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Abstract: We propose an elementary construction of separation of variables for the 
classical integrable S L ( N )  magnetic chain 

1. Introduction 

In his paper [$1] E. Sklyanin constructed the separation of variables in the 
classical integrable SL(3) magnetic chain and conjectured the existence of a similar 
construction in the S L ( N )  case. This paper is devoted to the proof of the Sklyanin's 
conjecture. Before giving its precise formulation, we shall review some basic facts 
on the S L ( N )  magnet, following [FT, S1]. 

The model can be described in terms of the monodromy matrix 

T(u) = Z ( u -  aM + L (~)) ... (u - 31 + L(1)) , (1.1) 

where Z is an invertible N x N constant matrix with distinct eigenvalues, cSj 
(j  = 1, . . . ,  M) are some fixed numbers, and L (j) are traceless matrices constituted 
by variables _~,f.(J) (#, v = 1, . . . ,  N) with the Poisson brackets given by 

\ _ _ k t l V 2 V # 2 V l  - -  L~2 , , l  tl lll V2] t l j k  �9 (1.2) 

In the generic case, the Poisson bracket (1.2) is non-degenerate on the 
M N ( N  - 1)-dimensional manifold. 

N 

d e t ( u + L  (j))= I ~ ( u + 2 ~ J ) ) = 0 ,  j = l  . . . .  , M ,  
k = l  

* Recipient of a Dov Biegun Postdoctoral Fellowship 
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where 2~J) are distinct fixed numbers and N 2~j) Z,= 1 = 0. The Poisson brackets for 
entries of the monodromy matrix (1.1) can be written down in a compact form 
EFT], 

T(u) ,  T ( v  = ~ ,  T(u)  T ( v  , (1.3) 
U - - V  

1 2 
where T = T | 1, T = 1 | T and ~ is the permutation operator in C N | CN. We 
shall denote entries of T ( u )  by t~(u) (the lower index corresponds to the number of 
the row). Writing equality (1.3) element by element, one gets 

1 
k, U v ( t i 2 ( u ) t j , ( v )  - - t j l ( U )  J2( ))" (1.4) t~(v)} = k, k= k2 tk ,  v 

. _ 

Consider 

det(T(u) + 2) = 2 N + "Cl(U)/~ N - 1  Ac " '  -Jv 7JN(U ) . 

Then zj(u) is a polynomial in u of degree j M .  It can be shown (see e.g. [FT, RSe2, 
SI]) that non-leading coefficients of polynomials z j (u)  ( j  = 1 . . . . .  N )  form a com- 
mutative, with respect to the Poisson bracket (1.3), family of M N ( N  - 1)/2 inde- 
pendent Hamiltonians, which entrains the complete integrability of the model. 
Now we are able to formulate Sklyanin's conjecture. 

C o n j e c t u r e .  There exist functions ~r and ~ on G L ( N ) ,  such that (a) ~ ( T )  is an 

algebraic function and ~ ( T )  is a polynomial of degree D = M .  N ( N  - 1) of the 
2 

and (b) the variables xi ,  Pi  (i = 1, , M .  N ( N  - 1!)," defined matrix elements tj,k " " " 2 

from the equations. 

~ ( T ( x i ) )  = O, Pi  = d d ( T ( x i ) ) ,  

have the Poisson brackets 

{ x l , x j }  = { n i , P j }  = O, {P j ,  xk}  = Pj6jk 

and, besides, are bound to the Hamiltonians zv(u) by the relations 

det(P3 - T ( x j ) )  = 0 .  

After establishing in Sect. 2 necessary notations and preliminary lemmas, we prove 
this conjecture in Sect. 3. The proof is quite elementary, though rather cumber- 
some. We give it in more or less full detail, having in mind the possible quantum 
counterpart which in the case N = 2 was studied in [$2, $3]. 

