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Abstract. General asymptotic causality properties of chronological N-point 
functions and, in massive theories, of N-particle collision amplitudes, are derived 
from locality and the spectral condition. Results include specified rates of 
exponential fall-off, with simple and direct physical content, for large non-causal 
separations of points or particles in Minkowski space-time depending on values 
of the energy-momenta and on the mass spectrum. Relevant mathematical results 
on rates of exponential fall-off of generalized Fourier transforms outside their 
microsupports are given. 

1. Introduction 

1.1 Preliminaries. The purpose of this paper is the derivation in field theory, from 
locality and the spectral condition, of general asymptotic causality (also called 
macrocausality, properties of chronological N-point functions and in turn, in massive 
theories, of N-particle collision amplitudes, with specified rates of exponential 
fall-off in non-causal situations. Results provide in particular a general and precise 
expression of the idea that energy-momentum can only propagate in future causal 
cones, in an asymptotic sense and up to specified exponential fall-oK with some 
further conditions (depending on the mass spectrum) in massive theories. They 
generalize, complement and unify in various respects earlier works on the subject 
([1-7] and references therein) as outlined below. Further results and conjectures 
in massive theories, on macrocausal properties in terms of real on-shell intermediate 
particles, linked to asymptotic completeness, will be presented elsewhere. Results 
of this paper are general ones that depend only on the (possibly weakened) locality 
condition and on the mass spectrum. (Rates of exponential fall-off in more refined 
properties depend also on further aspects of the models considered: unstable 
particles .. . .  ) The analysis and results are in particular very close to the work of 
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Bros-Epstein-Glaser  [5], and more precisely both to Sect. 2 of [5], in which 
results on N-point functions are given in the sense of rapid fall-off (in the line of 
original results of [3] on collision amplitudes in particular situations), and to Sect. 3 
of [5]. In the latter, local momentum-space decompositions 1 into sums of 
boundary values of analytic functions, whose analyticity domains (in massive 
theories) intersect the complex mass-shell z, have been established. They might be 
used, via mathematical results [8, 9], to obtain in turn causality properties in the 
sense of exponential fall-off. Our methods, which develop those outlined in [6] in 
terms of ("microlocal," analytic) essential support or "microsupport" properties 3, 
are more direct and efficient to that purpose, both for the treatment of N-point 
functions and in turn of N-particle collision amplitudes. Results on N-point 
functions also allow one to reobtain local momentum-space analyticity properties 
in a simpler way, through decomposition theorems 4 of [8, 9]: see Appendix 2. 
As well appear, our results generalize on the other hand earlier results on rates of 
exponential fall-off of N-point functions [1,2] or collisions amplitudes [4, 7] 
obtained (by different methods) in particular situations: see details on [1, 2] in 
Sect. 1.2 below and on I-4, 7] in Appendix 3. 

1.2 Contents. For definiteness, we consider as in [5] the Wightman axiomatic 
frame work but a similar analysis can probably be carried out in the related 
Haag-Araki  theory of local observables. On the other hand, we consider for 
simplicity a theory with only one basic (interacting) field, a scalar field A(x ~ A(x)). 
Locality takes the form [A(x),A(y)] = 0  if x - y  is space-like. A weakened 
formulation of locality involving only exponential fall-off in space-like directions 
is also sufficient for most purposes below. The spectral condition asserts in general 
that the spectrum of the energy-momentum operator is contained in the closed 
cone V+ = {p, p2 >=O, po =>0}, where p2 ___p2 _ i f 2  and Po,P are the energy and 
momentum components of p. We shall also consider spectral conditions with mass 
gap, which will as a matter of fact characterize "massive theories," and for simplicity 
will restrict our attention in this case to a spectrum composed of the origin, an 
hyperboloid H+(/~) of mass # > 0 (H+(#) = {p;p2 _-- ~2 P0 > 0 } )  and the continuum 
V+(2#) = {p;p2 > 4/~2, Po > 0}. 

Results on N-point functions and N-particle collision amplitudes are presented 
in Sects. 3 and 4 respectively, An introduction and more details on contents are 

1 Similar decompositions follow from the results of Sect. 2 of [5] but with undesirable C ~ 
backgrounds. The method used in Sect. 3 of [5], in momentum-space, is different and is based 
on a generalized edge-of-the-wedge theorem of [8, 9] 
2 This is not the case for the primitive analyticity domain of the N-point function, nor even in 
general (at N > 4), for its holomorphy envelope, 'so that several terms are needed in general in 
these decompositions 
3 The definition [8, 9] of the ("microlocal," analytic) essential support is recalled in App. 1.1. It 
coincides [10] with the analytic wave front set and with the singular spectrum introduced 
independently by different methods, in [11] and [12] respectively. This common notion is also 
called microsupport, following a mathematical teminology proposed by M. Sato (which has, 
however, no link with microlocality in field theory) 
4 These theorems are used in some sense in Sect. 3 of [5], but in an indirect way, the generalized 
edge-of-the-wedge theorem used there (see footnote 1)) being established in [8,9] as a corollary 
of the latter 
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given below. Some mathematical results, which complete those of [8, 9] and are 
directly useful in Sect. 3, are first presented in Sect. 2. 

The simplest result on exponential fall-off properties of N-point functions 
(in Minkowski space-time) is the exponential fall-off [1, 2], in a massive theory, 
of connected Wightman N-point functions W(x 1 . . . . .  xN) for large space-like 
separations of subgroups of points. In order to get more general asymptotic 
causality properties, in which past and future are distinguished, one has (i) to 
consider chronological functions T(xl , . . . , xN)  (= vacuum expectation values of 
time-ordered products of field operators A (x 1) . . . . .  A(xN), whose amputated Fourier 
t r a n s f o r m s  "Famp(p 1 . . . . .  PN), in a massive theory, give the S matrix by restriction 
to the mass-shell) and (ii) to introduce localization properties in energy-momentum 
space. To that purpose, one may consider the action of T (which is in fact a 
tempered distribution), o r  T amp, on suitable test functions ~01,~,i = 1 . . . . .  N, with 
(asymptotic) localization properties both in space-time and (after Fourier trans- 
formation) in energy-momentum space. The simplest choice (Sect. 2 of [5], in the line 
of [3]) is that of test functions with Fourier transforms (Oi,~(p'i) = )~i(P'i) e x p -  i(P'i'Ui)Z , 
where each u i is a given point in space-time, z is a scalar parameter that will tend 
to infinity, and each ;t~ is a C ~ function with compact support around a given 
point p~; ~oi, ~ is then well localized asymptotically around the point zu~ in space- 
time, in the sense of rapid fall-off. Correspondingly, rapid fall-off properties of 
T({tpi,,} ) in the z ~ oe limit can be derived in non-causal situations, depending on 
the set of points ul . . . .  , uN and on the supports of the functions Zi (as also, in a 
massive theory, on the mass p). However, it is then not possible to see actual 
exponential fall-off effects, and better results cannot be achieved with functions 
Oi,, of the form above whether Xi has a compact support (because of its C | 
singularities at least on the boundary of its support) or not: if e.g. Zi is a gaussian 
centered at pi, other points p', at possibly large but fixed distances of p~ will spoil 
the causality properties expected for the given points p~. In the line of related 
considerations in [4] and [13, 8, 9], Zi is then replaced by gaussian-type functions 
Zi,~ with width shrinking to zero as z - .  oe. More details and results on these test 
functions are given in Sect. 3.1, in which basic properties [5] derived from locality 
and spectrum on chronological (and related) functions are also recalled. Main 
results on exponential fall-off properties of T({~0,,, }), or Tamp({tp~,,}), in non-causal 
situations, depending on the set of points u l , . . . ,  u s and Pl . . . . .  PN (and, in a massive 
theory, on kt) are presented in Sect. 3.2, where physical comments and some 
complements are also given. Results relative to T apply either in general or in 
massive theories, with various improvements in the latter case. Finally, a space-time 
cluster property analogous 5 to that of [1, 2], namelY the exponential fall-off, in a 
massive theory, of T(xl , . . . , xN)  itself for large space-like separations is obtained 
in Sect. 3.3 as a byproduct. 

