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Abstract: We describe an approach, based on Baldi 's large deviation theorem, to 
carry out the statistical mechanics of a class of  infinite dimensional dynamical systems. 

I. Introduction 

In previous works [32-34] we showed that large deviation theory (Sanov's theorem), 
used in a Young measure framework, provides an efficient tool to carry out the ther- 
modynamic limit yielding the equilibrium states for two-dimensional Euler equations. 
The interest of this approach was reinforced by the confirmation both experimentally 
[10, 38] and by numerical simulations [40] of the theoretical predictions in the case 
of  a vortex patch. 

One aim of this paper is to provide a complete proof of the large deviation estimates 
used in [33]. Our proof is an application of  Baldi's large deviation theorem [3] (in 
a slightly modified version). More generally, we show that Baldi 's theorem is an 
elegant and powerful tool to carry out thermodynamic limits in various functional 
frameworks. 

Another aim is to describe a class of infinite dimensional dynamical systems to 
which the theory can be applied. 

It is out of  the scope of  this paper to review the main contributions to statistical 
hydrodynamics, nevertheless some comments and references are given in Sect. IV. It 
is also worth noticing that a work close to ours, although expounded from a more 
physical point of view, is developed by Miller et al. [26]. 

II. Baldi's Large Deviation Theorem and Thermodynamic Limits 

Baldi's theorem gives general conditions under which a family of  probability measures 
on a locally convex topological vector space has the large deviation property. 

As we will see, it provides a powerful tool to carry out thermodynamic limits for 
infinite dimensional systems. 
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The Large Deviation Property. Let E be a locally convex Hausdorff topological vector 
space. We consider a family #h, h > 0, of Borel probability measures on E. 

We will say (see for example Varadhan [42] or Ellis [12]) that the family #h has 
the large deviation property with constants l (h)  and rate function L iff: 

(i) A(h) is > 0 a n d  lim A ( h ) = + c o .  
h- -*+oo  

(ii) L : E  --~ [0, +co] is a lower semi-continuous functional on E (not identical to 
+c~). Moreover L is inf-compact, that is: the set {u[L(u)  _< b} is compact for all 
real number b. 
(iii) For every Borel subset A of E, we have: 

-A(~t) _< lira inf 1 h-~oc ~ L ~  and 

1 
lim sup Log #h(A) < - A ( f t )  

h----~ ~ ~ - -  

where A(A) = inf L(u). 
u c A  

The functional L is also usually called the information functional, and - L  the 
entropy functional. 

Let E '  be the topological dual of E,  endowed with the weak-star topology 
a (E  ~, E). For a Borel probability measure # on E, we define its Laplace transform: 

/2(~) = f exp((~,u))dlz(U), for qo C E ' .  

E 

As it is well known,/2 is a convex, lower semi-continuous and proper functional on 
E' .  The same is true for the functional Log/2(~). 

Baldi's Theorem 2.1. Let #~ be a family of Borel probability measures on E, 
satisfying the following assumptions: 
(1) There is a function A(h) as in (i) such that 

1 
lim Log/2h(A(h)~) = F(~o), 

where F is a convex, lower semi-continuous and proper functional on E ~ which is 
finite on a neighborhood of the origin. 
(2) Compacity assumption: 

For every R > O, there is a compact set BI R c E such that 

1 
lim sup Log #h(K~0 < - R  
h---~ +c<~ ~ - -  ' 

Let us denote by L the Young-Fenchel transform of F, that is: 

L ( u ) =  s u p ( ( ~ , u } - F ( ~ o ) ) ,  for u c E .  
qoc E t 

L is a convex, lower semi-continuous, and proper functional on E. 
Baldi's theorem states that under the assumptions (1) and (2) the upper bound in 

(iii) holds. 
If  we suppose that L has some additional strict-convexity property, we can also 

derive the lower bound. We will suppose that L satisfies the following condition. 
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(3) For every real number r, the set A r = {u I L(u) ~ r} is the closure of the subset 
of the points u of A r, where the subdifferential OL(u) (see [12]) is non-empty and 
contains an element ~ such that: 

L ( u ' ) > L ( v ) + ( ~ , v ' - v ) ,  for a l l v ' # u .  