The similar conjecture have been formulated in [S1] for the Gaudin model 
which can be considered as a degenerate case of the S L ( N )  magnetic chain 
[G, S1, $4]. This model has been treated in various contexts by many authors (see, 
e.g., [RSel, RSe2, Sch, AHH1,AHH2]).  We should mention especially the recent 
work [AHH2], where Darboux coordinates for the Gaudin model have been 
constructed and the Liouville-Arnold integration for corresponding isospectral 
flows on rational orbits in the loop algebra have been performed. In the concluding 
Sect. 4 we show how the construction of Sect. 2 may be used for finding separated 
Darboux coordinates for the Gaudin model and compare our approach with that 
of [AHH2]. 
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2. N o t a t i o n s  a n d  P r e l i m i n a r y  L e m m a s  

Let T be a (n - 1)x ( n -  1) complex matrix with entries 0f (j,k = 1 . . . .  , n -  1) 
/ k l  k,~\ 

and columns 0(k)(k = 1 . . . .  ,n  -- 1). We shall denote by T[j~\ "" j , , / )  the deter- 

minant of the matrix (~)~,,= 1 and by T 1 �9 �9 . the determinant of the matrix 
\ q l  

obtained after deleting p l t h , . . . ,  pl th columns and qlth,..., ql th rows of T. The 
following formula can be easily verified: 

A A (;2 
Z ( -  1) J T " ' "  T = 0 (2.1) 

. /=2 i l  . . . i i_  i 1 y ' 

for any l =  1 , . . .  , n - 3 ,  i, . . . . .  il-1 e {1 , . . .  , n - 1 } .  For a fixed vector { 
C"-  *, let us consider (n - 1) x (n - 1) matrices 

s = s(~', ~ ) =  E ~ , ~  . . . . .  7 ' n - ~ 3 ,  

So)=  S(j)(T,~) = [ 0 o ) , ~ , T ~ , . . . ,  T , -3~]  (j = 1 , . . .  ,n  - 1). (2.2) 

The following auxiliary lemmas will prove useful in the sequel. 

L e m m a  1. Let 1 <= j <= n - 1. Then 

( _  1 )~de tS (O(T ,~ ) , s (n - - i )  ( 1 )  f + ( _ 1)J_ldetS(J)(T,r S n - 
f 

= d e t S ( T , ~ ) . x ( n  - 2  n Y 1 ) .  (2.3) 

Proof By the definition of S(T, ~), 

A n2 ) 
( _  l y ( ~ , ~ _ ~ O ~ s  n -  1 = 

k = l  J 

A 

I I f , l = i  
A 

t , l = j  

, otherwise. 

Then the left-hand side of (2.3) is equal to 

( _ 1)k(detS(i).(Tk_l~)i + detSO).(Tk a~)j)S n - 1 
k = l  

, -2  (n  2 (~  n ? l )  
= 2 (--  1) k Y, de tS(~  

k = l  / = 1  

But the definition of S (~ implies that 
n - - 2  

de tSm(Tk -~ ) z  = det[Tk~., 3, T~_ . . . . .  T"-3~]  -- ( -1)"-2~k, ,_2detS(T,~.) ,  
l - 1  

which proves (2.3). 
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Let us define the constant  

Cn - -  

( n -  1)n , 

( - - 1 )  2 

( n - -  1 ) ! . . .  2! 
(2.4) 

and the set I,(m) of  mult i indices  (c0: 

L e m m a  2. Let S(7",~), Su)(7",r be defined by (2.1), 
( n -  1)x  n matrix with columns O (1) . . . .  , ~(~-1),~. Then 

0r 
detS(7",~)  = c , _ 1  ~,  7", , ; 1  . . .  

( ~ ) e l . _ l  (n 1) " " �9 

n -  2 (0~1 n - k -  

= \ CXn-k . . . 

detSU)(7",~)--c, 2 2 lit '  OCn 2 " � 9  

(~)eln-2(n 1) " " " 

n -  2 (0C1 n - k -  
" H 7 ' '  n . l k  1 " " " O ~ n - k - 2  

k = 2  \ O~n- k " ' "  
A 

S ). = c . ~  y ,  7" " ~  " "  
(~)d.~(. 2) . . . j - l j + l . . .  

