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Genes of Warm-Blooded Vertebrates

Serge Alonso, Adrian Minty,* Yves Bourlet,{ and Margaret Buckingham

Department of Molecular Biology, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France

Summary. We have determined the sequences of
three recombinant cDNAs complementary to dif-
ferent mouse actin mRNASs that contain more than
90% of the coding sequences and complete or partial
3’ untranslated regions (3’'UTRs): pAM 91, com-
plementary to the actin mRNA expressed in adult
skeletal muscle (o, actin); pAF 81, complementary
to an actin mRNA that is accumulated in fetal skel-
etal muscle and is the major transcript in adult car-
diac muscle («. actin); and pAL 41, identified as
complementary to a 8 nonmuscle actin mRNA on
the basis of its 3’'UTR sequence.

As in other species, the protein sequences of these
isoforms are highly (>93%) conserved, but the three
mRNAs show significant divergence (13.8-16.5%)
at silent nucleotide positions in their coding regions.
A nucleotide region located toward the 5’ end shows
significantly less divergence (5.6-8.7%) among the
three mouse actin mRNAs; a second region, near
the 3’ end, also shows less divergence (6.9%), in this
case between the mouse 8 and «,, actin mRNAs.
We propose that recombinational events between
actin sequences may have homogenized these re-
gions. Such events distort the calculated evolution-
ary distances between sequences within a species.

Codon usage in the three actin mRNASs is clearly
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different, and indicates that there is no strict relation
between the tissue type, and hence the tRNA pre-
cursor pool, and codon usage in these and other
muscle mRNAs examined. Analysis of codon usage
in these coding sequences in different vertebrate
species indicates two tendencies: increases in bias
toward the use of G and C in the third codon po-
sition in paralogous comparisons (in the order o, <
B < agy), and in orthologous comparisons (in the
order chicken < rodent < man).

Comparison of actin-coding sequences between
species was carried out using the Perler method of
analysis. As one moves backward in time, changes
at silent sites first accumulate rapidly, then begin to
saturate after —(30-40) million years (MY), and
actually decrease between —400 and —500 MY. Re-
placements or silent substitutions therefore cannot
be used as evolutionary clocks for these sequences
over long periods. Other phenomena, such as gene
conversion or isochore compartmentalization,
probably distort the estimated divergence time.

Key words: Actin-coding regions — Sequence di-
vergence — Conversion — Codon usage — Evolu-
tion

Introduction

Actin is a protein found in all eukaryotic cells so far
examined, and its.amino acid sequence is highly
(>90%) conserved among species. This abundant
structural protein is important in the maintenance
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of cell shape and in cell motility. In nonmuscle cells
polymerized actin is the main component of the
microfilaments of the cytoskeleton (for a review, see
Pollard and Weihing 1974), while in muscle it is a
major contractile protein of the sarcomere (for a
review, sce Bagshaw 1982).

With the exception of the single actin gene in
yeast (Gallwitz and Seidel 1980; Ng and Abelson
1980), in all organisms so far examined the actins
constitute a family of highly conserved proteins en-
coded by several differentially regulated genes
(Buckingham and Minty 1983). In warm-blooded
vertebrates at least six actin variants have been char-
acterized: two from smooth muscles (o, and y.),
two from striated muscles (., the major isoform of
adult cardiac muscle, and a, that of adult skeletal
muscle), and two from nonmuscle tissues (3 and 1)
(Vandekerckhove and Weber 1979). A third cyto-
plasmic actin has recently been described in chicken
(Bergsma et al. 1985). The tissue specificity of mus-
cle isoforms might suggest that their structural con-
servation is related to the function of each isoform
in its particular cell type. However, some observa-
tions argue against this point of view. First, the ac-
tins present in the muscle tissues of invertebrates
resemble the vertebrate cytoplasmic actins rather
than the vertebrate muscle actins (e.g., see Vandek-
erckhove et al. 1983; Vandekerckhove and Weber
1984); the actin isoform characteristic of Drosophila
flight muscle, for example, has a vertebrate-cyto-
plasmic-type actin sequence (Fyrberg et al. 1981).
Second, vertebrate actin isoforms seem to be to some
extent interchangeable. Thus skeletal and cardiac
muscle actins are coexpressed in the same tissue
during striated muscle development (Minty et al.
1982; Mayer et al. 1984; Vandekerckhove et al.
1986), and cardiac actin has been shown to partic-
ipate in the formation of cytoskeletal structures on
the introduction of 2 human cardiac actin gene into
a nonmuscle mouse L cell (Gunning et al. 1984a).
An alternative, extreme point of view is that the
different actin isoforms confer no distinct functional
advantage, but have evolved because of a regulatory
requirement for multiple actin genes (Davidson and
Britten 1973). This seems inherently less likely,
Nevertheless, it is clear from the preceding discus-
sion that if the development of the distinct muscle-
type sequences seen in warm-blooded vertebrates
represents an optimization of muscle-actin function,
considerable functional flexibility exists between
muscle- and nonmuscle-type isoforms.

