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Abstract: We prove that if a reference two-point distribution of  positive type on 
a time orientable curved space-time (CST) satisfies a certain condition on its wave 
front set (the "class 5 ~ , g  condition") and if any other two-point distribution (i) is of  
positive type, (ii) has the same antisymmetric part as the reference modulo smooth 
function and (iii) has the same local singularity structure, then it has the same global 
singularity structure. In the proof we use a smoothing, positivity-preserving pseudo- 
differential operator the support of  whose symbol is restricted to a certain conic 
region which depends on the wave front set of  the reference state. This local-to- 
global theorem, together with results published elsewhere, leads to a verification of  a 
conjecture by Kay that for quasi-free states of  the Klein-Gordon quantum field on a 
globally hyperbolic CST, the local Hadamard condition implies the global Hadamard 
condition. A counterexample to the local-to-global theorem on a strip in Minkowski 
space is given when the class ~ , ~  condition is not assumed. 

1. Introduction 

In the quantum field theory (QFT) of  a Klein-Gordon scalar field on a globally hy- 
perbolic curved space-time (CST) [2, 11], the Hadamard condition [18, 5] is believed 
to be a "physically necessary" condition on the two-point distribution of a quasi- 
free or more general state [13, 12, 28, 26]. Some reasons for this belief arose from 
investigations into the point-splitting renormalization technique used in defining ob- 
servables quadratic in the field operators on such space-times. It was discovered that 
the Hadamard condition is sufficient for point-splitting renormalization to yield a 
stress-energy tensor Tu~(x) that satisfies a set of  properties encapsulating what is 
meant by "physically meaningful." These are called the Wald axioms [43, 44]. The 
local Hadamard condition (LH) specifies the asymptotic behavior of  the two-point 
distribution ~O2(:r1, X2) for xl close to X2 to be 
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co2(xl, x2) ~ lim 1 ( ?.t(Xl, X2) ) e--+0+ ~ 2  ~,O-e(Xl, X2) + V(Xl, X2)In Oe(Xl, x2)_ + W(Xl, x2) , 

where u and v are certain smooth functions determined by the metric 9, the function w 
is smooth and determined by the "physics" (the state-dependent part), and a~(Xl, x2) = 
cr(xl,x2) + 2 ( T ( x l ) -  T(x2))ei + e 2, where cr(Xl,X2) is minus the signed square of 
the geodesic distance from xl to x2 and T is a global time coordinate function on 
M. The global Hadamard condition (GH) is the requirement that in addition the 
two-point distribution has singularities only at points Xl, x2 which are connected by 
a null geodesic within a causal normal neighborhood of a Cauchy hypersurface. This 
condition is given rigorous meaning in [28]. Once (GH) has been defined, (LH) can be 
described as the requirement that for each space-time point x, there is a neighborhood 
Ux of x such that (GH) holds on Ux • Ux. 

In the local algebra approach [15, 17] to quantized fields on CST [7, 9, 28, 25] 
an issue first raised by Kay [22, 23] is whether all globally Hadamard states are 
locally quasiequivalent. Ltiders and Roberts [34] made progress on this question on 
Robertson-Walker space-times and recently Verch [42] has proven local quasiequiv- 
alence on any globally hyperbolic CST. Another issue (see e.g., [14]) is whether the 
global Hadamard condition determines a folium of states that satisfies the "principle 
of local definiteness" [16, 10]. Again, progress on this question was made by Ltiders 
and Roberts [34] and more recently Verch [42] has provided a proof that for ultrastatic 
space-times, quasi-free Hadamard states satisfy local definiteness. In the present work, 
however, these algebraic issues are sidestepped and instead only certain properties of 
general two-point distributions (such as their singularity structure) are investigated. 

Fredenhagen and Haag [ 10] have investigated whether the laws of quantum gravity 
can be expressed locally in such a way that global laws can be recovered from them. 
Specifically, they considered a local algebraic framework on a manifold M with 
unspecified metric and used extensions of sheaf theoretic ideas to noncommutative 
algebras to demonstrate the reconstructibility of a globally defined state from its local 
germs, given suitable restrictions on the algebra and states of the theory. (The strongest 
restriction was that the state satisfy a "Reeh-Schlieder property.") A related question 
asked in [10] is whether specifying the (local) germs of a globally defined folium can 
be sufficient to permit reconstruction of the global folium. 

Partly motivated by consideration of an analog to this latter local-to-global ques- 
tion in the context of quasi-free states satisfying the Klein-Gordon equation on a 
generic globally hyperbolic curved space-time, Kay [23] arrived (on the basis of a 
variety of evidence [27]) at the following 

Conjecture 1.1 (Kay). Suppose that ~v is a quasi-free state satisfying the Klein- 
Gordon equation on a globally hyperbolic space-time. If the two-point distribution 
~v2 has the usual commutator and positivity properties and is locally Hadamard, then 
or2 is globally Hadamard. 

This is a reworded version of Conjecture 2 and its Reformulation in [23] and is re- 
ferred to simply as Kay's conjecture in this paper. Later, confidence in this conjecture 
was strengthened when it was shown by Gonnella and Kay [14] that several potential 
counterexamples to Conjecture 1.1 failed to be so. One such example, considered 
earlier and in a different context by Najmi and Ottewill [36], was a locally Hadam- 
ard, Klein-Gordon two-point distribution having space-like separated singularities and 
hence not globally Hadamard. In [14] it was shown that this two-point distribution, 
along with other examples having space-like separated singularities, violate the nec- 
essary positivity conditions required for them to be two-point distributions of states. 
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Another set of two-point distributions, which had also been considered earlier and in 
a different context by Allen [1], were bisolutions of the Klein-Gordon equation on de 
Sitter space having extra space-like separated singularities. It is pointed out in [14] 
that these examples manifestly satisfied the positivity requirements but were not lo- 
cally Hadamard. (The coefficient of the leading term of the asymptotic expansion was 
strictly larger than that required by the Hadamard condition.) 

An important consideration leading Kay [27] to regard Conjecture 1.1 as an analog 
of Fredenhagen and Haag's local-to-global question in terms of folia was the belief 
that sufficiently strong extra singularities for a space-like separated pair of points 
would force a locally Hadamard state out of the folium of globally Hadamard states 
on any bounded region containing this pair. See [24, 25] for related discussion and 
conjectures. 

The main goal of this paper is to present a "local-to-global" theorem more general 
than Kay's conjecture. Results published elsewhere [37, 38] are employed in showing 
that Kay's conjecture is a special case of this local-to-global theorem. The language 
of micro-local analysis is used throughout and is found to apply very naturally to this 
problem and to yield a quite general answer. This is not the first paper on quantized 
fields on curved space-time in which micro-local methods are used: Dimock's work 
on the scattering operator for a scalar field on curved space-time [6] makes significant 
use of the distinguished parametrix theory of Duistermaat and Hrrmander [8]. Also 
see [35] for even earlier examples of papers in which pseudo-differential operators 
were used in the context of quantum field theory on stationary and static space-times. 