(2.5) 

(2.2), and let 7" be the 

n 2 
O~n- i n 

n--2 n - 1  

n - k - 1  
O~n _ k /I 

n- -3  t ~n 2 n 

n - 1  

n - k - 1  
O~n -- k /: 

n - 3  
OCn 2 

n 2 IOC1 n - k - 2  n - k - l t  " I ~  7 ' ' (  n-k-ll " " " O ~ n - k - 1  n 
Q 

k = 2  \ O~n-k ' ' "  Or - k 

Proof. By definition, 

) 
(2.6) 

(2.7) 

n - - 1  

(2.8) 

detS(7", 4 ) =  ~ (--1)sgn~-G(1)(7"~),T(2)'"-(7"n--2~-)a(n--1)- 
GE ~n --1 

where ~ . _  i is the group of  permutat ions  of  n - 1 elements�9 Therefore,  

n - 1  
a ct 1 

d e t S ( 7 " ,  3 )  = 2 ( - 1 ) sgn  2 ~ a ( 1 ) @ ~ 2 - )  1 ' '  - @%,c(']-2a, 

G(n --1. �9 - �9 

�9 . . . 3 ~  &~_~(7"~-)4_1 (7 ," -  ,~;,,_i 

I i �9 �9 �9 C(n- i = ( _  1) n - 2 7 ' '  ~l_nl n - 2  
\ 

n ~ n - 3  

n - 1 )  G.~_I. �9 �9 ( 7" G. -  :~ 

n2 ) 
= ( __ 1) , -2  y ,  7", n 1 . . .  0(n-- 1 n 

a=<~.'_1<...<~:~__<,-1 - . -  n - - 1  

~ . ~ - 1  - . .  ~; ,-  
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(n - 2) ! 1 ~,~,',' :12 = 1 n - - 1  
8 n  - - 1 ,  �9 ' �9 " " ' 

S 1 . . .  n - 2  
�9 (+, +,2) 

S 1 . . .  Applying the same procedure to 1 , -2  etc., we obtain formula 
~ n -  1 �9 - �9 ~ n -  1 

(2.6). Formulas  (2.7), (2.8) can be proven in the same way. 
In the sequel we shall deal with polynomial  functions on matrices that  have 

a form 

F ( ~ )  = const.,  f l  T{ i~  . . .  i7/'~ (2.9) 
k=l \ J ~  . . .  J'kk] " 

Given a function of the form (2.9), we denote by Fj,~_~l(7 ~) (resp. Fi~,~z(tg)) the 
function (2.9) with the index fi, (resp. i~,) substituted by l. 

3. Separation of Variables 

For  the monodromy  matrix T(u) given by (1.1) consider the principal submatrix 
= t k N -  1 TN l(u) (j(u))j,k=l and the vector CN)(u)=(ff(U))~f211 formed by the first 

(N - 1) entries of the last column of T(u). 
Using definitions (2.1), (2.2), one can construct matrices 

S(u) = S ( T s -  l(u), t(N)(u)) , 

S(J)(u) = s(J)(TN- l(u), t(N)(u)) �9 

Define 

(3.1) 

B(u) = N(T(u ) )  = det S(u) , 

det S(l)(u) 
A(u) = ~4( T(u))  = -  

N ( N -  1) 

(3.2) 

have the Poisson brackets 

{xj, x~} = {PI, Pk} = O, 

~ ( T ( x j ) )  = O, 

N ( N  - 1)'~ defined from the equa- 
2 ] 

Pj = s C ( T ( x f l ) ,  (3.3) 

{P j, xk} = P~5~k . (3.4) 

Theorem 1. 
tions 

The variables xj, P j ( j  = 1 , . . . ,  M 

Clearly, B(u) is the polynomial  of degree M .  2 . Using, if necessary, a sim- 

ilarity transform Q T ( u ) Q - l ,  and taking advantage of the nondegeneracy of spec- 
t rum of Z, we may  state that the leading coefficient of B(u) is nonzero, and therefore 

N ( N  - 1) 
B(u) has M zeroes. 

2 
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Furthermore, Pj is an eigenvalue of  the matrix T(x2), i.e. 

det (Pj - T(x j ) )  = O . 

The rest of  the section will be devoted to the p roof  of this theorem. 
First of all, let us calculate the Poisson bracket of two polynomial  functions of 

T that  have a form (2.9): 

F(u) = F(T(u) )  = T . 
k = l  \ Y k  

G(v) = G ( r ( v ) ) =  T 
s=~ ~s 

Lemma 3. 

