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_Sllmmary. A database search has revealed signif-
Icant and extensive sequence similarities among
Prokaryotic and eukaryotic pyridoxal phosphate
(PLP)-dependent decarboxylases, including Dro-
Sophila glutamic acid decarboxylase (GAD) and
bacterial histidine decarboxylase (HDC). Based on
these findings, the sequences of seven PLP-depen-
dent decarboxylases from five different organisms
have been aligned to derive a consensus sequence
for this family of enzymes. In addition, quantitative
Mmethods have been employed to calculate the rel-
ative evolutionary distances between pairs of the
d<Ecarboxylases comprising this family. The multiple
S¢quence analysis together with the quantitative re-
Sults strongly suggest an ancient and common origin
foran PLP-dependent decarboxylases. This analysis
also indjcates that prokaryotic and eukaryotic HDC
activities evolved independently. Finally, a sensi-
Uve search algorithm (PROFILE) was unable to de-
Fect additional members of this decarboxylase fam-
lly in protein sequence databases.
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I“troduction

In vertebrates and invertebrates, several pyridoxal
® LP)-dependent decarboxylases, including dopa
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decarboxylase (DDC), glutamic acid decarboxylase
(GAD), and histidine decarboxylase (HDC), cata-
lyze the synthesis of neurotransmitters and neuro-
modulatory compounds (reviewed in Siegel et al.
1989). Although these and other PLP-dependent de-
carboxylases have quite distinct substrate-binding
specificities, significant sequence similarities have
been shown to exist among some of the enzymes
(Kobayashi et al. 1987; De Luca et al. 1989; Jackson
et al. 1990). These sequence similarities and the
results of stereochemical studies (Dunathan and Voet
1974) have been interpreted as evidence for a com-
mon origin of PLP-dependent decarboxylases. Ex-
tensive sequence comparisons, however, have been
reported only for eukaryotic decarboxylases (mam-
mals, insects, and plants), although similarities have
been documented for short peptides encompassing
the PLP-binding domains of decarboxylases from
Escherichia coli and pig kidney (Bossa et al. 1977).
In addition, multiple sequence alignments, which
might be useful for identifying functional domains,
have not been performed for this family of enzymes.
During the course of studying Drosophila glutamic
acid decarboxylase (GAD), it came to my attention
that bacterial histidine decarboxylase (HDC) has
significant and extensive similarity to the other
members of this decarboxylase family. This obser-
vation suggests that PLP-dependent decarboxylases
have a very ancient evolutionary origin, a conclu-
sion supported by the multiple sequence alignment
and quantitative sequence comparisons reported in
the present paper.
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Materials and Methods

All sequence comparisons and database searches including ““Pro-
file” analyses (Gribskov et al. 1987) were performed using the
software of the Genetics Computer Group (Devereux et al, 1984)
implemented on a VAX 11/750 running VMS 4.7, A derivative
of the Dayhoff evolutionary distances matrix was used for the
database searches of the profile analysis. The analyzed sequences
were obtained from published reports or from release 22.0 of the
NBRF:NEW protein sequence database (National Biomedical
Research Foundation).

Results and Discussion

My laboratory recently deduced the amino acid se-
quence of Drosophila GAD (Jackson et al. 1990). A
search of the NBRF:NEW protein database (release
22.0), using the FASTA program (Pearson and Lip-
man 1988), revealed that Drosophila GAD (fGAD)
shares significant similarities with other eukaryotic
PLP-dependent decarboxylases. Surprisingly, this
database search also revealed an extensive similarity
between f{GAD and bacterial (Morganeila morganii)
histidine decarboxylase (bHDC; Vaaler et al. 1986).
The two sequences are approximately 24% identical
within a common 366-residue domain that includes
the putative PLP-binding site of decarboxylases (Fig.
1). This is a striking degree of similarity, given the
evolutionary distance between prokaryotes and eu-
karyotes. It supports the idea that prokaryotic and
cukaryotic PLP-dependent decarboxylases originat-
ed from a common ancestral protein.