The appearance during evolution of muscle-type
actin sequences has been traced at the protein level
in primitive chordates and also in amphibia (Van-
dekerckhove and Weber 1984). A muscle-type actin
is found in the lamprey that presumably arose from

a nonmuscle-type ancestral actin gene by duplica-
tion and sequence divergence during early chordate
evolution. Subsequently, similar events led to the
appearance of two distinct muscle sequences, one
smooth type and one striated type muscle (sala-
mander), and then to two striated muscle actins, one
cardiac-like and one skeletal-like muscle ( Xenopus),
during early amphibian evolution, 300-450 million
years (MY) ago.

In most mammalian genomes, a large number
(more than 20) of actin-related sequences can be
detected by Southern blot analysis or by cloning of
genomic DNA (Engel et al. 1981; Humphries et al.
1981; Minty et al. 1983). Since the six actin isoforms
identified in mammals are probably encoded by sin-
gle genes (see Minty et al. 1983; Ueyama et al. 1984),
many of the actin-related genomic sequences may
represent pseudogenes (Moos and Gallwitz 1982;
Minty et al. 1983). The majority of these sequences
are homologous to cytoplasmic § or v actin mRNAs
(Ponte et al. 1983) and are dispersed in the mam-
malian genome. This is also the case for the struc-
tural genes encoding the actin isoforms: No genetic
linkage is seen between a, ., and § actin genes in
the mouse (Czosnek et al. 1983; Minty et al. 1983;
Robert et al. 1985), nor between «,, and «, genes in
humans (Gunning et al. 1984b).

Nucleotide sequences give more information on
the process of molecular evolution than do protein
sequences, especially when the protein sequences are
so highly conserved as those of the actins. In this
paper we compare three actin-coding sequences in
the mouse corresponding to oy, a., and 3 actin gene
transcripts, in terms of sequence divergence and co-
don usage. This comparison is then extended to an
analysis of these actin-coding sequences in other
mammals and birds. Perler’s method (Perler et al.
1980) of obtaining the correct percentage divergence
between two nucleotide sequences plotted against
their time of divergence (estimated mainly from the
fossil record) has been applied to these interspecies
comparisons. The results indicate that for this mul-
tigene family the divergence of actin-coding se-
quences can be used as an evolutionary clock over
limited periods only.

Experimental Procedures

Construction and Nucleic-Acid Sequencing of ¢cDNA Plasmids.
The construction of recombinant cDNA plasmids has been de-
scribed by Minty et al. (1981). Restriction fragments were end-
labeled at their 5’ or 3’ extremities. For 5’ labeling, restriction
fragments were labeled with T, polynucleotide kinase (Bethesda
Research Laboratories) using the exchange reaction (see Minty
et al. 1981). For 3’ labeling, protruding 3’ ends were labeled with
terminal deoxynucleotidyltransferase (Boehringer Mannheim) by
the addition of one [a-32P]ddATP residue (Amersham; 3000 Ci/
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Fig. 1. Restriction maps of plasmids pAF

81, pAL 41, and pAM 91. Maps have been
aligned. Horizontal arrows indicate regions se-
quenced. Arrows above the line indicate se-
quencing of the mRNA strand; those below
the line indicate sequencing of the cDNA
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mmol) (see Robert et al. 1982) and recessed 3’ ends were labeled
with DNA polymerase I, Klenow fragment (Bochringer Mann-
heim) according to Challberg and Englund (1980). Labeled re-
striction fragments were then strand-separated in 5% polyacryl-
amide gels [5% polyacrylamide, 0.08% methylene bisacrylamide,
50 mM Tris-borate, pH 8.3, 1 mM ethylencdiaminetetraacetate
(EDTA)], or they were digested with a second restriction enzyme
and the two labeled fragments then separated in 5% polyacryl-
amide (5% polyacrylamide, 0.17% methylene bisacrylamide, 50
mM Tris-borate, pH 8.3, 1 mM EDTA) gels. After electroelution
of DNA from the gels, the fragments were sequenced by the
chemical degradation method of Maxam and Gilbert (1980) using
0.35 mm thick 6%, 8%, or 20% polyacrylamide gels (Sanger and
Coulson 1978).

Computer Analyses. Nucleotide sequences were analyzed using
a self-serve sequence-analysis system implemented on a Data
General MV 8000 computer at the Pasteur Institute. Computer
programs that permitted the comparison of nucleotide sequences,
searches for codon usage, and calculation of total G + C content
were adapted by Claverie (1984) from programs provided by
Staden (Staden and McLachlan 1982).