*~)() . . .  1 k 

. . . i l k  U ,  

(u - v){F(u), G(v)} = ~ Fj~+~(u)G~j~(v)  - ~ F'l~'~I(u)G=:+z5,(v) , (3.5) 

�9 1 q .I q where summation is over all possible pairs (Jk,fi~) and Ok, C~,). 

Proof. It suffices to calculate the Poisson bracket for determinants  

T j l  . . . J" (u) and r fll . . . fl~ (v), then (3.5) will follow by the Leibnitz 

rule. It follows from (1.4) that  

{T(I: ;),,}, 
=-ii  . . . .  lu> 

/ = 1 q = 1  j l  . . . 

( , l  . . . , q -  l i l o~q -1 .  . . , v )  

�9 T fil . . .  f l y  ( V )  

+ ( - 1) jo+ i 'ti;r(U) r z,p=l q,r=l j l  f - l f + ~  .jn (u) 

(~ l . . . ~ q - - l ( ~ q + l  . . . o { v  

"( - -1)P '+~t~(v)  T fil f l q - l f i q+* . . ,  fiv)(v) " 

The second term in the previous expression is equal to 

9 (" ;) jn (u) T fil . . . f i ' - * j ' f f + l . . .  ~ (v),  

il 

p = l , = ,  j ~  . . . j P - l p ' j ' + l .  . . 

which shows that (3.5) holds true. 

L e m m a  4. For any u and v 

{ B(u), B(v) } = O. (3.6) 

Proof. Due  to (3.1), (3.2) and (2.6), 

B(u) = c~ 1 Y, B((~),u), 
(~)~IN I ( N -  I) 
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where 

B((a), u) = T ~ 1 �9 " " a N -  1 N 
. . .  N -  1 (u) 

) . ~_~_  ~ N 
�9 ~=~l~ T \  ~ ~ . . .  aN-~-~-~ (U). (3.7) 

(Here we have used the fact that  the matrix T'  from Lemma 2 is now simply the 
matrix obtained from T(u) by deleting the last row.) Using Lemma 3, let us 
calculate the Poisson bracket of B((~), u) and B((fi), v) for arbitrary fixed (a), (fl) 
IN_a(N -- 1). The summation in the first sum in (3.5) for {B((~),u),B((fl),v)} is 

q s q - �9 s �9 �9 carried out over all possible pairs (ap, fi~), (~ , j ) ,  (~, fi~) and O,J), where i (resp.j) is one 
of the lower indices in the first factor in the representation (3.7) for B((~), u) (resp. 
B((fi), v)). Note, however, that  the term corresponding to the pair (~q,j) is equal to 
B((0 0, u)" B((fi), v) if ~q = j and zero otherwise. The same is true also for the pairs 
(i, fi~) and (i,j). Thus, the first sum in the expression (3.5) for 
(u - v){B((a),u),B((fi),v)} is equal to 

( ( N -  1) + 2 ( ( N -  2) + ( N -  3) + . . .  + 1))B((~) ,u) .B((f i ) .v)  

+ ~ B~_~((~) ,  u)" B ~ : ~ ( ( f l ) ,  v) 

= (N -- 1) 2 B((~), u)" B((fl), v) + ~ B ~  ~ ~.((~), u)" B~  ~ ~g((fl), v) . 

Similarly, one can see that the second sum in the expression (3.5) for functions 
B((~),u) and B((fi),v) is equal to 

(N - 1) 2 B((~), u)" B((fi), v) + ~ B ~  ~ P~((~), u)" B p~ ~ ~((fi), v) . 

Hence 

(u v){B(u),B(v)} 2 ( - = e . _ l  ~ ~ (B=g + p;~((~), u)- B~  + ~((fi), v) 
( a ) , ( f l ) ~ I N - l ( N -  1 )  \ 

- B ~  ~ P~((a), u)" B~r v)) ) .  (3.8) 

But for every pair (~), (fl) ~ IN_ ~ (N --1) there exists also the pair (~),(fl)e 
IN-a (N  -- 1), such that  ~ = ~, ((#,v) :~ (p,q)), ~ = fl~ and 
/~ = fi~ ((#, v) + (r, s)), fl~ = @. Then it is easily seen from (3.7) that  

Ba t ~ ~((~), u)" B~ ~a~((fi), v) = B ~q ~P~((~), u)" B ~ ~ ~((fi), v) . 

