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Summary. The statistical properties of  three mo- 
lecular tree construction methods-- the  unweighted 
pair-group arithmetic average clustering (UPG), 
Farris, and modified Farris methods--are  examined 
under the neutral mutation model of  evolution. The 
methods are compared for accuracy in construction 
of  the topology and estimation of  the branch lengths, 
using statistics of  these two aspects. The distribution 
of  the statistic concerning topological construction 
is shown to be as important as its mean and variance 
for the comparison. 

Of the three methods, the UPG method con- 
structs the tree topology with the least variation. 
The modified Farris method, however, gives the 
best performance when the two aspects are consid- 
ered simultaneously. It is also shown that a topology 
based on two genes is much more accurate than that 
based on one gene. 

There is a tendency to accept published molecular 
trees, but uncritical acceptance may lead one to spu- 
rious conclusions. It should always be kept in mind 
that a tree is a statistical result that is affected strong- 
ly by the stochastic error of  nucleotide substitution 
and the error intrinsic to the tree construction meth- 
od itself. 

Key words: Molecular evolution -- Molecular tree 
-- Computer simulation -- Unweighted pair-group 
arithmetic average clustering method -- Farris 
method -- Modified Farris method 

Introduction 

With the rapid accumulation of  data on the nucleic 
acid and amino acid sequences of  various genes for 
a number of  species, it has become common practice 
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to construct phylogenetic trees (molecular phylo- 
genetic or molecular trees) based on such molecular 
data. It may be said that phylogenetic tree con- 
struction has entered a second phase, one succeeding 
the period when morphological and physiological 
characters were major bases of  trees. This transition 
has made it possible to discuss-the evolution of  or- 
ganisms more concretely and to estimate divergence 
times more objectively even for such organisms as 
microbes, fossil records of  which are seldom ob- 
tained (e.g., Hori and Osawa 1979; Dekio et al. 1984). 
The progress has also enabled insight to be gained 
into the origin and evolution oforganelles (Schwartz 
and Dayhoff 1978; Kiintzel and Krchel  1981) and 
genes (e.g., Dayhoff  1972; Miyata et al. 1980; Go- 
jobori and Nei 1984; Daniels and Deininger 1985). 

This process has elucidated a number of  aspects 
in evolution, but it has also raised new controver- 
sies. An example of  such a controversy is the issue 
of  primate evolution. From DNA hybridization data 
on several primate species, Sibley and Ahlquist 
(1984) concluded that human and chimpanzee split 
6-8 million years ago, 2-4 million years after the 
divergence between the gorilla and the ancestor of  
those two primates. Templeton (1983) challenged 
their view, basing his argument on the same data 
but on a different method. He claimed that there 
was no statistically significant difference between 
Sibley and Ahlquist's scheme and an alternative one 
in which chimpanzee is closer to gorilla than to 
human. Obviously, much depends on the method 
of  tree construction used. Hasegawa and Yano (1984) 
reached a similar conclusion to Sibley and Ahl- 
quist's (1984) on the basis of  the nucleotide se- 
quences of  mitochondrial DNA. Thus, discrepan- 
cies are attributable not only to experimental error 
but also to stochastic error ofgene (nucleotide) sub- 
stitution and to error intrinsic to a molecular tree 
construction method, or methodological error. 
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Fig. la, b. Model trees used in the simulation experiment: a 
model tree with 80TUs;  b model tree with 16 OTUs. Multiples 
of M along branches show branch length, where M is the expected 
number of nucleotide substitutions per gene 

W h i l e  b o t h  e x p e r i m e n t a l  a n d  s tochas t i c  e r ro rs  

can  be  r e d u c e d  by  the  sens ib le  use o f  m o r e  a n d  m o r e  

data ,  m e t h o d o l o g i c a l  e r ro r  is n o t  eas i ly  cu r t a i l ed  

because  it  is i n h e r e n t  to  the  m e t h o d  itself.  I t  is thus  

m e a n i n g f u l  to s tudy  s ta t i s t ica l  p rope r t i e s  o f  m e t h -  

ods.  N e i  et  al. (1985) s tud ied  the  s ta t i s t ica l  p r o p -  

el ' t ies o f  b r a n c h  p o i n t s  in  a t ree  c o n s t r u c t e d  by  the  

u n w e i g h t e d  p a i r - g r o u p  a r i t h m e t i c  ave r age  c lus te r ing  

( U P G )  m e t h o d  (Sokal  a n d  S n e a t h  1963; N e i  1975), 

a n d  d e r i v e d  a s ta t i s t ica l  m e t h o d  by  w h i c h  the  sig- 

n i f i cance  o f  two  b r a n c h  p o i n t s  can  be  tes ted .  Al -  

t h o u g h  the i r  m e t h o d  is useful  for  the  d i s cus s ion  o f  

the  s ta t is t ical  s igni f icance  o f  b r a n c h i n g  in  a con-  

s t ruc t ed  tree,  i ts  e x t e n s i o n  to  o t h e r  c o n s t r u c t i o n  

m e t h o d s  s eems  difficult .  M o r e o v e r ,  t he i r  m e t h o d  

does  n o t  a l low us to  t rea t  the  m e t h o d o l o g i c a l  a n d  

s tochas t i c  e r rors  separa te ly .  

