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Summary. The neutral theory of molecular evo-
lution postulates that nucleotide substitutions in-
herently take place in DNA as a result of point mu-
tations followed by random genetic drift. In the
absence of selective constraints, the substitution rate
reaches the maximum value set by the mutation
rate. The rate in globin pseudogenes is about 5 x
107° substitutions per site per year in mammals.
Rates slower than this indicate the presence of con-
straints imposed by negative (natural) selection,
which rejects and discards deleterious mutations.
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The neutral theory of molecular evolution is based
on an inherent evolutionary property of DNA, and
on the nature of properties of species of living or-
ganisms. During evolution, mutations involving nu-
cleotide changes take place, some of which become
fixed by random genetic drift. This means that such
changes resulting from point mutations spread
through the species by a chance process.

The opposing (‘“‘selectionist™) view states that
mutational changes accumulate in a species exclu-
sively by the action of positive Darwinian selection;
that is, there has to be some selective advantage for
the mutants to become fixed.

The neutralist-selectionist controversy has con-
tinued for over 15 years, but we believe that the
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neutral theory has gained much strength by recent
developments in molecular genetics. (See [1] for a
comprehensive review.) Note that both sides accept
that negative selection is common, and that dele-
terious mutations are eliminated from the popula-
tion. What is at issue is whether those mutational
changes that spread through the species are fixed by
Darwinian selection acting on advantageous mu-
tations (the “selectionist™ conclusion), or instead by
random genetic drift acting on selectively neutral
(selectively equivalent) or nearly neutral mutations
(the “neutralist” conclusion). The two views are dia-
metrically opposed. For a discussion of some of the
misunderstandings on the meaning of the neutral
theory, see Kimura [1].

According to the neutral theory, the rate of fix-
ation is at a maximum when there are no adaptive
constraints on the DNA sequences involved. This
is because the rate of evolution is equal to the mu-
tation rate for selectively neutral mutations [2], and
is at a maximum when all the mutations are neutral,
i.e., when none of them are selected against. Con-
straints result from negative feedback that elimi-
nates deleterious changes by natural selection. A
familiar example of such constraints is the case of
histone proteins 3 and 4 in cows and peas; these
proteins have functions that are so essential and so
similar in widely differing species that there are only
6 differences in a total of 237 amino acid residues.
But many silent nucleotide substitutions occurring
in codon third positions of histone genes are not so
constrained, and hence are not discarded. In a com-
parison of 187 codons in sea urchin H3 and H4
histone genes, 63 silent nucleotide substitutions oc-
curred simultaneously with only 2 amino-acid-al-
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chosen to replace those less fit, thus leading to a
nonrandom pattern, Neutralists, on the other hand,
assume that such nonrandomness reflects the fact
that not all synonymous changes are selectively
equivalent and therefore not all of them have equal
probability of becoming fixed by random drift.

Kimura [5] pointed out that nonrandom use of
synonymous codons occurs because of differences
in the availabilities of synonymous tRNA species
in the cell resulting from stabilizing selection {3, 8].
It was long ago suggested that differences in the
amounts of synonymous tRNAs that paired with
different codons might affect translation rates in pro-
tein synthesis {9, 10]. Experimental evidence show-
ing that differences in the levels of various tRNAs
for the same amino acid actually occur, and that
differences exist in the usage of synonymous codons,
was not then available, but has appeared subse-
quently, as discussed in [5]. Zuckerkand! and Pau-
ling [10] cited an earlier expression of the same idea
by Itano [11]. They wrote that “one can therefore
not say, without resorting to an auxiliary hypothesis,
that the apparent slower rate of HbS synthesis as
compared to HbA synthesis in HbA/HbS hetero-
zygotes is perhaps due to the appearance of a codon
whose corresponding transfer-RNA is present in
limiting amounts™ [10].

This seemed to say that in the case of HbS and
HbA, tRNA differences would not affect translation
rates, unless an auxiliary hypothesis was valid. This
hypothesis was that the identity of the degenerate
(third) base of the codon might influence the rate of
polypeptide synthesis. The authors then noted that,
after all, the rate of synthesis of HbS might be not
lower than that of HbA, but they also said that the
possibility of “isosemantic substitutions as a sig-
nificant factor in the regulation of polypeptide syn-
thesis is not ruled out.”

The conclusion by Kimura [5] cited above is based
on experimental results, especially those of Ikemura
[12-14], who measured the relative abundances of
many tRNAs in Escherichia coli and Saccharo-
myces cerevisiae. He correlated these measurements
with codon usage in these organisms and reviewed
earlier work by other investigators. Ikemura found
that codon choices in yeast genes “were constrained
by a combination of tRNA availability and nature
of its codon recognition [13].” In E. coli, the cor-
relation between tRNA abundance and codon fre-
quency was strongest for genes that coded the most
abundant proteins. This is the reverse of what one
would expect from the “‘selectionist” argument that
if nonrandom usage is the result of positive Dar-
winian selection, then increased usage should cause
more rapid evolution. By positively selecting among
mutational changes, those changes that best fit a
specific tRNA species will speed up evolution as
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compared with a situation in which there is no par-
ticular choice. (This latter case would occur when
all mutational changes are equally accepted and be-
come fixed by random drift, without positive selec-
tion.) But the observation is in the opposite direc-
tion: A stronger bias slows evolutionary change, and,
as Miyata [15] has stated, “the evolutionary rate of
synonymous substitution is negatively correlated
with the degree of bias in codon utilization.”

The mathematical theory of Kimura [8], which
shows that Ikemura’s finding can be incorporated
into the framework of the neutral theory, makes use
of the concept of random drift under stabilizing or
centripetal selection. Actually, this theory is more
general, and shows that under stabilizing phenotypic
selection, extensive neutral evolution can occur at
the molecular level, Milkman [16], who arrived at
essentially the same idea independently, called this
“a unified selection theory.” More recently, Milk-
man [17] has written that, with Kimura’s theory [8],
the neutralist—selectionist conflict has finally been
resolved (see pp 328-334 of [17]).

The proposal that an evolution was particularly
rapid at its early stages is based on errors of geologic
dating [5], and in any case, perturbations of rate do
not vitiate the molecular evolutionary clock [3]. The
third proposed piece of evidence against the neutral
theory is conservation of helical regions in mRNA
molecules. This is an example of a constraint that
slows the substitution rate.

To reiterate, the existence of bias in the choice
of synonymous site 3 nucleotides in certain codons
would be evidence for a selective constraint rather
than a contradiction of the neutral theory. The neu-
tral theory is concerned with the mechanism by
which a mutated change spreads through the species.
It claims that the majority of evolutionary change
is caused by random genetic drift in the species,
under continued mutational pressure. It does not
claim that all the mutational changes at the time of
occurrence in individuals are selectively neutral.

In sum, the neutral theory of molecular evolution
has been substantiated and strengthened by numer-
ous recent observations based on DNA sequencing.
These show that the rate of nucleotide substitution
in evolution tends toward a maximum rate in the
absence of constraints, and that diminution below
the maximum rate is evidence for the existence of
constraints (negative selection). The maximum rate
so far found in mammals, as observed in evolu-
tionary nucleotide substitution of globin pseudo-
genes, appears to be about 5 x 107° substitutions
per nucleotide site per year.
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