The "distributional approach" to quantized fields on curved space-time used 
throughout this paper is outlined in Sect. 2. Section 3 presents a brief introduc- 
tion to micro-local analysis and lists some results that will be useful in later sections. 
In Sect. 4 the class ,~vt,9 condition for a time orientable CST (M, 9) and the main 
local-to-global singularity theorem are stated, followed by an outline of the proof of 
this theorem, the proof being contained in Sects. 5, 6, 7, and 8. (These sections are 
summarized in Sect. 4.) In Sect. 9, Kay's conjecture is verified using the existence of 
globally Hadamard quasi-free states on an arbitrary globally hyperbolic curved space- 
time and the equivalence (for quasi-free Klein-Gordon states) of the global Hadamard 
condition with a certain wave front set spectral condition (WFSSC) introduced in 
[37, 38] which is in turn stronger than the class ~J~M,g condition. In fact an even 
stronger statement than Conjecture 1.1 is proven: any two-point distribution of posi- 
tive type which has the local Hadamard singularity structure and whose commutator 
is i times the difference of the advanced and retarded fundamental solutions of the 
Klein-Gordon operator (modulo a smooth function) must have the global Hadamard 
singularity structure. (Note that we do not assume the quasi-free property or that the 
Klein-Gordon equation is satisfied.) In Sect. 10, we demonstrate the necessity for the 
reference state to satisfy the class ~ , 9  condition, by displaying a counterexample 
to the local-to-global theorem on a strip in Minkowski space when this condition is 
not assumed. Section 11 discusses some implications of the local-to-global theorem, 
in particular the strengthening of the belief that the Hadamard condition is physi- 
cally distinguished, and a corollary displaying some dependence among the axioms 
on curved space-time. 
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2. Distributional Approach to Quantized Fields on Curved Space-Time 

A pair (M, g) is a (curved) space-time (CST) if M is a smooth n-dimensional pseudo- 
Riemannian manifold (n >_ 2) equipped with a smooth metric tensor field 9 of signa- 
ture (+ . . . . .  ). The metric 9 determines the notions of time-like, null, and space-like 
vectors v E Tz(M) at a point x E M by the conditions 9x(v, v) > O, 9x(v, v) = O, 
and 9~(v, v) < 0 respectively, where 9x is the value of the metric tensor field at x. 
Time-like, null, or space-like curves on (M, 9) are smooth curves on M whose tangent 
vectors at every point on the curve are time-like, null, or space-like respectively. A 
geodesic is a (parametrized) curve whose tangent vector is parallel transported along 
itself. Points xl, x2 E M are causally related if Xl and x2 can be connected by a 
time-like or null curve in M. They are space-like separated if they are not causally 
related. They are null related if they may be connected by a null geodesic. The 
closed light cone V~ at x consists of all nonzero time-like and null vectors in T~(M). 
Clearly V~ decomposes into two components at each x. A time orientable CST is one 
in which a continuous global designation of "future" component of the closed light 
cone can be made. In this case the future/past (also called forward/backward) closed 
light cone at x is denoted by V f .  A CST (M, 9) with a hypersurface S such that 
every inextendible causal curve in M intersects S precisely once is labelled globally 
hyperbolic. Every globally hyperbolic CST is necessarily time orientable. Some of 
these definitions are as in Hawking and Ellis [19] and Chapter 8 of Wald [45]. Also, 
a covector k E T*(M) is called dual to v E T~(M) if k = gx(.,v). 

For the test function space on a space-time (M, g), we use in this paper the 
space of smooth complex-valued functions of compact support C~(M).  The dual 
space of C ~ ( M )  with respect to the metric volume form on (M, 9) is the space of 
distributions on M and is denoted ! ~ ' ( M ) .  See Sect. 6.3 of [21] for definitions and 
further discussion of distributions on a manifold. 

Let ~ ( M )  denote @m C ~ ( M )  for m >_ 1 and define cJ0(M) = C. For a 
collection of functions {fm}~_>0, where f ~  E !~m(M) and only a finite num- 
ber of the fm do not vanish, define f = (~m~=o fro. With involution defined as 

(~_=0 f * ,  where f * ( z l  . . , z m ) =  f , ~ ( x ~ , . . . , z l ) ,  and the product of f 
and 9 = ( ~ - - 0  9~ defined as f x 9 = ( ~ = 0 ( f  x 9)-~, where ( f  x 9)re(z1, . . . ,  x,~) = 

m ~i=0 f i (x l ' ' ' ' '  2Ci)gra-i(Zi+l''''' Zra), the set of all such f becomes an involutive 
algebra ~.~(M), called the Botchers algebra on M. See [3, 10]. 

Let !Zs  denote the space @ ' ~ [ ~ ' ( M ) ] ,  the dual of ~ ( M ) .  The direct sum 
topology is given to ~ ( M )  = t ~ = 0  ~ '~ (M) .  If  # is in ~ ' ( M ) ,  the dual of ~9(M)  
with respect to this topology, then for each m >_ 0 the m-point distributions (or 
functions) are #,~ = #I~(M~ E ~'(M), If co E .Pg ' (M) satisfies co0 = 1 and the 
positivity condition co(f* x f )  > 0 then co is a state. Suppose in addition that 
satisfies the local commutativity condition 

~ ( . . . | 1 7 4 1 7 4 1 7 4 1 7 4 1 7 4  (1) 

for supp f and supp 9 space-like separated. (This is a statement of the independence of 
measurements (commensurability) of observables at space-like separation, a typical 
quantum mechanical restriction.) Then one may think of the m-point distributions 
co~(Zl, . . .  ,z,~) as representing the expectation values of the product of m field 
operators ~ ( z l ) , . . .  ,~b~o(z~) with respect to some vector g2~o in a Hilbert space 
o ~ ,  an interpretation made available by an analog of the Wightman reconstruction 
theorem [3, 40], which is here given the generic label of "GNS construction" [4]. We 
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call a triple (M, 9, co) whose co satisfies these properties a quantum field model on the 
CST ( M, 9). 

A state co is quasi-free if the m-point  distributions satisfy co2,~+1 = 0 for m > 0 
and 

COZm(fl |  @ f2m) = Z c02(frr' | f~r2).. ,  c02(fr~2,,~-1 @ f~2m) (QF) 
7r E H m  

for m _> 1, where H,~ is the set of  permutations 7r: { 1 , . . . ,  2m} ~ { 1 , . . . ,  2m} such 
that 7rl < 7r3 < . . .  < 7r2ra_l and 7rl < 7r2, 7r3 < 7r4,...,Tr2ra-1 < 7r2m. The main 
focus of  research in quantum field theory on CST has been on states constructed from 
a linear wave equation via canonical quantization on CST [2]. These states turn out 
to satisfy (QF). 

The fact that a quasi-free state w is determined entirely by its two-point distribution 
leads one to direct particular attention to co2. Two general properties of  co2, as implied 
by those for a (not necessarily quasi-free) state co of a quantum field model on (M, 9), 
are as follows: 

Positive Type: For any f E C ~ ( M ) ,  

CO2(f @ f )  _> 0 .  (PT) 

This follows from the generic positivity condition on co which in turn corresponds to 
the positive definiteness of the inner product on the Hilbert space o~g,o obtained by 
GNS construction from co. 

For any two-point distribution u, the symmetric (anti-symmetric)part is defined 
by 

" 1  

u+(f  | g) = 2 (u(f  | g) • u(g | f))  . 

Equation (1) implies the following necessary condition on co2: 

Local  Commuta t iv i ty :  For any f ,  g E C ~ ( M )  such that supp f and supp 9 are 
space-like separated, 

(co2)-(f  | g) = 0 .  (LC) 

The properties (PT) and (LC) make sense for any space-time (M, g), even possibly 
one that is not time orientable, and are two of the basic properties for co2 that are 
necessary for the state co to yield a physically meaningful field qs~o by the GNS 
construction. We suggest in Sect. 1 l that on a time orientable CST a certain "wave 
front set spectral condition" is a third such condition. There may be more, however. 

A Klein-Gordon quantum field model on (M, 9) is a quantum field model (M, 9, co) 
such that co in addition satisfies: 

Kle in-Gordon:  For any f ,  g E C ~ ( M ) ,  

co2 (([7 + m2)f  | g) = co2 ( f  | (l"] + m2)9) = O . (KG) 

Here, [ ]  = g ~ ' V ~ V , ,  where V~ is the covariant derivative on the pseudo- 
Riemannian manifold (M, 9). The term m 2 may be replaced by a more general po- 
tential V(x) and a first derivative term - i b ~ ( x ) V ~  may be added. 