In  th is  r e p o r t  we  shall  d i scuss  the  s ta t i s t ica l  p r o p -  

er t ies  o f  th ree  m o l e c u l a r  t ree  c o n s t r u c t i o n  m e t h -  

o d s - t h e  U P G ,  Fa r r i s  (1972),  a n d  m o d i f i e d  Fa r r i s  

( T a t e n o  et  al. 1983) m e t h o d s - - o n  the  basis  o f  resul ts  
o b t a i n e d  by  c o m p u t e r  s i m u l a t i o n .  T h e  s i m u l a t i o n  

m i m i c s  the  e v o l u t i o n a r y  change  o f  a neu t r a l  gene  
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( K i m u r a  1968, 1983) a long  m o d e l  m o l e c u l a r  trees.  

E m p h a s i s  wil l  be  p laced  pa r t i cu l a r ly  o n  the  effect o f  

s tochas t i c  a n d  m e t h o d o l o g i c a l  e r ro rs  on  the  pe r fo r -  

m a n c e s  o f  the  th ree  m e t h o d s .  

Model  and Method of Computer Simulation 

The model and method used in the present study are essentially 
the same as those of Tateno et al. (1983). An ancestral gene of 
100 codons was created in a computer in such a way that the 
base at each nucleotide site was randomly determined and non- 
sense codons were avoided. Mutational events on the gene were 
assumed to be such that (!) they followed the Poisson process, 
(2) the probability of occurrence of a mutation was the same 
among the 300 nucleotide sites, and (3) the base at a site chosen 
to be changed was replaced by each of the remaining three bases 
with an equal probability of I/3. Since we are dealing with neutral 
mutations occurring in the gene, the above assumptions appear 
reasonable. 

It was important in the study to keep every aspect of the 
evolutionary process at hand. It was thus essential to introduce 
a model tree whose topology and branch lengths were clearly 
determined. When one is to study the effects of stochastic and 
methodological errors on molecular tree construction, it is de- 
sirable that the model tree possess branches of various lengths. 
Thus, two types of model trees were set up, as shown in Fig. 1. 
In these trees the variability of branch lengths is maximized for 
a given number of operational taxonomic units (OTUs; Sokal 
and Sncath 1963). "M" in this figure is the expected number of 
nucleotide substitutions per gene or the Poisson parameter of the 
mutational process. The ancestral gene evolves along each of the 
model trees and diverges into the descendant genes at its ter- 
minals. 

Since the three methods to be examined each require a dis- 
tance matrix for tree construction, the genes thus produced were 
compared pairwise and a matrix of nucleotide differences was 
computed. This matrix was corrected for multiple substitutions 
using the Jukes and Cantor (1969) formula. The corrected dis- 
tance matrix was then fed as the input data to a computer al- 
gorithm for each of the three methods, and a molecular tree was 
constructed. When the constructed tree was compared with the 
model tree, it was possible to examine the performance of the 
construction method at this stage. One replicaton of the simu- 
lation is completed at this step. 

The examination was carried out with respect to two func- 
tions: construction of the true topology and estimation of branch 
lengths. These two functions are not necessarily correlated with 
each other (Tateno et al. 1983; Tateno 1985). For topological 
examination a distortion index (dr) (Robinson and Foulds 1981) 
was used that measures quantitatively the topological difference 
between the model and constructed trees [see Tateno (I 985) for 
details]. As the topological difference becomes larger, dr increases 
in increments of 2 over the range from 0 to 2(n - 1), where n is 
the number of OTUs in the tree. 

