Iwl 2 + Iv, I N) fn(t ,w)f ,( t ,v ,)dv,  dw 

_-< C~.4C2.7{G.3(2)IIqr +2C2.3(2)C2.5(1 + I'~1)114/'IIL~(~o)} �9 

It is also clear 

ILf( t, ~)1 

425 

(2.36) 

that 

< f C2.5(1+1v1~ ~ + k , I  ~ )  f.(t,~,)d~, 
v.ffN 

S C2.4C2.5 (1 + Ivl ~ )  II*llw2,~(~o) . 

II ~llw2,~(~v) 

(2.37) 

(2.38) 

Therefore, for all 4) C ~V2'~ and v E IR, the sequence L~( �9 ,v)  is bounded 
in WI,~([0,  +oc[t) .  Using now the weak convergence (2.33) and Rellich theorem 
(cf. [B]), it is clear that for all 4) E wz'~176 and a.e. (t,v) E [0 ,+oc[txlRv,  the 
sequence L~ tends to L ~. Therefore, for all q E L l ( [0 ,+oc [ )  and all T > 0 such 
that Supp q C [0, T], 

t=0 EVEN. v. CN. 

f f X+(v, v. ) f(t, v) f(t, v. ) dvdv. ~ q(t) dt I 

vE1R v.C~ J 

= ,=07~176 ~E~t ~c~tfL4(t'v)f(t'v)dv} q(t)dt 

tE[0, T]SUp { f L~n(t'v)-L$(l'v) fn(t'v)dv} H q i l L l ( [ O ' + e ~  

) + Lr f(t,v)) dv q(t)Ut (2.39) 
l v 
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But according to estimate (2.38), 

lim sup sup 
Iv. I--,+oo te{0,+o~{ nCN* 

IL2(t, ~,)1 
I/), ]2 

-- O. (2.40) 

Therefore, estimate (2.18) ensures that the second term of (2.39) tends to 0. 
We finally use Egorov's theorem, estimate (2.38), the equiintegrability of the 

sequence f ,  (obtained by estimate (2.16) and the convergence a.e. of L~ to L 4~, in 
order to obtain the convergence of the first term of (2.39) to 0. 

As announced before, we can now pass to the limit in Eq. (2.20) and obtain 
the first part of Theorem 2.1. 

In order to prove the second part of Theorem 2.1, we observe that if assumption 
(2.6) holds, then Theorem A.2 (cf. Appendix A) ensures the existence of C~.3 > 0 
such that 

Y f,(t,v) (1 + Ivl 2p) dv <: CA.3 (2.41) 
vEP. \ ,/ 

(note that CA.3 does not depend on n). 
But estimates (2.18), (2.20) and (2.21) imply for a.e. t => 0 the convergence of 

L~ f,(t, ~) z (~)d~ to L ~  f(t ,  ~) z (v)d~ when ~ ~ C~(~v). 
Therefore, for all R > 0, t > 0, 

(1 + dv _< cA3 (2.42) 
Ivl_<-R 

Then, estimate (2.7) holds because of Fatou's 1emma. 
Finally, we prove the conservation of mass (2.5). We observe that for some 

function ZR E C2(IRv) such that Supp (XR) C [ -R  - 1,R + 1], 

f f ( t , v ) d v -  f fo(v)dv < l  f { f , ( t , v )+f( t ,v )} lv l2dv  
vER yEN = R2  Iv] ~R 

+ ~c~f)~R(v){f'(t 'v)-f(t 'v)}dv (2.43) 

for any R > 0. But according to the properties used in the proof of estimate (2.42), 
estimate (2.43) ensures that the conservation of mass (2.5) holds. 

In the same way, we can see that under assumption (2.6) with p > 2, the 
conservation of energy (2.8) holds. 