In order to have a well-posed Cauchy problem for the Klein-Gordon equation, we 
assume in this paper (as is usually done) that the CST for a Klein-Gordon quantum 
field model is globally hyperbolic. For states satisfying (KG) on a globally hyperbolic 
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CST we also assume in this paper the property (QF) for aJ as well as the following 
property: 

Commutator:  For any f ,  9 E C ~ ( M ) ,  

(w2)-(f  | g) = 2 A ( f  | 9) ,  (Com) 

where A = A A -- A R and AA and An  are the advanced and retarded fundamen- 
tal solutions of the inhomogeneous Klein-Gordon equation. These distributions are 
uniquely determined by their support properties [31, 32, 33]. Condition (Com) is a 
direct consequence of canonically quantizing a scalar field satisfying the Klein-Gordon 
equation. Clearly it implies (LC). 

3. Micro-Local Preliminaries 

The definitions adopted for the distribution spaces ~ , ( ]~n) ,  5w,(En), and ~ , ( ~ n )  on 
] ~  and :~- '(M) and ~ ' ( M )  on a manifold M may be found in [21] or Appendix B 
of [37]. 

The convention for the Fourier transform of f E 5~(]~P), denoted by a hat ^, is 
chosen to be 

f(k)- (27r)P/21 j / p  ei(X,k) f ( x ) d  x 

for k E R p. Here dx is shorthand for the Lebesgue measure dx I .. �9 dx p on ]R p. The 
inverse Fourier transform of f ,  denoted by a check v, is then f = f - ,  where g -  is 
defined by 9 - (x )  = 9(-x) .  Recall that ^ map.s 2~(]R p) isomorphically to itself. 

Following [21], given an open set X C 1R p one defines the space of symbols 
S2&(X X I~ q) on X x ]~q of order m and type p, 6, where m E 1I~, 0 < p < 1 and 
0 _< (5 < 1, to be the space of smooth functions a on X x •q such that for any 
compact set K C X and multi-indices c~,/3, there is a constant C~,~,K such that 

sup ID~D~a(x, k)[ < C,~,Z,K(1 + Ikl) m-p'~'§ 
xGK 

""Dxp ,  D~ = Dki . .D~ : ,  D , ,  = - i0x , ,  and for all k E RP, where D~ = D:I ~ ~ ~ .  

Dkj = - i0kj .  Here, Ikl is the Euclidean norm of k, namely, 

Ikl = 2 
"= 

If p + 6 = 1 this space is denoted by S p ( X  • 1I~q) and if p = 1 and 5 = 0, it is called 
S ~ ( X  x Rq). 

Given a symbol b in S~,e(II~ v x IRP), where the second copy of I~ v is considered 
the dual of the first, the pseudo-differential operator B with symbol b is defined on 
u E ~ ( R  p) by 

Bu(x) - (27r)p/21 f~p e -i(x'k) b(x, k)~(k)dk 

for x E NP. The spaces of pseudo-differential operators with symbols in S~,~(I~ p x 
li~P), S~ (N  p x I~ p) and sm(N p x I~ p) are denoted P~,~(]RP), P~(I~ p) and ~m(RP) 
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respectively. B is also defined on v E ~ ' ( I R  v) by (Bv)(u) = v(Bu)  for all u E 
5f(~v). 

Again following [21], if v E ~"(RP), then Z(v) is defined to be the complement 
in Rv\{0} of the set of all k E RP\{0} for which there is an open conic neighborhood 

of k such that ~9 is of rapid decrease in ~ ,  by which we shall mean that for any 
integer N, there exists a constant CN such that for all ~ E ~ ,  

I~(~)l _< CN(1 + I~l) - N  

Also, for u E ~ ' (NP) ,  the set Kx(u) is defined for x E NP to be 

S~(u)= ~ s(r 
C e C ~  
r r o 

Remark. This definition is natural because of: 

Lemma 3.1 (Lemma 8.1.1 of [21]). S(r  C S(v) for  any smooth r of compact 
support, and any v E ~(I~P). [] 

Hence "squeezing" the support of r to x "squeezes" the set ~(r  to Zx(u). 

Definition 3.2. The wave front set WF(u) of u E 5~'(I~ v) is the set 

WF(u) = {(x, k) E T*(~')\O: k ~ E~(u)}, 

where 0 stands for  the zero section NP x {0} of  the cotangent bundle T* (I~ p) = NP x NP. 

It follows from the definition of WF(u) for u E ~ ( R " )  that [21] 

71" 1 (WF(u)) = sing supp u ,  

where the set sing supp u, called the singular support of u C ~"(RP),  is the comple- 
ment in NP of the largest open set on which u is smooth and 7ra is the projection onto 
the first variable. Roughly speaking, if (x, k) is a point in the wave front set of u, 
then x specifies the location of a singularity of u and k its "direction of propagation." 
This definition extends to distributions on manifolds (u E ~'~(M)), in which case 
WF(u) is an invariantly defined closed conic subset of T*(M)\O and 0 is the zero 
section of the cotangent bundle T*(M)  [20]. 

The following result is reproduced from [21], to which the reader is referred for 
a proof. 

Proposition 3.3 (Proposition 8.1.3 of [21]). I f v  E ~ ' (~P)  then 

71" 2 (WF(v)) = S(v) , 

where r is the projection onto the second variable. [] 
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4. Local-to-Global Singularity Theorem 

Let (M, 9) be a time orientable curved space-time, not necessarily globally hyperbolic, 
and choose a particular time orientation (continuous global designation of closed 
"future" light cone) for M. Let 

+ d - d  ~ M , 9  = {((Xl,kl),(x2, k2)) E T*(M) • T*(M): kl E (V~I) , k2 E (Vx2) } , 

where (xi, ki) E T*(M), i = 1,2 means that xi E M and ki E T~(M) ,  and (V~) d is 
the set of covectors dual to elements of V~.  Note that ~ M , g  is invariantly defined. 

Definition 4.1. Let (M, 9) be a time orientable CST with time orientation chosen. A 
two-point distribution lz2 C ~2t(M) is of class ~w,g if 

WF(#2) C ~ M , g  �9 

In the special case M = Nn, define ~ n  to be 

~ n  = { ( (Xl ,  k l ) ,  (X2, k2)) C T*(R n) • T * ( ~ n ) :  (kl)O > 0, (k2)0 < 0}  , 

where the natural coordinate representation for covectors on ~ is chosen, i.e., ki = 
((k00, ( k 0 1 , . . . ,  (k0n-1). (The slice of ~ = 7 v 2 ~  = {(kl, k2): (kl)o > 0, (k2)o < 0} 
in the (kl)o-(k2)o plane is shown in Fig. 1 in Sect. 5.) 

Definition 4.2. A two-point distribution #2 E ~2~(~ n) is of class ~n /f 

WF(/z2 )  C ~ ,~n  �9 

Note that this is not an invariantly defined class on ~n since ~ n  is not invariantly 
defined with respect to global coordinate transformations of ~n.  For any Lorentzian 
metric 9 on R n having the property that (V~) d c {k E ~n: k0>0}, with respect to 
the natural coordinates of R ~, one can see that Jg~n,9 C , ~ n ,  so that ~ is a larger 
class than ~ , g  in this case. 

The main goal of this paper is to demonstrate that if one has a "reference" two- 
point distribution #2 of class ~w,9 which is of positive type (PT) and satisfies local 
commutativity (LC), then if another two-point distribution w2 is of positive type (PT) 
and has the same antisymmetric part as #2 modulo C ~ ,  and in addition differs from 
]Z 2 by a C ~ function on sets of the form U • U, then 0:2 differs from #2 by a C ~ 
function globally. In fact it turns out that to prove this statement it is not crucial 
(except to maintain physicality) to require that/~2 satisfies (LC). The proof that local 
smoothness of the difference (a.) 2 --  ]~2 implies global smoothness of o,22 --  ]~2 depends 
only on the (PT) requirements for #2 and ov2, the local smoothness of the difference 
~2 --  ]Z2, the global smoothness of (0.3 2 - - / Z 2 ) _  , and the requirement that #2 is of class 
~3M,g. 

