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Statistical Theories of Crack Propagation' 

D .  V e r e - J o n e s  2 

The mechanism o f  crack growth in rocks has been the subject o f  much recent interest, not 
only on account o f i t s  engineering importance, but also as a background to the study o f  pre- 
cursory phenomena for earthquakes. One feature which appears to play a significant role in 
the fracture mechanism is the formation o f  micro fractures prior to a major failure. Micro- 
fractures also play a key role in statistical theories as developed by Weibull and later writers. 
Some recent work in these two fields is reviewed and the suggestion is put  forward that it 
may be possible to extend the statistical models so as to describe the dynamics o f  crack forma- 
tion. As a preliminary step in this direction, it is shown that a branching model for the coales- 
cence o f  microfractures lead to a simple derivation o f  the frequency-magnitude law o f fracture 
energies. Other methods o f  introducing statistical ideas into the dynamics o f  crack propagation 
are also briefly reviewed, and compared to deterministic models o f  crack growth. K E Y  
WORDS: statistics, earthquake prediction, fracture mechanics. 

INTRODUCTION 

There can be few mechanical problems more complex, more stubbornly 
evading a definitive physical or theoretical treatment, than the range of 
phenomena associated with fracture. Insofar as earthquakes involve some 
form of  rock fracture, they may be considered part of this range. Classical 
seismology has been very little concerned with the detailed mechanics of  the 
fracture process--partly perhaps, because of its inherent unaccessibility, but 
also because classical seismology has been primarily concerned with earth- 
quakes as a source of  elastic vibrations for use in probing the structure of the 
earth's interior. For  this purpose an idealized model of the source is sufficient. 
In the last few decades, however, the emphasis has shifted towards the 
earthquake itself, most recently to the study of phenomena which might have 
application to earthquake prediction. As a consequence, seismology has 
begun to tangle with the same problems and complexities that have long 
beset the study of  fracture in other contexts. 

The intention of this paper is to provide a first look at these problems 
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from the point of  view of stochastic (i.e., probabilistic) models. I must dis- 
claim at the outset any deep knowledge either of  classical seismology or of 
fracture mechanics. This is a review from "outside" the subject. If  there is 
any excuse for such an exercise, it is the hope that by reviewing the subject 
from a somewhat novel viewpoint it may be possible to discern new lines of  
development. I hesitate to claim any such merit for the present paper; on the 
other hand I do believe that the area of fracture mechanics is one where 
stochastic models could play an exciting and useful role. I shall be happy 
enough if the present paper goes some way to indicating the types of problems 
that might be tackled in this way, and the relation such stochastic models 
might have to existing theoretical work. The paper falls essentially into two 
parts. The first part contains a brief account of  a simple branching model 
which I developed recently as a possible explanation of  the earthquake fre- 
quency-magnitude law (see Vere-Jones, 1976). I do not regard this model 
as providing a final explanation of  this law but I do believe it embodies some 
elements of the physical situation. Because this model differs rather sharply 
in character from any of the classical types of models for the earthquake source, 
in the second half of  the paper I have tried to review, inevitably briefly 
and superficially, some of the wide variety of approaches to crack propagation 
which currently exist. Here I have included brief comments on Griffith 
cracks, on more elaborate treatments using elastic theory, on microscopic 
studies of  crack propagation, on the problems of microfracturing and dila- 
tancy in rock fracture, and on statistical strength theories. The aims of  this 
exercise are to gain some perspective on the different models, to indicate in 
a wider context the role stochastic models can play, and to elucidate which 
features of  the branching model seem satisfactory and which features are 
deficient. 

T H E  EARTHQUAKE FREQUENCY-MAGNITUDE LAW 

The instrumental magnitude ML of an earthquake is an empirical but useful 
measure of the size of an earthquake. It is defined in terms of  the maximum 
response of a standard (Wood-Anderson) seismometer, adjusted to corres- 
pond to a distance of  100 km from the source. The readings are made on a 
logarithmic scale. Plotting the total frequency of  earthquakes above a given 
magnitude against the magnitude results in a curve such as that shown in 
Figure 1, where the frequency is also measured on a logarithmic scale. Over 
a large range of  magnitudes, corresponding to a factor of  at least 106 in 
earthquake energies, the curve is approximately linear, implying that fre- 
quency decreases roughly exponentially with magnitude. An increase of one 
unit in magnitude corresponds roughly to a tenfold decrease in frequency, 
so that the coefficient b in the relationship 
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Figure 1. Frequency-magnitude relation for earthquakes in 
the main seismic region of New Zealand (I 5/9/54-15/11/65) 
(after Gilbert, 1974). 

Prob(Mag >t M) = 10 -bM 

is approximately equal to unity. 
Since the magnitude itself is logarithmically related to the amplitude of 

the ground motion (and through that to most other variables of direct 
physical meaning, including ultimately the energy release), frequency- 
magnitude diagrams such as Figure 1 are essentially log-log plots of the 
survivor function 

S(x) = 1 -  F(x) 

of the distribution of energy or related variables. Thus the implication of the 
empirical "frequency-magnitude law" is that the frequency distribution of 
such variables is typically of a power law form. The basic theoretical ques- 
tions are therefore why (and perhaps even whether) such variables follow a 
power law distribution (rather than, say, an exponential or normal dis- 
tribution), and why the exponent of this law should have a value close to the 
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value -1/2, as it does when the magnitudes are converted into energies. 
Although the seismological literature abounds in so-called "explanations" 
of the frequency-magnitude law, I have yet to read one which I find both 
physically and mathematically convincing. Let me cite two recent examples. 
Kanamori and Anderson (1975) argue that the magnitude of an earthquake 
is related to its source volume; since, for different N, a unit volume can con- 
tain N distinct sources of volume t/N, then we should expect N times more 
earthquakes of volume 1/N than of volume 1. This argument fails to explain 
how a given volume can sustain an unlimited number of earthquakes of 
different magnitudes, when it cannot sustain more than a finite number of 
earthquakes of any fixed magnitude. (If it is argued that distinct earthquakes 
affect distinct volumes, then the fact that N×  1/N = 1 ceases to be relevant, 
and an alternative explanation must be found.) A quite different argument is 
put forward by Nur and Schultz (1973) in the context of a stick-slip mech- 
anism. Here it is suggested that the (spatial) Fourier transform of the fault 
surface can be related to earthquake occurrence in such a way that the 
height of the spectral ordinate can be related to the rate of occurrence and 
its frequency to the magnitude. I am unconvinced of the reality of any such 
connection, but even apart from this the onus of explaining the law is merely 
shifted--in this case, from explaining the distribution of earthquake magni- 
tudes to explaining the distribution of spectral ordinates. It would be a rash 
seismologist who could say with conviction that the latter was more intuitiv- 
ely obvious than the former. 