3. Regularization Properties When All Polynomial Moments are 
Initially Bounded 

This section is devoted to the proof of the following theorem: 

Theorem 3.1. Let f o >: 0 be an initial datum such that for all p c N, there exists 
C3.~(p) > 0 satisfying 

f fo(v) (1 + I~1 p + Ilogfo(v)[) dv < C3.~(p), (3.1) 
v E ~  

and let fi >= 0 be a cross section satisfying estimate (2.2). 
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Then, if f ( t , v )  is a nonnegative solution of  Eq. (1.18), (1.19), (2.2) in the 
sense of  Eq. (2.3) with initial datum fo, we have for all ~ > 0 and all q E N: 

f ( t, v) C L~([i ,+oc[t ;  Cq(IRo ) ) , (3.2) 

or in abridged form, 

f ( t ,  v) C L~(]0, +oc[t; C~176 (3.3) 

Proof of  Theorem 3.1. According to Theorem 2.1, we know that for all p E N, 
there exists C3.2(p) > 0 satisfying 

Vt E [0, +oc{, f f ( t ,  v)(1 + I~1 p) d~ < C3.2(p) . (3.4) 
vCN_ 

Therefore, the Fourier transform 

f ( t ,~)  = f e-i~- f ( t ,v)dv (3.5) 
yEN. 

of f is such that for all p E N, 

~(,aPf t ~) <= C3.2(p). (3.6) 

But v --+ e -ire lies in W2'~ and therefore it is possible to use Eq. (2.3). 
Then, a simple calculation leads to the following equation for the Fourier trans- 

form of f :  
^ 

~(t,~) = f {f(t,~ cos O)f(t,~ sin 0 ) - f ( t , O ) f ( t , ~ ) }  ~(lO])dO. (3.7) 
o=-~ 

Note that this equation is used in [G], and that it also appeared in [De 1], though 
for the Laplace transform of f .  We rewrite it under the form 

^ 

1 ~ ^ 
(t, r =20=-f~ {f( t ,  ~ sin 0) + f ( t , - ~  sin 0) - 2f(t, 0)} P(101)d0f(t, ~) 

+ f {f(t,~ cos 0 ) - f ( t , ~ ) } f ( t , ~  sin 0)P(101)d0. (3.8) 
0= 

We now use the notations 

1 7r ^ 
a(t,~) = -2o=f { f ( t '~  sin o) + f ( t , -~  sin O)- 2f(t,O)} P(lOI)dO, (3.9) 

and 

b(t,~) = f { f( t ,~ cos 0 ) - f ( t , ~ ) } f ( t , ~  sin O)~(lOI)dO. 
O ~ - -  TC 

Therefore, 

(3.10) 

^ 

~Tt (t, ~) = -a (  t, ~) f  (t, ~) + b(t, 3), (3.11) 
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and 

But 

t i 
-- f a (z ,~)dr  t --fa('c,~_)dz 

f(t, ~) =f(0, ~)e o + fb(s, r s ds. 
0 

f(t, ~ sin O ) + f ( t , - r  sin O ) -  2f(t,O) < O, 

because f > O. Therefore, a(t, 3) is real and 

(3.12) 

(3.13) 

1 2 

a(t,~) ~ 5 f { 2 f ( t , 0 ) - f ( t ,  ~ sin 0 ) - f ( t , - ~  sin 0)} ~(lOI)dO. (3.14) 

Then, we make the change of variables 

u = Ir sin 0. (3.15) 

We get 

a(t,~) > 2 u=-Ir f {2f(t,0)-f(t,u)-f(t,-u)}fi arcsin [7 Ir 17"12 
(3.16) 

But for any x E [0, re], 

fi(x) > rio[x[ -~ , (3.17) 

and therefore 

a(t, 3) > /~o 
= 4 

I4f u - ~ d u  
f {2 f ( t ,O)- f ( t ,u ) - f ( t , -u )}  ~ 

>= ~-Ir {2f( t ,0)  - f ( t ,u)  - f ( t , -u ) }  lul-~du. (3.18) 

And since 

2f(t,o)-f(t,u)-f(t,-u)=-lul = f (1- Irl)~(t, ru)dr 
r = - -  1 

= - l u l  ~ f ( 1 -  Irl)~e r=-I ~ ( t ,  ru) dr, (3.19) 

we get 

flO ~--1 I~1 
a(t,~) => ~-I~-I f lul2-arfl(1--1rl)~e ~ - -~ ( t ,  ru) drdu . (3.20) 

But 

~ (t,0) = f f(t,v)[v[2dv, (3.21) 
v@F. 
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and estimate (2.8) ensures that 

~ ( t , 0 )  = f fo(v)lvl2dv 
vE  P.  