The method of proof is to first prove the result on flat space-time ~ ,  with the 
class ~ condition replacing the class 5 ~ , g  condition, then to extend the result to a 
curved space-time (with the class ~vt,g condition) by using the coordinate charts on 
the manifold to map back to R n. Specifically, in Sects. 5 to 8 the following statement 
is proven: 

Theorem 4.3 (Local-to-global). Let (M, 9) be a time orientable space-time, not nec- 
essarily globally hyperbolic. Suppose that #2 E ~2t(M) is of class 5~w,g and satisfies 
(PT), and that ~2 E 6S21(M) satisfies 
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1. 032 is of positive type, 
2. (aa2 - #2)- E C ~~ and 
3. for all x E M, there is a neighborhood Us of x such that (co2 - /z2) lu , •  is 

smooth. 

T h e n  60 2 - [3,2 is globally smooth. 

Sections 5 to 7 treat the case M = ]R n, and where "class ~ replaces "class 

Following is an outline of the proof of Theorem 4.3 for the case M = ~n. First, 
in Sect. 5, for each c E (0, 1), a pseudo-differential operator A~ with symbol ac is 
constructed which preserves local smoothness and positivity of tempered two-point 
distributions and such that a~ has support inside a certain conic region (namely the 
region cone supp ac, a slice of which is pictured in Fig. 1). Given any distribution 
l~2 E ~2t(~ n) such that 7r2WF(/.t2) has support in the region ~ = 7 i - 2 ~  n (i.e., a #2 
of class ~ ) ,  the value of e can be chosen (to be co, say) so that A := Aco acts as 
a smoothing operator on #2. If ~z2 is a two-point distribution of positive type with 
the same local singularity structure as #2 and if we take X = r | r where r is 
an arbitrary smooth cutoff function (so that XW2 is also of positive type), then AXW2 
is locally smooth and of positive type. In Sect. 6 the Cauchy-Schwartz inequality 
for AXe2 is used to show that AXw2 is smooth everywhere. In Sect. 7, the global 
singularity structure of w2 is recovered from that of AXW2 as follows. It is shown that 
X~*"~ is of rapid decrease in certain directions determined by the conic support of the 
symbol of A, and that the Cauchy-Schwartz inequality for XW2 extends the directions 
of rapid decrease to a larger set. The rapid decrease of ~ in these directions and 
the symmetries of u = ~2 - #2 imply that ~ decreases rapidly in all directions, so 
that XU and hence u are smooth globally. Hence ~2 has the same global singularity 
structure as #2. 

In Sect. 8, coordinate charts on the manifold are used to map back to ] ~  and 
thereby show that the difference (co2 - #z)(x~, x~) is smooth for xl!, 372t in neighbor- 
hoods of xl,  x2 E M respectively. 

5. The Smoothing Operators A~ 

We construct a class of pseudo-differential operators Ac corresponding to each c in 
the interval (0, 1) as follows. Fix ~0 E C ~ ( R  n) with the properties that supp ~b0 C 
{k E I~'~: Ihl _< 1}, %(k)  > 0 for ]k I < 1, and ~b0 = 1 on the set {k E 1~'~: Ik[ _< 1}. 
The function ~b0 is chosen to depend only on ]k]. Fix c E (0, 1) and for nonzero 
A E R • let ~ , c ( k )  k-~ = ~0(~--~). Note that ~A,c(k) r 0 for k in the open ball of radius 

c]A[ with center at A. If  A # 0, we have elA I < IA[ and the support of CA,~ does not 
include k = 0. 

Fix a > 0 throughout this paper and let R~ be the set {A E ~n: A0 > 0, IA[ _> a}. 
For each e E (0, 1) define the function a~ for kl, k2 E ~n  by 

a~(kl, k2) /R~ dACA,c(-kl)r (2) 

This integral is well-defined since the support of CA,c(k) with respect to A for k fixed 
is compact. The slice of supp ac in the (kl)0-(k2)0 plane is shown in Fig. 1. 
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Now denoting (kl, k2) E ]~2n by k, the operator Ac on u E ~ t ( ] ~ 2 n )  for x = 
(x], x2) E ~2n is defined by 

A ~ u ( x ) -  (27r)~1 f~2, e-i(x'k)a~(k)u(k)dk" (3) 

Here (x, k} = (Xl,  k l )  Jr (X2, ]g2). 
Following are some definitions needed for this and later sections. 

Definition 5.1. A set ~ C ]R p is conic/ff  sk E ~ for all s >_ 0 whenever k E ~ .  
The conic extension of a set ~/" C ]~P is the smallest closed conic set containing ~"  
and is denoted cone ~ ' .  I f  b is a function on ~v  then cone supp b is called the conic 
support of b. 

See Fig. 1 for the slice of cone supp ac in the (kl)o-(k2)o plane. 

(1~)o 

/ t  

,(I - Ci~ 
i/" 

. . . . .  . .o 
..... , r  ~,+ k~ -- o /~ 

�9 ,.. x2WF(~) 
\ 

I / ' x , ,  

| 

Fig. 1. Slices in the (/el)o-(k2)o plane of supp ac, cone supp ae, {(kl, k2): kl+k2 = 0}, ; ~  = {(kl, k2): ka + 
k2 = 0, (k2)o _> 0, Ik21 > a},  Woo = {(kl, k2): kl+k2 = 0, (k2)0 ~ 0}, ~ = {(kl, k2): (kl)0 > 0, (k2) 0 < 
0}, 7r2WF(#2) and S 

Definition 5.2. A distribution u E ~2~ ( M )  is locally smooth iff for  each point x E M,  
there is a neighborhood Ux of x such that u IU~ • u~ is smooth. 

We summarize the desired properties of ac and Ac in the following 

Lemma 5.3 (Properties of a~ and A~). In the following e E (0, 1) isfixed except for 
property (e). 

(a) a~ E C ~ 1 7 6  
(b) a~ E Sn(R 2n x ~zn), hence Ac E pn(~Zn). 
(c) A~ maps ~(]~2~)  into itself 
(d) If(ka, k2) E ~ := {(kl, k2): kl + k2 = 0, (k2)0 _> 0, Ikz[ _> a}, we have 

a~(kl, k2) > 0 .  

(e) Given a #2 satisfying the class ~ condition, the constant c E (0, 1) can be chosen 
small enough that 

cone supp ac M 7r2WF(/.t2) = 0 �9 
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0 c ) l f u  E ,~,(~2n) is locally smooth, then so is Acu. 
(g) [f  ~ ~ .gCPt(]~ 2n) is of positive type, then so is Acu. 

Proof Property (c) is obvious once (a) and (b) have been shown. Property (a) follows 
from the property that the integrand ~a,c(-kl)~a,~(k2) is smooth with respect to 
(kl, kz) and is smooth and compactly supported with respect to A. 

For # > O, we have 

ac(/Zkl,/zk2) = / ~  dA 
c, 

= /R dAea/u'c(-kl)~"x/"~(k2) 
r 

= #n / dA 
J R  r  

where the following scaling property of Ca,~ has been used: 

r = ~o \ el~,l ) = r \ clA/~I ) = r . 

Note that when Ikl I, Ik21 are large enough the condition IAI >_ cr in the integral in the 
definition of a~ in Eq. (2) is superfluous because the integrand already vanishes for 
IX} < a. Hence for large Ikl], Ik21 and # _> 1, the last integral in the above calculation 
is ac(kl, k2) and it has been shown that ac(pkl,pk2) = #nac(kl, k2). This proves (b). 
In particular, Ar is a pseudo-differential operator with symbol ac homogeneous of 
degree n for large k. 