In Sect. 4, it is explained how asymptotic causality properties, with also specified 
exponential fall-off properties, can ,be directly established in turn for N-particle 
collision amplitudes between initial and final on-shell wave functions chosen, in 
the line of [4, 13], to be mass-shell restrictions ~bi, , ot previous functions ~i,~. 

s Results on W and T are very close for space-like separations. As mentioned above, chronological 
functions are those to be considered for more general results 
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Relevant space-time wave functions, Fourier transforms of (oi,~(p')6 + (p,2 _ #2) are 
now well localized along the space-time trajectories (zul, p~) passing through zu~ 
and parallel to p~. Results on rates of exponential fall-off of these functions, away 
from these trajectories, are established in Sect. 4.1, where the general idea of the 
method used for the analysis of collision amplitudes is also presented. Main results 
and complements are then given in Sect. 4.2. 

Complementary mathematical results are given in Appendix 1. General results 
that complement those of [8, 9] on rates of exponential fall-off of generalized 
Fourier transforms of tempered distributions outside their microsupports are 
presented in Appendix 1.1: results of Sect. 2 to 4 will appear in this context as 
particular cases of interest in which more precise results can be established. A 
convolution theorem directly useful in Sect. 4.2 is then given in Appendix 1.2. 

As already mentioned, Appendix 2 explains how local analyticity properties 
can be derived from results of Sect. 3. Finally, results of Sect. 4 are illustrated in 
Appendix 3 in a simple situation analogous to that of [4]. 

2. Mathematical Results 

We consider a tempered distribution f defined in R", its Fourier transform f and 
the generalized Fourier transform F of f defined for each 7 > 0 by the formula 
(see [8, 9] and references therein) 

F(x, p; 7) = ~ f(p')e-iP"Xe - ~lxl Ip'-pl2dp ,. (1) 

In the 7 ~ 0 limit, F reduces to f(x).  It is a well defined function, depending 
on p, at 7 > 0. The consideration of various values of 7 > 0 is useful for mathematical 
reasons and also in the application. (The values of 7 that will allow the best 
expression of causality will depend on the situation considered.) 

Part (i) of Theorem 1 and Theorems 3, 4 are the main results needed in Sect. 
3. Part (i') of Theorem 1 and Theorem 2 will be useful in Sect. 3.3. Part (ii) of 
Theorem 1 is useful if one starts from weakened formulations of locality. 

In Theorem 1, C is a cone with apex at the origin, C a is the set of points x 
whose distance d(x) to the complement of C is >= a, da(x) is the corresponding 
distance to the complement of Ca, and ~ = x/Ixl is the unit vector in the direction 
of x. Parts (i) and (ii) of Theorem 1 assert essentially that, if f ( x )  = 0 in C or if f 
decays exponentially like e -~(:~)lxl in the directions of C, then, for any point p and 
each 7 > O,F(x,p;7) decays exponentially in each direction of C at least like 

exp - T l x l  and exp{-c~(2,WIx[} respectively, with c~(2,7) defined in Eqs. 

(4), (5), up to minor changes if f is a general tempered distribution. The rates of 
fall-off, d(2)z/@ and e(2, 7), are arbitrarily large, or arbitrarily close to c~(2) respec- 
tively, if 7 is sufficiently small, in agreement with the relation lim F(x, p; 7) = f(x).  

~ 0  

Part (i)' will be applied in particular to regularized distributions, namely to 
functions obtained from a distribution vanishing in C by convolution with a C ~~ 
function with compact support around the origin. 
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Theorem 1. 
(i) I f  f (x) = 0 in the cone C, then, given any e > O, F(x, p; 7) satisfies, for x in C~, 
bounds of  the form 

IF(x,p; 7)l < [c~(71xl)-~/2~([xl, lpl, x / ~ ) ]  exp{ d~(x)2~ 
471xl J'  (2) 

where ~ is a polynomial and v is an integer d,(x)= d (2 ) -  [xl . 

(If  f is a continuous function, ~ can be fixed at zero and the bounds (2) reduce to 

} Ifl < cstexp - ~ - 7  [xl if moreover I l f(x)ldx < oo). 

(i)' I f  f ( x ) = 0  in Ca, a~O and if f is moreover C ~176 (with possible, at most 
polynomial, increase), bounds of  the form (2) hold in C, with e = a , ~  independent of  
IP[ and a further factor (1 + [pl) -~', where v' is any > 0 integer: 

[F(x,P;7)[ ( l~[; i )r  Tx/~l)]exp{ d"(x)2~. 
< 471x1J (3) 

(ii) I f  f decays exponentially like e -~(~)lxl in each direction 2 of C, ~(2) > O, results 
analogous to (i), (i)' hold with a rate of  exponential fall-off in I xl at least equal (or 
arbitrarily close) to ct(2, 7), where 

d' 2 
e(2, 7) = Supa,(~)<=d(~) InfI~(:) '- ,  cg(2) l ,  (4) 

a'(x) = Inf#,l#-at __< a,(~)a(P)(1 - d'(2)). (5) 

Proof (Outline). We present below a direct proof based on the (easily checked) 
convolution formula: 

(71 x I) n/2 F(x, p; 7) = [. f (x') e ip'(x- x,) e-  Ix- ~'12/(4~1x I) dx,. (6) 

The integration domain is divided into the region I x - x '  I <d(x) or 
px-  x 'J< d'(x), in which the conditions on f are used, and its complement, up to 
slight modifications (in usual ways) i f f  is not a continuous function but a (tempered) 
distribution. The further factor (1 + Ipl) - r  in (i)' is obtained by usual methods in 
view of the presence of the factor e -*p'~'. Q.E.D. 

Theorem 2 is a converse of Theorem 1. It applies in cases when f is e.g. a 
continuous function satisfying (at x # 0) 

f (x)  = (7 Ix I) "/~ I F(x, p; 7) dP (7) 

for some 7 > 0. This is the case (\/7 > 0) i f f  is sufficiently regular, i.e. equivalently 
if f has a sufficient decrease as I Pl ~ oo. 

Theorem 2. I f  f is a (continuous) function satisfying Eq. (7) for some fixed 70 > 0 
and i f  F satisfies moreover, for x in C, Ixl larger than a given constant and v o 
sufficiently large, bounds of  the form 

IF(x,p;7)l < C~o(1 + IPl)-*~ -~(~).x. (8) 
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with ct(~) (> 0) independent of p, then for x in C, 

If(x)l < cst~(lxL)e -~t~)lxl. (9) 

The next result applies in cases when f,  rather than f, has support properties. 

Theorem 3. I f  f (p)= 0 in the sphere S(P, r) of radius r around a 9iven point P (i.e. 
in the reoion [ p -  P[ < r), then V e > O, F satisfies at P bounds of the form: 

[F(x,P;T)[ <c~[(ylxl)-V/2~(lx], Tx/~l)]exp{-(1 -e)rZy[x[} (10) 

for all ? > O. 