Then Baldi's theorem asserts that under the hypothesis (1), (2), (3) the two bounds in 
(iii) hold. So, we see that the family #h has the large deviation property with constants 
)~(h ) and rate function L. Indeed, one easily checks that the functional L is inf-compact 
on E: for every real number b, the set A b is closed and the lower bound applied to 
the open set ff~+l yields A b C ffb+l [with the notation of (2)]. 

Comments. 1) In practice it may be difficult to check that the hypothesis (3) is 
satisfied. In fact, Baldi ' s  proof  works as well with the following weaker hypothesis 
(3'). 
(3') For every v such that L(v) < + e c ,  for every open set O containing v and every 
c > 0, there is u 1 E O such that L(Vl) _< L(u) + ~ and L is strictly convex at v 1, that 
is: 3g) E OL(v 1) such that 

L(v')  > L(Ul) + (79, u' - Ul} , for all v '  7~ v 1 . 

2) L is strictly convex at v if, for example, OL(v) is non-empty and 

L(tv  + (1 - t)v') < tL(u) + (1 - t)L(v')  

for a l l 0 < t <  1, v ' E d o m L ,  v ' r  
3) In the case where only the hypotheses (1), (2) are satisfied, as we have seen, Baldi ' s  
theorem gives an upper bound. But the functional L may fail to be inf-compact in 
that case. Nevertheless we can see that the set 

A o = {v E E l L ( v )  = 0} is non-empty.  

Notice first that we obviously have F (0 )  = 0 and since F is also the Young-Fenchel 
transform of L, we get: 

inf L(v) = O. 
u C E  

Furthermore, we have #h(K1)+#h(K~)  = 1, and from (2) we know that #h(K~) -+ 0 
(when h ---+ ec). 

Now, if  A 0 were empty we should have A(K1) > 0. Then, applying Baldi ' s  
theorem we should have #h(K1) ---+ 0; this would yield a contradiction. Moreover, 
one can easily deduce that for any open set U containing A 0 there is a number c~ > 0 
such that: 

#h(U c) <_ exp(-A(h)c~) ,  for h large enough.  

We shall say that the family #n concentrates about the set A 0. 

Thermodynamic Limits and the Concentration Property. When dealing with thermo- 
dynamic limits one usually encounters the following situation, which we summarize 
here in an abstract form. Let 5 h be a family of random variables with values in a 
Hansdorff  locally convex topological vector space E. 5 h generally comes from some 
finite dimensional approximation of an infinite dimensional system. If  we can prove 
that, for h large, with a high probabili ty,  5 h remains in a neighborhood of  some points 
u* of  E ,  then u* is the equilibrium state of  our system, and the thermodynamic limit 
is performed. 
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Large deviation theory shows us that such a situation is very common. We will 
assume in the sequel that the family 5h (or the associated probability distributions #h 
on E)  has the large deviation property with constants A(h) and rate function L. 

Since Prob(5 h E E)  = 1, for all h, we have inf L(u) = 0 and the set A 0 is a 
uEE 

non-empty compact subset of E.  And, as in the above comment 3, for every open set 
U containing A 0, there is some c~ > 0, such that: 

Prob(5 h E U ~) < exp( -A(h)c0 ,  for large h .  

That is, the family 5h concentrates about the set A 0 which is the equilibrium set of 
the system. 

In our "microcanonical" approach, we will study now the situation where gh 
satisfies some given constraints (it would be more correct to say that we introduce 
some conditioning on the random variables 5h). These constraints will be given, for 
example, by the constants of the motion of  an infinite dimensional dynamical system. 
We introduce the constraints in the general form 5h E ~ ,  where ~ is some subset 
of  E.  Of course, since 5h comes from a finite dimensional approximation, the ideal 
constraints 6 h E ~ will not be exactly satisfied, but only up to some approximation 
given by an open neighborhood of  0 in E,  W.  Let us denote ~w = ~ ' +  W. We shall 
then consider 5 h E E w.  