One difficulty in the way of developing more effective models may have 
been the traditionally deterministic viewpoint of classical seismology, which 
is inappropriate in dealing with an inherently statistical phenomenon. It 
may help, therefore, to make a few general comments about what one is try- 
ing to do in developing a stochastic model. Stochastic models tend to appear 
near the boundaries of scientific disciplines, occupying a half-way position 
between a complete deterministic anaIysis of the phenomenon, in which the 
whole structure is supposed known, and a completely descriptive one, in 
which no structural analysis is offered. A stochastic model incorporates 
some structural elements, but accepts other elements as random, i.e., as 
essentially uncertain and unknowable, at the least for the problem in hand. 
The aim should be to isolate these uncertainties, so that there is a clear sep- 
aration between the known structural elements and the unknown random 
elements. Typically this separation is achieved by letting the random elements 
operate on a microscopic scale (in relative terms) and using the known struc- 
tural aspects of the process to affect the transfer from the microscopic to the 
macroscopic scale of interest. A classical example of such a process occurs 
in statistical mechanics, but other examples occur in engineering, tech- 
nology, population models, and many other branches of science. 
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Applying these ideas to the frequency-magnitude problem, we note 
first that the law itself is of a very simple form, so there is little advantage 
in transforming it from one variable to another. Another way of stating 
this is to say that there is very little structural information in the law itself; 
the phenomenon is characterized by the absence of any obvious characteristic 
scale (mean energy of earthquake) and in such a context the power law form 
is the appropriate distribution for a "purely random" phenomenon (see the 
remarks on maximum entropy in Vere-Jones, 1975). There can only be some 
point in analyzing it further, therefore, if we are prepared to dig down to a 
further level of detail in the structural analysis of earthquakes. This means 
looking at the fracture mechanism itself. Thus the level at which it is natural 
to seek an explanation of the frequency-magnitude law is at the level of the 
detailed mechanism of earthquake formation. This in turn is more closely 
related to the problem of fracture mechanics and earthquake premonitory 
phenomena than to the traditional preoccupations of classical seismology. 

It is perhaps not surprising, therefore, that the paper which I feel comes 
closest to developing the kind of explanations I am looking for is the paper 
by Scholz (1968a) which relates directly to the study of microfracturing 
and dilatancy. Scholz' work is perhaps best known for its demonstration of 
the effect of stress in altering the value of the b coefficient. Unfortunately 
I do not believe that the theoretical arguments with which he supports his 
experimental evidence can be sustained. I have discussed his analysis in 
detail elsewhere (Vere-Jones, 1976), and do not wish to repeat the discussion 
here. However, I would like to describe his statement of the problem. He 
proposes that a fracture propagates outwards from a central point of a 
two-dimensional region, continuing to extend in any direction until a point 
is reached (which then becomes a boundary point for the fracture) where the 
local stress fails to exceed the local strength; both local stress and local 
strength are assumed to vary randomly from point to point of the area. The 
whole fracture ceases when there is no direction in which further extension is 
possible. A very similar idea is incorporated in the "Go-Game"  model of 
Otsuka (1971, 1972a, 1972b). Both models are examples of "percola- 
tion processes" of the type introduced by Hammersley and Broadbent 
(1957) and subsequently described by many later writers (see Shante and 
Kilpatrick, 1971, for a recent review). Unfortunately, these percolation 
processes are very intractable analytically. So far as I know no explicit results 
are available, even of an asymptotic kind, for the distribution of the total area 
affected. Otsuka has obtained a variety of results by simulation, but for an 
analytical treatment it seems necessary to have recourse to simpler models 
such as the branching model described below. This appears to be as true for 
the percolation context (Fisher and Essam, t961) as it is for the applications 
to earthquakes. Even if such models represent a considerable oversimpli- 
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fication of the physical process, it seems that they capture at least some im- 
portant features of the fracture mechanism. One such model is described in 
the section below. The remaining sections represent an attempt to relate this 
model to other discussions of the fracture mechanism. 

A BRANCHING PROCESS MODEL 

The treatment in this section follows Vere-Jones (1976). Unknown to me at 
the time of writing that paper, what is essentially a special case of this model 
had been analyzed some three years previously by Saito, Kikuchi, and Kudo 
(1973), in connection with Otsuka's "Go-Game" model. The two discussions 
differ slightly in interpretation and analytical approach; both are essentially 
applications of well-known results in branching process theory. In the branch- 
ing model we shall describe, it is supposed that the crack does not propagate 
in a single continuous movement, but through a series of steps or branches. 
To capture this idea in simple mathematical terms, suppose that the com- 
plete cracking episode can be represented schematically by a branching dia- 
gram such as that shown in Figure 2. Each segment or stage in the branching 
process either terminates in a branch point, or simply comes to an end. The 
behavior at successive modes is supposed independent of the lengths of the 
preceding segments and behavior at all previous modes, and the number of 
branches leading out of a mode is supposed to have a common distribution 
{fn}. In the diagram, only simple bifurcation is shown, so the only 
nonzero terms would be fo, representing the probability of termination with- 
out any new branches, and f2, representing the probability of the branch 
dividing in two. The total lengths of all segments is then 

N 

i = 1  

where T~ is the length of the ith segment in some enumeration. We need not 
insist, however, that T~ be a length. In the application to earthquakes it is 
more natural to think of T i as the energy released at each step of the process. 

Figure 2. 