Results and Discussion

I. Isolation and Characterization of Three
Mouse Actin cDNA Plasmids

Recombinant cDNA plasmids pAM 91 and pAF 81
were cloned from poly(A)+ RNA isolated from
skeletal muscle of 10-day-old mice (Minty et al,
1981). Partial nucleotide sequences, together with
results of RNA and DNA hybridization experi-
ments done to characterize the tissue expression of
the homologous mRNA and to demonstrate that it
is the product of a single gene, led to the conclusion
that pAM 91 is complementary to the actin mRNA
expressed in adult skeletal muscle (e, ) (Minty et al.
1981) and that pAF 81 is complementary to a fetal
skeletal muscle actin mRNA that is indistinguish-
able from that expressed in adult cardiac tissue (o)

The dashed vertical line indicates the end of
the coding sequence

(Minty et al. 1982). Plasmid pAL 41 was isolated
from a mouse lymphocyte cDNA library (Kvist et
al. 1981) by cross hybridization with the pAM 91
probe. The restriction maps of these three cDNAs
and the sequencing strategy adopted are presented
in Fig. 1.

The sequence of pAM 91 encodes the same pro-
tein sequence as that published for bovine skeletal
muscle actin (Vandekerckhove and Weber 1979).
At the extreme 5’ end of pAM 91 there is a sequence
inversion of the region covering amino acids 18 to
27, followed by a deletion of amino acids 28-39,
probably a cloning artifact (Fields and Winter 1981;
Volckaert et al. 1981). Plasmid pAM 91 contains
the complete 240-nucleotide 3’ untranslated region
(3'UTR) of the a, actin mRNA; the polyadenyla-
tion signal ATTAAA is located 28 base pairs up-
stream from the poly(dA) tail (Fig. 2A). Comparison
of this sequence with that of the rat o, 3'UTR (Zak-
ut et al. 1982) demonstrates only seven substitutions
and two point deletions in the rat sequence (which
is 238 nucleotides long). The 3'UTR sequences are
therefore as conserved (96.2%) as the coding se-
quences (96.3%) are between these two species. Sig-
nificantly more sequence divergence is seen between
the UTRs of mammals and birds (Ordahl and Coo-
per 1983).

Plasmid pAF 81 contains the coding sequence of
the a, actin mRNA together with the first 14 nu-
cleotides of the 3'UTR (Fig. 2B), which matches (at
12 of 14 nucleotides) the sequence at the beginning
of the human «_ actin 3'UTR (Hamada et al. 1982).
This short sequence is missing in the rat, where the
o, actin 3'UTR is 163 nucleotides long (Mayer et
al. 1984). The sequence of pAF 81 encodes a protein
identical to the published sequence of bovine car-
diac muscle actin (Vandekerckhove and Weber 1979)
except for one amino acid replacement, a substi-
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tution of histidine for arginine at position 370 (see
Minty et al. 1982).

The sequence of pAL 41 (Fig. 2) encodes a cy-
toplasmic actin (8 or y) almost identical to the bo-
vine cytoplasmic actins (Vandekerckhove and We-
ber 1979). It is probably a 3 actin, since the first 67
nucleotides of the gene’s 3'UTR are identical to those
from the beginning of the rat 8 actin 3'UTR (Nudel
et al. 1983) and it has been shown that the 3'UTRs
of 8 and ¥ actin mRNAs do not cross-hybridize in
chicken (Cleveland et al. 1980) and human (Ponte
et al. 1983). That the 3'UTR of pAL 41 is charac-
teristic of 8 actin mRNA strongly suggests that pAL
41 encodes a # actin. The coding sequence of pAL
41 shows one amino acid replacement relative to
the published sequence of bovine 8 cytoplasmic ac-
tin (Vandekerckhove and Weber 1979): Proline is
substituted for serine at position 38. As in the case
of the substitution between pAF 81 and the bovine
cardiac actin sequence (position 370, his — arg), this
nonconservative change is not found in any of the
actin protein sequences established for a wide range
of different species; this residue is invariant in these
sequences. We therefore suspect that an enzymatic
error, probably by reverse transcriptase, during the
construction of the plasmids caused this change (see
Minty et al. 1982).

II. Nucleotide-Sequence Comparisons Between
DAM 91, pAF 81, and pAL 41

a. Overall Sequence Divergence. We have calculated
the degree of divergence between the coding se-
quences contained in pAM 91, pAF 81, and pAL
41 as the total number of substitutions over the full
length compared (Table 1). Because of the sequence
inversion at the extreme 5' end in pAM 91, coding
sequences were compared from the histidine codon
at position 40 to the stop codon, a region repre-
senting some 90% (1011 of 1125 nucleotides) of the
whole coding sequence. This comparison therefore
excludes the amino-terminal coding region, where
several of the few amino acid substitutions between
isoforms are located (Vandekerckhove and Weber
1979). However, we verified that deletion of the first
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Table 1. Percentage nucleotide divergence between mouse
cDNAS

Local nucleotide

Actin-coding Overall nucleotide divergence at

regions divergence® (%) the 5’ end® (%)
a/oy, 13.8 (13.5) 5.6
B/ety, 14.2 (11.9) 5.6
Bla, 16.5 (14.2) 8.7

» Number in brackets represents the percentage of silent substitu-
tions

b Corresponds to a region 162 nucleotides long between codons
40 (histidine) and 93 (glutamate)

39 codons of the complete actin gene sequences did
not influence significantly the overall sequence di-
vergence.

