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Abstract .  Explicit recurrence formulas of canonical realization (boson representation) 
for quantum enveloping algebras Uq(91(n , C)) are given. Using them, irreducible high- 
est weight representations of Uq(gl(n , C)) are obtained as restriction of representation 
on Fock space to invafiant subspace generated by vacuum as a cyclic vector. 

1. Introduct ion 

The question of irreducible representations of quantum enveloping algebras was re- 
cently treated in a number of papers [ 1 ]. For irreducible highest weight representations 
(h.-w.irreps) it is known that their properties do not substantially differ (at least if q 
is not a root of unity) from the usual Lie algebra case. Especially it is proved [2] 
that a h.-w.irrep of the quantum enveloping algebra is uniquely determined (up to 
isomorphism) by its highest weight. It is also known for which highest weights these 
representations are finite dimensional. 

These results were obtained by generalization of methods from the theory of highest 
weight representations of semisimple Lie algebras by means of which the construction 
of the explicit form of the highest weight representation for quantum enveloping 
algebras is, in principle, possible too. 

In this paper we perform, in fact, this construction for the quantum enveloping 
algebra Uq(gl(n, C)) D Uq(sl(n, C)) defined in [3]. We do not, however, describe the 
details of construction (for the case of simple Lie algebras see [4]) but present the 
final formulas for direct verification. 

In these formulas the generators of the algebra Uq(91(n + 1, C)) are expressed by 
means of n canonical boson pairs, one complex parameter and auxiliary represen- 
tation of the algebra Uq(gl(n , C)). This recurrence character of formulas (1) is, by 
our opinion, its first interesting feature. It makes it possible, e.g. to obtain for special 
weights a simpler form of representation in comparison with general cases (see Con- 
cluding Remarks). The second advantage is that the invariant subspace with vacuum 
as cyclic vector is an irreducible one. 
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Usually the h.-w.irreps are constructed using factorisation of certain standard rep- 
resentation by maximal invariant subspace [2]; we believe that our representations 
could be more convenient for practical use. 

2. Two Theorems and Irreducibility Lemma 

Through our paper we will use the following notation: a s ,  a~ +-creation-annihilation bo- 

son pairs; [as,  a~] = 5 ~ ;  o 4/3 = 1 , 2 , 3 , . . . , n ,  a+a =-- aaa~ ,  . ~  = 

--2a+ a ~ --2 
| S |  | g - ,  n- t imes;  d~-Fock space, fitj =_ q J " a j ,  A j  =- f q ( a + a j ) a  +, 

where fq(X) = qZ 1 - q4X x(1 - q4) if q4 r 1 and for qa = 1, fq(x) = 1. 

Let Uq(gl(n,  C))  be the associative C-algebra  generated by 

(el, . . . ,  e n - 1 ;  f l ,  . . . ,  f ~ - l ;  l{ 1, . . . .  I,~:~1) 

with relations 

l~l~ = l~l~ , l~e j  = q-e~J+6"i+~ejl~ , . l ~ f  j = q6~J-~J+l f j l~  , 

(li+ 1 li-  1 )2 __ (li+l I~-1)-2 
[ei, f j ]  = ~ij q2 _ q-2 ' 

2 e2ej _ (q2 + q - 2 ) e i e j e  i + e je i  = O, [i -- j] = 1, 

f { f j  _ (q2 + q - 2 ) A f j  A + f j f {  = O, I i - Jl = 1, 

leg, ej] -- [A,  f j ]  = O, ]i - Jl > 1, 

where i , j  = 1,2, . . . ,  n -  1; oz,/3 = 1,2, . . . ,  n. 
-1 :~1 algebra Uq(sl(n,  C)).  The subalgebra generated by (ei, f i ,  k f  ~ = (li+lli ) ) is the 

The Hopf  structure algebra on Uq(sl(n,  C))  is defined in [3], but we do not need it. 
The algebra Uq(gl(n,  C))  is more convenient for our purpose than Uq(sl(n,  C)).  