For examination of the branch-length estimation, two indices 
were employed: One (SE) is the square root of the average squared 
deviation of the estimated branch lengths from the branch lengths 
of the model tree, and the other (So) is the square root of the 
average squared deviation of the estimated branch lengths from 
the branch lengths in the distance matrix. As mentioned by Ta- 
teno et al. (1983) there are two types of molecular trees. One is 
the species tree, which is supposed to depict the divergence among 
taxa of organisms, and the other is the gene tree, which is intended 
to present the evolution of genes themselves. The former natu- 
rally possesses the property that the lengths of two branches 
originating from a common ancestor are identical, whereas the 
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latter does not necessarily do so. SE could be interpreted as a 
measure of the deviation of  the branch lengths in the constructed 
tree from those in the species tree and So as measure of the 
deviation of  the constructed tree's branch lengths from those in 
the gene tree. 

Topological Construction 

It should be ment ioned,  first o f  all, that  the U P G  
me thod  constructs a tree with a root,  the c o m m o n  
ancestor o f  all O T U s  involved,  whereas the Farris 
and modif ied Farris methods  cannot  place a root  in 
a constructed tree. Fards  (1972) suggested as a rule 
independent  o f  his me thod  that  the root  o f  a tree 
constructed by his me thod  (and the modif ied Farris 
method)  be placed at the midpoin t  between the two 
O T U s  separated by the largest distance. Although 
Farris's rule was shown to be inappropriate  by Ta-  
teno et al. (1983), both  rooted and unrooted  trees 
were incorporated in the present study. One more  
point  to be noted  here is the meaning o f  the sto- 
chastic error: Since no gene-sampling procedure  is 
involved  in the present simulation, it means  solely 
the intrinsic error  o f  the rate o f  nucleotide substi- 
tut ion in the present context  (see Ta j ima  1983). 

The  compute r  s imulat ion was carried out  first on 
model  tree a in Fig. 1. When  M is small, say 1, the 
three methods  do not  show significant differences 
in topological construct ion (Tateno 1985). This can 
be considered to be the case where the stochastic 
error  o f  nucleotide substi tut ion is so large that it 
overrides the methodological  error. The M value 
was thus set at 2. Miyata  et al. (1980) es t imated the 
average evolut ionary rate o f  synonymous  substitu- 
t ion for various genes to be 5.1 x 10 -9 per site per 
year. I f  this est imate is regarded as the rate o f  neutral  
mutat ion,  then the model  tree with M = 2 gives a 
divergence t ime between two O T U s  ranging f rom 
2.6 x 107 to 1.8 x 10 s years. The  n u m b e r  o f  rep- 
lications was 500. 

Single Gene Case 

The  results are shown as histograms o f  dT for the 
three methods  in Fig. 2. Figure 2a shows the result 
for the rooted tree. It is seen f rom the three distri- 
but ions that  the variance o f  the U P G  me thod  is 
smaller than that o f  ei ther  o f  the other  two, whereas 
the modes  are not  different f rom one another.  This  
does not  necessarily mean  that the U P G  me thod  is 
superior to the two methods.  Actually, the t-test 
shows no significant difference in topological con- 
struction between the U P G  and Farris methods.  It 
should, however,  be noted  that  the frequency class 
o f  dr  = 0 for the Farris and modif ied Fards  methods  
is about  two t imes as large as that  o f  the U P G  meth-  
od. This indicates that not  only the mean and vari- 
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Fig. 2a, b. Distribution ofdT for 8 0 T U s :  a for the rooted tree; 
b for the unrooted tree. M = 2; the number  of  replications is 500. 
UPG, unweighted pair-group arithmetic average clustering meth- 
od; Farris, Farris method; M. Farris, modified Farris method 

ance o f  dx but  also the shape o f  the distr ibution is 
impor tan t  in the examinat ion  o f  the topological con- 
struction. Figure 2a also shows that the distr ibutions 
o f  the Farris and modif ied Fards  methods  have rath- 
er long tails toward the right, revealing that  the two 
methods  may  construct  trees drastically different 
f rom the model  tree, though not  often. This  is ex- 
pected f rom the nature o f  the two methods.  For  an 
O T U  to be connected,  one must  compute  the like- 
l ihood when the O T U  is jo ined to each branch o f  
the tree so far constructed.  The  O T U  is connected 
to the branch at which the l ikelihood is max imum.  
I f  the l ikelihood happens to be largest at an incorrect  
branch, owing to the stochastic error  o f  nucleotide 
substitution, then the O T U  is connected there, re- 
suiting in a tree quite different f rom the correct  one. 
This is the case where the stochastic error  creates 
or exaggerates the methodological  error. The  U P G  
me thod  does not  work in this way: Instead, the av- 
erage distance f rom the O T U  to the tree is taken 
into account  when a new O T U  is added to the tree 
under  construction.  