(3.22) 

Moreover, if we denote 

E =  f f o(v)lvl2dv , 
vC P, 

we get (thanks to estimate (3.6)), that for any 1/ such that 

(3.23) 

l~l < m E 

C3.2(3) ' 
(3.24) 

the estimate 

. ~ e - ~ ( t , t / )  -- 2 > -  

holds. But estimates (3.20) and (3.24) ensure that 

(3.25) 

a(t, 4) >_ fi~ ~ 1 inf(lr  
16 ' f lul2-~du 

u = - i n f ( l ~ [ , ~ )  

E 3-0: 
> 16(~ ~ ~)EI~-I~-123-~ ( inf ( [ ~ l , ~ ) )  (3.26) 

Therefore, there exists C3. 3 > 0, C3. 4 ~> 0, such that when 141 => C3.3,t ~ O, 

a(t,~) > C3.41~1 ~-1 . (3.27) 

We will now use Eq. (3.12) and estimate (3.27) to prove Theorem 3.1 by induction. 

Lemma 3. We make the assumptions o f  Theorem 3.1. We suppose moreover that 
there exists 6 > 0 such that for  all h > O, el > O, we can f ind C3.5(Cl,tl) > 0 
satisfyin9 

v~ ~ ~ ,  sup If(s, ~)l <= G dc l , t l )  (3.28) 
,->_q 1 + I~1 a-~l " 

Then, for  all ti > O, el > O, we can f ind C3.6(el, tl ) > 0 satisfying 

V~ C IR, sup I / ( s ,  4)] ~ C3.6(Cl,tl) (3.29) 
S~tl 1 + I~1 ~+@-~1 

Proo f  o f  Lemma 3. We fix ta > O, el > 0. According to Eq. (3.12), for any t >= tl, 

t 
- -  f a ( z , d ) d r  

f ( t ,  ~) =f (0 ,~ )e  0 
t 1 t t 
T f a ( z , ~ ) d z  t - -  f a(z,s 

+ f b ( s , ~ ) e  �9 d s +  f b ( s , ~ ) e  s d s .  
0 t l 

2 

(3.30) 
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Therefore, estimate (3.27) ensures that for any t > ta, 1r > C3.3, 

If(t, r ~ If(O'~)e-C34tleU-1 § ,~[o,~]sup ~tl [b(s ' r U 1 

t 

+ sup Ib(s,r -('-'~c3.41eP-1 ds.  (3.31) 
q s > -  T 

But for all s E [0, +oo[, ~ E IR, 

Ib(s,~)l = f { f (s ,~  cos O)-f(s,~)~f(s,~ sin O)~(lOI)dO 

= 4( cos 0 - 1) 3 ~Tks' 4 + ur 0 - 1))duf(s ,  r sin 0)/~(10[) dO 
O=--Tc u=O ~"~ 

(72.3(2) C3.2(0) C3.2(1)141. (3.32) 

Therefore, estimate (3.31) implies that for any t >_- tl, 141 >= C3.3, 

t tl . c~--I 
If(t, 4)1 _-< c3.2(0)e c~~'lel~-' + C~.3(2)C3.2(0)C~.2(1)21r 

Ib(s, ~)l 
+ sup (3.33) 

s>=tl C3.41r =-1 " 
2 

According to assumption (3.28), we have for all e > 0, 

C3.5(C, tl ) 
V{ E IR, sup If(s, {)l < 2 (3.34) 

s > t l  1+1r a - ~  
= 2  

Therefore, using Corollary B.3 of Appendix B and assumption (3.1), there exists 
for all c > 0 a strictly positive constant C3.7(r t~) such that 

V~ E IR, sup If(s,r ~ C3.7(~,tl) (3.35) 
s ~  1 + I~1 ~-~ " 

We now compute (for all ]~] > C3.3,e > 0), 

sup Ib(s,~)l = sup __f { f ( s ,~  cos o ) - f ( s , 4 ) } f ( s , r  sin O)P(lOI)dO 
tl s > ~  0 7z s> T 