Theorem 1. (a) Let  the operators  ( e l , . . . ,  en-1; f l ,  . . . ,  f,~-l; 1 1 , . . . ,  lr~) generate  
the representation o f  the algebra Uq(gl(n,  C))  on the vector  space V .  Then the oper- 
ators 

-2 2 q2 F~ = Ai+lA~ | l~+lli - | f~ , 

E i  = ffliAi+l | 1 -- q 2(a+~lai+l-a+ai-l) @ e l ,  

+ q -a+a+An+l @ 1 , La  = q ~  | la , Ln+l = 

En = q2a+a+2nff[n @ 1 ,  (1)  

1 [q_4a+a+2An+l_2n+4An | in 2 _ q_2A~+l-2nAn | 12n] 
F~ - q2 _ q-2 

-~ E q-4a+a+aAn+l-2n+2+2k -2a+n tan-lA q - ~ - k  |  
k = l  /=0 

where 

l < i < n - l ,  l < a < n ,  A,~+I E C and X n _ i  = l~2en_l , 

X n - k  = - - q - Z [ q - Z X n - k + l e n - k  -- e n - k X n - k + l ]  , k = 2, . . . ,  n - -  1, 

generate  the representation o f  Uq(gl(n + 1, C))  on the space ~ | V .  
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(b) I f  the representation of Uq(gt(n, C)) is the highest-weight one with the highest 
weight vector vo, then the representation of Uq(gl(n + 1, C)) is also a highest-weight 
representation with the highest weight vector I0} | Vo. 

Proof. (a) By direct verification; some useful relations are collected in Appendix. 
(b) If  the highest weight of the representation of Uq(gl(n , C)) is (qA1 qA2, . ' . ,  qn,~) 
[l~vo = qA~vo, eiVo = 0], then from (1) we can immediately deduce 

Ea(10 } | v0) = 0, Lc~(10 ) = qAa(lO ) | v0), Ln+l(10) = qAn+l(lO ) | VO). 

It means that the weight of the representation of Uq(gl(n+ 1, C)) is (qAi, qAz, . . . ,  
qAn qAn+t). [] 

We can use the formulas (1) to obtain sets of h.-w. representations. Substituting 
into (1) the trivial representation Uq(gl(n, C)), i.e. a one-dimensional representation 
in which ei = fi  = 0, l~ = wil~, l~ = qA~, w4 = l, we obtain a h.-w. representation 
of Uq(gl(n + 1, C)) on ~ with highest weight (wlq A~ , w2q A~ , . . . ,  qA~ qA~+ 1 ) . This 
representation depends on two continuous parameters A~ and A,~+I and n canonical 
pairs. Let us denote the set of all such representations by SIn). 

In the next step we substitute into (1) representations from S(~n-l); we obtain 
representations of Uq (91(n+ 1, C)) on the space . ~  |  t ~ ~ - 1  depending on three 
continuous parameters, and expressed by means of 2 n -  1 canonical pairs with highest 
weight (wlq A~-I, w2q A~ I . . . ,  qAn 1 qAn qA~+l); the set of these representations we 

denote by S~ ~). This procedure can be continued. In general, the representation in S(k ~), 
k 

k = l, 2, . . . ,  n depends on k +  1 continuous parameters and ~ ( 2 n -  k +  l) canonical 

pairs. In the case k = n we obtain the "full" number of independent parameters and 
the general highest weight (qAl ~ qA2, . . . ,  qA~ qA~+ 1). In all cases the h.-w. vector is 
equal to the vacuum vector of  the corresponding Fock space. 

The representations just considered are reducible in general, but contain irreducible 
invariant subspaces. 

L e m m a .  Let a representation of Uq(gl(n, C)) have the following property (Property 
P): for any x from representation space V there exists such (common) Xo C V so that 
Xo E Uq(gl(n, C))x. Then for representation Uq(gl(n + 1, C)) given by Eqs. (1), 

I0) | Xo E Uq(gl(n + 1, C))~: , 

where Yc is any vector from the representative space Snn @ V. 

Proof of Lemma. We define 

and prove easily the relation 

Ei -1 / ) i  - q-2BiEi 1 = [3i-1, i = 2, 3, . . . ,  n .  (2) 

As/ )n  ~ u'~2A'~+~-2n+2r2--~+l~nF E Uq(gl(n+l,C)) ,Eqs.  (2) g ive / ) i  E Uq(gl(n+ l, C)) 
for all i = 1,2, . . . ,  n. 