T 

Schematic representation of 
branching model. 
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Then T --- Y.Ti represents the total energy released. The total number N of 
segments corresponds to the total number of individuals in the ordinary 
branching process (see Harris, 1963, or Vere-Jones, 1976). It is well known 
that the probability generating function 

H (z) = Z Prob (N = n) z" 

for this total is given as the smallest nonnegative solution of the functional 
equation 

H(z) = zF[H(z)] IF(z)  = Zf,  z"] (1) 

This total number is finite with probability one if and only if m, the mean 
number of new branches per mode, is less than or equal to unity (subcritical 
and critical cases). If m >  1 there is a nonzero probability that the crack will 
propagate indefinitely (supercritical case), i.e., that the total number of 
branches becomes infinite. The Laplace transform of the density function 
for the total length (or energy) T can be found from the equation 

m r (S) = E [exp (-- s T)] = H [46 (s)] (2) 

where 

46 (s) = E rexp(-sTi)]  

is the Laplace transform of the density function for the length of a single 
branch, it being supposed that the lengths of successive branches are indepen- 
dent with the same distribution. 

The simplest special case corresponds to treating the developing crack 
as a birth and death process, each segment having probability pdv of terminat- 
ing in (t, t+dv) given that it has already reached length t, and a similar 
probability 2dr of bifurcating (thus Ix and 2 correspond respectively to the 
"death rate" and "birth rate" of segments). Then F(z) corresponds to the 
two point distribution described earlier, with 

fo = Ix/(Ix + 2) and f2 = )-/(Ix -b )-) 

while the length of each branch has an exponential distribution with para- 
meter (it+Ix). Equation (1) now takes the form of a quadratic equation, 
which can be solved explicitly for H(z); then substitution of 

46(s) = ()' + Ix)/()' + Ix + s~ 

in (2) yields the following expression for the Laplace transform of the total 
length T: 

m T (S) = {()' + IX + S)-- X/I()- + IX + S) 2 -- 4)-#S-]}/22 

The corresponding density function is the Bessel density 

f r  (x) = x/(Ix/2) exp [ -  (2 + Ix) x] I ,  (2x/(2Ix) x)/x (3) 
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where 11 is the modified Bessel function of  first order. This distribution is 
well known in other contexts, for example in queuing theory, where it rep- 
resents the density function for the busy period in a simple queue (see Feller, 
1966, p. 414). Using the asymptotic relation 

11 (t) ,-, (2m) -~ exp (t) 

we find 

fr (x )  ~ Ca.,exp [ - ( x / / ~ - ~ f 2 )  2 x] x - 3 / 2  

where Q . ,  is a constant. The distribution, therefore, has a power law form 
in the critical case 2 = #. Even for subcritical processes, the distribution 
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Figure 3. Graphs of survivor function Prob ( T > x )  for the distribution 
with density fr(x) = ~ / ~ / 2 )  exp [ - ( 2 + p ) x ]  I~(2x/(2px)/x for different 
values of e = x / P -  .,/2 and x / P +  x/'2 = 1. 
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may approximate a power law form over a considerable range. This is 
shown in Figure 3, where the survivor function of the distribution, viz. 

oo 

Prob (T  > t) = j ' f r  (x) dx 
t 

is shown on a log-log plot for different values of  the parameter 

assuming the normalization 

~//J + x/2 = 1 

As e-~0 the curves approximate to a power law form with 

P r o b ( T  > t )  ~ const ,  t -~ 

In Vere-Jones (1976) it is shown that this type of behavior is not peculiar to 
this example, but holds whenever the distribution for each segment length 
has an analytic Laplace transform at s = 0, a condition implying finiteness 
of  all moments. I f  only some moments are finite, the behavior is similar 
but the exponential decay term is replaced by a power law term 
of higher order (>½). I f  the segment length distribution has infinite first 
moment,  the behavior of  f r (x )  is dominated by the length of the largest 
segment, and other types of  power law behavior can also be obtained. It  will 
be seen that these curves are qualitatively similar to the frequency-magnitude 
curve illustrated previously, but before we can proceed to a quantitative 
comparison we have to know how to interpret the parameters of  the model 
in terms of  the parameters of  an earthquake, in particular the magnitude. The 
most appropriate procedure is probably to equate T with the total energy 
release. The energy suggests itself naturally because we are looking for an 
additive variable whose total can reasonably by identified with one of the 
gross parameters of an earthquake. This identification also leads to the most 
satisfactory agreement with the observational results. 

I f  this identification is made, then we can use one of a number of postu- 
lated relationships between energy and magnitude to determine the value 
of b predicted by the model. The simplest such relationship is the familiar 
one of Gutenberg and Richter (1954) that 

log10 E = const + 1.5 M (4) 

In the critical case we have the relationship 

P r o b ( T  > t )  ~ const,  t -~ 

Substituting for M in terms of T = E, we find 

Prob (Mag > m) ~-, const • 10- o. 7 s ,~ 
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Thus the model together with the relationship (4) leads to the conclusion 
b = 0.75. 

A more elaborate analysis of the relation between instrumental magni- 
tude and energy has been undertaken by Randall (1973), who takes into 
account the response of  the Wood-Anderson seismometer used in deter- 
mining magnitudes. He concludes that 

log1 o E = const + 3 M 

for large earthquakes ( M >  5) and 

loglo E -- const + M 

for small earthquakes ( M <  5), the difference being attributable to the higher 
high-frequency contribution to the amplitude in smaller earthquakes. In 
both cases the constants depend on the stress, so that a family of  parallel 
curves rather than a single curve is in view. As a first approximation, however, 
these results, together with the branching model, suggest a frequency- 
magnitude diagram with a change of  slope from about b = 0.5 for M < 5  
to about b -- 1.5 for M >  1.5. 

Soviet authors have preferred to work directly with the variable 

K --- loglo E 

rather than with the magnitude, so that the frequency-magnitude law takes 
the form 

Prob(K i> x) = const. 10 -rx 

The model leads directly to the conclusion ~ = 0.5, which appears to be in 
good agreement with observation (see Gaisky, 1970, for example, who reports 
a mean value of V = 0.48 over a wide range of  observations). 