Although the actin protein sequences are highly
conserved, their mRNAs vary significantly due to
the presence of numerous silent substitutions lead-
ing to synonymous codon changes. Between pAM
91 and pAF 81, there are 140 substitutions, of which
only 4 are replacement substitutions; these result in
three amino acid exchanges (positions 298, 357, and
370). The least diverged nucleotide sequences are
those of the two sarcomeric actin mRNAs (Table
1). The percentage divergences increase to 14.2%
and 16.5% when we compare o, and o, mRNAs,
respectively, with nonmuscle # actin mRNA. It is
striking that the very similar proteins «, and «,, actin
(4 differences out of 375 amino acids) are encoded
by mRNAs whose sequences are relatively diverged
compared with that of nonmuscle 8 actin. Cardiac
actin mRNA, which encodes a protein that is more
similar to 8 actin (23 changes) than is a, actin (25
changes), is more divergent from 8 actin at the nu-
cleotide level.

Hybridization experiments had already suggested
that the nucleotide sequences of «, and 8 actin
mRNAs are closer to each other than are «, and 8
actin in RNA sequences. On Southern blots of mouse
genomic DNA, under conditions of high-stringency
washing (70°C, 0.1 x SSC), most of the mouse cy-
toplasmic-related sequences are detected by hybrid-
ization with pAM 91 or pAL 41, but not with pAF

Fig. 2. Nucleotide sequence of pAL 41 and comparisons with those of pAM 91 (A) and pAF 81 (B). The restriction fragments
indicated in Fig. 1 were end-labeled and sequenced by the chemical degradation method of Maxam and Gilbert (1980). The base
sequence of pAL 41 and the amino acids that it encodes are shown. Amino acids in bold type are specific for nonmuscle actins (8 or
7v), and the two key positions (298 and 357) that distinguish o, and «a,, actin sequences are underlined. Below the sequence of pAL
41 are shown the nucleotides in the sequences of pAM 91 (A) and pAF 81 (B) where they differ from that of pAL 41. Amino acids
are numbered following the convention discussed by Vandekerckhove and Weber (1979); that is, the serine residue overlooked in the
initial numbering is considered as residue 234a. Unexpected codons at positions 38 in pAL 41 and 370 in pAF 81 are labeled by
asterisks. At the extreme 5’ end of pAM 91 is a sequence inversion of the region from amino acids 18 to 27, followed by a deletion
of amino acids 28~39. Amino acids indicated in the region of amino acids 18-27 correspond to reading the nucleotide sequence of
the complementary strand in the reverse direction, and these codons are written using small letters. Partial or complete 3’'UTRs have
been aligned, although they are not homologous. The polyadenylation signal ATTAAA in pAM 91 (A) is indicated by dots above the

line
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81, which under these conditions hybridizes only to
the cardiac and skeletal actin genes (Minty et al.
1983). Melting curves derived from Southern blot
hybridizations with the different actin plasmids show
that homologous hybrids melt at 70-71°C and het-
erologous hybrids at a temperature 11-13°C lower
(Minty et al. 1983). A melting temperature differ-
ence of 1°C in these experiments thus represents a
nucleotide-sequence divergence of 1.3%.

Analysis of actin proteins has led to the proposal
that o, and «a, actin genes arose from a primordial
sarcomeric actin gene by a gene-duplication event
during amphibian evolution (Vandekerckhove and
Weber 1984). If this were the case, one would predict
that «,, and e, mRNA sequences would be similarly
diverged from nonmuscle actin in terms of silent
substitutions, and more similar to each other. How-
ever, the nucleotide-sequence divergence among the
mouse actin mRNAs is not in keeping with such an
evolutionary relationship; factors that distort the
figures for overall sequence divergence are discussed
in the following sections.

b. Regional Sequence Divergence. Comparisons
between the three cDNAs show a region of greater
sequence similarity in the 5’ part of the cDNAs,
considered here to be from the histidine codon at
position 40 (immediately after the inversion in pAM
91) to the glutamate codon at position 93. This re-
gion, probably located in the third exon (see Buck-
ingham and Minty 1983), is much less diverged
between the three sequences than the overall coding
sequence is (Table 1). This regional sequence ho-
mology is highly significant, since the probabilities
of finding this particular distribution at random are
1/1000 (when a /ey or B/ag are compared) and 3.5/
1000 (when «/@ are compared).

A second region including the last 130 nucleo-
tides of the coding region between codons 331-374,
and probably located in the last exon, is also less
diverged (6.9%), in this case between mouse 8 and
«, actin cDNAs. A region of lower sequence di-
vergence (6.9%) has been noted at a similar position
in the rat § and « actin genes (for which the overall
divergence is 15.8%) (Nudel et al. 1983).