Let us now give a definition. 

Definition. Let f ,  f *  be subsets of E,  we will say that 5h concentrates about f *  
conditionally to f iff: 

(i) V W ' , l i m i n f  1 ~  LogProb(~ h E Ew,)  > - e c  
h ~  ~(h) 

(ii) VW*, 3oe > O, ~W, VW' 
Prob(~ h E ~ * 

~ w \ ~ w * )  <_ exp( -A(h)c0 ,  for h large enough. 
Prob(5 h E ~w ' )  

Here W*,  W, W / denote open neighborhoods of  0 in E. 

Remarks. 1) Heuristically, this definition means that if we know that 5h takes its 
values in a neighborhood of  ~ ,  then it will be in a neighborhood of  ~*  with a high 
probability. 
2) As previously noticed, we have to widen the sets ~ ,  ~*  into open neighborhoods. 
In fact Prob(6 h E ~)  is not defined for an arbitrary subset ~ ;  and even if ~ is a 
Borel subset, it can be zero. 
3) The condition (i) ensures that, when h -* oc, Prob(5 h E UW') cannot be too small. 

Now we derive the following concentration result which will be useful to carry 
out thermodynamic limits. 

Concentra t ion Theorem 2.2. We suppose that 5h has the large deviation property 
with constants )~(h) and rate function L. Let ~ be a non-empty closed subset of E and 
~* the subset of ~,  where L achieves its minimum value on ~.  Then 5h concentrates 
about ~* conditionally to ~.  

Proof. L is inf-compact on E ,  thus g'* is always non-empty. In the case where 
inf L(u) = +ec ,  we obviously have ~*  = ~ .  In this case, we may say, by 

u E ~  ~ 
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convention, that 8h concentrates about ~* cond. to ~.  Otherwise, by the 1.d.p. (large 
deviation property), we have 

1 
lim inf ,-:-777,, Log Prob(8 h E -f"w') >- - inf L(u) > - inf L(u) , 

.~tn) uESwt u E ~  

and (i) is satisfied. 
Now, let W* be given, and consider a real number a a > 0 such that 

inf L(u) - inf L(u) > a 1 . 
~ c ~ \ ~ ,  - c ~  ~ 

We shall use the following result. 

Lemma 2.3. Let ~, . Y  be closed subsets of E, then we have 

inf L(u) ~ inf L(u) (when W -~ 0). 
z.,E ~,~N~w uE.TNUJ 

Proof. Let us denote by ~f" the filter of the neighborhoods of 0 in E.  For W E U//', 
we define 

l (W) = inf L(u),  l* = sup / (W),  l** = inf L(u).  
uE.~N~ W rCV E~r 7" u@~N{  ~ 

We obviously have I(W) -+ l* (when W --~ 0), and l* _< l**. 
If l* = +oc,  there is nothing to prove, let us suppose l* < +c~. 
Let us take c > 0 and, for each W, we choose u w E S N  ~ w  such that 

l (W) <_ L(u w)  <_ l* + e. 
The set {u C E I L(u) _< l* + c} is a compact subset of E,  and there is a subfilter 

~ - r  of ~ "  for which u w converges towards u*. We have u* E .~Z'N ~ ,  and the lower 
semi-continuity of L implies: 

L(u*) < l iminfL(uw)  < l* + c, 
~ , / . t  

from where l** _< l* + c, and the lemma is proved. 
From the lemma we deduce that there is a number a > 0 such that, for W small 

enough, we have: 

inf L ( u ) -  inf L(u) > oe, for all W'. 
, 'e~w \ ~Ov. .CZw, 

Applying the 1.d.p., we get: 

1 - - . : r  c c , ~ $  
limsup A- ~ LogProb(8 h E ~w\~v?r < - A ( ~ w \ E ~ v . )  