Figure 2b shows the results for the unroo ted  tree. 
As ment ioned  above,  Farris 's rule for placing the 
root  does not  work well. This  is due to a discrepancy 
o f  logic between his m e th o d  and his rule. His meth-  
od ignores the constancy o f  the nucleotide substi- 
tut ion rate, whereas his rule incorporates  it. The  
discrepancy causes the difference in distr ibution be- 
tween Figs. 2a and 2b. As shown in Fig. 2b, the 
distributions for the Fards  and modif ied Fards  
methods  become L-shaped for the unrooted  tree, 
indicating a remarkable  im p ro v em en t  in compari-  
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Fig. 3a, b. Distribution of dT for 16 OTUs: 
a for  the rooted tree; b for the unrooted tree. 
M = 2; the number of replications is 500. Ab- 
breviations as in Fig. 2 

son with Fig. 2a, in which the corresponding dis- 
tr ibutions are bell shaped. It is evident  that  an 
L-shaped distr ibution is desirable for dT, and the 
two Farris methods  show this desirable proper ty  i f  
Farris 's rule is neglected. This  claim should be 
slightly moderated,  however,  because considerable 
improvemen t  is observed also in the U P G  me thod  
after removal  o f  the root,  at least for the case with 
8 OTUs.  There  is a problem again in placing the 
root  in the U P G  method,  though not  as serious as 
in the previous case. Leaving the mat ter  o f  rooting 
aside, the U P G  me thod  still gives a bell-shaped dis- 
tr ibution,  which makes it inferior to the other  two 
methods  as regards this point.  The  notable differ- 
ence between Figs. 2a and 2b strongly suggests that  
some improved  means  o f  placing the root  should 
be devised, at least for the Farris and modif ied Farris 
methods.  One way might be to de termine  the root  
by the U P G  method.  Although this device still de- 
pends on the constancy o f  the nucleotide substitu- 
t ion rate, it is expected to be bet ter  than Farris 's 
rule, since the root  is de termined  by  taking into 
account  all the branch lengths in the tree. 

To study the effect o f  the number  o f  O T U s  on 
tree construction,  another  set o f  compute r  simula- 
tions was carried out, on model  tree b in Fig. 1. This 
t ime the numbe r  o f  O T U s  was doubled,  but  the M 
value and the number  o f  replications were un- 
changed. In model  tree b the divergence t ime be- 
tween O T U s  ranges f rom 2.6 x 107 to 3.9 • 10 s 
years. The  result for the rooted tree is presented in 
Fig. 3a and that  for the unroo ted  tree in Fig. 3b. In 
this case the distr ibutions in both  parts o f  the figure 
are bell shaped, and both  the mean  and variance o f  
dv are increased over  the case with fewer OTUs.  
These unfavorable  outcomes arise mainly  f rom the 
fact that there are twice as many  branches with M = 
2 as there are in model  tree a. Since the coefficient 
of  var ia t ion o f  branch length is largest for branches 
with M = 2 in the model  tree, the stochastic error  
o f  nucleotide substi tution disturbs most  seriously 
the topological construct ion o f  such branches. It has 
been shown that  the coefficient o f  variat ion o f  the 

number  o f  nucleotide substi tutions affects the to- 
pological construct ion more  strongly than does the 
mean o f  the n u m b er  ofnuc leo t ide  substi tutions (Ta- 
teno et al. 1983). Another  factor that should be con- 
sidered is the relative consequence o f  error  in the 
construct ion o f  these branches. In model  tree a the 
error  does not  lead to dv values larger than 14, but  
{Ix can be as large as 30 in model  tree b. 

The U P G  me thod  again gives the smallest vari-  
ance among the three methods  for both  rooted and 
unrooted  trees. It can generally be said that the effect 
o f  averaging distances in the U P G  me thod  is to 
reduce the variance in the topological construction.  
Nevertheless,  this effect does not  extend to reducing 
dT. As judged by the t-test, there is no significant 
difference in mean  dT value between any two o f  the 
methods.  The modes  o f  the distr ibutions for the 
Fan'is and modif ied Farris methods  are, in this case, 
shifted one or two classes toward the class o f  dT = 
0 compared  with the U P G  method.  It is also seen 
that the distr ibution for the modif ied Farris me thod  
extends to the class of  dT = 0. In contrast,  the dis- 
t r ibut ion o f  the Farris me thod  has a long tail toward 
the right, contr ibuting to its large variance. This  
undesirable proper ty  o f  the Farris m e th o d  now be- 
comes conspicuous,  because when the n u m b er  o f  
O T U s  or the M value is large, the me thod  has a 
tendency to overest imate  branch length under  the 
influence o f  the stochastic error  o f  nucleotide sub- 
stitution (see below). Although the correlat ions be- 
tween dT and SE and between dx and So are not  very 
high (Tateno et al. 1983; Ta teno  1985), it is still 
expected that the overes t imat ion will disturb the 
topological construct ion to some extent. 