Such regions of sequence similarity are probably
maintained by a mechanism of sequence homoge-
nization that can act on multigene families (Balti-
more 1981) and in which recombination takes place
between parts of the genes only, as in the cases, for
example, of the human fetal ¢y and Ay globin genes
(Slightom et al. 1980) or of the two adult human «
globin genes (Zimmer et al. 1980). The 3’ sequence
region is also much less diverged between «,, and 8
actin mRNAs in chicken (8.5%) (Fornwald et al.
1982; Kost et al. 1983), rat (6.9%) (Zakutetal. 1982;
Nudel et al. 1983), and human (6%) (Hanauer et al.

1983; Ponte et al. 1984); the overall divergences in
these species are 16.5%, 15.8%, and 14%, respec-
tively. This is true in paralogous comparisons only:
The sequence 1s not conserved between species. That
sequence similarity is intraspecific is more in keep-
ing with the occurrence of relatively recent gene-
conversion-type events (Baltimore 1981) than with
evolutionary conservation of the primordial se-
quence in this region for functional or structural
reasons. In protein sequences corresponding to the
3'and 5’ regions of the actin-coding sequences where
gene conversion is postulated to have taken place,
amino acid residues characteristic of nonmuscle or
striated muscle actins are present at positions 76,
357, and 364. In each case the amino acid change
is a neutral substitution resulting from a single base
change. We suggest that the selective pressure on
these sequences has been sufficiently strong to result
in the selection of back mutations at these positions
after the sequence-homogenization event.

Sequence homogenization may not have oc-
curred directly between the three genes concerned.
Given the number of actin-related sequences in most
mammalian genomes (Minty et al. 1983), recom-
bination events of this kind in the mouse or rat may
have taken place via another, actin-related genomic
sequence. If sequence homogenization is restricted
to the coding sequences, this might suggest a cDNA-
mediated gene-conversion mechanism operating, for
example, via an intronless processed pseudogene
present in the genome (Moos and Gallwitz 1982),
or via a free cDNA template, as has been proposed
in the case of the U3 small-nuclear-RNA genes in
mammals (Bernstein et al. 1983).

III. Comparison of Codon Usage Between Actin
Genes in Different Species

We have calculated the percentage G + C content
and the (G + C)/(A + T) bias in the third codon
positions in the coding sequences of several actin
genes and cDNAs (Table 2). The ratio (G + C)/
(A + T) permits one to gain an immediate appre-
ciation of the nucleotide bias toward G or C at the
third positions of codons (each letter in this case
represents the number of codons ending with the
corresponding base) (see also Hanauer et al. 1983).
Two tendencies can be distinguished (cf. Nudel et
al. 1983), First, Table 2 shows that there is an in-
crease in bias in paralogous comparisons, bias ¢, <
bias 8 < bias ag, that is conserved in chicken, in
rat, in mouse, and, most strikingly, in human. The
rat and mouse biases are the same for 8 (2.7) and
o, (3.4) mRNAs, and the partial (95-codon) nu-
cleotide sequence of rat o, actin cDNA (Mayer et
al. 1984) shows a 50.5% G+ C content and a bias
of 1.7, which is in agreement with the bias of 1.4
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Table 2. Codon usage in different actin and MLCI/MLC3 mRNAs

Actin Myosin
a, g oy MLCl/MLC3,
G + C Bias Ref. G + C Bias Ref. G + C Bias Ref. G + C Bias Ref.
Human 54 2 1 60.6 5.5 2 61.6 8.2 3 - - -
Rat - - — 56.8 2.7 4 57.6 34 5 53 1.6 6
Mouse 51.3 1.4 — 55.7 2.7 — 56.4 34 - 51.7 1.5 7
Chicken 49.1 1.2 8 53.4 1.8 9 55.9 2.7 10 51.4 1.5 11

We calculated the total percentage of G + C and also the ratioc (G + C)/(A + T), which measures the bias toward G or C in the third
positions of codons. The following references were used for sequence data: 1, Hamada et al. (1982); 2, Ponte et al. (1984); 3, Hanauer
et al. (1983); 4, Nudel et al. (1983); 5, Zakut et al. (1982); 6, Periasamy et al. (1984); 7, Robert et al. (1984); 8, Chang et al. (1985);
9, Kost et al. (1983); 10, Fornwald et al. (1982); 11, Nabeshima et al. (1984)

for the mouse . actin sequence. As indicated by the
nucleotide divergence of the sequences in the mouse,
the differences in G + C content and bias in any
one species are greater between the «, and 8 than
between the 8 and «, nucleotide sequences. One
specific example illustrates this point: in the mouse
a-actin-coding sequence, codons GAA and GAG
are used for Glu, whereas GAG is preferentially used
in the 8 and a, sequences. Differences in codon
usage between «, 8, and @ actin genes are clearly
not related to the amino acid compositions of the
corresponding proteins; «, and e, actin mRNAs,
which have the lowest and highest G + C content,
respectively, encode the most related proteins (only
4 amino acid differences in 375 positions, compared
with 23/375 and 25/375 differences, respectively,
from § actin). These observations on codon usage
for the overall sequences also in fact apply to the
similar sequence regions. Thus for the 5’ regions
that are similar in the three mouse actin mRNAs
(o, a., and B), the frequency of G or C in the third
codon position is similar for pAM 91 and pAL 41
and significantly lower for pAF §1.