Therefore every term appears in the sum (3.8) twice, but with different signs, which 
implies that {B(u),B(v)} = 0. 

Lemma 5. There exist algebraic functions U(u ,v )= U(T(u) ,T(v)) ,  W ( u , v ) =  
W ( T (u), T (v) ) such that 

1 
{A(u),A(v)} = (B(u)" U(u,v) + U(v,u)B(v)) , (3.9) 

U - - U  

1 
{B(u),A(v)} = ( B ( u ) A ( v ) -  W(u,v)B(v)) ,  (3.10) 

13 - -  I) 
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and 

Proof Denote 

W(u,u) =- A(u). (3.11) 

A 

C(u)~detg(J')(U)~ D(N)~stN-11 (u). (3.12) 

C(u) 
Then A ( u ) -  O(u)" We have to calculate all the Poisson brackets {B(u),C(v)}, 

{B(u), D(v)}, {C(u), D (v)}, {C(u), C(v)} and {D(u), D(v)}. Repeating essentially the 
same arguments as in the proof of the previous lemma, one can see that 

(u - 0{B(u), C(0} 

= B ( u ) C ( v )  - c N  1N~1( 
j = l  

and 

(u -- v){B(u), D(v)} 

N - 1  t =cN-1  ~ ( - 1 )  j 
j = l  

Denoting 

N - 1  
y, ( l -  1) 

/=2  

we obtain 

{B(u), A(0} = 

N - 1  
y, ( l -  1) 

l=2  

\ 

B~ _.j ((c0, u) �9 det s(J)(v) 
/ (~)elN I (N 1) 

A 

Z B: i ~j ((~), u) �9 s (0.  
(~)elN I ( N -  1) ff 

N - 1  

Wj(u) = CN-I Z (1 -  1) Z B2i-J((~),u), (3.13) 
/=2  (O0~IN I(N 1) 

{B(u), C(v)} D(v) - {B(u), D(v)} C(v) 
D(v) 2 

1 (B(u)A(v) 1 ~ 1  ( - Wj(u) det S(J)(v)D(v) 
u v D(v) 2 a = 1 

+t 1 ) ) )  j (Oc(o . 

But due to Lemma 1 and definitions (3.2), (3.12), 

j. (v)C(v) = ( - l f i + l S  1 

Thus we show that 

1 
{B(u),A(v)} = 

R - - l )  
(B(u)A(v) -- W(u, v)B(v)), 

A A 
1 2 N 

W ( U , V )  - -  D2(v  ) j = 2  1 j 

where 

A 

N ;- 1).B(v) 

(3.14) 
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To  prove the identity W(u,u) - A(u), let us note  first that, similarly to the formulas 
of Lemma 2, one has 

S(I j2 : : :  ;)(u) 
I -2  l l - k - 1  \ ) Cl(fl)GII<N-I)\Jl " ' "  Jl/I k = 0  \ P l - k  . . .  ~I - k - I  

(u) 

Then by the definition (3.7) of B ((c 0, u), 

~ :  2 . . . 
y~ B#+j((~),~) = ~ ~o(~ . . . .  ,4 :;~)S (~) 

(~)GIN --1 <N- 1) g~ . . . .  = 1 " " " 

for some coefficients ~ p ( ~ , . . . ,  e l - : , u )  that  we do not  need to specify, since by 
(2.1), 

u ) = 0  ( / =  1 , . . . , n - - 2 ) ,  
j = 2  \ J  0(2 �9 �9 �9 ~d1-1 IA)S 1 j 

and therefore, due to (3.13), (3.14), 

. 2  ( )  
W ( u ,  u) - cN-  : B~,_: ~ 1 N - 1 D~(u) JZ=, ( -1/+:(  ~v - 2)  (.)~,.Y:-:<~ ~) <_~j ((~),u)S f (u). 