Choose (kl, k2) E ~ .  Then k2 E R a  and 

is strictly positive for A = k2. Since )~ = k2 is in the range of integration and the 
integrand in Eq. (2) is positive valued and smooth in A, we have proven (d). 

The proof for property (e) is rather long and is contained in Appendix A. Also, 
R. Vetch has discovered a construction of a simpler pseudo-differential operator, 
which may be used in the proof of the main theorem. This construction, as well as 
the proof of the relevant properties, is found in Appendix B. 

Property (f) follows easily from the pseudo-local property of pseudo-differential 
operators, namely sing supp (Acu) C sing supp u. See p. 39 of Taylor [41]. 

For h E C ~ let h -  be the function x ~-~ h(-x) .  If f E 5~(~n) it follows that 

| : )  = | : )  -- | : )  -- | : - ) ) .  A~u(f  

Here the check symbol ~ denotes the inverse Fourier transform. Now 

[a~(?| f - ) ]  (kl,k2) = ac(kl,k2)f(kO.f(-k2) (4) 

= /R~, dA~a,c(-kl)~),,c(k2)f(ki)f(-k2) 

= /t~ dA~;~(k~)~)~(-k2) 
er 

= dA gh @ OA (kl ,  k2), 
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where ~x(k) = f ( k ) r  E C~(]~ n) and hence is in JW(Nn). We have used the 

property that ex,c is real-valued. Note that Eq. (4), together with f | f -  E S~(~ 2n) 
and ac E Sn(1~2n), implies that fR~ d.k ~0-7 | ~0x- c .S'~(R2~). Hence, 

Z r 1 7 4  f )  =  (fR d) ffx| (5) 
c~ 

Since the integral in Eq. (5) can be approximated by a Riemann sum, and since 

~(0x, | .0~-~) = u ( y ~  | g~ )  >_ 0 

for each term ~-~ | ~ -  in the Riemann sum, continuity of ~2 on ~ ( ~ 2 n )  implies 

A ~ u ( f  | f )  >_ 0 and property (g) is proven. [] 

6. Local-to-Global Smoothness 

Now we demonstrate that the positivity of a two-point distribution v leads to the 
conclusion, via the Cauchy-Schwartz inequality for v, that local smoothness of v 
implies global smoothness of v. 

Proposition 6.1. I f  v E ~-,(~2n) is locally smooth and o f  positive type, then v is 
globally smooth. 

Proof. The positivity of v implies the Canchy-Schwartz inequality: 

Iv ( f  | g)l 2 < v ( f  | f ) v ( g  | g) 

for real-valued f ,  g E C~(I~n). Now let fP  be a sequence of functions such that 
fP  E C ~ ( ~ ' ~ ) ,  f v  >_ O, f~,~ f v  = 1, and supp fP  ---* {0}. In other words f v  _~ (5 in 
the topology of ~ ' ( l ~ ) .  Let fP (y )  = f V ( y  _ x) .  Then 

Iv ( ( f  p - fq~) | g)l 2 <_ v ( ( f  p - f q )  | ( fP  - f q ) ) v (g  | g) . 

Choose an x0 E ~ .  Choose a positive integer No and V, W, U (open) neigh- 
borhoods of x0 with V , W  compact, V C W, and W C U such that (i) v 
is smooth on U • U (so that v is uniformly continuous on l?d), and (ii) for 
p,q _> No and x E i 5", we have supp (fP - fq) c W. Given e > 0, choose 5 
so that X l , X 2 ,  Y l , Y 2  E [TV" and 0 < Ix 1 - Y l l  < 6, 0 < I x 2 -  Y2] < 5 imply 
that IV(Xl,X2) - v(yl ,Y2)I  < e. Also choose N _> No so that for all p ,q  > N ,  
whenever x E I 5" and xl E s u p p ( f P -  fq) we have I X l - X  I < 6. Then, since 
f dx ldX2 v ( x , x ) [ f P ( X l  - x )  - f q ( x l  - x)][ fP(x2 - x)  - f q ( x2  - x)] = 0 (we can 
perform the integration with respect to Xl explicitly) and v ( f  | f )  is positive, we 
have, for x E V" and p, q _> N, 

v ((fx p - Ix q) | (fP - fq)) 

= ] / d x l d x 2  [v(xl ,  x2) - v (x ,  x ) ] [ fP(x l  - x )  - f q ( x l  - x)] • 

[ f P ( x 2  - -  x )  - -  f q ( x 2  - -  x)][ 

<__ / d x i d x 2  e l fP(x l  - x )  - f q ( x l  - x)i[fP(x2 - x )  - f q (x2  - x)] 

< 4e. 
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Hence Wp(X, 9) -- v ( f  p, 9) is uniformly Cauchy on the compact set V and, by com- 
pleteness of I~, the sequence {Wp(X, 9)} converges uniformly on V to some number, 
call it w(x, 9). 

Doing the same for the second argument results in a function w(x, y) with x, y E 
]R n such that w(x, y) is the uniform limit on compact sets of v( f  p | fq) as p, q ~ oc. 
To show that w E C ~ we replace the test functions in the Cauchy-Schwartz inequality 
b y f  ~ k = 0 fx ~ 0 ~ r  t - ~ x, 9 = 0~9~ - 0~9 q and use an analogous argument as above to 
conclude that Wp,,qZ(X, y) := v(O~f~ | OZf~) is uniformly Cauchy on compact sets as 

p, q ~ ~ ,  and hence has a uniform limit on compact sets, call it w~'Z(x, y). 
Now clearly Wp,q and Wp,'q z are smooth functions on ~n  x ~n. Furthermore, 

w~,Z(X,p,q y) = O~O~ywp,q(X, y). Hence 0 x Oy Wp,q --~ w c''~ uniformly on compact sets 
as p, q ---+ c<~. 

It is now straightforward to argue that the derivatives O~O~yw exist and are equal 

to w ~'z (see, for example, the proof of Theorem V.9 of Reed and Simon [39]). 
Finally, it is clear that v is representable by w, which completes the proof of the 
global smoothness of v. [] 

7. Proof  of  Main  Theorem on ~ 

Proof of Theorem 4.3for the case M = ~ (with class ~ replacing class ~ , 9 ) "  Let 
~2 and to 2 be as in Theorem 4.3. Let u = o.; 2 - -  ].t 2. Since/z 2 is of class ~ ,  by property 
(e) of Lemma 5.3 there is a co for which cone supp a~ o does not intersect 7r2WF(/z2). 
Hence supp a~ o and 7r2WF(/z2) are also disjoint. Denote aco by a and Aco by A. 

Fix some real-valued function r E C~(]~ n) and let X = r | r E C~(Rzn).  
Since u E 5~ ' (~  2n) is locally smooth, so is Xu and since Xu E ~'(]R2n), property 
(f) of Lemma 5.3 implies that AXu is also locally smooth. Furthermore Xto2, XP2 E 
~ ' ( R  2~) are of positive type, and property (g) of Lemma 5.3 implies that Axto2, AX#2 
are also. 

Since #2 is of class ~ and WF(x#2) C WF(#2), we obtain that 7r2WF(x/z2 ) 
and cone supp a are disjoint. By Proposition 3.3, we have that ~'-fi~(kl, k2) is of 
rapid decrease (see Sect. 3) in cone supp a. Thus, by property (b) of Lemma 5.3, the 
function a~--~ is of rapid decrease in all of ~2n\{0}, and so AX#2 E C ~.  

The preceding shows that Axto2 = Axu+Ax#2  E Sf ' ( I~ 2n) is locally smooth and 
of positive type. By Proposition 6.1 we have Axto2 E C ~176 

Now let ~ be the conic set defined by 

~00 = {(k l ,k2)  # 0 : k  1 + k  2 - - 0 , ( k 2 )  0 ~ 0} . 