Other members of the PLP-dependent decarbox-
ylase family, including dopa decarboxylase (DDC),
show a comparable similarity to bHDC. This is worth
mentioning, because it has recently been reported
that rat DDC (rDDC) is not similar to bHDC (Tana-
ka et al. 1989). Figure 2 shows a multiple sequence
alignment for seven different PLP-dependent de-
carboxylases, including bHDC, rat HDC (rtHDC;
Joseph et al. 1990), and rDDC, for which extensive
primary sequence has been reported. This alignment
includes plant tryptophan decarboxylase (pTDC; De
Luca et al. 1989) as well as the Drosopkila alpha-
methyldopa hypersensitive protein (fAMD), which
is evolutionarily related to DDCs (Eveleth and Marsh
1986; Marsh et al. 1986), although its precise func-
tion is unknown. The multiple sequence alignment
was constructed after pairwise comparisons of the
different sequences. It was then used to derive a
consensus sequence for pyridoxal-dependent decar-
boxylases (Fig, 2). This consensus shows the exten-
sive similarities that exist among all of these decar-
boxylases, in particular in a 90-residue segment
(arrows, Fig. 2) encompassing the PLP-binding do-
main (rectangle, Fig. 2). Indeed, the putative PLP-
binding residue (K) and the adjacent histidine (H)
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£GAD 368 KVIOCGRENDI. FKUJLOVRAKGTEGFEQQQDRLMELVQYQLKRIREOSD 416

bHDC 314 GINAVRNKNSITVVFPCPSERVW ....... REHCLATSGDV AHLITTA 354

:
fGAD 417 RFHLILEPECVNVSFWYVPKRLRGVPHDAKKEVELGKICPIIKGRHHQKG 466

bHDC 355 HHLDTVOID KLIDDVIADFNLHAA ................ 378

| - |
fGAD 467 TLMVGYQPDDRRPNFFRSIISSAAVNEADVDFMLDEIHRLGDDL 510

Fig. 1. Sequence alignment of Drosophila glutamic acid decar-
boxylase (fGAD) and bacterial histidine decarboxylase (bHDC).
The numbering is, respectively, according to Jackson et al. {1990}
and Vaaler et al. (1986). Vertical lines represent identities, where-
as dots indicate similarities between residues. The box encom-
passes the putative pyridoxal phosphate-binding domain of f{GAD.

are conserved in every one of these decarboxylases.
Also of interest are the conserved Cys (C) residues
at positions 3853, 461, and 578, in light of evidence
for disulfide linkage of decarboxylase subunits (Le-
gay et al. 1987). Additional noteworthy identities
are indicated by stars. The obvious similarities
among these sequences strongly suggest that PLP-
dependent decarboxylases have a common evolu-
tionary origin. In addition to evolutionary consid-
erations, these sequence alignments will be useful
for identifying the regions that determine the diverse
substrate specificities of PLP-dependent decarbox-
ylases.

The similarity among rHDC and the other de-
carboxylases is also noteworthy. The tHDC enzyme
is more closely related to members of the DDC/
TDC subfamily of PLP-dependent decarboxylases,
than to bHDC. The rHDC sequence, for example,
is approximately 45% identical to either rDDC or
fDDC (Joseph et al. 1990), but is only 15% identical
to bHDC, the bacterial enzyme having the same
substrate specificity. Thus, it appears that the pro-
karyotic and eukaryotic HDC activities evolved in-
dependently.

The multiple sequence alignment of Fig. 2 has
been used with the Genetics Computer Group (GCG)
“Distances™ program (Devereux et al. 1984) to de-
rive quantitative estimates of sequence relatedness
for the PLP-dependent decarboxylase family. Table
1 shows a matrix displaying the pairwise genetic
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Fig. 2, Multiple sequence alignment of the pyridoxal phosphate
{(PLP)-dependent decarboxylase family. The indicated align-
Ments are based upon pairwise comparisons of the PLP-depen-
dent decarboxylases. Dots indicate pads that were inserted to
Optimize alignments. Uppercase letters indicate functional sim-
ilarities or identities. Consensus residues represent at least three
(out of eight) identities or three similarities (with at least two

?ing identical). The rectangle encompasses the putative PLP-
Plnding domain of these decarboxylases (the K residue of DDC
1s known to bind PLP; Bossa et al. 1977). Residues that are
ldentjcal in all eight proteins are indicated with stars. Three con-
Served Cys (C) residues at positions 385, 461, and 578 are iden-
tified by a plus (+). The lengths of the various proteins, excluding

distances among these enzymes (a distance value
Tepresents the number of identical matches between
4 pair, excluding gaps, divided by the shorter se-
Quence length; therefore, a value of 1 indicates a
Perfect match). This quantitative assessment con-
firms that ¢cGAD (from cat) and fGAD are more
Closely related to one another than to members of
the DDC/TDC subfamily. Likewise, pTDC (from
Periwinkle), fAMD, and the DDCs are highly related
' one another (also see De Luca et al. 1989). Im-
Portantly, this analysis also underscores the relat-