_< - A ( ~  w\U~r  

and 

liminf ~ LogProb(6 h E f w ' )  >- - A ( f w ' ) .  
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Now, we have 

1 Prob(6 h E 4 w \ 4 ~ r  
lim sup ~ Log Prob(6 h E 4 W,) 

1 
< lim sup ~ LogProb(~ h E ~vv\4v~, )  

- lim inf ~ Log Prob(6 h E 4 w,) 

<_ - A ( ~ w \ 4 ~ v ,  ) + A(4w, ) < -c~, 

from which we get (ii) and the theorem is proved. 

Remark. The set 4 "  in which ~h approximately remains with a high probability is 
the equilibrium set of the system. If  4 "  does not reduce to a point (the equilibrium 
state) we are in a phase transition situation. We shall see in the following section 
how we can use this concentration result to derive a maximum-entropy principle for 
Young measures. We shall use this principle in Sect. 4 to get the equilibrium states 
of some infinite dimensional dynamical systems. 

III. A Maximum-Entropy Principle for Young Measures 

It currently happens when dealing with a limit process for a sequence of bounded 
measurable functions that the sequence does not converge and shows an oscillating 
limit behavior, whereas some estimates and conservation laws hold. In such a case, 
the concept of Young measure has been found relevant to describe the behavior of  
the sequence (examples can be found in hyperbolic systems of conservation laws, 
homogenization, hydrodynamics. . .) .  Young measures can be viewed as giving a 
macroscopic description of  the system, whereas the bounded measurable functions 
are all the microscopic states. 

We use the results of Sect. 2 to derive a maximum entropy principle for Young 
measures. That is: the macrostate (Young measure) which realizes the maximum 
of an entropy functional has a natural concentration property (a large majority of  
the microstates satisfying a given set of constraints are in a neighborhood of  that 
macrostate). It turns out that this entropy functional is the classical Kullback entropy 
(see Sanov's theorem). 

Young Measures. Throughout this section X, Y will denote two locally compact 
separable and metrizable topological spaces. Let us suppose that a positive Borel 
measure dx is given on X.  

Let us recall that Young measures [44] are a natural way to generalize the notion 
of measurable mapping from X to Y: at any point x E X,  we no longer have a 
well determined value, but only some probability distribution on Y. In other words, 
a Young measure u is a measurable mapping x ---+ u x from X to the set MI(Y)  of 
the Borel probability measures on Y endowed with the narrow topology. 

Clearly, u defines a positive Borel measure on Y x Y (that we will also denote 
by u) by: 

(u, f )  - - / ( u x ,  f (x ,  
x 
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for every real function f ( x , y ) ,  continuous and compactly supported on X x Y 
( f  E Cr  x Y)). Moreover, for f ( x )  E Cr we have 

(.,f)=ff(z)dx, 
x 

that is, the projection of  u on X is dx. 
It is well known [19] that this property gives an equivalent definition of Young 

measures. That is, for any positive Borel measure u on X x Y whose projection on 
X is dx, there is a measurable mapping x ~ u x such that the above formula holds. 
The mapping x ---+ u x is unique up to the dx-almost everywhere equality. 

To any measurable mapping f : X  ~ Y ,  we associate the Young measure 
6: : x --~ 5:(x), Dirac mass at f (x) .  

We shall make two additional assumptions: 
(*) The measure dx is diffuse and of  finite total mass d x ( X )  = IXl. 

(**) There is a distance function d(x, x ~) giving the topology of X,  such that: for 
all c > 0, there is a finite partition of  X into measurable subsets • = {X ~ ]i = 
1 , . . .  , n ( ~ ' ) }  with IX~l = IXJ I for all i , j  (we shall say that .~" is an equipartition 
of X),  and satisfying d(.~ ~'~ ) < e, where d(/X) = sup sup d(x, x ~) is the diameter 
of  .~ ' .  i x ,x tCXi  

Notice that (*) and (**) implies that [AI goes to zero when the diameter of  a 
measurable set A goes to zero. 