Note that Woo is the conic extension of ~ for any a > 0. Properties (b) and (d) 
of Lemma 5.3 and the global smoothness of Axto2 then imply that ~ is of rapid 
decrease in ~00. See Fig. 1 for the slices of ~ and ~oo in the (kl)0-(k2)0 plane. 

Let S be the region 

s = {(ka, k2) # 0:Ik21 > Ik, I, (k2)0 _> 0} .  

Clearly S is a closed conic subset of R2n\{0} and S N ~ = ~. See Fig. 1. 
Although it is not apparent from Fig. l, the sets supp ac and cone supp a~ 

protrude slightly into the region ~ in conic neighborhoods of points of the form 
ki = (0, (ki)l, (ki)2, (ki)3) r 0, i = l, 2. However, the choice of a = a~ o has been 
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made according to property (e) of Lemma 5.3 so that cone supp a does not intersect 
rr2WF(#2) anywhere in 1Rin\{0}. 

Now we consider the Cauchy-Schwartz inequality for Xw2 expressed in terms of 
the Fourier transform X--~: 

I~-~(i | 0)12 <- ~-~(] | f - )~2(O-  | 0), 

where f ,  ~ are arbitrary real-valued Schwartz test functions. Since X is of compact 
support, ~'-~(k) is a smooth function of k E ~2~, so one may insert in the inequality 
sequences of positive-valued test functions { f i  }, {~i} which tend to the delta functions 
6k, and 6k: in the topology of ~ ' (~ '~ ) .  In this limit the inequality becomes 

IX-~(kl, k2)l 2 ~ ~ '2( /q ,  --kl)~(-k2,/~2) (6) 

The property S A ~ = 0 implies by Proposition 3.3 that ~-~ is of rapid decrease 
in S. Furthermore, from XW2 E ~W'(~ 2'~) it follows (see e.g., [21]) that there exists 
an integer M and a constant C such that for all k E R2n\{0}, we have 12~(k)l _< 
C(1 + Ikl) M. Hence for (kl, k2) E S, we have (-k2,  k2) E ~0, and Eq. (6) implies 
that for all N, there exists CN such that 

I~-~(kl, k2)] 2 ~ ~ ~ ( k l ,  -]gl)X~(--k2, k2) 

C2(1 + v~]kll)M(1 + x/2lk21) -M-2N . 

But v~[k,[ < v/Ikll2+ Ik212 = Ikl and v~lk2l _> Ikl since Ik2l ~ Ikt[. So in S, we 
have the inequality 12~(k)l 2 _ C2(1 + Iki)M(1 + Ikl) - M - 2 N  = C~v(1 + Ikl) -2N. 
Hence ~ is of rapid decrease in S. Furthermore, the rapid decrease of ~-~ and 
in ;9 imply that of ~ in ;9. 

Since r has been chosen in the definition of X = 050 | 050 to be real-valued, Xu 
has the following two symmetries. Firstly, ~'~(kl, k2) = ~-'~(k2, kl) modulo a term 
of rapid decrease, since X = 050 | 050 is symmetric with respect to interchange of 
kl and k2 and u has smooth antisymmetric part, by hypothesis. Secondly, it follows 
from the positivity of #2 and aa2 that the (#2)+, (w2)+ are real and (#2)-, (w2)_ are 
imaginary. The hypothesis of the smoothness of u_ then implies that Xu must be 
real-valued up to C ~176 This implies that ~'~(kl, ke) = ~-'~(-kl, -k2)  modulo a term of 
rapid decrease. The second symmetry extends the rapid decrease of ~"~(kl, k2) from 
directions (kl~ k2) ~ 0 for which Ik21 _> Ikx[ and (k2)0 >_ 0 (i.e., points in S) to those 
directions for which Ik21 > Ikll and (k2)0 _< 0. Hence all directions (kl,k2) ~ 0 
with I k21 _ I kl} are directions of rapid decrease. The first symmetry extends the 
directions of rapid decrease from all (kl, k2) ~ 0 for which Ik21 _> Ikll to those for 
which Ikll _> Ik21. Hence all directions (kl, k2) ~ 0 are directions of rapid decrease. 
Therefore XU E C~~ Since the support of 050 was arbitrary, u C C~176 [] 

8. Extension to Curved Space-Time 

Proof of Theorem 4.3. Let (M, 9), #2 and 032 satisfy the hypotheses of Theorem 4.3. 
Set u = Me - #2 as before. Choose any points xl,  x2 E M such that xl ~ x2, together 
with small enough contractible open neighborhoods U1, U2 containing xt, x2 such that 
U1 M Uz = 0. We wish to show that u is smooth when restricted to the neighborhood 
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U1 • U2 of (Xl, X2) in M • M. Choose chart mappings r r sending U1, U2 to open 
subsets V1, V2 of IU ~ respectively, such that 1/1 M V2 = 0 and 

((r > 0 and ((r > 0 (7) 

for any cotangent vectors kl E (V~) a, k2 G (VxT) ~t. Here x~ and x~ range in the sets 

U1 and U2 respectively. Such a choice of r r is always possible for small enough 
UI, U2 on the time orientable CST (M, g). 

Now let r E C~(U1), r E C~~ be positive-valued cutoff functions such 
that r r 0 and r # 0. Also let ~1 = (r162 and ~2 = (r162 �9 The 
mapping r on C~(V1 t0 V2) is defined to be 

r  = r + r �9 

Also let ~ = ~1 + (32, where ~1 and r are extended to functions in C~(V1 U 172) 
by defining them to be 0 outside of V1 and V2 respectively. Let/22 be the following 
distribution on ~'~ • ~n: if f ,  ~ E C~~ n) then 

Similarly, define &2(f | .q) = co2[r162 | r and g = &2 - #2. 
Clearly, /22 and &2 are in ~,(~2,~) and are of positive type. Also (&2 - /22)_ 

is smooth and &2 - /22 is locally smooth, as follow directly from the corresponding 
properties of ~o2 - #2. Now since the wave front set transforms under diffeomorphisms 
of the manifold M as a subset of the cotangent bundle T*(M) (cf. Theorem 8.2.4 of 
[21]), we have 

WF(/22) C ( r  @ r  r @ r ' 

Here r = r + r where r r are extended to C~(M) by defining them to be 0 
outside U1, U2 respectively. Since >2 is of class ~ , g  (Definition 4.1) and WF((~b | 
r C WF(#2), the distribution (r N r is also of class G~ and by Eq. (7), /22 
must be of class ~ (Definition 4.2). Hence the results of Sects. 5, 6 and 7 apply and 
we conclude that ('d2 -- /22 C Coo(]I~2n). This means that (0,32 --  lZ2)I(UtuU2)x(UtuUz) E 
C ~176 Without loss of generality, U1 and U2 can be chosen so that 032 -- ~2 is smooth 
on U1 • U1 and U2 • U2. Then, since Ut and U2 are disjoint, it follows that (~02 - 
#2)]ulxu: E Coo, which is the desired result. Since the choice of the original points 
Xl ,X2  E M was arbitrary, it follows that w2 - #2 E C~(M x M). The proof of 
Theorem 4.3 is complete. [] 

9. Verification of Kay's Conjecture 

Work published elsewhere [12, 8, 37, 38] shows the existence of globally Hadamard 
two-point distributions #2 satisfying (KG), (Com) and (PT) up to C ~ on any globally 
hyperbolic space-time (M, g). According to Condition 3 of Theorem 5.1 of [38J (see 
also the Note Added in Proof), the global Hadamard condition for a/z2 satisfying 
(KG) and (Com) is equivalent to the following condition: 
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Definition 9.1. Let #2 E ~2' (M) where (M, g) is a time orientable curved space-time 
(not necessarily globally hyperbolic). Then #2 satisfies the wave front set spectral 
condition (WFSSC) / f  

WF(#2) = { ( ( Z l ,  kl), (X2, k2)) E (T*(M) x T*(M))\0:  (8) 

(Zl, kl)  ~ (X2, --/~2), kl C (Vx+l)d} , 

where the equivalence relation (xl, kl) ~ (x2, k2) means that xl and x2 are null related 
by a null geodesic 7 and the duals of kl and k2 are the tangents to 7 at zl  and x2 
respectively. 