pads, are given in Table 1. Note that the final 141 residues of
rHDC are not included in this figure, as they cannot be aligned
with any other decarboxylase. The group alignment is numbered
beginning with residue 1 of ¢GAD. ¢cGAD = cat glutamic acid
decarboxylase (GAD) (Kobayashi et al. 1987); fGAD = fly (Dro-
sophila) GAD (Jackson et al. 1990); fDDC = Drosophila dopa
decarboxylase (Eveleth et al. 1986); rDDC = rat DDC (Tanaka
et al. 1989); pTDC = Catharanthus roseus (periwinkle) trypto-
phan decarboxylase (De Luca et al. 1989); fAMD = Drosophila
alpha-methyldopa hypersensitive protein (Marsh et al. 1986;
Marsh, personal communication); bHDC = bacterial (Morga-
nella morganii) histidine decarboxylase (Vaaler et al. 1986); rHDC
= rat HDC (Joseph et al. 1990).

edness of bacterial HDC to eukaryotic decarboxy-
lases.

All of the enzymes of Fig. 2, including bHDC,
have small segments in common with mouse or-
nithine decarboxylase (mODC; Kahana and Na-
thans 1985), another PLP-dependent decarboxylase
(data not shown and De Luca et al. 1989). At best,
however, mODC has a 10-12% overall identity with
any of the other decarboxylases. Although mouse
ODC and human ODC sequences are present in the
NBRF database, they were not detected by FASTA



328

Table 1. Distance matrix
3 2 3 4 5 6 7 8

1 1.00 053 0.17 0.17 0617 017 0.17 0.19
2 1.00 0.19 0.18 0.17 0.17 0.17 024
3 1.00 0.58 045 040 045 0.15
4 1.00 0.51 041 045 0.13
5 1.00 0.36 0.39 0.15
6 1.00 037 0.13
7 1.00 0.13
8 1.00

Key for column and row indices: 1, cGAD, length without gaps:
585; 2, fGAD, length without gaps: 510; 3, fDDCI, length without
gaps: 511; 4, rDDC, length without gaps: 480; 5, tHDC, length
without gaps: 514; 6, pTDC, length without gaps: 500; 7, fAMD,
length without gaps: 510; 8, PHDC, length without gaps: 378.
See Fig. 2 for abbreviations

searches with multiple individual decarboxylase se-
quences. Therefore, among the known PLP-depen-
dent decarboxylases, the ODCs appear to be the
most divergent. Figure 3 shows a possible phylogeny
of'the characterized PLP-dependent decarboxylases,
including mODC. This pictorial representation
summarizes the relationships among these decar-
boxylases, but cannot be thought of as quantitative
because of likely differences in the rates of evolution
among the different enzymes and species.

Profile analysis is possibly the most sensitive
method for detecting distantly related members of
a family of proteins; it utilizes dynamic program-
ming algorithms to search databases for proteins
with similarities to an aligned group of sequences
{Gribskov et al. 1987). To perform such searches,
the information in the multiple sequence alignment
is represented quantitatively in a table of position-
specific symbol comparison values (a profile), which
can then be compared to existing protein sequence
databases.

This method was used to derive a profile for the
decarboxylase alignment shown in Fig. 2. This “de-
carboxylase profile” was then employed to search
the PIR:NEW database for additional sequences with
similarity to the group. This search found fDDC,
fAMD, and bHDC (already known to be in the da-
tabase), but did not detect ODCs or any other pro-
teins with significant similarity to the PLP-depen-
dent decarboxylase group (note that the GADs and
pTDC are not present in this database). Important-
ly, the search did not detect numerous non-PLP-
dependent decarboxylases present in the database.
Thus, it appears that the family of PLP-dependent
decarboxylases is unrelated to other characterized
proteins.

In conclusion, the results of these analyses suggest
an ancient evolutionary origin for the gene dupli-
cations that gave rise to the PLP-dependent decar-
boxylase family. Interestingly, the data also imply

DeCOOH

moocC bHOC cGRD  fGAR pTDC rHBC fAMOD fDDC rDOC

Fig. 3. Schematic representation of decarboxylase evolution.
Abbreviations are the same as in Fig. 2, excluding mODC which
represents mouse ornithine decarboxylase (Kahana and Nathans
1985).

that histidine decarboxylase activity evolved inde-
pendently within eukaryotic and prokaryotic species.
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