Table 2 reveals a second tendency in bias, one
related to species. The percentage G + C content
for a given actin-coding sequence (e.g., o) increases
from chicken (55.9%) to rodent to human (61.6%).
Examination of the G + C content of another mus-
cle-coding sequence, namely the gene for the alkali
myosin light chains (MLC1/MLC3g) of adult fast
skeletal muscle, demonstrates the same tendency
(Table 2), suggesting that this may be a more general
phenomenom.

Different factors may influence codon usage and
be functionally significant at the level of mRNA
translation, such as structural features of individual
tRNA molecules and the nature of the codon—-an-
ticodon reaction itself, which depends on the rela-
tive proportions of G—-C and A-T linkages. Different
tissues may have different tRNNA pools, and the rel-
ative abundance of an mRNA and its protein prod-
uct in a tissue may also be related to codon usage.

The three actin mRNASs examined here are all major
mRNA species, coding for a major protein type in
the tissues concerned. Cardiac and skeletal actin
mRNAs are major components of the total mRNA
in adult heart and skeletal muscle tissues, respec-
tively, and the corresponding proteins accumulate
in these tissues. During skeletal muscle develop-
ment, however, the two mRNASs are coexpressed
(Minty et al. 1982; Vandekerckhove et al. 1986).
The converse situation has been described in de-
veloping (e.g., Mayeret al. 1984) and indeed in some
adult mammalian hearts (Gunning et al. 1983; Van-
dekerckhove et al. 1986). It would thus appear that
the same cell (Minty et al. 1982; Mayer et al. 1984)
can express both mRNAs efficiently. Comparing
codon usage of other genes expressed in cardiac or
skeletal muscle (Table 3), we observe (see also Wain-
Hobson et al. 1981; Hastings and Emerson 1983)
that within a species synonymous-codon usage may
follow similar patterns in different tissues or differ-
ent patterns in the same tissue, and there is thus no
evidence suggesting tissue-specific coadaptation of
codon usage and tRNA pools.

Another aspect of the question of codon usage
concerns the genomic organization of the sequences.
Genes have been shown to be located in different
isochores (Bernardi et al. 1985), composed of long
stretches (several hundred kilobase pairs) of DNA
of relatively uniform and distinct base composition.
The total G + C contents of the exons of genes,
including the mouse actin sequences discussed here,
have been shown to be linearly related to those of
the isochores in which they are embedded (Bernardi
et al. 1985), suggesting that the isochore may con-
dition the codon usage of genes in it. In the mouse,
actin genes constitute a dispersed multigene family
(Minty et al. 1983). When duplicated sequences are
dispersed to different regions of the genome that
either already differ in base composition or subse-
quently evolve toward different total G + C con-
tents, silent substitutions in the genes concerned may
follow different tendencies corresponding to those
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Table 3. Codon usage in different genes (or cDNAS) expressed
either in cardiac or skeletal muscle

% G or

C in the Num-

third ber of

position codons

of exam-

codons Bias ined Ref

Heart
Rat o actin 64 1.8 94 1
Rat « MHC 86 6.1 427 2
Rat 8 MHC 85.5 6.0 425 2
Mouse ¢, actin 59 1.4 350
Mouse MHC 77 3.3 65
Chicken MLC2A 72 2.6 153 4
Chicken G3PDH 59 1.4 334 5
Skeletal muscle

Rat MLC1/MLC3, 60 1.6 198 6
Rat MLC2, 70 2.3 169 7
Rat « actin 77.5 34 375 8
Mouse oy actin 77 3.4 337
Mouse MHC¢ 77 3.4 166 9
Mouse MLC1/MLC3; 62 1.5 198 10
Chicken MLC1/MLC3, 60 1.5 198 11
Chicken «,, actin 73 2.7 375 12

We calculated the percentage of G + C in the third positions of
codons and the ratio (G + C)/(A + T), which can be used to
represent the bias. References: 1, Mayer et al. (1984); 2, Mahdavi
et al. (1982); 3, Weydert et al. (1985); 4, Amold et al. (1983); 5,
Domdey et al. (1983); 6, Periasamy et al. (1984); 7, Nudel et al.
(1984); 8, Zakut et al. (1982); 9, Weydert et al. (1983); 10, Robert
et al. (1984); 11, Nabeshima et al. (1984); 12, Fornwald et al.
(1982). Abbreviations: MLC, myosin light chain; MHC, myosin
heavy chain; F, fast skeletal muscle; G3PDH, glyceraldehyde-3-
phosphate dehydrogenase

of their environments. There is a general tendency
toward heavier isochore components in mammals,
and particularly in humans. This is reflected in the
biases in G + C content for actin-coding sequences
in different species. The maintenance across
species of differences in bias between actin genes
would suggest that their distribution in heavier or
lighter isochores tends to be conserved in evolution
and occurred early during the evolution of warm-
blooded vertebrates, or even prior to this, in cold-
blooded vertebrates.