Hypotheses (*), (**) are satisfied, for example, if X is an open convex and bounded 
subset of IR n with dx =Lebesgue 's  measure, and also if we consider any image of  )? 
by a dx-preserving homeomorphism. 

We shall denote by M the convex set of Young measures on X x Y, and we recall 
some useful properties. 
- M is closed in the space M b ( X  x Y )  of all bounded Radon measures on X x Y 
(with the narrow topology), the narrow topology is equal on M to the vague topology 
(weak topology associated to the continuous compactly supported functions) and it is 
metrizable. Furthermore if Y is compact then M is compact. In the sequel M will 
be endowed with the narrow topology. 
- {Sf I f : X ~ Y measurable} is a dense subset of M.  The proof of  this property can 
be found in [5] for the case Y compact. The general case follows by approximation. 
Approximate first (for the vague topology) a given Young measure u by u~, (as in 
the proof of Theorem 3.1 below) which is constant, equal to u i, on each set X i of 
an equipartition ~ ' ,  and then approximate each u i by a probability measure with 
compact support. 

A Large Deviation Property. Suppose now that we are given a basic Borel probability 
measure 7r 0 on Y. Then to any equipartition .Sg" of  X we can associate a Borel 
probability measure #.~, on M in the following way. We take 5TJ1,..., Yn,  n ( .~ )  
Y-valued independent random variables with the same distribution 7r 0. We consider 
the random function 

i 

where 1x~ is the characteristic function of the set X ~. We denote 5.~. the Young 
measure associated to f.~. and #.~. the probability distribution on M of the random 
variable 5~.. Now, we can state the main result of  this section. 
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Theorem 3.1. When d(.~') --+ O, the family #,~ has the large deviation property with 
constants n ( ,~ ) / lX]  and rate function I~(u), where 7r = dx | 7r o and ITr(u ) is the 
classical Kullback information functional (see Varadhan [42]), defined on M by: 

I~(u) = Log ~ du, is u is absolutely continuous with respect to 7r, 

X x Y  

I,,(u) = +oe  otherwise. 

Proof. We shall show that Baldi's theorem applies to that case. We take for E the 
space Mb(X x Y )  endowed with the vague topology. Taking the vague instead of the 
narrow topology on E makes no change on M but gives the compacity property (2) 
for p~., since the closure 2 f / o f  M in M b for the vague topology is compact. Then 
we have E'  = C~(X x Y) .  

We check now that the assumption (1) is satisfied. We take ~(x, y) E C~(X • Y )  
and compute the limit in (1), 

^ t / n ( ' Z ' ) " ~ = / e x p ( < u , ~ - ~ - ~  

E 

Let us define 

then we have 

1/ 
~,:~.(x, y) = ~ ~(x, y)dx ,  if x E X i , 

x i 

( / )  
x 

When d(.•') goes to zero, ~,z,(x, y) converges towards ~(x, y) and by Lebesgue's 
theorem, we get: 

The functional F is everywhere finite on Cc(X x Y) ,  it is convex since it is a limit of  
convex functions, and it is obviously continuous for the norm topology of C c. Thus 
it is also lower semi-continuous for the weak topology o-(C~, Mb). 

Now, to check that the hypothesis (3 ~) is satisfied, we have to compute the Young- 
Fenchel transform L of F .  For u E Mb(X x Y),  we have: 

L(u) = sup (<u, ~) - F (~ ) ) .  (4) 
~ E C c  

First Point. We have L(u) = § if u ~ M.  We can easily see that L(u) = §  
unless u is positive. Indeed, if u is not positive, there is some g~ E C c, ~ <- 0, such 
that (u, ~) > 0. Then we have F(g~) < 0 and (u, ~) - F ( ~ )  > 0. Taking the supremum 
over the A~, A > 0, gives the result. 
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Now we prove that L(u) < + c o  implies u C M .  Let  us notice that the supremum 
in (4) can be extended to any cp c CD(X x Y). Thus for any cp(x) continuous and 
bounded on X ,  we have 