Effect of the Number of Genes 

It has been shown above  that the stochastic error  
of  nucleotide substi tut ion has a considerable influ- 
ence on the topological construct ion o f  a molecular  
tree. This  implies that a tree could be wrongly con- 
structed owing to this error  even under  the si tuat ion 
o f  constant  evolut ionary rate. The  stochastic error  
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can be reduced by incorporating more than one gene 
into the computation of  a distance matrix. Thus, to 
see the effect of  reduction of  the stochastic error, we 
recomputed the distance matrix taking the average 
of  the distances of  2, 5, and 10 genes. Since the same 
data as in the one-gene case were used to do this, 
the numbers of  replications were accordingly re- 
duced to 250, 100, and 50, respectively. Trees were 
then reconstructed using the matrices thus obtained. 
The results for the case of  16 OTUs are presented 
in Fig. 4, which plots the mean dx values against 
the number of  genes for 1, 2, 5, and 10 genes. 

As seen in the figure, the mean dT decreases as 
the number of  genes increases for both rooted and 
unrooted trees. This is, o f  course, due to the fact 
that the variance of  the number of  nucleotide sub- 
stitutions becomes smaller as the number of  genes 
increases. It is easily shown that in the present study 
the stochastic error measured by the variance re- 
duces to 1/m when the number of  genes increases 
to m. The figure shows that the mean dT decreases 
roughly proportionally to the inverse of  the number 
of  genes. In particular, a steep decline is observed 
when the number of  genes changes from 1 to 2. This 
indicates that if one can use 2 genes, one will obtain 
a much better topology than when using just 1 gene. 

It is of  interest to compare the effectiveness of  
increasing the number of  genes in improving to- 
pological construction among the three methods. 
For this purpose, the measure G,/2 was introduced, 
which is defined as the number of  genes for which 
the mean dr  takes half the value it has for 1 gene. 
Relatively speaking, the method with the smallest 
value of  G,/2 has the largest power of  reducing the 
stochastic error for an increasing number of  genes. 
The G,/2 values obtained from Fig. 4a (rooted tree) 
are 3.0, 2.5, and 2.2 for the UPG, Farris, and mod- 
ified Farris method, respectively. Those for the un- 
rooted tree are 3.0, 1.7, and 1.8. These results imply 
that increasing the number of  genes improves the 
topological construction more for the Farris and 
modified Farris methods than for the UPG method. 
The difference could be interpreted as reflecting the 
difference in methodological error between the two 
Farris methods and the UPG method. That  is, the 
methodological error is larger in the UPG method 
than in the other two methods when the stochastic 
error is reduced evenly for the three methods. A 
similar observation and interpretation hold for the 
effect of  the number of  genes in the 8-OTU case 
(data not shown). 

Comparison of  Figs. 4a and 4b reveals that the 
mean dT of  the U PG method does not change very 
much after removal of  the root. This is different 
from what happens in the 8-OTU case mentioned 
above. There are at least two reasons for this: One 
is that the placement of  the root has a more serious 
effect on the final topology in the 8-OTU case than 
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Fig. 4a, b. Change in average dT value with increasing number  
of genes for 16 OTUs. The dr values are plotted against the 
numbers of genes (1, 2, 5, and 10 genes were considered) for the 
rooted tree (a) and the unrooted tree (b). Abbreviations as in 
Fig. 2 

it does in the 16-OTU case, because the number of  
branch points, including the root, is half as many 
in the former case as in the latter. The other is that 
as the number of  OTUs increases, the effect of  av- 
eraging distances becomes more manifest, resulting 
in a higher probability that the root will be placed 
at the correct position. That is, in the 16-OTU case, 
the error in the topological construction occurs 
mainly in procedures other than the placement of  
the root. 