IV. Evolution of Actin-Coding Sequences

The accumulation of data on a large number of ac-
tin nucleotide sequences from widely different species
(from yeast to human) now makes it possible to
examine the substitution level between two actin
sequences and to estimate the time since divergence
of these sequences. We have used the method of
calculating divergence corrected for multiple events
between two homologous sequences that was intro-
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Fig. 3. Curves for divergence of actin-coding sequences. The
corrected percentage divergences at silent (S) and replacement
(R) sites (see Table 4) are plotted against divergence times in
millions of years (MY), which are minimal estimates derived
mainly from the fossil record (see text for discussion and refer-
ences). Accumulation of silent substitutions begins to saturate
between —30 and —40 MY

duced by Perler et al. (1980). When coding regions
of two related genes are compared (codon by codon),
two types of substitutions can be distinguished: those
producing an amino acid change (replacement sub-
stitutions), and those leading to a synonymous ¢o-
don (silent substitutions). In Perler’s method of
analysis, numbers of both replacement and silent
substitutions are calculated, and are corrected for
multiple substitutions at single sites using the “ran-
dom substitution” model. The rate of divergence is
expressed in unit evolutionary periods (UEP), which
is the time in millions of years (MY) required for
the fixation of a 1% substitution difference between
two initially identical sequences. A distinction is
made between UEPy (the UEP for the replacement
sites) and UEPg (the UEP for the silent sites). The
type of analysis introduced by Perler et al. (1980)
and used here obviously has its limitations: For ex-
ample, it does not take into account the possibility
that some substitutions are more probable than oth-
ers (see discussion in Cooke et al. 1981), nor the
effect of sequence-homogenization events in paral-
ogous comparisons.

Table 4 gives corrected percentage divergences
for silent and replacement substitutions between dif-
ferent actin-coding sequences. Comparisons are
classified into categories according to the estimated
time at which either two species or two isoforms
diverged. Paleontological data show the mamma-
lian radiation to have occurred at approximately
—85 MY (McKenna 1969, 1975; Romero-Herrera
et al. 1973) and the divergence between mammals
and birds to have occurred at approximately —270
MY (Dickerson 1971; Moore et al. 1976; Wilson et
al. 1977). The gene duplication that led to the two
sarcomeric actin genes (o, and «.) probably oc-



curred during early amphibian evolution, 300-450
MY ago (Vandekerckhove and Weber 1984), and
muscle-type actin isoforms exist only in vertebrates,
which are estimated to have emerged 500-600 MY
ago. On plots of corrected percentage divergence as
defined by Perler et al. (1980) against divergence
time, the UEP corresponds to the inverse of the
slope (Fig. 3). The evolutionary-clock hypothesis
predicts that the accumulation of replacement (or
silent) substitutions is proportional to the diver-
gence time. That an approximately linear plot is
obtained as far back as 400 MY ago suggests that
the initial assumptions, such as that of o /e, di-
vergence during early amphibian evolution (Van-
dekerckhove and Weber 1984), are approximately
correct. The partial sequence homogenization in the
5’ and 3’ regions is reflected in Table 4 by the lower
percentages of silent substitutions in paralogous
comparisons (i.e., mouse o /o, human g/ag, and
mouse 3/ay) compared with orthologous compari-
sons. This phenomenon will inevitably reduce the
precision with which the divergence time in paral-
ogous comparisons can be estimated.

a. Replacement Sites. The extent of replacement
substitution is about 1% between cardiac and skel-
etal muscle actin coding sequences and corre-
sponds approximately to the degree of amino acid
difference between the two actins (4/375). Evolution
at replacement sites between the two sarcomeric ac-
tin genes is very slow, with a UEP; of approximately
400 (i.e., 400 MY/ 1) since the divergence of the early
amphibians. The extent of replacement substitution
is about 5% for nonmuscle- and muscle-actin coding
sequences, which is similar to the degree of amino
acid difference (25/375).