In summary, the model provides remarkably good agreement with 
typical seismological observations--too good, in my opinion, for such models 
to be dismissed as having no relevance to the seismic process. Nevertheless, 
it is not easy to accept the above model as a completely satisfactory ex- 
planation of the frequency-magnitude relation. One objection might be its 
apparent dependence on a linear conception of crack growth. This difficulty 
may be more apparent than real, for the diagram in Figure 2 is deliberately 
schematic. As Professor Harary has pointed out to me, many apparently 
more complex graphs can be mapped into this form, provided there is a well- 
defined starting point, and a defined reference direction. The more significant 
assumptions, from a physical point of view, are the representation of the whole 
episode in terms of  the sum of a number of more or less independent steps, 
and the possibility at each step of an extension in one of several different 
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ways, i.e., of branching. In the sections to follow, a first attempt is made to 
see how far these ideas are compatible with other work on crack propagation. 

An important weakness is the failure of the model to accommodate 
differences in b-value. The reality of observed differences is hardly to be 
doubted. Scholz (1968a, 1968b), following earlier work by Mogi (1962), 
provides clear evidence that in the laboratory context at least there are syst- 
ematic variations of the observed b-value both with the type of material and 
its stress environment. On the tectonic scale, differences in b-value have been 
quoted by many authors, and attributed to different geological structures, 
depths, stress environments, etc. As an example, Figure 4 shows the variation 
of b-value with depth for two sets of New Zealand data, the first for the main 
seismic region (covering most of the North Island and the northern part of 
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the South Island) and the second foi" Fiordland (a smaller but highly active 
region covering the Southwest of the South Island). As with most work of 
this kind, some caution is needed in accepting observed differences at face 
value because of the statistical uncertainty involved in estimating the b-value 
from limited data. Here 95 percent confidence intervals (of the order of two 
standard deviations although the data is not normally distributed) are shown. 
It is not quite impossible, but perhaps stretching credulity a little far, to 
suppose that such variations could occur solely as the result of chance. 
Suggestive changes of b-value along the course of large aftershock sequences 
and earthquake swarms have been found by Gibowicz (1973a, 1973b, 1974) 
and related by him to episodes in the stress history of the source region. Such 
observations appear to contradict the assertion of "magnitude stability" by 
Lomnitz (1966), but I believe the differences are to be attributed chiefly to 
the much larger data sets (several thousand points) used by Gibowicz, which 
allowed him to distinguish relatively fine variations in b. 

From the theoretical side, it is my conjecture that in the critical case not 
only the branching model but also such variations on it as the percolation 
model all lead to the same fixed value for b. (As mentioned earlier, I believe 
the dependence of b-value on stress claimed by Scholz for his model is due to 
a faulty step in his argument.) Then either the model must be changed, or 
some secondary mechanism must be introduced to account for variations in b. 
One possible secondary mechanism, mentioned in Vere-Jones (1976), relates 
to the distribution of the lengths (or energies) of individual segments in the 
branching process. If these also have a power law distribution, this can in- 
fluence the form of the overall energy distribution. Another possibility is that 
the energy-magnitude relation, rather than the energy distribution itself, 
could take different forms with different materials and in different stress 
environments. For example, Randall's (1973) discussion suggests that differ- 
ent correlations of stress drop with magnitude could give rise to apparent 
differences in b-value. Otsuka's simulation studies, on the other hand, suggest 
that, in more complex processes, variations in b-value may arise naturally 
as the result of variations of the other parameters of the process (Otsuka, 
1971, 1972a, 1972b). 

CLASSICAL MODELS FOR THE EARTHQUAKE SOURCE 

The elastic rebound model for earthquake mechanism, put forward by Reid 
(1910) after examination of field and geodetic observations following the 
San Francisco earthquake, still holds a predominant place in the seismo- 
logical literature. In broad terms it envisages the gradual build-up of stress 
in a region until a point is reached where the stress exceeds the strength of 
the rocks making up the crust. At this point the material fails by slipping 
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along a plane (fault), the resulting earthquake relieving, at least in greater 
part, the accumulated stress, and hence allowing the process to start again. 
Quantitatively, the earthquake can be described in terms of the length L, 
the depth D, and the orientation of the fault surface; the relative displacement 
d of the two sides; and the stress at the time the earthquake occurs. The 
length L can be compared with measurements of the fault trace on the 
surface; an estimate of D can sometimes be obtained by sounding techniques; 
while the fault area S = L D  can be independently estimated from the 
boundaries of the region in which aftershocks occur. Although there are 
considerable uncertainties concerning the relation of surface faulting to the 
situation at depth and the precise interpretation of geodetic measurements 
following a major earthquake, such measurements seem generally to produce 
results which are reasonably consistent with themselves and with deductions 
from the data on the seismic radiation (see for example, Aki, 1966a, 1966b). 
Nevertheless it should be borne in mind that it is only for a relatively few 
large shallow shocks that such a direct approach is possible; by far the larger 
proportion of instrumentally determined shocks are either too small or too 
deep to produce any measurable surface effects, and the applicability of the 
elastic rebound theory to such earthquakes is an hypothesis only. 

However, the position of the elastic rebound theory has been strength- 
ened over the last few decades by developments which have brought a wider 
range of source parameters within the scope of observational determination. 
Methods have been developed for estimating the energy release by integrating 
the area under the squared modulus of the seismogram trace or its Fourier 
transform (spectrum). Such estimates can be compared with the expression 

E = a S d  

for the energy release in the elastic rebound model, and are found to be 
compatible, at least to within an order of magnitude, with reasonable values 
of the stress a. Another parameter which has rapidly assumed importance in 
recent years is the seismic moment, equal in this model to the product pSd, 

where # is the rigidity (Aki, 1966b). This quantity has the advantage that it is 
directly proportional to the amplitude of low frequency signals at a distant 
observation point and can therefore be determined rather accurately. By 
combining these measurements it is also possible to estimate the stress 
(or more probably the stress drop) a. The far field radiation can also be used 
to estimate a further source parameter, namely the fault dimension L. It is 
found that the spectrum for seismic signals always has roughly the same shape, 
being near constant for low frequencies and decaying roughly as 09 -2 at 
higher frequencies. The transition between these two modes of behavior 
determines a corner frequency which in simple models is inversely pro- 
portional to a characteristic fault length or fault radius (see Brune, 1970, or 
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Randall, 1973). For all of these quantities the elastic rebound model provides 
an interpretation which is consistent within itself and with the previous 
results. However, it should be borne in mind that estimates based on measure- 
ments of the seismic radiation have an indirect character; so far as I know 
there are no alternative methods of estimating quantities such as the seismic 
moment which can be used to corroborate those obtained via the spectrum 
and an interpretation in terms of the elastic rebound model. Other models 
could also lead to internally consistent interpretations, also involving some 
characteristic length, stress-drop, etc., at the appropriate places, but not 
necessarily carrying the same interpretation as in the elastic rebound theory. 