Take any 

kl , ..., kn 
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Let (kl, . . . ,  k,~) be a "highest degree" of this sum, understood in the following 
sense: 

~1 = max{kl:vkl ..... k~ r 0}, 

k2 = max{k2 : v~l,k2..., kn r 0}, 

k,~ = max{k,~ :v~, ..... kn 1,]en # 0}. 

Then (/3r~)~(/)n_l) ~-~ . . . ( / )1 )~s  " = const 10) | v& ..... k,~ where const r 0. Let 

further p = p(ei ,  .. e n - l , f l ,  . . . ,  • ~:1 , l,~ ) Uq(91(n, C)) is such that . ,  f ,~-l, l~ , . . .  C 
p v ~  ..... ~,~ = vo. 

We take p ( E 1 , . . .  • • , En - I ,F~ ,  . . . ,  F n - I , L  l , . . . ,  Ln ) E Uq(gl(n + 1,C))  and 
due to relation Ei(t0 ) |  = 10} |  |  = IO) | f i vL{( lO } |  = I0} | 

p(E1, . E n - l ,  F1 F,~-I, L~  1 , • . . ,  , . . . ,  . . . ,  L n ) [0) | V~I ..... k n  - -  [0) | VO. [] 

Because the trivial representation of Uq(gl(n, C)) has the property P,  the lemma can 

be applied to any representation from the set 5 S(k ~), and we obtain 
k=l  

r with vac- Theorem 2. Invariant subspaces o f  any representation from the set ~k 
k=l  

uum as the cyclic vector is an irreducible one. 

3. C o n c l u d i n g  R e m a r k s  

(a) Maximal weight of the subalgebra Uq(sl(n+ 1, C)) in a representation from the set 
S (n) is (q Az-A1 , q A3-A2, . . . ,  qAn+l-An), i.e. we have constructed an irreducible h.-w. 
representation of Uq(sl(n + 1, C)) for any highest weight. As such a representation is, 
up to isomorphism and q not being a root of unity, unique [2], we have constructed 
the set of all highest weight irreducible representations for Uq(sl(n + 1, C)). 
(b) If highest weight for Uq(gl(n + 1, C)) has the special form 

4 1 i =  1,2, . k - 1  ( w l q A e ,  . . . ,  V3k_lqA~ qAk qAk+l . . . ,  qAr~+i)~ Wi = , . . ,  , 

we can choose at least two different (but equivalent, of course) forms of corresponding 
highest weight representation. It is either a representation from the set S(~ n), where 
the generators are expressed by means of ~ (n + 1)-cmmnical pairs or from the set 

1 (n  + 1 - k)(n + k)-canonical pairs only. ~('~) with generators depending on ' , a n + l -  k 
The advantage of the second type of representation is that its representative space is 
"smaller" in comparison with the first type ( ~  c ~r k < n) and, consequently, the 
characteristics of the irreducible subspace Uq(gl(n, C)) ]0} might be simpler. 
(c) If q is not a root of unity and A,~+I - A n , A n  - A,~-I, . . . ,  Ak+l - Ak E 
{0, 1 ,2 , . . .  }, the corresponding representation from S~ ~) is finite-dimensional [2], 
and in this way we obtain the set of all such representations of Uq(gl(n + 1, C)). 
The explicit matrix form of these representations, using Gelfand-Zettin patterns, is 
described in [5]. In comparison with that construction we do not give an explicit 
definition of basis; we give only alternative forms of generators. Finding some basis 
in the representation space Uq(gl(n + 1, C))10) needs further effort. For q = 1 and 
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n = 2 we found such a basis in the isomorphic image of the Fock space onto Bargman 

[ ( ~ space of analytic functions i.e. after substituting (a +, ai) with xi, ~ [71. 

(d) Formulas (1) can be rewritten by means of operators 

These operators fulfill commutation relations of the q-deformed Heisenberg algebra 
[1]: 

~(i)o,(j) -2 (j)-(i) 2 N  (i) 
_q -q - q aq aq = Sijq q 

(3) 
~ ,./ q - -q  �9 

Our operators, however, fulfill additional relations 

gz(i)a(i) = q 2(Nq(i)+l) _ q-2(N~i)+l) 
q --q �9 q2 _ q - 2  ( 4 )  

so that they form the representation of the q-analogue of Weyl algebra A (n) defined 
in [6]. It is possible to prove that relations (3)-(4) lead to formulas (1) independently 
of the representation used. 