The following common corollary of Part (i) of Theorem 1 and of Theorem 3 
will be directly useful in Sect. 3. 

Theorem 4. 
a) I f  f = f '  + f",  f ' ( x )=O in a cone C and f"(p)=O in S(P,r),F satisfies at P 
bounds of the form (10) in each direction ~ of C if ? < d(2)/2r. More generally, the 
rate of fall-off in each direction of C is at least equal (or arbitrarily close) to 

I-- l ~ A x g  --1 

I n f [ a ~ [ , r Z ? J ,  and in particular to rd(2)/2 if y=d(2)/2r. 

b) Similarly, if f = f 'l  + f'l = f 2  + f2  . . . .  with f'i(x) = 0 in a cone Ci and 
f'/ (p) = 0 in S(P, ri), i = 1, 2, . . . ,  F(x, P; y) decays exponentially in each direction ~ of 
U ci. The rate of exponential fall-off is at least equal (or arbitrarily close) to the 

i 

"enveloping function ''6 of 

Remarks. 

1. Similar results apply i f f '  or f'i does not vanish but decays exponentially in the 
directions of C or Ci as a consequence of part (ii) of Theorem 1. 

2. Theorem 4 yields the following byproduct on the microsupport ES(f): 
Corollary 1 

ESp(f) c complement of U ci. (11) 
i 

3. The explicit result given in Theorem 4b does imply somewhat improved results 
on rates of exponential fall-off. In particular, if ? is very large, the result given in 
Theorem 4b is 

[Sup, d,(~.) ]2/4?, 

whereas one can establish a rate closer and closer (as 7 increases) to d(~t)2/4y, where 

6 The rate given below entails by itself a better rate of exponential fall-off (see Remark 3), 
called its "enveloping function" following a terminology proposed by analogy with "holomorphy 
envelopes" of analytic functions 
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d()2) is the distance to the complement of U Ci and may be much larger than 
Supi di(~), i 

4. It will be useful in Sect. 4 to consider a slightly different definition of the 
generalized Fourier transform (of any tempered distribution f),  namely 

F(z; u, p, 7) = ~ f(p')e-i,tp'. ,)e-~lp'-pJ2dp, ' (12) 

where z is a scalar parameter that will tend to infinity. In view of the equality 

V(z; u, p, ~) = r(zu, p; 7/] u I) (13) 

all previous results apply to F(r;.) with d(~) replaced by d(u) and Ixl by r. More 
generally, rates c~(u, p, 7) of exponential in z of F(r; u, p, 7) satisfy the relation 

~(u, p, ~)= ~(a,p,~,/lul)lul (14) 

which makes the link with rates of exponential in I xl of F(x, p; ~,). 

3. Macrocausality Properties of N-Point Functions 

3.1 Preliminaries. For definiteness, we use the standard formulation of locality as 
a strict support property. In view of part (ii) of Theorem 1 of Sect. 2, results extend 
similarly to theories in which one assumes only exponential fall-off in space-like 
directions. 

The connected chronological function T(x 1 . . . . .  xN) (assumed for simplicity to 
be a well defined distribution even at coincident points) is the connected vacuum 
expectation value (.QlY-(xl,... ,  xN) lI2)c of the time-ordered product 9-- of N field 
operators A(x l )  . . . . .  A(xN) (i.e. fields are ranged according to time components of 
xx . . . .  ,xN). For any proper subset I of indices among 1 . . . . .  N (I non-empty and 
different from (1,...,N)), T1(x 1 . . . .  ,xu)  is defined similarly with J-(xl . . . . .  xN) 
replaced by J-(x(1))3-(x(J)),  x(1) = {xi}i~z, J = (1,...,  N) \ I .  Locality yields [5] the 
following "microcausal factorization" property 7 of time-ordered products: 

J ( x l  . . . .  , x u ) =  J-(x(I))J-(x(J))  if x(l)  >x(J) ,  (15) 

where x(I) > x(J) means that x(I) contains no point of x(J) in its closed causal 
future: each x j, j e J  is space-like to, or is in the past cone of each xi, iEI. Equation 
(15) yields in turn 

( T -  T1)(x ~ . . . .  ,xN) = 0 if x ( l )  > x(J). (16) 

This result is not by itself a causal property of T, since Tx(x 1 . . . . .  xN) 4: T(x(J))T(x(l)) ,  
but will be directly useful, as in [5], when completed by the following support 
property [5] in energy-momentum space of TI, due to the spectral condition (and 
energy-momentum conservation) 

7)(p~ . . . . .  pN)=0 if p I + . " + p N # O ,  
or if pxCV+ (17) 

7 A related property has also been proposed (see [14]) as a basic axiom under the name of 
microscopic causality 
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where p~ = ~ p~. Moreover, in a theory with # > 0: 
i~1 

T~(P~,'..,PN)=0 if p , r  V+(2#) (18) 

and amputated functions 

N 
~ a m p [ n  

a, w ,  . . . .  , PN) = H (P~ - /z2)7"a)(P,  . . . . .  PN) (19) 
i = l  

still satisfy (16-18) and moreover 

Tampt, ~ i w~ . . . . .  PN)=0 if p ~ V + ( 2 # ) ,  I I l = l  or N - 1 .  (20) 

Macrocausality properties will be naturally expressed as exponential fall-off 
N 

properties, as z--+ 0% of ~ T ( x l  . . . . .  XN) U q)i,r(xi)dx1 "" "dXN for suitable choices of 
i=1  

the test functions ~0~.~. The simplest and best choice for present purposes is, up to 
normalization factors, 

- , __  e - e ~ l P ' i - p i [ 2  i ( p l . u O z  r - e (21) 

with given points p~, u~ and ~ > 0: best results will be obtained for various values 
of ~ depending on the set of points p~, ui. In (21), IPl z = (p)o 2 + ~2. As z-~ ~ ,  q3i, ~ is 
localized around p~ up to exponential fall-off with a width of the order of 1/x/~,  
whereas its Fourier transform, equal to 

q)i ,~(Xi)  = cst (yz)- d/2 eipi .(x,- ~"') e -  Ix,- ~u,l~/(4~), (22) 

where [xi[ 2 = (xi)~ + ~2,  is localized around xi = zui, up to exponential fall-off with 
a width of the order of x / ~ ,  small compared to z, hence to the distances [zul - zujl 
if u~ ~ u j, at large z and any given y. 

We note that the above integral of T (or T amp) with the test functions~cp~,~ just 
mentioned is the generalized Fourier transform F (or F amp) of T (or T amp) as 
defined in Eq. (12) with p = (Pl . . . . .  PN), U = (Ul . . . . .  UN) and Ip]2= ~ Ip~l 2. Other 
choices of the functions r of the form 

(o~,~(p'i) = )~i(p'~) e - ~ I pl - p, L 2 e,p;.,)~ (23) 

with Z, locally analytic around p, have their own interest and are also useful in 
the later analysis of N-particle collision amplitudes in Sect. 4. Exponential fall-off 
properties analogous to the above are then still satisfied up to some changes. The 
function ~01,, still decays exponentially like exp-Ixi-zui12/(47z) in the region 
I x ~ -  ruil < 2r~Tz, where r~ is linked to the analyticity domain of Zi. Otherwise, a 
factor exp - r27z is obtained. We state e.g. the following more precise result. 