But (3.7) shows that 

UC( 1 - + 1 . . .  . =~2, + i ~ t~), u) = 0 

2 , - 2  is equal to 1 or j. Hence if one of the indices a,_ : , . . . ,  ~,_ 

(oOSlN-I(N-- 1) 

Then 

X Z Z ~ 2 . . .  0 { N - 2  N 

(a)E/eV-I(N-- 1) . . .  N -  1 ( u )  

N--2 ( o ~ l k _ l  N - k -  ) . . .  ~N_k_ 2 N 
. l - I T  

= ( - 1)J(N - 3)!CN!zD(u)r (u). 

A 

j=a 1 

<2.4>,<2.7)  C(u)  
= - A ( u ) .  

D(u)  

A 
N - - 1 ) j  
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Thus we have proved equalities (3.10), (3.11). Absolutely analogously, one can show 
the validity of (3.9) with U(u, v) equal to --) 
O ( u , v )  - -  C N - 2  N - -  1 D2(u)D2(v) ~ (--1)J+IS ~. (U) 

j = 2  J 

N - 2  1 
E E (I-- 1)D:! -+1 +j ((~), v)c(v) 

(O0~IN 2(N-  1) 1 = 2 

N - 3  ) c~]+ 1 
-- ~, (1-- 1)C=l_+j((oO, v)D(v ) , 

l = 2  

where the definition of D((~), v), C((e), v) is similar to (3.7). Now we are ready to 
present. 

Proof of Theorem 1. Let x, ( j =  1 . . . .  M N(N - 1)] be roots of B(u): 
' 2 \ / 

B(xj) = ~(r(xj))  = 0. By Lemma'4, 

{xi ,xj}=O ( i , j= I , . . . , M N ( ] ~  I ) ) .  

Furthermore, since for any functions f(u) and g, 

{f(x0,g} = { f(u), g} . . . .  + f'(x~){x,, 9} ,  

we have 

{xi, e,.} = {x,, A(x;)}  = {xi,  A ( ~ ) L  : +  + A ' (~ j ){x , ,  ~ }  

1 
- B'(x,)({B(x,), A(v)} - {B(u),A(v)} . . . .  )v=+ 

B'(x 0 
{B(u), A(v)} . . . . . . .  + .  

Due to (3.10) 

1 
{B(u),A(v)} . . . . . . .  + - - -  

X i - -  X j  

B(xi) - B(xi) 
= A(xj) + B(xj) 

X i - -  X j  

Using the definition of xi and identity (3.11), we get 

{x,,  Pj} = - A % ) a i j  = - P A ~ -  

Similarly, by (3.9) and (3.10) 

{Pi, Pj} = {A(xi), A(xj)} 

= A'(x,){x,, A ( x ) }  - - -  

(B(x3 A(xs) - W ( x .  x~)B(xs))  

A(xj) - W ( x .  xs) 

X i - -  X j  

A'(xj) 
B' (x j )  {A(u),  B(v)} . . . . . . .  + 

+ {A(u) ,A(~)}  . . . . . . .  + = O .  
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Thus we have proved that the Poisson brackets for P's and x's are given by 
(3.4). It remains to show that d e t ( T ( x i ) - P i )  = 0 .  Since B(x~) = 
de tS(TN_l (Xi ) , r  there exists a vector-row ~.el12 "-1 such that 
~T~_l (Xi ) r  = 0 (k = 0 , . . .  , N -  2). Then for any vector-row ~/ from the 
subspace L span {4, ~TN-  1 (xl),. N- 2 . . . .  ~TN-1 (xl)}, t iT , - l ( x i )  e L  and t]t(n)(xi) = O. 
This means that if r / =  (t/1 . . . . .  qN 1) e L  is the left-eigenvector of TN-l(Xi) ,  then 
1/' = ( t h , . . . ,  r/u-1,0) is the left-eigenvector of T (x~), and the corresponding eigen- 

t / l t l  ( x i )  
1 

value is 2 = + " " " + rlN-ltiv-~. But t/ is also a solution of the equation 
th 

rlS(TN- 1 (xi), t(m(xi)) = rlS(xi) = 0. Expressing coordinates of 11 through minors of 
the matrix S(x~), one can easily see that 

-~ = S ( 1 ) ( x i )  = A(xl) = Pi .  

S i xi) 

This completes the proof  of the theorem. 