In t e l  [6] the q-analogue of Weyl algebra was used for construction of "simple" 
quantum enveloping algebras. In the case of Uq(sl(n + 1,C)) the generators are 
quadratic expressions in generators of A - ( n  + 1) (no free parameter). Taking some 
standard representation of A - ( n +  1) irreducible representations of Uq(sl(n+ 1, C)) are 
obtained as a restriction to some explicitly defined subspaces in representative space; 
in this way only part of the set of all finite dimensional representations is obtained. 
Our representations of Uq(gl(n + 1,C)) are expressed by means of generators of 
A - ( n )  and one free parameter or A - ( n  - 1) and two free parameters, etc., and we 
then obtain the full set of finite dimensional representations of Uq(gl(n + 1, C)). 
(e) If q is the root of unity then all our assertions remain true. However, as the 
simplest case of Uq(91(2 , C)) shows, we do not obtain the cyclic representations (see 
[10] for periodic and partially periodic representations of SU(N)q) .  
(f) In the limit q ~ 1 the only slightly complicated expression is the first part of the 
generator F~ which must be rewritten in the form 

1 [q_4a+a+2An+i _ 2 n + 4 A  n @ I n  2 __ q_2An+ l_2nA n @ 12 
q2 _ q-2 

= q-2 -- a+a § ~ fq -- a+a § ~ An  | I; 2 

§ q_2 An+l § n ( A , ~ + l + n )  2 Ix a - 1 2  
2 fq 2 An | I n + An | q2 _ q-2 " 

Assuming now the existence of limits, 

- z ;  - 2  

q--.llim q2 q-2 ~ Gii , q---~llim li =-- 1 , 

and also the normal commutation relations of g/(n, C) for 

l ime i = ei+ti , lira f i  =- ei~+~ , 
q--+l q--~l 
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we obtain from Eqs. (1), 

Ei+l i  =- lim Ei  = aia++l | 1 - 1 | ei+Ii  , 
q--~l 

E i i + l  =~ l im Fi  = ai+l a+ | 1 - 1 | C i i + l  
q--+i 

E a a  ~ l im L2a - L~'2 + 
q--~l q2 __ q-2 -- a a a a  + g a s ,  

E~+I~ ~ lira E n  ~ a~ | 1, 
q-+l 

n - a + l  ~+ ~ 
E~,~+I -= lim F~ : ( - a + a  + An+l + 1)a + | 1 + ( - 1 )  ~ | e n a ,  

q--~l a=l  

E ~ + l ~ + l  ~ l im L~+I - L~21 
q~l q2 _ q-2 -- a+a + An+l 

(5) 

where gnk -=- [~,~k+I,gk+xk], /~ = n -- 2, n -- 1, . . . ,  1. It is proved in [8] that these 
operators generate the representation of the Lie algebra 91(n + 1, C).  So formulas (1) 
can be considered as q-deformation of  formulas (5). Formulas of similar form were 
derived for all classical simple Lie algebras and even for most of  their real noncompact  
forms (where moreover the operators are skew-symmetric)  [9]. We believe that in all 
of these cases the q-deformation exists. Therefore formulas similar to (1) could be 
obtained for all classical simple quantum enveloping algebras. 

A p p e n d i x  

Some useful relations for the proof  of Theorem 1: 

q2~ki-2~ki+l X k e i  -- e i X k  = - q 2  5k i+lXi  , l a X j  = q26~n-5~J X j l ~  

{ - S i j q - 2 X i + ~ ( l ~ _ l l i )  z for i r n -  1 

X j f i  - q2e~-~,~fiXj = y j  for i = n - 1, 

where 

1 (I~21 -- l -4l  2 ~ Yn-2  = q-2l~21en-2 Yn-1 =~ q 2 _  q-~ - n ~ - I J ,  - , 

Yk =~ q-2(q-ZYk+lek  -- ekYk+l),  k _< n -- 3.  

q2XkYz - q - 2 y t x k  + X z Y k  - Y~Xz  

-2,l-412 X = -S ln - lq2 (q2  + q ) ~ ~-1 k ,  k < l _ < n - 1 ,  

, -2 , /2 1-4X X k Y h  -- q - 2 y k x k  ~ - -Skn- lq2(q  2 -~ q ) n-1 n n - 1  �9 
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