A more cogent argument for accepting the general validity of the rebound 
theory is in terms of the radiation pattern it predicts. For simple assumptions 
concerning the propagation of the fracture along the fault, it is possible to 
obtain, from the general solution of the elastic equations, expressions for the 
observed displacement at a distance [the vector r - - ( r ,  0, q~)] from the 
center of the fault. These are typically of the form (Haskell, 1964; Aki, 
1967) : 

L 

U = (t/[r]) C (0, ~b) S D [3, ( r -  ~ cos O)/v] d,~ (5) 
0 

where C(O, ~p) describes the radiation pattern, D(~, t) is the prescribed dis- 
placement of the fault at a point ~ from the center of the fault and time t 
after the initiation of the fracture, where t = ( r -  ~ cos O)/v. The factor C(O, ~) 
can be identified with the factor resulting from the action of an equivalent 
double couple (with no fault) instantaneously introduced at the fault. This 
sort of identification is very convenient for the further study of the radiation, 
for it allows the problem to be stated and solved by classical techniques of 
multipole theory, and indeed it is from this identification that the concept of 
"seismic moment" is derived. What is important, however, is that the radia- 
tion pattern can be directly studied by combining information on the direc- 
tion and amplitude of first motion obtained from observation points at many 
different azimuths around the source. While the observed patterns are con- 
sistent with both single and double couple models, it is generally accepted that 
the appropriate model is a balanced double couple (Kostrov, 1970), and on 
this basis procedures have been developed for relating the observed pattern 
to the orientation of the fault plane and the direction of  motion along the 
fault. Again, these results are generally consistent with field observations 
where these are available. 

In summary, most seismological work is in terms of, and is consistent 
with, a single major movement among a particular fault plane. The possibility 
of more complicated source mechanisms is not ruled out by the evidence; 
it would be a matter of reinterpretation rather than of direct conflict. 
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Expressions for the total energy, for example, or for the seismic radiation (5), 
could be used in conjunction with the hypothesis that the fault motion pro- 
ceeded in a series of  steps or phases. One would anticipate that the resulting 
spectrum would be the superposition of the spectra from the different phases. 
The observed corner frequency would presumably be that associated with the 
largest step. On the other hand, first motion studies would presumably 
relate to the initial phase. Insofar as the general orientation of the motion 
was likely to be determined by the general stress pattern, the different phases 
would show a consistent mechanism, and there seems no overriding reason 
why the data should not be interpreted consistently in this style. There is, 
indeed, a more basic reason why it should not be possible to distinguish be- 
tween such models on the basis of information derived from seismic waves. 
This is that the waves cannot "see" features which are small by comparison 
with the wavelength. Since the frequency of seismic waves is typically of the 
order of  a few Hertz, and elastic wave velocities are of the order of 5-10 
km/sec, the ultimate limit of resolution is of  the order of a few kilometers; 
branching effects on a finer scale than this are in principle not capable of 
detection by such methods. It should also be borne in mind that in "classical" 
terms seismology has been seen principally as a tool for obtaining information 
about the internal structure of  the earth; for this purpose simple source models 
which can be expressed in terms of the radiation pattern from an equivalent 
couple are entirely adequate. For evidence which really bears on the source 
mechanism, it is necessary to observe the situation at the source itself, a 
problem which seems likely to remain beyond our technical resources for 
some time. The more detailed study of crack phenomena on the laboratory 
scale, and the correlation of this evidence with evidence relating to earthquake 
premonitary phenomena, seem the most fruitful approaches to this problem 
at present. 

CRACK PROPAGATION IN AN ELASTIC MEDIUM 

In principle the problem of crack growth in an elastic medium can be formu- 
lated as that of  finding the time-dependent solution of  the elastic equation 
~vith suitable boundary conditions imposed to correspond to the external 
forces on the one hand and the presence of the crack or zone of weakness on 
Lhe other. This is a problem of great mathematical difficulty. Even apart from 
the question of determining what are physically appropriate boundary 
:onditions, the equations become very complex in all but the simplest cases. 
I'o obtain even approximate solutions it is necessary to make very drastic 
~ssumptions, such as in the previous section where it was supposed that the 
fisplacement along the crack is specified (instead of being determined as 
)art of  the solution of  the problem) or by imposing a condition such as self- 
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similarity or constant rupture velocity which is of dubious physical standing. 
The reviews of Archambeau (1968), Burridge (1968), and Kostrov (1970) 
provide useful perspectives on the status of such models, and their relation 
to more realistic theories. 

The first steps towards providing a physical basis for crack extension 
were taken by Griffith (1921, 1924), whose ideas still play a dominant role in 
the theory of fracture mechanics. In order to account for the low fracture 
strength of glass, at least by comparison with its theoretical strength calculated 
from atomic data, Griffith postulated the existence of small flaws or micro- 
fissures which greatly magnified the applied stress in the immediate vicinity 
of the tip of the crack or flaw. Fracture of the specimen occurs as a result 
of local failure near the tip of the crack with the highest stress concentration; 
in tension at least, this local failure increases the stress concentration still 
further and hence leads to a catastrophic extension of the crack. 