+oo > L(u) >_ (u, A~o) - A i ~(x)dx , for all real number A, 

x 

hence (u, ~} = f ~(x)dz, that is u E M .  
x 

Second Point. On M we have L(u) = [~(u). Let us first prove that L(u) <_ In(u). Of 
course we may suppose that In(u) < +oc ,  in which case u is absolutely continuous 
with respect to r r :u  = O(x, y)rc, where O is a re-integrable Borel function. Then we 
follow the method given by (Varadhan [42], Theorem 4.1) and use the inequality 

ab <_ b Log b + exp(a - 1), for all real number a, and for b > 0.  

For any g~ C Cc(X x Y), and any c(z),  we have: 

i (99 -c )od%(y )<_ fQLogodreo(Y)+iexp (9~-c -1 )d%(y ) ,  
Y Y Y 

taking c(x)= Log (fexp(qo)dTro" ~ - 1, and using f O(x,y)dreo(y ) = 1, we get: 
KY ] Y 

Y Y 

integrating this over X yields L(u) <_ I,~(u). 
Let us now prove the converse inequality L(u) > I~(u). It is well known that: 

( (S )) /~(u)  = sup (u,r expcpT-~dreo , 
qoECc 

the result thus follows by applying Jensen's  inequality to the convex function - Log. 
It remains to check that the strict-convexity condition of Baldi ' s  theorem is 

satisfied. This is not obvious since if  u is such that g (u )  < +oo ,  Os may be 
empty. In fact, we shall see that (3') is satisfied. At first we prove that s is strictly 
convex at the Young measures u = exp(~o)re, for ~ c C~.(X • Y). Since we know that 
In(u) is strictly convex on its domain, we only have to prove that for such Young 
measures ~ E OL(u). Let us consider the functional 

I(L)) = [ ~ Log 0 drr. 
J 

X x Y  

One can easily check that for any Borel function ~, 0 < c _< ~ < C < +oc ,  the 
functional I is Fr6chet-derivable at ~ in the space L ~176 (re). From the convexity of I ,  
it comes: 

I(0' )>_I(~)+ i ( l + L o g 0 ) ( ~ ) ' - 0 ) d r r ,  for a l l 0 ' _ > 0 , 0 ' E L ~ 1 7 6  
J 

X x Y  

It follows that for all u in Mb(X x Y) we have 

L(u) > L(ore) + (u - Ore, Log ~)}. 
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Hence for Q = exp(~), we get ~ E OL(exp(~)Tr). 
Now let v be given such that L(v) < +oc .  We have u -- ~Tr. For any equipartition 

"~' of  X,  we define the densities 1/ ~i(y) = ~ ~(x, y) dx ,  

X i 

Q.~(x, y) = 0i(y), for x E Xi ;  and v~. = 0~.Tr. 

One easily checks that vg. converges towards v, for the vague topology, when 
d (~ ' )  -* O. 

Furthermore, we have 

L(v,:~.) = Z IX~lI~o(~o ) 
i 

By Jensen's inequality, we have 

pi(y) Log 0~(y) < ~(x, y) Log ~(x, y) IX~----~, 

X i 

from which L(v.~.) < L(v). 
Now we have to approximate the measure v.~. The following lemma, whose proof 

is an easy exercise, will be useful. 

Lemma3 .2 .  For any given density p(y) in Lt(Tr0), there is a sequence Qn(Y) of 
continuous functions satisfying: 

(i) p.,~(y) > O, f p~(y) dTro(y) = l, 
(ii) p~ = 1 out of a compact set, 

(iii) f IPn  - -  ~l d7"(O --~ 0 when n ~ oc, 
(iv) /~0(~,~Tr o) ~ I~0(QTr0). 

Furthermore if I~[~ <- m, we can choose Pn such that IPn[~ <- 2m + 1. 