Estimation of Branch Lengths 

Deviation from the Expected Distances 

The mean SE values and their standard deviations 
for the three methods are presented in the upper 
half of  Table 1. The values are given for the cases 
of  8 and 16 OTUs and for 1, 2, 5, and 10 genes. 
When the number of  OTUs is 8, the UPG and mod- 
ified Farris methods give results quite similar to 
each other for the 1-, 2-, 5-, and 10-gene cases. The 
result for the Farris method is slightly larger in both 
mean and standard deviation of  SE than that for 
either the UPG or modified Farris method, though 
the difference is not significant as judged by the 
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T a b l e  1. Mean Se and So values for the three methods 

Method 

No. of Modified 
genes UPG Farris Farris 

SE 
No. of OTUs = 8 

1 4.47 (1.35) 4.74 (1.51) 4.46 (1.35) 
2 3.25 (1.00) 3.38 (1.13) 3.24 (1.00) 
5 2.00 (0.61) 2.06 (0.67) 1.99 (0.62) 

10 1.44 (0.41) 1.46 (0.43) 1.43 (0.41) 

No. of  OTUs = 16 

1 6.83 (1.51) 8.90 (2.43) 6.77 (1.53) 
2 4.85 (1.00) 6.44 (1.89) 4.80 (1.00) 
5 3.06 (0.63) 4.07 (1.32) 3.01 (0.65) 

10 2.18 (0.45) 2.87 (0.88) 2.14 (0.46) 

So 
No. of OTUs = 8 

1 2.16 (0.67) 1.16 (0.58) 0.66 (0.26) 
2 1.56 (0.48) 0.92 (0.38) 0.49 (0.16) 
5 1.01 (0.30) 0.60 (0.23) 0.30 (0.07) 

10 0.74 (0.22) 0.45 (0.16) 0.22 (0.05) 

No. ofOTUs = 16 
1 3.83 (0.78) 5.29 (1.64) 1.97 (0.34) 
2 2.74 (0.53) 4.23 (1.25) 1.39 (0.21) 
5 1.73 (0.33) 2.88 (0.80) 0.86 (0.11) 

10 1.24 (0.27) 2.09 (0.55) 0.60 (0.07) 

Values in parentheses are standard deviations. M = 2; the number  
of replications was 500. UPG, unweighted pair-group arithmetic 
average clustering 

t-test. In the case with 16 OTUs, however, the val- 
ues for the Farris method become significantly larger 
than those for the UPG and modified Farris meth- 
ods. As mentioned above, the reason for this is that 
the Farris method has a tendency to overestimate 
branch length when the number of  OTUs is large. 
To illustrate this tendency, we consider the sample 
tree in Fig. 5. 

Let us suppose that OTU I is to be connected to 
the tree in this figure, where A, B, and C are OTUs, 
and X and Y are branch points. Then the distance 
between I and X, D(I, X), must be estimated in the 
Farris method. To do this, Farris (1972) uses the 
following triangle inequality: 

D(I, q) -< D(q, X) + D(I, X) (1) 

where q is A, B, or C. IF D*(I, q) is the greatest 
lower bound of  D(I, q) and P(q, X) is the least upper 
bound of D(q, X), then the greatest lower bound of 
D(I, X), D*(I, X), is given by 

D*(I, X) >- sup[D*(I, q) - P(q, X)] (2) 

where sup refers to the limes superior. Farris applies 
formula (2) in such a way that 

D*(I, X) = max[(D(I, A) - D'(A, X)), 
(D(I, B) - D'(B, X)), 
(D(I, C) - D'(C, X))] (3) 

A 

b 

B 

Fig .  5. 

G Y d C 

I. 
I 

A tree shown as a network. A, B, and C are OTUs, and 
X and Y are branch points. OTU I is being connected to the tree. 
The lower-case letters along the branches represent the respective 
branch lengths. See text for discussion 

where D(*, *) on the fight is obtained directly from 
the distance matrix and D'(*, *) is estimated in ad- 
vance in his method. Farris states that the moti- 
vation for obtaining D*(I, X) is to assess the num- 
bers of multiple, inverse, and parallel mutations 
occurring in the lineage between I and X, which 
cannot be obtained from the distance matrix. For 
example, the number between OTUs A and B is 
given by D*(A, B) - D(A, B), which he calls the 
"homoplasy." 

There are confusing and fallacious aspects to the 
aforementioned argument of  Farris. First of  all he 
confuses D*(*, *) with D(*, *), and P(*, *) with D'(*, 
*), in his application. This confusion occurs because 
he cannot obtain D*(*, *) and P(*, *) as they are. 
Actually, his definition of  these distances is not clear 
at all. Leaving his definition aside, if one of the 
quantities D(I, A), D(I, B), or D(I, C) in formula (3) 
becomes considerably larger than its expected value 
owing to the stochastic error, then D(I, X) is over- 
estimated even if D'(A, X), D'(B, X), and D'(C, X) 
are estimated properly. When the number of OTUs 
is small, such overestimation is not so serious, as 
seen in the 8-OTU case. If  the number becomes 
larger, however, the cumulative error is no longer 
negligible and leads to a gross overestimation of  
branch length in the final result. That is what Table 
1 shows for the 16-OTU case. Farris's motivation 
for obtaining D*(*, *) is also fallacious. Let a, b, c, 
d, and e be the branch lengths defined in Fig. 5. 
Then formula (3) becomes 

D * ( I , X ) = m a x ( c + e , c + e , e - c ) = c + e  (4) 

That is, taking the maximum value is absolutely 
necessary to obtain the correct distance, c + e; oth- 
erwise a wrong distance, e - c, might be chosen. 