Perhaps the most important idea arising from Griffith's work is the 
concept of an energy balance which determines whether and how a given 
crack will extend. Work is done against the cohesive atomic forces in separat- 
ing the two edges of the crack; this must be balanced by the release of stored 
elastic energy as the crack extends. Consider first the case of a crack in tension, 
with the crack at right angles to the tension (two-dimensional problem). 
The stress in the vicinity of the crack tip can be shown to exceed the applied 
stress a by a factor of 2x / ( c / r ) ,  where c is the length of the crack and r is the 
radius of the crack tip, supposed equal to the atomic dimension. If it is 
assumed that a separation of the order of an atomic dimension is needed to 
pass beyond the range of the atomic forces, the elastic energy released per 
unit extension of the crack will be 2a2c/E,  where E is Young's modulus. 
Also, the work done against the atomic forces per unit extension can be 
expressed in the form 2~, where ct is the surface energy per unit area of crack 
surface. Equating these two expressions, an approximate equation of balance 
is 

c = c~ E / a  2 

This expression gives the critical crack length for a given applied stress a; 
a longer crack will start to extend, and will then continue extending until 
the material is ruptured; a shorter crack will not extend. 

By balancing the rate of energy release against the rate of work done 
against the atomic forces, the same approach can be extended to the dynamic- 
al context, and used to provide an expression for fracture velocity. A simple 
theory of this kind is given by Jaeger and Cook (1969) following work of 
Berry (1960a, 1960b). 

The application of these ideas to the failure of rock in more complicated 
stress fields is problematical. It is not clear, for example, how much of the 
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stored elastic energy is available for release as the crack extends. Grit~th 
(t924) himself reverted to an alternative approach in dealing with materials 
under compressive stresses; he determined the tangential stresses around an 
elliptic crack, and assumed that failure would occur when the maximum 
tangential stress exceeded the theoretical strength of the material. This ap- 
proach has been followed in much of the later work on fracture criteria, 
although it suffers from the disadvantage of being more seriously dependent 
on the validity of the geometric assumptions concerning the shape of a crack. 
For a material in simple compressive stress, it predicts that the crack with the 
most vulnerable orientation will be inclined at about 30 ° to the direction of 
compression, and that the initial extension will not be along the axis of the 
crack, but in a direction roughly bisecting the angle between the axis of the 
crack and the direction of the applied stress. This last result is of considerable 
significance, for it implies that crack growth in compression is not of itself 
unstable. 

A rather different approach to the role of atomic forces is contained in 
the discussion of the equilibrium shape of a crack given by Landau and Lif- 
shitz (1965) following work by Barenblatt. This work may be regarded 
as a first attempt to solve the elastic equations (equilibrium equations in this 
case) without taking the form of the crack as given, but supposing instead 
that it is determined by the applied stress and the interatomic forces. The 
conclusion reached is that the end of the crack will be broadly parabolic in 
form 

y ~ / ( L - x )  

where 2L is the crack length, x is the distance from the crack center, and y 
is the displacement, except for a tiny notch at the tip itself, which takes the 
form of a cusp 

y~ -t- ( L - x )  3/2 

for L--x  of the order of an atomic dimension. Such a sharpening of the 
crack tip is indeed a feature of some electron micrographs (see, for example, 
papers in Averbach et al., 1959). It may be regarded as the means by which 
the interatomic forces are balanced against the elastic forces to produce an 
equilibrium configuration. 

Barenblatt's analysis for the static problem was extended to shear 
cracks in Barenblatt and Cherepanov (1961) (see also Sih and Liebowitz, 
1968). A possibly more important development is due to Kostrov (1966), who 
was able to solve the simplest case of a shear crack in Mode II (propagation 
at right angles to the direction of shear stress, applied parallel to the fault) to 
obtain an "equation of motion" for the crack tip. This equation determines 
the position of the crack tip as the crack extends in response to specified 
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initial tractions along the crack, and given assumptions concerning the forces 
acting at the crack tip, effectively equivalent to assumptions concerning the 
dependence of the surface energy on the velocity of crack propagation. 
Most recently, Husseini et al. (1975) have used this approach to ask the 
question, "How does a crack stop?", examining two possible mechanisms, 
increase in fracture strength (surface energy) and decrease in elastic stress 
(seismic gaps), and obtaining expressions which allow the fracture energy 
to be related to other seismic parameters such as the stress drop and the seis- 
mic moment. 

All the work reviewed in this section is committed to a view of crack 
propagation as a single movement. It does not of itself bring forward any 
new evidence as to whether one or more steps are involved, and indeed any 
claim to accurately mirror the physical process of fracture would probably 
be discounted by the authors we have cited. From the point of view of a more 
realistic theory, the principal deficiencies are probably the restriction to 
unnaturally simple geometries and stress configurations, and the omission 
of any discussion of the effects of flaws and inhomogeneities, which may 
exert a controlling influence on crack growth in rock. 

MICROFRACTURING AND DILATANCY 

In this section I shall comment briefly on some of the direct experimental 
and observational work on the nature of the fracture process. I have included 
in this heading microscopic and ultramicroscopic studies of fracture; engineer- 
ing studies of the behavior of rock under stress; as well as the information, 
on quite a different scale, relating to dilatancy preceding a major earthquake. 
These may seem strange bedfellows, but I suspect they have more in common 
with each other than with the idealized fracture mechanisms discussed in 
the preceding two sections. 

There is an enormous literature relating to technological aspects of 
fracture in metals and other materials, which in turn has prompted a large 
amount of fundamental research on fracture. The most detailed work, 
particularly at the microscopic level, has been done on the fracture of crystal- 
line metals, usually in tensile stress conditions. In such materials dislocations 
of the crystal lattice typically precede fracture and there is a considerable 
theory relating to the growth and accumulation of such dislocations (see 
Nicholson, 1972), where both statistical and physical aspects of this process 
are discussed. From our point of view, such dislocations manifest themselves 
as a zone of plastic deformation immediately in front of and around the 
crack tip. To this extent, the behavior of such crystalline solids differs from 
the purely brittle behavior described in the preceding section. Some aspects 
of plastic yielding can be accounted for relatively simply by assuming a larger 
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effective surface energy of crack formation. With this modification the energy 
balance approach may still be applicable. However, the detailed picture of 
fracture propagation may be significantly more complex. Cottrell (1959) 
describes the process as follows: "Propagation often occurs by the separate 
nucleation of small cracks in a plastically deformed zone in front of the main 
c rack . . .  The general p ic ture . . ,  is one for which a number of glide dis- 
locations. . ,  become converted at some place in the crystal into cavity dis- 
locations which then spread and multiply in the form of a growing crack." 
Metals frequently exhibit a transition between cleavage fracture or brittle 
fracture at low temperatures, and ductile fracture, at higher temperatures, 
in which the above processes dominate and the metal is literally torn apart. 
It appears likely, therefore, that there are at least two stages to the process-- 
initiation of cracks, either at crystal boundaries or from dislocations forking 
and moving within a crystal, and their subsequent propagation. Brittle 
fracture occurs if the cracks produced by the dislocations are long enough 
to propagate directly as Grittith cracks. If this is not the case, they may grow 
by a more gradual process of plastic deformation leading to crack linkage. 
Petch (1959) and Hahn, Karrinen, and Rosenfeld (1972) provide more detailed 
reviews of these processes. 