4 

< sup f 
,_>} o=-~ 

[f(s,~_ cos o ) - f ( , , r  cos o -  11 ~ §  

du zS~ +e 
Of (s , r162  cos O -  1)) If(s,r sin O)l~(i01)dO 

• u~0 ar 
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+ sup f If(s,~ cos 0 ) - f ( s , 4 ) l  If(s,~ sin O)l#(lOI)dO 
s>__~lO+~l<=�88 
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+ sup f If(s,~ cos o ) - f ( s , # ) l  If(~,# sin O)l#(lOI)dO. (3.36) 
s>__~ ~__<10l<~ 

We now use estimates (3.34), (3.35) and resume the computation (for all ]~-t > 
C3.3,e > 0), 

1 + ~  

sup ]b(s,s < 2C2.3(c~- 1 +2c) l~]  ~ -  Cs.2(0) 

1 § I@#1 '~-~) 1 + I~-~J ':s-~ 
-c~ C3.5(c,~ ) ( ~ )  e C3.5(~,~_ )tl 

§  \/.i.)(~') C3.2(0 ) § C3.2(0) 
1 + 1~16-~ 1 + I~dl  6-~ 

~-~--6+2e . . . . .  6 e (C3. 5 /, t l ~ l  Y@+e 
< 2G3(2)1s  I C;32(.O)Z 2 . . . .  , k C' 2 ) )  (C3.7(~, t l ))  ~@+e 

k ~ t ' /  

< Cs.s(e,h)l~] ~--e+2~ (3.37) 

for some strictly positive constant C3.8(c, h) .  
We now use estimate (3.37) to precise estimate (3.33). We get for all t > 

ti' I~l ~ C3.3,c > 0, 

C32 0 e -C34tll~l~ 1 I/(t,~)l =< . ( ) �9 § I~le -c3.4q]~[~-1 

C3"8(c' tl)]~1 ~-2"Z 6+2e (3.38) 
§ C3.4 

Taking c = ~ ,  we get some strictly positive constant C3.9(Cl,tl) such that when 
t > h, j~] is large enough, 

If(t, d)l ~ C3.9(cJ,h)[~l - ~ - - ~  - (3.39) 

Finally, using estimate (3.6) for p = 0, we obtain estimate (3.29). 
We now come back to the proof  of  Theorem 3.1. We already know (because 

of  estimate (3.6) when p = 0) that assumption (3.28) holds when 6 = 0. Lemma 3 
clearly implies by induction that for any 7 > 0, q >= 0, there exists a strictly positive 
constant C3.1o(7, q) such that 

V~ E IR, sup ] f ( t ,~ )  I =< C3.1o(t-,q) t>i 1 + ]~]q (3.40) 

Using now the Sobolev inequalities (or more simply the fact that H ~  
C~(IR)) ,  we get Theorem 3.1. 
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4. Regularization Properties when Some  Polynomial  M o m e n t s  are 
Initially Bounded 

L. Desvillettes 

We extend in this section the results of Sect. 3 when assumption (3.1) does not 
hold any more. 

Theorem 4.1. Let f o > 0 be an initial datum such that 

3r E N , r  >= 2, C4.1 > O, f fo(v) (1 + Iv] > + ]logfo(v)l)  dv < C4 .1 ,  
vE~. 

(4.1) 

and let fl > 0 satisfy (2.2). Then, i f  f ( t ,  v) is a nonnegative solution o f  Eq. 
(1.18), (1.19), (2.2) in the sense of  Eq. (2.3) with initial datum fo,  we have 
for all7 > O and all c > 0: 

f ( t, v) E L~176 +oo[t; H 2r- �89 -e(]Rv ) ) . (4.2) 

Corollary 4.2. In particular, under the assumptions of  Theorem 4.1, we have for 
all7 > 0 and all e > 0: 

f ( t , v )  E L~([7,+oo[t;  c 2 r - 2 ' l - e ( l R v ) )  . (4.3) 

Proof of  Theorem 4.1. Corollary 4.2 is a straightforward consequence of Theorem 
4.1 and of classical Sobolev inequalities (cf. [B]). 

We now prove Theorem 4.1. We use the same strategy as in Theorem 3.1. 
Estimates (3.4) and (3.6) still hold, but only for p < 2r. Moreover, Eq. (3.9), 
(3.10), (3.12) also hold, and lead to estimate (3.27) as in Theorem 3.1. 