Remarks. 1. When N = 2, 3, variables (3.3) coincide with those introduced in [$1]. 
Note, however, that for N > 4, the family A(u) is not involutive. 
2. It  follows immediately from definitions (3.1), (3.2) that the polynomial N ( T )  and, 
therefore, coordinates xi, are invariant under the action of S L ( N  - 1) by the 
similarity transform QTN_aQ -1 of the principal submatrix TN-1. Applying 
Lemma 1 to the matrix S(xl), one can see that coordinate Pi are S L ( N  - 1)-invari- 
ant too. In the case N = 3 SL(2)-invariance of separated variables was noticed by 
N. Reshetikhin (see [$1]). 

4. Gaudin Model 

Let us now compare the results of the previous section with the construction of the 
Darboux coordinates for the Gaudin model, which was proposed in the recent 
work [AHH2].  

The model can be described in terms of the rational matrix function 

J ( u )  = ~ + ~, (4.1) 
m = l  U - -  ~m ' 

where ~ is a constant matrix with distinct eigenvalues. Another case treated in 
[AHH2]  - ~  = 0 - will not be considered here. Note  also, that we assume 
matrices Y{") to have distinct eigenvalues, while in [AHH2]  genericity conditions 
are more relaxed: 5~ ~") are allowed to have multiple zero eigenvalue. 

The Poisson brackets for entries of Y-(u) are given by 

u), Y(v = ~ ,  J (u)  + ~-(v . (4.2) 
U - - V  

The Gaudin model can be considered as a degenerate case of the SL(N)  
magnetic chain [G, $4]. Namely, consider polynomial (1.1) with 

Z = 1 + e~( and L ~") = e Y  (m) (4.3) 
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and let p(u) = (u - c~1), . . (u - 5m). Then p(u)- 1T (u) = 1 + e3-(u) 4- O(~ 2) and 
the Poisson brackets (4.2) are obtained as a linearization of the quadratic Poisson 
brackets (1.3). 

Let us define functions/J(u), A(u) as follows: 

/~(u) = ~(J-(u)) ,  A(u) = ~4 ( J (u ) ) ,  (4.4) 

by (3.1), (3.2), (2.2) with T (u) replaced by J (u ) .  Then for polynomial (1.1), (4.3) we 
have 

where d - 
2 

ing the leading order in e we obtain 

{~(u), ~(v)}  = 0 ,  

1 {~(u), /7(v)}  = 
U - - V  

B(u) = ~ ( r ( u ) )  = p(u)dc, dB(bl) 4- O(C. d+ 1),  

A(u) = a~(T(u)) = p(u)(1 + cA(u) + O(e2), (4.5) 

N ( N -  1) 
�9 After substitution of (4.5) into (3.6), (3.8), (3.9) and consider- 

(9(u) .  r2(u,v) + g (v ,u )B(v ) ) ,  

1 {/~(u), ~(v)} = (9(u) - ff/(u, v )9(v) ) ,  
b/--V 

where ffZ(u,u) _= 1. Exactly as it has been done in the proof of Theorem 1, one can 

show that the variables 2j,/~j ( j  = 1 , . . .  ,MN(N-2--1) )  defined by 

/~(2j) = 0, /Sj = A(2j) (4.6) 

has the canonical Poisson brackets: 

Thus we obtain the following analogue of Theorem 1. 

Theorem2. Thevariables2j, t ~ j ( j = l  . . . . .  M N(N_-1))definedby(4.4),(4.6)are 

Darboux coordinates for the Gaudin model. Moreover, they satisfy the relation 

det@j - Y(2j)) = 0 ,  

The Darboux coordinates for the Gaudin model were given in [AHH2] by the 
solutions (Uk,2k) of the set of polynomial equations 

( J ( u )  - ;~)' Vo = 0 ,  

where Vo is a fixed vector and the superscript '  denotes the transition to the matrix 
of cofactors. The construction of the previous section has allowed us to find a more 
explicit way to define the Darboux coordinates. In particular, as well as in the case 
of the SL(N) magnetic chain the canonical coordinates are zeroes of the single 
polynomial in u. This important fact makes our construction more applicable for 
the investigation of the connection between the Bethe Ansatz and the separation of 
variables in the quantum case (cf. [$2,$3]). We are going to discuss this topic 
elsewhere. 
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