Major uncertainties arise if we ask how far the above concepts are 
applicable to rock, or to materials subjected to more general stress fields. 
The term "rock" covers a wide variety of materials, and one must beware of 
assuming blithely that the same mechanism operates in materials of different 
types. Cracks may originate within crystals, at crystal boundaries, or from 
existing flaws. The behavior of rock under compression has been extensively 
studied but a definitive interpretation of the results is missing. In conventional 
tests rock specimens fail chiefly by cleavage along a diagonal plane. This 
appears to support the Griffith theory, but the effect may be spurious in that 
it may relate to the testing machine more than to the intrinsic properties of 
the rock. Catastrophic failure occurs because the machine continues to 
unload energy into the specimen even after it has begun to deform. Using 
stiff testing machines, or machines controlled by a servomechanism, it appears 
that rock retains some load-bearing ability even beyond the normal fracture 
point (e.g., Wawersik and Fairhurst, 1970; Brown et  al., 1972). Vertical 
splitting, parallel to the direction of the compressive stress, is commonly 
observed but its explanation appears obscure. The relative stability of crack 
growth under compressive stress has already been referred to. This effect 
~aas been studied by Brace and Bombolakis (1963) and Hoek and Bieniawski 
t966) using specially constructed specimens (plastic) containing annealed 

:racks. They suggest that crack linkage may be necessary to secure the 
'ormation of a major fracture. 

A new phase of experimental work on rock specimens was ushered in by 
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the discovery of dilatancy effects in rock under compression and its possible 
implications for earthquake prediction. Dilatancy is a term borrowed from 
soil mechanics, where it refers to the stress-induced increase in volume (rela- 
tive to the volume changes predicted by elastic theory) caused by grains of the 
material moving against each other in response to the applied stress. If the 
material is initially in a closely packed state, any change must be to a less 
closely packed state, and hence should be accompanied by an increase in 
volume. If the material is initially water-saturated (wet sand for example), 
the increase in void space causes a partial drying out, increasing the effective 
friction between particles and hence increasing the strength of the material 
(dilatancy hardening). Brace and co-workers at MIT (Brace et al., 1966; 
Scholz, 1968a, 1968b) carried out an extensive series of measurements 
on the physical properties of rock specimens undergoing compression. 
As in earlier work by Mogi (1962), they found that the compressive process 
was accompanied by the emission of small acoustical signals from the 
rock specimen; these were attributed to the formation of microfractures 
in the specimen. This process was accompanied by an increase in volume, 
the extent of the observed dilatancy appearing to vary proportionately 
to the cumulative number of observed microfractures (Scholz, 1968b). 
Changes in the "b-value" were also reported, with a progressive tendency 
towards lower b-values at higher stresses. Brace and Orange (1968) reported 
changes in conductivity which they also associated with the onset of dilatancy. 
More recently, measurements on the P- and S-wave velocities have been 
carried out in similar conditions (Hadley, 1975). 

Interest in this work was heightened by the observation of Soviet 
workers that changes in a number of these variables, particularly the ratio 
VI,/Vs, occurred prior to some shallow earthquakes in Central Asia (see 
Saverensky, 1968). Similar changes were subsequently reported from the 
United States, New Zealand, and other seismic regions. In some cases it 
was found that, after an initial reduction in the Vp/Vs ratio, a recovery to 
normal values just preceded the earthquake itself. 

Explanations of these results remain at a qualitative and rather tentative 
level (a review of the situation as of 1974 is given in the PAGEOPH, Vol. 113, 
special issue on earthquake prediction). A popular explanation (e.g., Scholz, 
Sykes, and Aggarwal, 1973; Press, 1975) supposes the following sequence of 
results. Increasing stress causes the onset of dilatancy, which leads to a 
lowering of the Ve/V s ratio and dilatancy hardening, the rock being supposed 
initially saturated. The ratio remains low until sutficient water has diffused 
back into the region to fill the extra void space. At this point the material is 
again saturated, the Ve/Vs ratio returns to its normal value, the rock is 
weakened, and the earthquake occurs. It is supposed that the size of the 
earthquake will be related to the size of the dilatant region. An important 
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feature of this theory is that it leads to an estimate, in terms of the diffusion 
parameters, of the time delay between the onset of dilatancy and the occur- 
rence of the earthquake. Anderson and Whitcomb (1973) report a satisfactory 
agreement at this point. There remains some doubt as to the status of this 
theory, however. Soviet writers appear to have developed a "dry dilatancy" 
theory based on a nonlinear process of microfracture formation and stress 
intensification within the material (Sobolev, 1975). An apparently similar 
theory has been proposed in a series of papers by Brady (1974). He suggests 
that microfracturing within a region causes a reduction in the elastic constant 
within that region; this leads to the development of tensile stresses at certain 
points around the boundary of the region, hence to further microfracturing 
and a further increase in stress. The picture here is qualitatively similar to 
the microscopic picture of crack propagation in a crystalline material quoted 
earlier in this section. In both cases, however, the formulation of a quantita- 
tive theory appears to pose formidable difficulties. 

STATISTICAL STRENGTH THEORIES 

Statistical strength theories represent a natural extension of the Griffith 
theory, in that they seek to provide a quantitative relation between the 
observed strength of a specimen and the statistical distribution of the flaws 
or microfissures existing in it. For tensile tests, it can be assumed that the 
material will rupture if the material contains at least one crack of such a 
length and orientation that the stress at its tip exceeds the theoretical strength 
of the material. The statistical problem is therefore to determine the prob- 
ability that the given material contains at least one crack of this kind. In 
general the dimensions of the material may be supposed large with respect 
to the lengths of the cracks and the distance between them. Hence the dis- 
tribution can be approximated by a Poisson process. The probability S(L) 
that the material contains no crack of length L or greater is then given by an 
expression of the type 

S (L) = exp [-- bt VF (L)] (6) 

where # is the crack density, V is the volume of the material, and F(L) is the 
cumulative distribution function for the crack lengths. 