Observe that the WFSSC requires #2(zl, z2) to have singularities at all points 
zl ,  z2 connected by a null geodesic, and if x 1 and x2 are connected by more than one 
null geodesic, then there will be several directions for (kl, k2) (all null) in WF(#2) at 
(Zl, x2). This property is sufficient for a model satisfying a linear wave equation. For 
more general models one does not expect that these directions will be only null; they 
may also be time-like (see K6hler [29] and the upcoming discussion on his WFSSC). 

Note that if ((xl, kl), (x2, k2)) E WF(p2)  then hi E (V~) d, k2 @ (V~2)d, and so 
the set on the right side of Eq. (8) is a subset of ~ M , g .  See Definition 4.1. Hence a #2 
satisfying the WFSSC is of class ~vLg. Theorem 4.3 then implies that any two-point 
distribution w2 satisfying (PT), (Com) and the local Hadamard condition is globally 
Hadamard. (This is all in 4 dimensions, but we foresee no obstacles to extending 
this to any dimension n > 2, provided that the appropriate replacements are made 
in the asymptotic expressions in the global Hadamard condition.) This verifies Kay's 
conjecture. 

Indeed, what has been proven is stronger than Kay's conjecture: 

Theorem 9.2. Let (M, 9) be a 4-dimensional globally hyperbolic (hence time ori- 
entable) curved space-time. Let w2 C ~;2~(M) be the two-point distribution of a state 
(so that we is of positive type). Suppose also that w2 satisfies (Corn) and the local 
Hadamard condition. Then w2 is globally Hadamard, [] 

Note that ~2 is not required to satisfy (KG) even up to C ~ Furthermore, #2 and 
~2 need not be the two-point distributions of quasi-free states; they are allowed to 
be those of any two states # and w on (M, 9). Finally, observe that the only reason 
that the space-time must be globally hyperbolic is in order that a)2 can satisfy the 
global Hadamard condition (the statement of which requires global hyperbolicity). 
Otherwise the manifold need only be time orientable. 

In [37] a condition more general than WFSSC was proposed (Property 4.9), which 
allowed kl to be any covector in (V~)a, and required -k2  to be the parallel transport 
of kl along some causal geodesic from xl to x2. Recently KOhler [29] has proposed 
a modification to the WFSSC designed to take into account (for non-linear theories) 
the possibility that more than one causal geodesic may connect Xl and z2 and that at 
such (Zl, z2) the covectors (kl, k2) may not be null. (This was not considered in [37].) 
His condition is reproduced as follows: 

Definition 9.3 ([29]; Definition 7). The two-point distribution w2 E ~2'( M)  satisfies 
the [modified] wave front set spectrum condition /ff its wave front set WF(w2) 
consists only of points (xl, kl), (x2, k2) E T*(M)\O such that X 1 and x2 are causally 
related and kl is in the dual of the closed forward light cone. Furthermore there are 
causal geodesics "Yi joining xl and x2 and vectors li in the dual of the closed forward 
light cone, such that ~ li = k1 and the parallel transported vectors li along 7i sum 
up to -k2. 
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In the case that several null geodesics connect Xl and x2, this definition allows 
the covector kl to be split up into several parts, such that each part is in (V~) d 
and such that after each part is parallel transported along a different null geodesic to 
x2 and summed there, the covector -k2  is obtained. K6hler presents new examples 
of Wightman fields (other than linear) on a manifold satisfying this more general 
condition and violating Definition 9.1. (For fields satisfying a linear wave equation, the 
WFSSC in Definition 9.1 is sufficient.) We observe that a local-to-global singularity 
theorem is true for examples satisfying this modified WFSSC since the class ~ , g  
condition can still be shown to follow from it. See also the dissertation of K6hler [30] 
where it is shown that the "supercurrent" (in a globally Hadamard product state) of an 
analog of the free Wess-Zumino model on Ricci fiat (globally hyperbolic) space-times 
is a Wightman field satisfying the modified WFSSC in a nontrivial way. 

10. A Counterexample on a Strip in ~4 

Consider the vacuum two-point distribution coo E ~ ' ( R  4 x ]~4), defined as the inverse 
Fourier transform of 

l d i ( k l  - . + k2)O((ki)o)6(k 2 m 2) 

Let G be the symmetric part of w~ 

G 0 = (%)+ 

i Recall that ~A is the antisymmetric part of co ~ so that co o = G + (i/2)A. Take 
/*2 = 2G + (i/2)A = coo + G and 032 = COO + (G -I- G T ) .  Here we define G r as 
G r ( f  | g) = G( f  | gr),  where gT(x02, X2) ~ g(--z ~ X2) and where (z ~ x2) = z2 = 
(z ~ z~, z2 2, z~). The globally hyperbolic space-time is chosen to be 

M = { x C I R 4 : a < x  ~  

for some fixed a, b such that 0 < a < b. On M, the difference co2 - /*2  is locally 
smooth, the antisymmetric part (co2 - / *2 ) -  vanishes, and/*2, c02 are of positive type. 
The positivity is easy to see for/*2, since it is the sum of distributions of positive type, 
namely coo and G. To verify positivity for co2, choose f E C~~ 4) and decompose f 
into its even and odd parts f+, f_  with respect to x ~ so that f = f++f_ ,  f+T = f+ and 
f_T = _ f _ .  Because of G ( f |  = G ( f  T | and the symmetry and time-translation 
invariance of G, we have G(f+ | f _ )  = G( f_  | f+) = 0, and the same holds for G T. 
Thus 

co2(f | f )  = coo(f | f )  + [G(f+ @ f+) + G(f_  | f_ )  

+GT(f+ | f+) + GT( f_  | f - ) ]  

= coo(f | f )  + [G(.~ | f+) + G(f_  | f_ )  

+G(f+ | f+) - a ( f _  @ f_)] 
= coo(f | f )  + 2a(f+ | f+) > 0. 

(Note also that #2, co2 satisfy (KG).) 
However, co2 has singularities at space-like separated points, namely the singular- 

ities arising from G T (cf. the first example considered in Gonnella and Kay [14]). 
Finally, one can show that 
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7I2WF(/z2) = {(]r ]~2) ~ 0:/r + ]r = 0} . 

Thus WF(#2) is not a subset of ~ , ~ ,  nor of ,~M,g for our choice of (M, 9). Hence 
i f / /2  does not satisfy the class ~ condition (and hence does not satisfy the class 
~vt,g condition) the local-to-global statement need not hold on this space-time. We 
expect similar counter-examples to exist for arbitrary time orientable space-times. 

11. Discussion 

There is already much evidence in the literature [5, 43, 44, 13, 12, 28, 42] that the 
global Hadamard condition (GH) should be regarded as a necessary condition for 
a quasi-free state on a Klein-Gordon quantum field model to be "physical." (GH) 
strongly appears to be distinguished among properties characterizing the asymptotics 
of quasi-free Klein-Gordon states for x I near to z2. The resolution of Kay's  con- 
jecture provides further confidence in (GH) since with (GH) we have a local to 
global theorem (Theorem 9.2), whereas without (GH) no such theorem is expected 
to hold (Sect. 10). Moreover, Theorem 4.3 remains true with the class ~3~,g condi- 
tion replaced by K6hler's modified WFSSC. I n  the opinion of this author, this latter 
condition is a strong candidate for a generalization of the Hadamard condition for 
two-point distributions satisfying (PT) and (LC) on any quantum field model (free or 
self-interacting) on a time orientable space-time. Furthermore, an explicit formulation 
of a WFSSC for m-point  distributions with m ___ 3 has been suggested by K6hler [30]. 
(A tentative attempt made in Chapter 4 of [37] has been shown by K6hler to be inad- 
equate.) In any case we propose that for a quantum field model (M, 9, w) on a time 
orientable space-time (M, 9) there is one more physically necessary condition on co2 
besides (PT) and (LC), namely K6hler 's modified WFSSC. 