Accumulation of replacement substitutions is es-
timated to have been more rapid in actin genes (by
8 to 16 fold) during early chordate and amphibian
evolution than subsequently. Thus actin genes show
an accelerated rate of divergence during evolution,
and the fixation of substitutions at replacement sites
does not behave as an accurate evolutionary clock

in this case.
The rate of replacement substitutions is a func-

tion of the protein, and the UEP; of actins (400) is
close to those of tubulins (550) and histones H4
(400) or H3 (330) (Wilson et al. 1977). Other genes
have evolved much more rapidly, like those encod-
ing insulin chains A and B (14), globins (10), and
the hypervariable region of fibrinopeptides (0.9)
(Perler et al. 1980).

b. Silent Sites. Silent substitutions first accumu-
late rapidly in actin genes over a short initial period,
the estimation of which in the case of the actins
depends on the estimated divergence time between
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Table 4. Corrected percentage divergences of actin-coding se-
quences

Replace-

ment
Silent substitu-
substitutions tions

Rat/mouse separation

(max. —15 MY)
oy, Rat/mouse 20 0.3
8 Rat/mouse 23 0.3
Mammalian radiation
(-85 MY)
oy Rat/human 64 0.3
Mouse/human 73 0.3
o, Mouse/human 53 0.3
8 Rat’human 43 0.3
Mouse/human 52 0.3
Birds/Mammals (—270 MY)
ay Chick/mouse 65 0.2
Chick/rat 75 0.2
Chick/man 91 0.2
Early amphibian evolution
(approx. —400 MY)
Human a/human «,, 115 1
Human a/rat oy, 108 \
Human a/mouse ay, 92 1
Human «//chick «,, 87 1
Mouse a/mouse o, 107 1
Mouse a/rat oy 129 1
Mouse a/chick o, 118 1
Mouse a/human a,, 148 1
Early vertebrate evolution
(between —500 and —600 MY)
Human S/human e, 65 5
Human §/human «, 93 5
Human 8/mouse oy, 81 5
Human 8/mouse a, 112 5
Human 8/rat ay 76 5
Human g/chick a,, 92 5
Rat g/rat o, 80 5
Rat g/mouse «,, 76 5
Rat f/human oy, 86 5
Rat g/chick oy, 84 5
Rat 8/mouse o, 103 5
Rat g/human «, 82 S
Mouse §/mouse a, 74 5
Mouse 8/mouse o, 104 S
Mouse §/rat a,, 81 5
Mouse 8/human a; 89 5
Mouse f/human o, 79 5
Mouse 8/chick ay, 87 5

Corrected percentage divergences for silent- and replacement-
substitution sites in each pair of actin-coding sequences were
calculated as described by Perler et al. (1980). Comparisons are
classified into categories according to the estimated time at which
either two species or two isoforms diverged. In comparisons in-
cluding mouse actin-coding sequences, we excluded from the
calculations the first 39 codons. Sequence data for warm-blooded
vertebrates were from the references in Table 2
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rat and mouse. The corrected percentage divergence
between these two species is nearly 20%, and it is
unlikely that rat and mouse diverged more than 15
MY ago (Bonhomme F. personal communication).
The initial slope in Fig. 3 is estimated based on this
single point and corresponds to a maximum esti-
mated UEPg of 0.7 (i.e., 15 MY/20). Applying the
same type of analysis to divergences between insulin
genes and between globin genes, Perler et al. (1980)
showed that changes at introns and at silent sites in
coding regions first appear rapidly according to the
same UEP; value (0.7) as for the actins, which is
therefore probably similar for different multigene
families.

The initial accumulation of silent substitutions
in actin genes begins to saturate between —30 and
—40 MY (Fig. 3). Subsequently the rate of silent
substitutions rapidly decreases, following a UEP; of
between 6 and 7, which again is in the same range
as that for globins (10) and insulins (14). So the
process of accumulation of silent substitutions may
be similar for genes from different multigene fam-
ilies, whether they code for highly conserved pro-
teins such as actins or for less conserved proteins
such as globins.

If we extend the analysis beyond 400 MY ago,
the accumulation of silent substitutions saturates,
in contrast to that of replacement substitutions,
leading to corrected percentage divergences between
muscle- and nonmuscle-actin-coding sequences that
are generally lower (65-112%) than those between
cardiac and skeletal muscle actin coding sequences
(87-148%) (see Table 4). This result was surprising,
since the estimated divergence time between mus-
cle- and nonmuscle-actin genes is greater (Vandek-
erckhove and Weber 1984) than that corresponding
to the separation of the two striated actin genes (o,
and «). In fact, however, this result is in keeping
with the codon-usage tendency described above for
paralogous comparisons (see Section III). Paralo-
gous comparisons showed that restrictions on codon
usage in 8 actin genes were intermediate between
those in the two striated-actin genes, even though
the latter sequences code for the most related pro-
teins. This tendency seen within a single species
appears to apply as well to comparisons between
any warm-blooded vertebrate species. As already
discussed, other phenomena, such as gene correc-
tion or the influence of isochore context (Bernardi
et al. 1985) on codon-usage flexibility, intervene to
distort the correlation between sequence divergence
and evolutionary time.
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