Lemma 1. I f  Xi is a cont inuous func t ion  with compact  support,  locally analyt ic in 
the region l p ' i - p i l < r i ,  I q ' i l < r ~ - [ p ' i - p i  ! in complex  space (p' replaced by 
p' + iq'), r satisfies bounds o f  the f o r m  

I ~i,~(wl)l <cstexp-Inf[lvi7477ui12,r27]z. (24) 



Causality in Local Quantum Field Theory 243 

I f  Z is moreover C ~~ (infinitely differentiable) everywhere, then, for any > 0 integer 
v and any ~ > O, 

c~ exp _ i n f I  l v~ - u~12, r~? lz" (25) 
[(pi.~(zvl)l < [1 + z l u , -  vii] v 4?- 

Proof. Easy adaptation of results of I-8]. 

Remark. The standard rapid fall-off of the Fourier transform of Zi, due to its C ~ 
character, is the particular case ~; = 0 of (25). 

3.2 Main Results. For clarity, results of Theorem 5 (ii) are stated for test functions 
(21) which allow one to obtain the simplest and best results in this section. Results 
in other cases are indicated in Remark 4. 

Theorem 5. 
(i) Given test functions (21) or (23) (with Zi locally analytic), T({qh,~}) decays 
exponentially, for any ~ > O, in the ~--* oo limit apart possibly from configurations 

N 

(u,p),u = (Ul,... ,us), p = (Pl . . . . .  PN) of the set Z, such that ~ Pi = 0 and 
i = 1  

(C1) Given any non empty set I (#(1 . . . . .  N)) such that u(I) contains no other 
point uj, j(EI, in its closed future, Pl belongs to V+, or in a theory with # > 0 to 
H + (#) u V+ (2#). (26) 

(ii) Given test functions of the form (21) and (p, u) r ~., the rate of exponential fall-off 
in z is at least equal (or arbitrarily close) to fl(u, p; 7) for each 7 > O, where fl is 
strictly positive and is determined as follows. For each I (#  (1,...,  N)), let d~(u) be 
the distance of u to the set of points y such that y(I) contains other points in its 
closed future, and let r~(p) denote the distance of p to the set of points p' such that 

N 

P'i = 0 and P'x ~ V+, or p'~ eH+ (#) w V+ (2#) in a theory with # > O. For each Y, let 
i = l  

Then: 

fl~(u, P; 7) = Inf[  ~ , r f ( p ) 7 1 .  

fl(u, p; 7) = Sup~ fli(u, p; 7). 

(27) 

(28) 

I f  7 is chosen equal to d1(u)/(2r1(p) ) for some I (such that d1(u) > 0, r1(p) > 0), 
then fl(u, p; 7) is at least equal (or arbitrarily close) to d1(u)r1(p)/2. 

(iii) The same results apply to T amp, in a theory with mass # > 0 ,  with 
H§ replaced moreover by V+(2#) /f III = 1 or N - 1 ; 2 ;  and fl are 
correspondingly replaced by Z amp and flamp. 

Remarks. 
1) Condition (C1) in (26) can be equivalently replaced, as easily seen, 
by (C1)': pI~V_, or p ~ H _ ( # ) w  V_(2#), if u(I) has no other point in its closed 
causal past. (Here V_, H_ (#), V_ (2#) are opposite to V+, H + (#), V+ (2#).) 
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2) Results of (ii) imply moreover that the rate of exponential fall-off is at least 
equal (or arbitrarily close) to c~(u, p; ~), where ~ > fl is the "enveloping function" of 
fl (see Sect. 2). 

3) Theorem 5 entails the following byproduct: 

Corollary 2. 

ES( 'F  (amp)) c2 ,~(amp). (29) 

4) In the case of test functions (23), rates of exponential fall-off are similar to 
above with a further restriction of the form fll < rgT, where r is linked to the local 
analyticity domains of the functions X~. Given a set I (such that r~(p) > 0, d~(u) > 0), 
bounds on I Z({tPi,~})l including both the exponential fall-off factor and a further 
rapid fall-off factor are obtained if the support of Z(P') = I]  Xi(P'i) lies in the region 
[P'-Pl  < r1(p) (in which case the term TI({tpi,~}) vanishes). 

Proof of Theorem 5 (outline). Theorem 1 (ii) is a particular case of Theorem 4b 
of Sect. 2, obtained by writing T (amp) = ( T -  T~) (amp) -t- Z(1 amp) and using exponential 
fall-off properties due to Eqs. (16) and (17), (18), (20) respectively. In the case of 
test functions (23) (Remark 4), a similar argument allows one to treat the 
contribution ( T -  Ti)(amP)({~oi,~}), using the convolution formula 

N 
( T -  T,)(amp)({~0i,~})= ~ ( T -  T1)(amp)(x ') 1-I qgi,~(x'i)dx', (30) 

i=1 

and Lemma 1 on ~0i, ~. Theorem 5 (i) and Corollary 2 (Eq. (29)) are byproducts of 
previous results. 

Physical Comments and Complements. The following results hold if p is e.g. a 
physical point of a given process in a massive theory (Xpi = O, p2 = #z, i = 1 . . . . .  N, 
(Pi)o < 0 if i is initial, (Pi)o > 0 if i is final). Conditions (C2) (C3) are essentially 
contained in [5] (in a less explicit form). 

(i) Let (p, u) belong to the "causal" set 22. Then 
(C2) The set u(If) of final points is contained in the closed causal future of the 

set u(Ii,) of initial points (and u(Iin) is contained in the closed past of u(lf)). 
(C2)' Any subset u(I'in ) of initial points (Fin c/ in)  must contain final points in 

its closed causal future (and any subset of final points must contain initial points 
in its closed past). 

Condition (C2)' is e.g. needed so that the total energy-momentum p~, where I 
is the union of Fin and of all other (initial or final) indices j such that xj belongs 
to the closed future of u(I'in ), will belong to V+. The result is in agreement with 
the idea (see Sect. 1) that energy-momentum can propagate only in future cones 
(in an asymptotic sense): the energy-momentum outgoing at final points in the 
future of u(I'i, ) will compensate at least the energy-momentum incoming at points 
of u(I'i. ). The more detailed condition p ~ H + ( # ) w  V+(2#) in (C1), in a theory with 
# > 0, indicates that, for connected functions, there cannot be strict compensation 
unless I'i. = li. (in which case I = (1, . . . ,N) and Pl = 0): the energy-momentum 
outgoing at final points in the future of u(I'i. ) must also compensate part of the 
energy-momentum incoming at other initial points wfiich do not belong to u(I'in) 
but lie in the past of these final points. 
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(ii) Let (p, u) belong to .~amp. Then (C2) (C2)' are satisfied and moreover: 
(C3) "Extremal" initial or final points cannot be isolated: at least two or more 

such points lie at the same position in space-time. (An initial point ui is "extremal" 
if there is no other initial point in its closed past unless both lie at the same 
position. Similar definition for final points with closed future replacing closed past.) 

Physical interpretation, e.g. for initial points: at least two initial particles must 
first interact if there are to be interactions. 

Proof  of  (C3). Assume a final point u: is extremal. If there is no initial point in 
its closed future, let ! be reduced to the single index f. Since there is no point in 
the closed future of u: = u(I), PI = Pf should belong to V+(21~), whereas p:cH+(#) .  
If there are initial points in the closed future of u: (which must lie, as a matter of 
fact, at the same position as u: in view of (C2)), let I be the set composed of f 
and of corresponding initial indices. Then Pl is the sum of p:cH+ (#) and of other 
energy-momenta in H_ (#), so that Pl cannot belong to H + (#) U V+ (2#). Q.E.D. 