We end our discussion of the local-to-global theorem by restating Theorem 9.2 
as a converse of Theorem 6.6.2 of [8], demonstrating some dependence (mod C ~ )  
between the global Hadamard condition and the positivity condition: 

Corol lary 11.1. I f  (M, 9) is a 4-dimensional globally hyperbolic CST, and a;2 is a 
locally Hadamard two-point distribution satisfying (KG) and (Corn) rood C ~,  then 
the following statements are equivalent: 

1. oo2 is globally Hadamard. 
2. a~2 is of positive type rood C ~  [] 
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A. Proof  of  Lemma 5.3(e) 

Following we present the proof of  Lemma 5.3(e). 

Define the sets $1 and $2,r for c ~ (0, 1) to be the intersections of the unit 
sphere S 2~-t C I~ 2~ with the conic sets 7reWF(#2) and cone supp ac respectively. 
Also let R = S ~-1 N cone R~, = S ~-1 N {A c ]~n: Ao _ 0} and let $3 = S 2n-1 f3 
cone {(kl, k2): kl + ka = 0, k2 ~ R} = S 2~-t f3 ~00, where ~0 is defined in Sect. 7. 
Clearly & ,  $2,r and $3 are compact subsets in S 2~-1 and R is compact in S ~-a,  and 
$1 n $3 = 0 since P2 is of  class ~ by assumption. For ), E R'~\{0} and c C (0, 1), 
let b~,r = r162162 Also for y ~ R and c E (0, 1) let S4,y,~ be the 
intersection of S a~-I  with cone supp by c. Note that cone supp bv,r = cone supp b ~ , y,c 
for s > 0, where b~,r k2) = bv,~(skt, sk2) = by/~,r ka). Hence cone supp ar C 
U;~conen~cone supp b~,r C Uyencone supp by,r hence $2,c C t-)ycnS4,y,c. 

Note that if A ~ 0, then as c tends to 0 the conic support of  b~,c tends to the ray in 
the ( -A ,  A) direction. Furthermore, (as will be shown) for any y E R, S4,y,r may be 
contained within a set of the form s Bkr where kr is a constant depending only on c 

(not on y) which can be chosen so that kr ~ 0 as c ---* 0 and where wy = ( - y ,  y ) / v ~ .  
Here, BS(x)  is the closed ball in S 2~-1 with radius r and center x E S 2~-1, with 
respect to the spherical metric d(., .), i.e., BS~(x) = {z E S2~-l:  d(x, z) < r}.  The 
distance dist(S1, $3) = inf,~e&,,~2e& d(ml,  m2) between the disjoint compact sets 
$1, $3 is clearly nonzero. If  k is chosen to be half that distance, then for all y E R, 

s the set B k (wv) will be disjoint from S1. Then, for some c chosen so that for all 
s y E R, S4,v,~ c B e (wy), we must have 

S $2,c C UyeRS4,y,c C UyeRB k (Wy) C S~ . 

This would then prove (e). What remains is to show that Vc, ~k~ such that Vy E 
S R,  S4,y,c C Bkc(Wy ). 

Note that if (kl, k2) is a point in the set S4,y,c (for Y E R) then the following 
relations are satisfied: 

1. Ikll 2 + I/r ~ 1, 
2. for some s > 0 we have Ikt + sy I < clsyl, lk2 - sy] < c{sy I. 

Clearly the set defined by the second pair of  relations lies within the ball in R an given 
by 

I(k~, ku) - ( - s y ,  8y)l <_ c{(-sy ,  sy)l �9 

Hence  S4,v,c C S 2n-1 n {(kl ,  k2): 38 > 0, ( k l , k 2 )  E Bcl(_sy,sy)l(-sy, sy) }. Here  

Bt(w) is the closed ball with radius t and center w E I~ 2~ with respect to the Eu- 
clidean metric I �9 ] on N 2~. The set on the RHS of the above inclusion is obtained by 
taking the union of  the balls Bcl(_~y#y)l(-sy, sy) over all values of  s > 0 and then 
intersecting with S 2n-1 . It is clear (from drawing a sketch) that this union of balls is 
the solid closed cone (minus the vertex) whose angle from the axis direction ( - y ,  y) 
is arcsin c. Hence when k~ = arcsin c then for any y E R, S4,u,~ lies within the set 

,5' ~2n--I Bkc(Wy ) in . This proves (e) of  Lemma 5.3. [] 
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B. Const ruct ion of  Simple Smoothing Operator (by Rainer Verch) 

For a given/z 2 E ~t (~2n)  with WF(#2) C ~ n ,  a simple smoothing operator A with 
properties sufficient for the proof of  the main theorem on R ~ will be constructed in 
this Appendix. 

Let #2 E ~ ' ( R  2n) with WF(/z2) C ~'~n be given. Then there is some positive 
number a such that S(#2)  = 7r2WF(/z2) is contained in a set of  the form K x ( - / 4 ) ,  
where /4 is some open conic set in ]~n with the property that ko > a lk  I for all 
k = (k0, k) c K.  

Relative to this set K ,  we shall define A as the pseudo-differential operator of a 
symbol a, whose construction will be given as follows: Consider the by a unit in the 
negative k0-direction shifted copy K1 := K - (1,0) of  K.  The two sets ~AFee := ~ n \ ~ ,  

:= Ka, form an open covering of  Rn; denote by ~bt, r  a smooth partition of  
unity in R n subordinate to this covering. Let j be a smooth monotone function on 
taking non-negative values and with the property that j ( t )  = 0 for t > 2 and j ( t )  = 1 
for t < 1. Then define the function 

a(kl, k2) := j((kl)O)~bi(kl)j(-(k2)o)~bg(-k2),  kl, k2 E R n , 

on ]~2n. It is not difficult to check that a and all its derivatives are bounded, so we 
S O ~]~2~ ~2~)i and we as have a E o,0~ x define A the corresponding pseudo-differential 

operator acting on ~,or(~Zn). 

Lemma B,1. Properties of  a and A are: 

1. 0 < a(kl ,  k2) < 1 for  all kt,  k2 E ~n.  
2. u of  positive type implies A u  of  positive type for  all u ~ ocft(]1~2n), 
3. (cone supp a) A 7r2WF(#2) = ~. 
4. I f k l  = - k 2  E ~ \ { 0 } ,  with (kl)0 <_ 0 and Ikll 2 > a -2 + 1, then a(kl ,k2)  = 1. 

Proof  1) is clear from the definition. 2) follows as in the proof of Lemma 5.3(g), it 
is a straightforward consequence of  the special form of a. 3) We have 7r2WF(#2) C 
K x ( - K ) ,  and a has support in ( E n \ K )  • ( ~ n \ ( - K ) )  which is a conic set in ~2~. 4) 
Observe that (kl)0 _< 0 and Iktl 2 > a - 2 +  1 entails j((kl)0) = 1 and hi E Rn\Kll ,  and 
we have Ct - 1 on ~ \ K 1 .  So if in addition kl = -k2 ,  then a(kt,  k2) = a(kl,  - h i )  = 
j((kl)O)2~ze(kl) 2 = 1. [] 
Remark. For the proof of the main theorem it is sufficient to have such a smoothing 
operator for each #2 E ~ ' (~2~) .  In the proof of  the main theorem, the initially given 
#2 E ~r(]~2~) is multiplied by a smooth spatial cut-off function X of compact support, 
and the smoothing operator is only applied on X#2. 
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