However, Lemma 3 is changed in the following way: 

L e m m a  4. We make the assumptions o f  Theorem 4.1. We suppose moreover that 
there exists 5 > 0 such that for all tl > O, Cl > O, we can find C4.2(e l ,  tl) satis- 
fying 

V~ ~ IR, sup ]/(S,~)l < C4'2(el'tl) (4.4) 
s>=t 1 = 1 -]-[~[a--~l ' 

Then, for all tl > O,q > O, we can find C4.3(el,q) satisfying 

V~ E ]R, sup I/(s,~)l ~ C43(c1'tl) (4.5) 
s~t, 1 + I ~ 1 a { 1 - 1 ~ > ~  -~1 " 

Proof of  Lemma 4. We fix h > 0,el > 0. It is clear that estimate (3.33) still 
holds. However, using Theorem B.2 of Appendix B, we only get for all e > 0 a 
strictly positive constant C4.4(e, tl ) such that 

V~ E IR, sup 
sa~ 

C4.4(c, tl ) 
----< . ~ - 1  ~-~ - (4.6) 

1 + I ~ l a { 1 - ~ - ) + = T  - q  
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Then, we note that estimate (3.36) still holds, but estimate (3.37) becomes (for all 
Ir --> c3.3,E > o), 

~--1+~ 
sup Ib(s,r <= 2C2.3( 0~- 1 +2c) lq  -r- ~C3.2(0) 

l + l @ q  ~-~) 

i4)  (t) +2/?,  C3.2(0) . /;~_.~_~ +2f l l  
1 +  

< C4.5(e, h)l~l ~ + ~  ~}+(2+~) ~ 

for some strictly positive constant C4.5(e, tl). 
Then, estimate (3.28) becomes for all 141 > C3.3,e > 0, 

tl 1-(L~A+e) C4.4(c ' !~) x ~ + e  

C3.2(0) 
c42( , 

l+1 r 
(4.7) 

4)1 <- C3.2(0) e-c34t'l~-I~ 1 ~- C2.3(2)C3.2(O)C3.2(1) 21~le_Cz.4~lq~-lr If(t, 

-]- C4.5(8 , t i ) l ~  l_ L~_6{l_ @ 1 }+(2+~ r )e (4.8) 
(73.4 

Taking e = cl (2 + ~r) l, we get some strictly positive constant C4.6(e, tl ) such that 
when t > q, [r is large enough, 

If(t,r _-< c4.6(e, tl)l~l -~@ {]-E@l}6Wgl (4.9) 

Then, Lemma 4 is obtained exactly as Lemma 3. 
We now come back to the proof of  Theorem 4.1. We already know that assump- 

tion (4.4) of  Lemma 4 holds when 6 = 0. Moreover, using Lemma 4 by induction, 
we can see that for all tl > 0, el > 0,n E N,  there exists a strictly positive constant 
C4.7(81, Ii, n) such that 

C4.7(c1, tl, n) 
V4 E IR, sup If(t, 4)1 < 

t>t 1 1 + [r ' 

where (6n)nEN is the sequence defined by 

60 = 0 ,  

6n+l=6n{ 1 c ~ - I  1 }  c~-1  
2 2r + 

(4.10) 

(4.11) 

(4.12) 

But this sequence is strictly increasing and converges to 2r. Therefore for all c > 
0, t- > 0, there exists C4.8(e, i-) such that 

Vr ~ IR, suplf(s ,4)l  < C4.8(e,?) (4.13) 
s ~  1+1412r-~ " 

Finally, estimate (4.13) ensures that 

f C L~176189 (4.14) 

and Theorem 4.1 is proved. 
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Appendix A: Standard Properties of the Classical Kac Equation 

We prove in this appendix some classical facts about the spatially homogeneous 
Kac equation, and present some others that can easily be deduced from the theory 
of the Boltzmann equation (cf. [A 1]). 

Theorem A.1. Let f o > 0 be an initial datum such that 

f fo(v) (1 + Ivl 2) dv < + o c .  (A.I)  
vGN 

Then, there exists a unique nonnegative solution f(t ,v) of Eq. (1.18), (1.19) in 
L~176 Ll(lRv,(1 + [v]2)dv)) with initial datum f o as soon as the cross sec- 
tion fi in (1.19) belongs to L~ u]). 