We now complete Theorem 5 with the following more refined result on T in 
a theory with # > 0. For simplicity, we do not try here to specify rates of exponential 
fall-off and thus restrict ourselves in Theorem 6 (ii) to a statement on the (microlocal, 
analytic) essential support of T, which ensures exponential fall-off of T({~oi:}), for 
test functions (21) or (23) and any ~ > 0, for points u outside S'(p). Part (i) of 
Theorem 6, reobtained below, is well known by other methods in field theory. 

T h e o r e m  6. Given any physical point P, 

(i) N 

7'(Pl . . . .  , PN) = 1-1 [P{ - ,  u2 + ie] -~  "Famp(p 1 . . . . .  PN) (31) 
i = 1  

in the neighborhood of  P. 

( i i )  ~ c ' .. ESe(T) ~, (P) = {x = (x~,. , xN); there exist y = (Yl . . . . .  YN) and scalars 21 . . . .  , "tu, 
2i > O, such that x i --  Yi ~- J-iPi, gi, and (y, p)~ ,v ,  amp}. (32) 

The various results on possible "causal" configurations with respect to T amp 
and T ((p, u)~Samp or (p, u)~27) are illustrated in Fig. 1. 

/ 

Yl = Y2 

X2 / 
/ 

X3 P 
----a~ J Y3 = Y4 

X4 

o Y 8 = X  8 
\ , , ,  

- y ~  

s / P7 
/ 

Time 

Fig. 1. Possible causal configurations (xl . . . . .  x8) and (yl . . . . .  Y8) relative to non-amputated and 
amputated functions at a physical point (P~, . . - ,Ps) ,  1 . . . . .  5 initial, 6, 7, 8 final (and 
P5 + P6 + P 7 c H  +(It) U V+(2/t)) 
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Proof of Theorem 6 (outline). At e.g. a physical point P, one checks easily that 

ESe (p~-#2  + ie)-i c { x = ( x l , . . . , x N ) , x i = 2 i P i ,  
i 

2 i < 0 if i is initial, 2 i > 0 if i is final}. (33) 

Points in the set defined in the right-hand side of (33) cannot be opposite to points 
in ESe(T amp) (in view e.g. of condition (C2)) so that standard "non-u = 0" results 
of [9] can be directly applied to define the product in the right-hand side of (31) 
and to show that its essential support is contained in the set (32). It remains to 

N 
show the equality (31). In view of the definition of ,~amp, the product of [-[ (pi z - #2) 

i=l  
with the difference of the two sides of (31) vanishes, so that this difference is at 
most a sum of products involving mass-shell f-functions. Such terms cannot be 
present because their essential support would be inconsistent with those of each 
term of the difference (and hence of the difference itself). 

3.3 Space-Time Cluster Property. The purpose of this sub-section is to establish 
(part (iii) of Theorem 7) the exponential fall-off, in a theory with # > 0, of 
T(xl . . . .  ,xN) itself, or more precisely of any regularized function T~, = T,q~ 
obtained by convolution with a C ~ function r with (small) compact support 
around the origin, for large space-like separation of subgroups of points. For 
simplicity, we consider two groupsx(l), x(J), J = (1 . . . . .  N)\I.  F denotes below th6 
generalized Fourier transform of T in the sense of Eq. (1). 

Theorem 7. 
(i) Whatever P=(Pl . . . . .  PN) is, x = ( x l , . . . , x N )  is non-causal at p ((x,p)r if 
x(I) ~ x(J), i.e. x(I) and x(J) space-like (xi - x s space-like, VieI, jeJ) .  

(ii) Given a configuration ~ (1~1 = 1) such that ~(I )~  ~r the rate of exponential 
fall-off in the direction of ~c is at least equal (or arbitrarily close) to c#d(~), Vp, /f 
? = d(~)/(4Cl~) where 

d(~) = Min (d,(s ds(~)) > 0, (34) 

and e is a fixed > 0 constant (independent of p and ~) such that 

Sup(r1(p),rs(p)) > 2c#, Vp. (35) 

(iii) T~,(xl . . . . .  xu) decays exponentially as Ix[ ~ ~ with a rate of fall-off at least 
equal (or arbitrarily close) to c#d(~). 

Proof. 
(i) Both x(l) and x(J) have no other point in their closed future, but at least 
pt or Ps (depending on p) does not belong to H + (#) u V+ (2/~) if Spk( = p~ + PS) = O. 

(ii) From results of Sect. 3.2. The existence of c > 0 is easily checked. On the 
other hand, both d1(~) and ds(~), hence d(~c), are > 0 if ~(I)~ if(J). 

(iii) In a non-rigorous way, one may write (for any given ? > 0) 

T(xa . . . . .  XN) = (~lX[) d/2 ~ dpl "'" dpNF(x, p; 7) (36) 

as checked formally by interchange of orders of integrations. The exponential 
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fall-off of T thus arises from the minimal uniform fall-off, as p varies, provided 
by part (ii) (with suitable ~). To make this proof rigorous, it is sufficient 
to check that Theorem 2 of Sect. 2 can be applied to T o = (T - Tr)~ + (T~)~ = 
( T -  Ts)~, + (Ts)~, i.e. to obtain bounds including a uniform exponential fall-off 
factor in Ixl and a further factor with sufficient decrease as Ipl--' oo. To that 
purpose, (T - Tt)e and (T - Ts)o are treated by part (i)' of Theorem 1 of Sect. 2. 
Remaining terms are easily treated (for e.g. Ixl > 1) by noting that rx(p) and rs(p) 
tend to infinity (at least linearly) as [Pl ~ oo in respective sectors in p-space. 

4. Macrocausality Properties of N-Particle Collision Amplitudes 

4.1 General Method and Preliminary Results. In view of the standard link [3], 
recalled in Sect. 1.1, between T amp and the connected S matrix, connected collision 
amplitudes between initial and final wave functions ~i,~ that are mass-shell 
restrictions of the functions (21) or (23) can be written 

SO( { ~bi,,}) = ~ Tar~p(p')6M(p')z(p')e-"P"")~e- y~l p ' -p l2dp ,  ' (37) 

where p.u =~e~pi .u  i (ei = - 1  i f / i s  initial, e~ = + 1 i f / i s  final), Z(P)= [IZi  (P'~), 
i 

N 

'~M(p') = l q  ~(p,2 2 , - It )O(e,(Pi)o). (38) 
i = 1  

and where the product '~amp0 M is a well defined distribution, as established so far 
away from Mo points such that two initial or two final energy-momenta are 
colinear (i.e. equal in a theory with only one mass #). We below either consider 
test functions Z~ with supports that exclude Mo points or make a regularity 
assumption to cover these points. 