Discussion from this point hinges on the choice of the distribution func- 
tion F(L) and on finding methods of extending the model to take into account 
nonhomogeneous stress fields, cracks of specific shapes and orientations, 
etc. The first explicit development of a theory of this kind appears to be 
that of Weibull (1939a, 1939b), which in my view remains one of the most 
satisfactory treatments. Weibull chose the power law form 

1 - F ( L )  = cL -~ 
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which on substitution in (6) leads directly to the Weibull distribution for 
the strength of the specimen. It should be noted that the theory predicts 
not only the scatter of values for the strength of a specimen of given dimen- 
sions, but also the variation of mean strength with specimen size. Thus it 
follows from Weibull's assumptions that the mean strength decreases with 
volume according to V-~/~. Such a decrease of strength with volume is well 
known and is referred to as the size effect. But while the statistical theory gives 
a good qualitative agreement with observational work, it is my impression 
that the quantitative agreement is somewhat more variable. Weibull himself, 
in the second of the papers cited, was obliged to postulate the existence of 
additional structural complexities in the material to account for observed 
deviations from the simple law in some cases. On the other hand, Anderson 
(1959) gives a favorable report on the statistical theory in Griffith's original 
context of the strength of glass. 

Many variations on the theme exist, apparently discovered and developed 
independently in relation to different materials. Fisher and Holloman (1947) 
developed a statistical theory for the fracture of certain metals (pearlitic 
steels) in which the defects initiating fracture are thought to be plate-like 
carbide particles embedded in the steel. This feature gives rise to an important 
orientation effect, and a dependence of strength on stress, for insofar as the 
material deforms plastically the plates tend to align themselves parallel to the 
stress as the stress increases. This example also shows how important specific 
material properties may be in determining the form of an appropriate fracture 
theory (see also Charles and Fisher, 1959). 

Russian work on statistical strength theory is expounded in the mono- 
graph by Volkov (1962), although this is so badly translated that it is often 
hard to follow. This work reviews a much wider range of applications of 
statistical ideas, starting from the effects of randomly distributed variations 
in stress concentration and strength on the material properties (effective 
elastic constants, for example) and leading to detailed discussion of failure 
in specimens of different geometries. I would be interested to know just how 
widely such an approach has found application in engineering. From a 
theoretical point of view, Volkov's approach differs from Weibull's in that it 
does not start from a physical picture of the microfissures but takes as given 
a normal distribution for the variations in stress and strength on a micro- 
scopic scale. This approach appeals to me less, and it appears to me that there 
are numerous places in Volkov's discussion where the argument needs re- 
phrasing (at least) to be expressible in rigorous form. 

A completely different type of statistical model dates back to a paper by 
Daniels (1945) on the strength of fiber bundles. In this paper Daniels supposes 
that the strengths of the individual threads making up the bundle vary statis- 
tically; that the load is distributed evenly over the threads in the bundle; 
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and that if one fiber fails, its portion of the load is evenly redistributed 
)vet the other fibers. On these assumptions he shows that the strength of the 
bundle is approximately normally distributed and finds expressions for the 
mean strength and the variance. This theory has recently been modified to 
Jescribe the strength of fiber composite materials (see the review by Kale 
and Kelly, 1972). 

All of this work relates to static strength theory. More recently Coleman 
~1958), Yokobori (1965), and Hori (1959, 1962) have initiated, in different 
=ontexts, the study of  stochastic models for time-dependent aspects of fracture 
where the time to failure as well as the stress at the fracture point is treated 
as a random variable. Coleman, for example, describes a time-dependent 
version of  Daniels' theory in which it is supposed that each fiber in the 
bundle has a time to failure which is exponentially distributed with a mean 
life inversely proportional to the stress applied across the fiber. The overall pro- 
cess is then Markovian, and can be handled by solving the forward differential 
equations. The immediate relevance to crack propagation is not clear, but 
some combination of these ideas with the approach of Scholz and Otsuka 
would seem a fruitful area for further study. In the meanwhile the works on 
statistical strength theory are perhaps of  main interest to us for the support 
they lend to the notion that microfractures and other weaknesses play a basic 
role in the fracture process. 

CONCLUDING REMARKS 

In this paper I have tried to put into perspective a variety of approaches to 
the problem of crack development in rocks, with a particular view to asses- 
~ing the plausibility of the branching-type model. It seems to me that no 
clear-cut conclusions emerge. The extensive material on crack propagation 
in an elastic medium is acknowledgedly an idealization of the physical 
picture, at least on a microscopic scale. Most seismological work is based on 
the assumption that an earthquake represents a single motion, and although 
this is consistent with the seismological data, it seems unlikely that there is 
at present any evidence that would rule out a more complex process. Direct 
~tudies of  fracture on the microscopic or laboratory scale also support the 
dea that fracture is a complex process, which in certain circumstances may 
~roceed through crack linkage. It seems possible that statistical models for 
:he development of a fracture could provide a useful compromise between 
l purely qualitative model and a full theoretical treatment. If  this represents 
t program for the future, I see some of the more immediate steps as follows: 

(a) In relation to the frequency-magnitude law, to confirm whether other 
nodels, e.g., the percolation process model, lead to the kind of  asymptotic 
~ehavior exhibited in this paper for the branching model. It might be possible 
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to fo rmula te  and  prove  a general  a sympto t i c  result  tha t  is i ndependen t  o f  the 
de ta i led  s t ructure  o f  the model .  

(b) To find a theore t ica l  mechan i sm to account  for  var ia t ions  o f  b-value.  
I do  no t  regard  this p rob l em as having  been adequa te ly  t rea ted  at  the present  
t ime. 

(c) To invest igate quant i ta t ive  mode l s  for  the process  o f  stress intensi-  
f icat ion and  mic rof rac tu r ing  near  the t ip o f  a deve lop ing  crack.  
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