This solution satisfies the conservation of mass and energy for all t > 0: 

f f( t ,v)dv = f fo(v)dv, (A.2) 
vEP. vEN- 

f f(t,v)[v[2dv = f fo(v)lvl2dv. (A.3) 
vE1R v~P. 

Proof of Theorem A.1. We introduce the sequence (f,(t,v))~eN, defined by 

fo(t, v) = fo(v),  (A.4) 

t 7~ 

fn+l(t ,v)=fo(v)+ f f f {fn(S,V")fn(S,V~) 
s=O v.  r  0 : - - ~  

- fn+l i s, v)fn+l (s, v. )}fill 0l ) dOdv.ds, (A.5) 

and present a proof of existence in the Cauchy-Lipschitz style. 
Note that it is easy to obtain (by induction) the conservation of mass and energy 

for fn: 

f f , ( t ,v)dv = f fo(v) dv, (A.6) 
yEN. vEIR 

f f,(t,v)[vladv = f fo(V)lvl2dv. (A.7) 
vEF, yEN 

Therefore, it is possible to write explicitly f ,+ l  as a function of f~, and the se- 
quence (A.4), (A.5) is well defined. It is also clear that fn > 0. 

Then, we define for all n E N*, 

u,(t) = f If,(t,v) - f,_l(t,v)](1 + lvl2)dv. (A.8) 
vE~. 

We get 
t 

un+~(t) <= f f f fn(s,v,) l fn(s,v)-  fn-~(s,v)l 
s--0 yEN v.  EN 

•  f (l+'v]Zc~247 fl('Ol)dO} 

t 

+ f f f fn-,(s,v)lfn(s,v*)- f ,_l(s ,v ,)  I 
s=0 vEIR v.  EN. 
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x {  f (l+[v]2c~ fi([O[)dO} 

t 

+ f f f fn+l(S,V,)[fn+l(S,V)--fn(S,V)] 
s--O yEN v. EN. 

x (1 + Ivl 2 fl(lOl)dO dvdv.ds 
o 

t 

+ d f f f~(s,v)lf,,+.(s,v.)-f.(s,v.)l 
s=O vE~. v. C~. 

• (1 + Ivl =) f {fl(lOl)dO}dvdv.ds 
0----7~ 

t 

CA.1 f {Un(S)  + Un+x(s)}ds ,  ( A . 9 )  
s - 0  

for some strictly positive constant CA.1. Moreover, we can prove in the same way 
that for all t > 0, 

ul(t) < CAat, (A.10) 

where CAa > 0. 
But estimate (A.9) ensures that (when t E [0, T],n > 1), 

t 
Un+l(t) <= (CA.1 + C].lTe cAit) f u,(s)ds. (A. l l )  

s=0 

Therefore, for all T > 0, s E [0, T], n > 1, 

S n 
Un(S) <= (CA.1 + C~.ITeCA"T) n-1 ~..CA.2 . (A.12) 

This estimate ensures that the sequence (fn)nEN satisfies the Cauchy property in 
Llo~([O,+oc[t,Ll(lR~,(1 + [vl2)dv)). Its limit f clearly satisfies Eq. (1.18), (1.19). 
Moreover, f > 0 and the conservation of mass and energy f E L~([0,  +oo[t,Ll(lR~, 
(1 + IvlZ)dv)). 

The uniqueness of such a solution is then directly obtained by a Cauchy- 
Lipschitz type argument. 

We now consider the polynomial moments of the solution of the spatially ho- 
mogeneous Kac equation. 

Theorem A.2. Let f o > 0 be an initial datum such that 

f fo(v) (1 + [vl 2 + I logf0(v)[) dv < + o o .  (A.13) 
yEN 

Then, for all t > s >_ O, the unique nonnegative solution f(t,v) of Eq. (1.18), 
(1.19) with initial datum fo (when the cross section fl in (1.19) belongs to 
L~176 ~])) satisfies 

f f( t ,v)logf(t ,v)dv <= f f(s,v)logf(s,v)dv 
vEIR vEIR 

<= f fo(v)logfo(v)dv < + o o .  (A.14) 
yEN 
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Moreover, i f  

3r E N, f fo(v)(1 + Iv] 2r) dv < q-oo, 
vER 

(A.15) 

there exists CA.3 > 0 (independent of 8) such that for all t > 0: 

f f ( t ,v)  (1 + lvl 2r) dv ~ CA. 3 . (A.16) 
v@R 

Proof of Theorem A.2. For estimate (A.14), we refer to [A 1], where it is proved 
for the Boltzmann equation (for example for Maxwellian molecules with an angular 
cut-off). 