Then, for each p~(y), we consider the sequence p~, given by the lemma. One can 
also find sequences a~(x) of continuous functions with compact support on X,  such 
that 

O < a ~ ( x ) <  1, and / l l x ~ - a ~  I d x <  1 
n 

x 

Now let us consider the sequence of  continuous functions 

= a i x i E a ~ ( x )  ~ ( x , y )  ~ n( )~n(Y)+ l -  
i i 

we easily check that ~,~ > 0, p~Tr is a Young measure, Q~ = 1 out of a compact 
subset of  X • Y and 

- ~ 0 when ---+ oc .  n 

x x Y  

It follows that ~Tr converges towards u z. for the vague topology and L(~nTr) 
L(u~.) (it is a straightforward application of  Lebesgue's theorem if Q~, is bounded, 
the general case can be reduced to that case). Since ~ = Log Q~ E C~(X • Y),  the 
hypothesis (3 ~) is satisfied, Baldi 's theorem applies and the proof is complete. 
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In this Young measure framework, Theorem 2.2 yields the following result. 

Corollary 3.3. Let ~ be a non-empty closed subset of M, ~* the subset of ~ where 
the functional I~ achieves its minimum value on ~. Then ~ ~; concentrates about ~* 
conditionally to ~.  

Remark. Theorem 3.1 appears as a generalization of the well-known Sanov's theorem 
[36]. Indeed, apply the contraction principle to the mapping u --* f u x dx. 

We refer to [34] for a direct proof of Corollary 3.3 using Sanov's theorem. 

IV. Statistical Equilibrium States 
for a Class of Infinite Dimensional Dynamical Systems 

1) A Class of Infinite Dimensional Dynamical Systems. Now we apply the tools of the 
previous sections to evolution equations of the form: 

{ qt + div(qu) = O , } 
(I) u = .~(q), div(u) = 0 ' 

where q(t, x) is some scalar density function defined on IR x f2 (S2 is a bounded 
connected smooth domain of IRa), u(t, x) is an incompressible velocity field taking 
its values in IR a, which can be recovered from q by solving a P.D.E. system. Thus 
~ denotes a (not necessarily linear) integro-differential operator. 

Let us give some well-known examples of such systems. 
1. The simplest example of (I) is the linear transport equation, where u(x) is a given 
incompressible velocity field on ~. 
2. 2D incompressible Euler equations in the usual velocity-vorticity formulation are 
clearly of the form (I). Take for q the vorticity: q = curl u, then u is given by { curlu=  / 

div u = 0, 

u . n = 0  on 0~2. 

This is a particular case of the quasi-geostrophic model used in geophysical fluid 
dynamics [24], in which q is the potential vorticity, and u is given by: 

{ u = c u r l ~ ,  } 
- -A~ + r2~ = q + f ,  

~ = 0  on 0S2. 

Here f(x) is a given function (topography) on ~2, ~ the usual scalar stream function 
and 7 "2 a non-negative constant. 
3. Collisionless kinetic equations such as the Boltzmann-Poisson equation of stellar 
dynamics and Vlasov-Maxwell equations of plasmas can also be written in the form 
(I). 

The first step in our program is to define a flow associated to (I) on the phase space 
L~U?).  Unfortunately, to our knowledge, there is no general existence-uniqueness 
result for the Cauchy problem for system like (I). Examples 1 and 2 are well known, 
but for kinetic equations, although some existence results are available [2, 11], it 
seems that the uniqueness problem is not yet solved. 

To proceed further, we shall make the following hypothesis. 
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(H1) The system (I) defines a flow ~ t : L ~ ( ~ 2 )  ~ L~(~2),  whose restriction to any 
ball L ~  = {q: Iql~ --- r} is continuous for the strong L 2 topology. 

So, for any given initial datum q(x), we have a velocity field u(t, x); to this field 
we associate a Lagrangian flow Pt(x), defined by: 

{ dpt(X) -- u(t' Pt(x)) 

p0(x) = x .  