We first present a semi-heuristic analysis of the way exponential fall-off pro- 
perties of SC({~b~,~}) can be established from those of N-point functions. Given any 
q such that 0 < q < 1, the integral (37) can be considered as the Fourier transform 
(at x = ru) of the product 

[~l'amp(p')e -*t~lp'-pt2] X [Z(p')(~M(p')e -tx -")r~lP'-Pl~] 

SO that S~({~b~,~}) can be expressed as the convolution integral 
N 

SC({~gi,~})=I Famp(z;v,p, rIT) l-[ f i ,~ (u i - v i ,  Pi, (1  -q)y)d(zv) ,  ( 3 9 )  
i = 1  

where F amp is the generalized Fourier transform of ~'-amp in the sense of Eq. (12), 
and is thus the action of T amp on test functions of the form (21) (see Sect. 3), and 

12 2 t f i,~(Ui, pi; Y) = af ~'(P') e-rrlp~- p'lze- ip;'u'~ i + (Pi -- I t )dPe (40) 

If, given (p, u), there is a > 0 uniform lower bound on the rate of exponential fall-off 
in z obtained, as v = (v~,..., vs) varies, from the various factors F "rap and fi,~ in 
the integrand of (39), S~({~bi,~}) can then be expected, modulo convergence problems 
in v, to decay exponentially in z with at least the uniform rate thus determined. 
We give in Sect. 4.2 a slightly weaker result but first give the following preliminary 
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result on exponential fall-off properties of the functions f~.~, which generalizes that 
given in I-4] in a particularly simple situation and is a more precise and complete 
version of that given in [13]. We consider for simplicity a fixed point pg and leave 
the index i, as also the dependence of results on p~, implicit. 

Theorem 8. (i) ]f~(u;y)l decays exponentially as z ~ o o  if u does not lie on the 
trajectory (0, p) passing through the origin and parallel to p. 

(ii) The rate of exponential fall-off in z satisfies the properties indicated in 
Theorem 10 in Appendix I. I f  z = 1, it is moreover at least equal to cst ~(u; 7), with 
a constant independent of u, 7, and 

~(u; 7) = d(u; (0, p))2/(47) if u is space - like, (41) 

~(u; 7) = Min 1-d(u; (0; p))2/47, p(p, a)27] ifu is time - like, (42) 

where d(u; (0, p)) is the (euclidean) distance of u to the trajectory (0, p), ft is the unit 
vector in the direction of u and p(p, ft) is the (euclidean) distance of p to the point 
p' of H+(#) in the direction of ~. 

(iii) I f  Z is not the function I, ~x(u, p; 7) is moreover less than r ( x ) 2 ) ; ,  where r(x) is 
linked to the analyticity domain of X around p. I f  Z is C ~ with compact support 
and if u lies outside the velocity cone V(Z) (set of trajectories (O,p') for all point p' 
of H+(IO in the support of Z), bounds on I f~(u;~)l include also a further rapid 
fall-off factor cv(a)/(1 +~lul)  v, v integer v > 0 ,  where c~ may tend to zero as ft 
approaches V(X). 

Remark. The standard rapid fall-off outside V(;0 of the space-time wave function 
associated to ;( is the particular case 7 -- 0 of the last part of Theorem 8. 

Proof of Theorem 8 (outline). Theorem 8 is a consequence of the assumed local 
analyticity of Z. The latter allows suitable local distortions of the integration 
domain in (40) (i.e. the real mass-shell H+(#)) in the complex mass-shell, in the 
line of the ideas and methods developed in [8] in a simpler situation. The local 
distortion is restricted both by the analyticity domain of Zi around Pl and by the 
geometry of the mass-shell. The result is in agreement with general results on rates 
of exponential fall-off of generalized Fourier transforms (see App. 1.1) and gives 
more precise information in the case under consideration. 

4.2 Main Result and Complements. The result stated in Theorem 9 below allows 
one to derive exponential fall-off properties of connected amplitudes SC({~bi.~}), for 
functions ~i,~ that are mass-shell restrictions of functions (21) or (23), from 
preliminary information relative to T amp for functions of the form (21). It applies 
in particular if one starts from results on T amp of Sect. 3 but may also apply more 
generally if one starts from improved information relative to T amp (obtained e.g. 
from assumptions going beyond locality and spectrum). 

The proof of part (i) relies on the condition that ESp(~F amp) contains no 
(non-zero) point of - ESp(6M) , i.e. of the form {2~pi}, where hi is an arbitrary real 
scalar. This condition is satisfied in Sect. 3 if p is not a M o point in view e.g. of 
Condition (C3). (The situation at Mo points will be discussed later.) On the other 
hand, the proof of part (ii), makes use of results relative to T amp not only for 
functions of the form (21) but also of the form (23): needed results for functions 
(23), including rapid fall-off factors, are either known (they are directly established 



Causality in Local Quantum Field Theory 249 

from locality and spectrum in Sect. 3: see Remark 4 in Sect. 3.2) or can be derived 
from those applying to functions (21) through results of [9], as in App. 1.2. 

Theorem 9. 
O) Given test functions (21) or (23), SC({~i,~}) decays exponentially in the ~ o o  
limit for any 7 > O, apart possibly from configurations (p, u) such that either PeMo 
or u belongs to the set 

~(p) = {u; 3y = (Yl . . . .  ,yN)~ES~(T "rap) and 

real scalars 21 . . . .  ,2n such that u i - Yi = 2iPi, i = 1 . . . . .  N}. (43) 

(ii) The rate of exponential fall-off in ~, for any 7 > O, if p~M o and uq~,(p), is 
at least equal, up to a fixed (multiplicative) constant, to the (> O) minimal rate obtained 
as v varies, from the various factors F "rap and f i,~ in the integrand of(39). 

Remarks. 
1. The fixed (<  1) multiplicative constant that occurs in (ii) is due to technical 
problems in the proof. 

2. S(p) is defined in the same way as ,S'(p) in (32) except that the constraints on 
the signs of 2 i are removed. If one starts from locality and the spectral condition 
(with mass p > 0), possible causal configurations u' can be illustrated as in Fig. 1, 
except that each ui may lie on the full trajectory (y~, Pi) parallel to pi and passing 
through Yi. 

3. The fact that the rate obtained in (ii) is > 0  can be seen as follows. If v is causal 
with respect to T amp, the term Famp(l"; v, p, r/7 ) provides no exponential fall-off factor 
in T, but at least one of the terms f~,~ (u~ - v~; (1 - r/)7) produces such a factor: one 
or more v~ does not belong to the trajectory (p~, u~). On the other hand, if each 
v~ belongs to the trajectory (pi, u0, v is non-causal with respect to T "~p, so that 
the term F arap produces an exponential fall-off factor. If p is not a Mo point, there 
is a > 0 minimal rate as v tends to infinity in any direction. In fact, if some v~ tend 
to infinity in the direction of the corresponding p~ (or in directions close to it), v is 
non-causal with respect to T amp and a minimal > 0 rate of exponential fall-off is 
obtained for F amp. If some v~ tend to infinity in other directions (not close to the 
direction of p~), a minimal > 0 rate is obtained for fi,~. 

Proof of Theorem 9 (outline). Theorem 9 is a particular case of Theorem 11 in 
Appendix 1.2. We briefly give below an idea of the proof in the physical situation 
(with some slight specific changes). Suitable partitions of unity, of the form 
1 = ~(p') + (1 - ~)(p'), 1 = r + (1 - ~bi)(p'i) are introduced, with C ~~ functions 
r ~ that have sufficiently small supports around p = (p~ . . . . .  PN) or p~ respectively, 
and are equal to one locally. S~({ ~3i.~}) is then written as the sum of a contribution 
analogous t o  (39), except that T amp and Z~ in the definitions of F "rap and f~.~ are 
replaced by T"mp(p')~b(p ') and Z~(P'i)r respectively, and remaining terms. Rapid 
fall-off factors in the analysis of the first contribution (see comments preceding 
the statement of Theorem 9) will ensure convergence in v. The exponential decay 
of remaining contributions follows from the vanishing of 1 - r or 1 - ~,~, is the 
neighborhood of p, or p~. 