We now prove estimate (A.16) in the case where r = 2. We can write 

0 t = ~ f f(,v)lvl 4dr f f f (IvcosO-v. sinO[ 4 Ivl 4) 
vcIR v@R v. 6N 0=--~ 

x f( t ,  v)f(t, v, )/~(101) dOdv, dv 

= f { c o s e q - s i f l 4 0  - a}~(lOI)dO f f ( t ,v)  lvl4dv f f ( t ,v )dv  
0---- ~ vE P. vE P. 

= f c~ -2~ ff(t'v)lvl4dve~ f f ( t ,v )dv  
[. 0=-~ yEN 

+ 6 f( t ,  v)IvINdv . (1.17) 

Therefore, a simple application of the maximum principle yields 

f f(t,v)lvl4dv ~= sup ( f fo(v) lv l4dv,3  (fvERf(t'v) lv[2dv)2) ( A . 1 8 )  
~ ~ f ~ ( t , v ) d v  " 

Finally, when r > 2, the same kind of computation can be done. Note that a 
rigorous proof is given in the case of the Boltzmann equation with Maxwellian 
molecules in [Tr]. 

Appendix B: Interpolation Between Derivatives 

We give here for the sake of completeness the proof of some classical results used 
in Sect. 2, 3 and 4. 

Theorem B.1. Let f lie in C2(IR) and satisfy 
1. There exists CBA > O, ~ > O, such that 

CB.1 
Vx ~ ~ ,  If(x)l < �9 (B.1) 

= 1 +  ixl~ 
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2. There exists C~.2 > 0, such that 

Vx ~ IR, If"(x)[ =< CB.2. 
Then, 

Vx ~ IR, I f ' (x) l  < , / 8  CB.~C~.2 
= V 1 + Ix[ ~ 
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(B.2) 

(B.3) 

Proof o f  Theorem B. 1. Suppose that 

~_l CB'ICB'2 
[f'(xo)l > + ixol ~ 

Then, because of estimate (B.2), for all t E [0, 1], 

f '  xo + t sgn (xo) CB.2(1 + Ixol ~) - f ' (xo)  

But estimate (B.5) ensures that 

f '  (xo t / 2 CB. 1 
+ sgn (x0)VC~_2(1 + ]xol ~))  

Therefore, 

B u t  

/ 2  CB.1CB.2 

2CB.1CB.2 

2 CB.1 
I = o + sgn (xo) Ca.2(1 + Ixol ~) - f ' (xo)  

2 c~.1 

- 1 + Ixo]  ~ " 

2 C~.l 
I < xo+  sgn(xo) CB.2(l+lxol ~) 

2 CB.1 < - -  
1 + ]xo  ] ~ " 

+ If(xo)l 

(B.4) 

(B.5) 

(B.6) 

(B.7) 

(B.8) 

gq c [1,pl, gx E IR, ]f(q)(x)] < CB.4. (B.10) 

2. There exists CB. 4 > O, such that 

Thus, we get a contradiction and conclude that Theorem B.1 holds. 

Theorem B.2. Let p c N,  p > 2, and f lie in CP(IR). I f  f satisfies the followin 9 
properties: 

1. There exists Ca.3 > O, c~ > O, such that 

CB.3 
Vx e IR, If(x)] < (B.9) 

= l + l x l ~  �9 
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Then, f o r  all e > O, there exists CB.5(e) > O, such that 

Vx e IR, If '(x)l ~ Ce.5(c) (B.11) 
1 + [xl < 1 - 1 > ~  " 

Proo f  o f  Theorem B.2. We use Theorem B.1 and give a proof  by induction. We 
know that if  there exists C~.6 > 0 and a finite sequence (Uq)qE[O,p ] such that for all 
q E [0, p], 