In the modified Farris method D(I, X) is esti- 
mated as the average of  D(I, A) - D(A, X) and D(I, 
B) - D(B, X), and D(I, C) is never involved (Tateno 
et al. 1983). The modified Farris method is thus 
superior to the Farris method in logic and in re- 
ducing the stochastic error of  nucleotide substitu- 
tion. In this sense, the former method shares a prop- 
erty with the UPG method. This could be the reason 
for the observation in Table 1 that the modified 
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Farris me thod  gives results for  Se similar to the U P G  
method 's .  Note  also that  in the modif ied Farris 
me thod  no fallacious argument  such as homoplasy  
is involved.  

Deviation from the Observed Distances 

The  So results for the three methods  are shown in 
the lower hal f  o f  Table  1. It is clear that  the modif ied 
Farris me thod  gives So values significantly smaller 
than do the U P G  and Farris me thods  for bo th  the 
8- and 16-OTU cases. In the 8 -OTU case, the U P G  
me thod  gives larger values than the Farris me th o d  
for all numbers  o f  genes considered. The  reason for 
this is inherent  in the former  method.  In the U P G  
me t ho d  the est imated branch lengths o f  two lineages 
sharing the same amoun t  o f  evolut ionary t ime are 
assumed to be identical, since this me thod  is in- 
tended to construct  a species tree. The  Farris and 
modif ied Farris methods  do not  contain such an 
assumption,  and the est imated branch lengths are 
a lmost  always different f rom each other. Thus,  since 
the number  o f  nucleotide substi tutions in two lin- 
eages can be different owing to the stochastic error  
in real evolut ion (and in the present  simulation),  the 
Farris and modif ied Farris me thods  are expected to 
give smaller So values than the U P G  method.  Tha t  
is, the a forement ioned  assumption contributes to 
the large methodological  error  o f  the U P G  me thod  
as far as So is concerned.  

In the 16-OTU case, however,  the difference be- 
tween the U P G  and Farris methods  is reversed. The  
reverse relat ionship arises f rom the drawback o f  the 
Farris me thod  that  it tends to overes t imate  branch 
length when the number  o f  OTUs  is large, as men-  
t ioned above. The drawback is so serious as to di- 
minish the advantage over  the U P G  me thod  that 
was observed in the 8 - O T U  case. One should thus 
be cautious when using the Farris me thod  for a large 
number  o f  OTUs.  The caution is made  with regard 
not  only to the est imation o f  branch length but  also 
to the topological construction.  

Discussion 

One tends to regard a molecular  tree, once it is de- 
picted, as the true tree wi thout  reflecting much  on 
its objectivity. Although this is often unavoidable  
due to lack o f  independent  evidence, it may  lead 
one to spurious conclusions. As shown above,  no 
tree construct ion me thod  is perfect, and all methods  
often give a wrong tree even under  such a simple 
evolut ionary process as one dr iven by neutral  mu- 
tation. It is thus advisable to be careful when relying 
on a molecular  tree constructed by any o f  the three 
methods  discussed above.  This  advice is, o f  course, 

applicable to other  tree construct ion methods,  be- 
cause no me thod  is free f rom disturbance by  the 
stochastic error  o f  nucleotide substitution. As long 
as the n u m b er  o f  O T U s  is less than or equal to 16, 
the modif ied Farris m e th o d  gives a bet ter  tree than 
either the U P G  or Farris me thod  in terms o f  both  
topological construct ion and branch length esti- 
mat ion.  The  modif ied Farris m e th o d  is the most  
resistant o f  the three methods  to disturbance by the 
stochastic error. Note  also that the per formance  o f  
the modif ied Fan-is me thod  is bet ter  than that  o f  
ei ther o f  the other  methods  when the n u m b e r  o f  
genes increases. 