Situation at M o Points. If p is a Mo point, the proof outlined above does not 
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t r a j e c t o r y  ( P l , u l )  ut  

i~ ~l~;t ~ ~'P~ ~ ~ ~ 

~ 0 1 ! _ . . ~ ] ~  ~ ~ : . - - - - ~  - -  

P I  ~ P2 

t r a j e c t o r y  (P2,  u2) 

Fig. 2. (P1,P2 i n i t i a l ,  P1 = P2;  ,~ > 0) 

apply. However, a minimal > 0 rate of exponential fall-off in z, as v varies, can 
still be extracted as above from the integrand of (39) apart from configurations u 
of a set X'(p) analogous to X(p) except that there is no constraint on ui if there 
is one or more Ps equal to pi (j ~ i). If u ~ ' ,  the existence of a minimal >0  rate 
is not guaranteed in view of possible sequences of points v such that vi tends to 
infinity in the direction of p~ whenever pi is equal to some other Ps, and such that 
the rate of exponential fall-off in z of F "rap vanishes, at least in the limit; rates of 
fall-off in z of the functions f~,~ are in this case either zero or tend to zero in the 
limit because the factor p(p~, v~ - u~) in (42) tends to zero: see the example of Fig. 2 
in which the rates of exponential fall-off of f l .~(vx-  ul) and fz,~(V2- UZ) are 
non-zero but become arbitrarily small as 2 ~ oo (p ~ 0 as 01, or 02, ~0). 

The following property can be conjectured and might be established modulo 
some regularity assumptions. 

Conjecture. If ur SC({~bi,~}) decays exponentially in z with a (>0) rate of 
fall-off determined as in part (ii) of Theorem 9. 

Lower bounds of physical interest on rates of exponential fall-off provided by 
Theorem 9, or by the conjecture just mentioned at Mo points, can be established 
in various situations. A simple situation, analogous to that considered in [-4] and 
to one of those considered in [-7], is treated in Appendix 3. 

Appendix 1: Complementary Mathematical Results 

1.1 Exponential Fall-Off Properties of Generalized Fourier Transforms: General 
Results. Proofs of results below, which complement those of [-8, 9], are omitted 
for conciseness and will be given elsewhere. 

Let f be any tempered distribution in R"  with microsupport ES (f)-given p, u, 
with e.g. [ul = 1, such that uCESp(f), it is known by definition of ESv(f)  (see [9]) 
that F(zu, p; ?), as defined in Eq. (1), decays exponentially with z for all sufficiently 
small values of 7 > 0 with a rate at least proportional to ;; at small 7- We define 
d(p, u) = (euclidean) distance of u to ESp(?); p(p, u) = Sup {p'; ur (f), Vp' such 

p ' > O  

that IP ' -P l  < P'}, with p(p, u)> 0 since uq~ESp(f) (see [9]). We then state 

Theorem 10. 
(i) F decays exponentially as r ~ Go for any 7 > O. 
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(ii) Vt/> 0, 0 < q < 1, the rate of exponential fall-off of F(zu, p;y) in �9 is at least 
equal to 

[d(p, u)(1 - q)] 2/47 

for all sufficiently large values of 7 (7 > 7o(P, u, q), where 7o may tend to infinity as 
q -~0). 

(iii) Vp'< p(p,u), the rate of exponential fall-off o f F  in ~ is at least equal to p'27 
for all sufficiently small 7 (7 < 7o(P, u, p')). 

More generally 
(iv) gtt, 0 < t /< 1, there exists ~(p, u, t?) > 0 such that, given any ~' < e(p, u, q), 

the rate of exponential fall-off of F in ~ is at least equal to of 7 for 
1 

7 < ~ d ( p ,  u)(1 - q). It is at least equal, for any y > O, to 
2 

Sup f [-/(!,~Inf/(d(p'u''--rl))2,~'tp,u " / ?  
.;o<.<~ ( L 4~ J J" 

Remark. In general, ~(p, u, 1/) < p(p, u) 2, ~(p, u, q) -~ p(p, u) 2 as q -~ 1 and ~(p, u, q) -~ 0 
as it--* 0. 

Sections 2 and 3 present particular cases of interest in which more precise 
results, consistent with those of Theorem 10, are obtained. 

1.2 A Convolution Theorem. Let f l ,  f2 be tempered distributions on R"  such that 

ESp(fl ) n g s p ( f 2  ) = q~ (44) 

(apart from the origin) at a given point p. The product f x f2  is then well defined 
locally and ESv(fl f2)  satisfies the relation (see e.g. [9]) 

ESp(flf2) c {u; u = u I -[- u2; U 1 ~.ESp(fl), u2~ESp(f2)} , (45) 

where ESp is understood as a closed cone with apex at the origin. 
We assume below that the product f~f2 is also well defined everywhere. Given 

p, left implicit below, let ~(u,7), e2(u,7) be rates of exponential fall-off in ~ of 
FI(~; u, p, y) and Fz(Z; u, p, 7) respectively, or possibly lower (continuous) bounds 
on the latter s. Actual rates are known to satisfy in particular the following proper- 
ties: e~ > 0 if uCESv(Y~), o = 1,2 and, on the other hand (see Appendix 1.1 and 

A 2  (14)), ~(u,7) is close to p~(p,u) 7 when ~/lul is small. (In contrast to Appendix 1.I, 
l ul may be different from 1.) These properties will be assumed also on possible 
lower bounds. We then state 

Theorem 11. Let u be any given point outside the right-hand side of (45). Given u 
and 7 > 0, the rate of exponential fall-off in ~ of F(r; u,p, 7) is at least equal to c 
~(u, 7), where c is a fixed constant (< 1) independent of u, p, 7 and ct(u, 7)> 0, where 

~ ( u , 7 ) = M i n [ a l ( v , 2 ) + O , z ( U - V , 2 )  ]. (46) 

8 Namely, e.g. F~ is assumed to satisfy bounds including the exponential fall-off factor 
exp-al(u,7)r and further factors such as those given in (2), (10) 
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Remark. The constant c can probably be chosen equal to one. The proof given 
below introduces some technical losses and gives e < 1. A slightly improved version 

of Theorem 11 can be obtained on the other hand with -~ replaced by r/7 and 
2 

(1 -q)7 in ~1 and ~2 respectively. 

Proof (Outline). By writing flf~(p')e -e'Ip'-pl2 in the form f l ( p ' ) e  -(r/2)~lv'-pl2 x 
f2(p')e -(rm~lr-pt2, F can be written at least formally as the convolution product 

F(z; u, 7) = S F1 (z; v, 17)F2(z; u - v, �89 (47) 

The result (46) follows heuristically, with c = 1, up to convergence problems in v 
of the integral. 