Vx E IR, [f(q)(x)l < CB'6 
= 1 + IxlUq ' (B.12) 

then there exists CB.7 > 0 such that for all q c [0, p],  

where 

Vx E IR, If(q)(x) [ % CB.7 
= 1 - 4 - I x l ~ q  ' (B.13) 

1 
v0 = c~, V i  E [1,  p - 1],  vi = ~ ( u i _ l  + ui+l),  

Therefore, we define by induction the sequence 

r0(0) = c~, Vi E [1,p],ri(O) = 0 ,  

and 

ro(n + 1) = ~, 

Vp = 0 .  (B.14) 

(B.15) 

1 
Vi E [1, p - 1],ri(n + 1) = ~ ( r i - l ( n )  + ri+l(n)), rp(n + 1) = 0 . 

(B.16) 

Therefore, 

rl = ( 1 - - 1 )  cq (B.19) 

which yields Theorem B.2. 
Finally, using Theorem B.2 by induction, we get the 

Corol lary B.3. Let  f lie in C ~ 1 7 6  and satisfy: 
1. There exists CB.9 > O, ~ > O, such that 

C~.9 
Vx c IR, I f ( x ) l  < 

= l + l x l  ~, 

2. For all q 6 N there exists CB.lO(q) > O, such that 

Vx �9 IR, If(q)(x)] <= CB.Io(q) . 

1 
ro = e, Vi E [1, p -- 1],ri = ~(ri-1 q-ri+l), rp = 0 . (B.18) 

(B.20) 

(B.21) 

But for all i E [0, p], the sequence (ri(n))nr tends towards ri, where 

Vx E IR, ]f(q)(x)] < CB.S(n) (B.17) 
= 1 + ]xlrq (n) " 

It is clear that for all n E N ,  there exists CB.s(n) > 0, such that for all q E [0, p],  
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Then, for  all c > O, there exists C8.11(e) > O, such that 

Vx E IR, i f , ( x )  1 < CB.5(e) 
= 1 + tx l~_~ .  
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(B.22) 

Appendix C: The Case of the Radially Symmetric 2D Boltzmann Equation 
with Maxwellian Molecules 

We consider now the radially symmetric solutions of  the 2D spatially homogeneous 
Boltzmann equation with Maxwellian molecules (Note that one can prove the ex- 
istence of  such solutions exactly as in Sect. 2, provided of course that the initial 
datum is radially symmetric). The corresponding Boltzmann kernel can be written 

7~ 

Q ( f ) ( v )  = v ) f ( v , )  - f ( v ) f ( v ,  b( lOl)s inOdOdv, ,  (C.1) 
v.  E~x 2 O=--~z 

2 + Ro , (C.2) 

v, -- 2 Ro , (C.3) 

with 

We suppose moreover that b satisfies 

sin 0 b([0l) ~ KtO[ -~ (C.4) 

for some K > 0 when 0 --+ 0 (this is the non-cut-off case) and that b is regular 
outside 0. 

Using the fact that f is radially symmetric, one can recast the kernel Q under 
the form: 

U V. oo'~(~-- z J z(~+.o(~)+y+.o_.(~)) 
v .  Cp ,20=-- rc  

v 2v* _ f ( v ) f ( v , )  } (.~ +.o_. (~) + +.o (~)) b([O[ ) sin O d Odv, 

=.f2o=f {f(R~176 (~)+R~ (~)) 
f(Ro_,(v)sin(O) +Ro(v.)cos(O))-f(v)f(v.)}b(lOl)sinOdOdv. 
=.A.02.{' (' cos (;)_... (o)).. (.. (o)+...os (;)) 

- f ( v ) f ( v , ) / b ( l O I )  sin 0 dOdv, . (C.5) 
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Thus, we can see that the equation is very similar to the Kac equation. The main 
difference is simply that now v is in IR 2 instead of IR. It is then possible to prove 
all the theorems of the previous sections with exactly the same proof. 

Note however that for the 3D radially symmetric solutions of the spatially ho- 
mogeneous Boltzmann equation with Maxwellian molecules, the analogy with the 
Kac equation is not so clear. This case shall be discussed in a future work. 

Acknowledgement. I would like to thank Professor Golse for his valuable remark during the 
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