Although the three methods  are not  error  free, it 
m ay  be o f  interest to ask how efficient each is when 
a tree constructed by it is compared  with a tree 
randomly  chosen f rom the set o f  all possible trees 
for  a given n u m b er  o f  OTUs.  This  quest ion can be 
answered, at least with respect to topological con- 
struction, for the rooted  tree. We first define T(k), 
the n u m b er  o f  groups with k O T U s  in the correct  
tree o f  n OTUs.  I f  the correct  tree is model  tree a 
in Fig. i ,  then T(i) = 1 for i = 2-8.  Next,  let R(k) 
be the expected n u m b er  o f  groups with k O T U s  in 
a randomly  chosen tree f rom the set o f  trees with n 
OTUs.  Ta j ima (1983) has shown that  the proba-  
bility o f  dividing n O TU s  into nl and n2 O TU s  is 
given by 2/(n - 1). Thus,  

R ( n -  1 ) =  2 / ( n -  1) (5) 

A group with n - 2 O T U s  occurs when n O T U s  
split into 2 and n - 2 O T U s  or when n - 1 0 T U s  
split into 1 and n - 2 OTUs.  Thus,  

R(n - 2) -- 2/(n - 1) + 2R(n - 1)/(n - 2) (6) 

Similarly, the expected n u m b er  o f  groups with k 
O T U s  is given by 

R(k) = 2/(n - 1) + 2R(n - 1)/(n - 2) 
+ . . .  + 2R(k + 1)/k (7) 

Using formulas (5) and (6), formula  (7) can be re- 
duced to 

R(k) = (k + 2)R(k + 1)/k -- 2n/[k(k + 1)] (8) 

One more  necessary factor is the probability, Q(k), 
that  a group o f  k O T U s  randomly  sampled f rom n 
O TU s  is made  up o f  a unique combina t ion  o f  OTUs.  
Q(k), o f  course, is given by 

Q(k) = 1/nCk (9) 

where ,Ck is the b inomial  coefficient. Then,  using 
T(k), R(k), and Q(k), it is possible to obtain the 
expected number  o f  correct  groups in a tree o f  n 
O TU s  that is randomly  chosen f rom the set. This  
is given by 

n - - I  

E. = ~ T(k)R(k)Q(k) (10) 
k ~ 2  



Since the total number  o f  groups for n O T U s  is n - 
2, the mean  distort ion index dT* of  a r andomly  
sampled tree is given by 

d T * =  2(n -- 2 -- En) (I1) 

The efficiency of  the me thod  may  be measured 
against dT* as the standard, that  is, as dT*/dT where 
dT is the mean  distortion index o f  the method.  I f  
the correct trees are the ones shown in Fig. 1, the 
value Ofdy* is 1 1.62 for 8 O T U s  and 27.88 for 16 
OTUs.  Thus, in the case o f  one gene, the efficiencies 
are 3.56, 3.67, and 4.05 for the U P G ,  Fan-is, and 
modified Farris methods,  respectively, for 8 0 T U s ,  
and 2.46, 2.51, and 2.74, respectively, for 16 OTUs.  
One problem with the efficiency measure is that it 
depends not  only on the me thod  used but also on 
the model  tree, because dT* is independent  o f  branch 
length whereas dT is not. Notwiths tanding this prob-  
lem, it can be said that the efficiency declines with 
increasing number  o f  OTUs,  warning us that the 
error in molecular tree construct ion increases with 
increasing number  o f  OTUs.  

Faith (1985) has commented  on the modified 
Farris method  under  the name "the Tateno, Nei, 
and Taj ima method ."  He criticized us, saying that 
we misrepresented the distance Wagner  algori thm 
in our  paper (Tateno et al. 1983). His point  is that 
we confused his Eq. (6) with his Eq. (7). That  Eq. 
(7), however,  does not  completely express what  we 
(Tateno et al. 1983) stated in our  introduct ion o f  
the modified Farris method.  We compute  D[B, (X, 
Y)] in Eq. (7) after (not before) O T U  A joins the 
tree in his Fig. 4. Contrary to Eq. (7), he correctly 
follows the algorithm o f  the modified Farris me thod  
up to his Eqs. (8) and (9), which are involved in the 
computa t ion  ofD[B,  (X, Y)]. It  should be noted that 
his Eqs. (10) and (11) do not  mathematical ly  rep- 
resent the modified Farris method.  Tateno et al. 
(1983) clearly state that D(X, Y) is computed  when 
O T U  A (not B) is jo ined to the tree. Faith (1985) 
also says that the modified Farris me thod  is inferior 
to his modification on the basis o f  just  one example 
using unspecified data. As the present study shows, 
his compar ison o f  the methods  is far f rom adequate. 
We are interested in such molecular  data as nucleo- 
tide sequences and amino  acid sequences in the con- 
struction o f  a phylogenetic tree, because such data 
are considered to reflect the evolut ion o f  organisms 
more  directly than any other  characters. 
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