We now explain how to make this proof rigorous (with c < 1). Given u, 7, let 
s0 = ~(u, 7), let ro = (ao/7) 1/2 and let ~Ol, ~/2 be C ~ functions with compact support 
around p in the region [ p -  p'[ < (1 -e : ) ro ,  el > 0 small, and equal to one in the 
region [p - p'[ < (1 - e2)ro. By writing 1 = ~k: + (1 - if1) = ~02 + (I - ~92), f : f 2  is 
written as (ft~Ol)(f2~k2) plus other terms whose contributions to F decay expo- 
nentially in z with rates at least equal (or arbitrarily close) to ( 1 -  e2)2r27/2 = 
(1-e2)2Cto/2, in view of the vanishing of 1 - r  or 1 - ~ 2  in the region 
[ p ' - p [  < (1 -e2)ro.  The first contribution can be written in a form analogous to 
(47) except that F~, F2 are replaced by the generalized Fourier transforms F~, F2 of 
~Olfl and ~b2f2 respectively. The rates of exponential fall-off of F1 and F2 in z are 

F / k G 

at least equal ,or arbitrarily c l o s e ) t o  I n f / ~ , ( u , ~ ) , ( l - e : ) 2 ~ o / 2  / and 
I _ \ ~ /  J 

I n f i ~ 2 ( u , : ) , ( l - ~ ) ~ = o ~ 2 / ,  s o  that ~o is at least equal (or arbitrarily close)to 
L \ z , , , /  ._1 

(1 --/~2)2Gt0/2. Convergence can now be established along the following lines. For 
I vl large enough, u -  v ~ - v  and, in view of the condition (44), v-space can be 
divided into sectors centered around given directions in each of which at least 

~ , ( v , ~ )  o r ~ 2 ( - - v , ~ ) i s  >~~176176176176 2 

or p2(#,p) ~ at large Ivl, i.e. small 7/Ivl, Pl(l~,b),~ > ro (or p2(O,p)~> r0). In these 

conditions, results of [9], Appendix 3 ensure that/3:  or ffz satisfies, around the 
direction # considered, and for large enough Iv I, uniform bounds including the 
product of a rapid fall-off factor in vlvl and of an exponential fall-off factor 

- (1 - ~z)ZrZ~. The desired convergence follows from the rapid fall-off factors, exp 

and a uniform rate of exponential fall-off of the integral of the form cst ce o is 
obtained. Q.E.D. 

Appendix 2: Local Momentum-Space Decompositions 

Given any real point p, the general mathematical decomposition theorems of [8, 9] 
allow one to derive, from Theorem 5 of Sect. 3, corresponding local momentum 
space decompositions of ~F/6(,F.pk ) or 7"amP/5(2pk), into sums of boundary values, 
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from specified directions, of functions analytic in "local tubes" around p. Such 
results have first been established in a different way in [5]: see Sect. 1. If one is 
not interested in precise analyticity domains in complex space but only in the 
number of terms and in the directions of analyticity, results follow from the micro- 
support properties (29), as already explained in [6]. More precise results can be 
established from Theorem 5 as follows. Given p, let r be any > 0 number such 
that r < r~mp(p), for some subsets I. For simplicity, we consider below the case 
r < r~ mp for all I such that r~mP(p) > 0. Let Famp(x, plxo) be the generalized Fourier 
transform of ~'amv defined by Eq. (1), except that ~'lxl in the factor 
e x p -  ~,lxl [ p ' - p [ 2  is replaced by Xo, when Xo is a supplementary real variable. 
(No link with time components of the points xi.) Theorem 5 entails a bound on 
I FI including the factor e -r2x~ when (X, Xo) lies in the union of the regions 
0 < Xo < dl(x)/2r (for all sets ! such that r < r~mp(p)). This region, at Xo = 0, is the 
complement of the cone Z = ~ ,St, where Z~ is the cone in x-space defined by the 

t 
condition dr(x) = 0. Following [5], 2; is contained in the union of (a finite number 
of) well specified cones Cp which are closed convex salient cones in x-space with 
apex at the origin modulo global space-time translations. The more detailed 
analysis then entails bounds on IF] including the factor e - ~ ~  outside the union 
of regions Sa in (x, x0)-space, Xo >0 ,  whose traces at Xo = 0  and Xo~ 1 are the 
cones Cp and sets C~ ~ respectively. Announced local decompositions of T~P/~(~,p'k) 
then follow from results of [8, 9]. If one e.g. expresses ~ramp/6(,~pk) in terms of the 
variables p'~ . . . .  , p~_ ~, one obtains a corresponding decomposition, in the region 

N - 1  N - 1  

�9 (p ' )<r ,  where O(p ' l , . . . , p~_ l )=  ~ [pk--Pkl2+lP'N--PNl2, p 'N=--  ~' Pk, aS a 
k = l  k = l  

sum of boundary values of analytic functions from the directions of the cones F a 
dual to the restrictions at xN = 0 of the cones C a, These functions are analytic in 
the local tubes, defined [8] with respect to O, whose bases B a are the polar sets 
of the sets C~ 1~ (taken again at XN = 0). 

Appendix 3. Macrocausality Properties 
of Collision Amplitudes - A Simple Example 

We consider below a 2 ~ N - 2 process in which the initial energy-momenta Pl, P2 
are not equal and the initial trajectories (Pl, Ul), (P2, u2) do not meet: see Fig. 3. 
This is the type of situation studied in [4] (at N = 2), and is one of the situations 
treated in [7], by different methods (see comments at the end). On the other hand, 
the analysis of [4], as also to some extent [7], is carried out in a somewhat 
simplified framework, in comparison with ours. We start here from results of Sect. 2 
on T amp and wish to establish results on connected amplitudes SC({~bi,~}). 

Whatever u3 . . . . .  uN are, u = (ul . . . . .  uN) is non-causal since the initial trajectories 
do not meet. Given any ~ > 0, a lower > 0 bound on the rate of exponential decay, 
depending on the angle q~ and [ u~ - uz ], uniform with respect to P3 . . . . .  ps, u3 . . . . .  UN, 
can be established by introducing e.g., around each initial trajectory, a "security 
zone" composed of points vi (i = 1, 2) which either lie at a distance of ui less than 

d(u~, u2)/3 or are such that the angle of the direction v~ - ui and p~ is less than 
p(q~) = q~/3. The integration domain in (39), i.e. v-space, is then divided into (i) the 
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space 
(m~ 

time 
(energy) 

el 

/ 
/,~---- d(ul,u2) = lul -u21 / 

/ 
u2 ~ p  . . . .  

P2 

Fig. 3. Two initial trajectories in a 2 ~ N process 

set of points v = (ol . . . . .  vN) such that either vl or/)2 or both lie outside their security 
zone (ii) its complement (both vl and v2 lie inside). In case (i), a minimal rate of 
exponential fall-off is provided by Theorem 8 (of Sect. 4.1) (with u replaced by 
vl - ul or v2 - u2). In case (ii), a minimal rate is obtained from results of Sect. 3 
relative to T amp. The rate of fall-off obtained for each v is Supl fl~mp(p, V; V), where 
flamp is defined in Sect. 3. Relevant sets I to be considered are composed of one I 
of the initial indices 1, 2 and some (or all) final indices, the Sup being obtained for 
a set I that depends on/). 

The minimal rate obtained tends to zero if r --, 0 (existence of points v causal 
with respect to T amp, in particular vl = v2, inducing rates of fall-off of fl,~ or 

f2,~ that tend to zero as tp~0,  since p(~o)~0), as also if ~ p ~  (high energies) 

because the relevant set I for some points v is the complement of one initial index, 
n 

e.g. 1, and r~(p) which is the distance of pl ~H_ (p) to V_ (2~) tends to zero as ~p ~ - .  
4 

Results are analogous, at least qualitatively, to those obtained in I-4, 7], which 
exploit analyticity properties of scattering functions derived from locality and 
spectrum (as also Lorentz invariance), namely momentum transfer analyticity in 
the Lehmann ellipse. (As noticed in these works, better results, with a rate of decay 

n 
that does not tend to zero as tp--.~, can be derived from analyticity in the Martin 

ellipse whose derivation makes further use of unitarity.) 
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