We shall suppose: 
(H2) The Lagrangian flow p t  is globally (in time) defined on ~ .  The mappings Pt 
are volume-preserving homeomorphisms of ~2, satisfying an estimate: 

IPt(x) - Pt(Y)I -< C(T, r)  Ix - yl ~(r'~) , c~(T, r)  > O, 

for Iql~ < r, x ,y  C S?, t E [O,T]. 
And we have ~tq(x) = q(p~-l(x)). 
For any given r > O, let us denote M T the space of Young measures on X? x [ - r ,  r]. 

A natural extension of ~t  to MT is given by: 

(~tU)x = u~F,(~ ) , 

where Pt is the Lagrangian flow associated to the initial density 

q(x) = 0(x) = J a dux(a ) . 

Heuristically, we may say that the oscillations of the density function are merely 
frozen and convected by the velocity field associated to the mean density. 
(H3) ~t  : Mr  ~ Mr  is continuous for the narrow topology. 

Notice that the density of  L ~  in M,. implies that such an extension is unique. 
Notice also that the topology on L ~  induced by the narrow topology of M is equal 
to the strong LZ-topology (whereas the corresponding uniform structures are different). 

Hypothesis H1, H2, H3 are obviously satisfied in Example 1 if u is a C 1 velocity 
field on ~ which is tangent to the boundary. They are also satisfied in Example 2: 
this is the classical Youdovich's theorem in the case of  Euler equations [43]; its 
generalization to the quasi-geostrophic model will be found in [23]. 

Constants of the Motion. For systems of the form (I), there is a family of  constants 
of the motion which will play a crucial role. These are the functionals 

Cf(q) = f f(q(x))dx, 
/2 

for any given continuous function f on R. Let us define the distribution measure of 
q, 7rq by (Trp f )  = Cf(q). Then 7rq is conserved by the flow. 

Notice that, in the case of  Example 2, the quasi-geostrophic model has in a natural 
way a Hamiltonian structure [24], and these invariants are the well known Casimir 
invariants associated to the degeneracy of the Poisson brackets. According to each 
particular case, we will have also to take into account the classical constants of the 
motion of the system (energy, angular momentum, . . . ) .  

2) Motivation to Define Equilibrium States. Observations, experiments, or numerical 
simulations in 2D fluid dynamics display in many cases the appearance of well 
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organized structures. This is a striking feature of 2D fluid turbulence. We observe 
that after a complex evolution the system converges towards some stationary state 
which is usually called a coherent structure. Since in 2D turbulence the energy of  
the flow is conserved Onsager [30] suggested that such structures were equilibrium 
states and it would be possible to predict them by a relevant statistical mechanics 
approach. The same idea was later rediscovered by Lynden-Bell [22] in the context 
of  stellar dynamics. Lynden-Bell tried to explain the particular distribution of light 
observed in elliptical galaxies. We do not intend to discuss further these enlightening 
and pioneering works. The interested reader can find some information in the papers 
[9, 13, 21, 26, 27, 35] (this list is of course far from exhaustive). To summarize our 
view, let us say that these works have clearly shown the need for an appropriate 
statistical mechanics approach working in a sufficiently broad frame. 

3) Previous Attempts to Define Equilibrium States. A natural way to define equilibrium 
states is to construct invariant Gibbs measures on the phase space. Although this can 
be done for some infinite dimensional systems (see for example [15]), we do not 
know how to construct such measures on the natural phase space L~(X?) for systems 
like (I). In the case of  Euler equations some work has been devoted to the study 
of  Gibbs measures with formal densities given by the enstrophy and the energy [4], 
and also to Gibbs measures associated to the law of vorticity conservation along the 
trajectories of  the fluid particles [6]. Unfortunately all these measures are supported 
by very "large" functional spaces so that not only the mean energy and enstrophy 
of  these states are infinite but the phase space L~ is of  null measure. So, it is 
only at a formal level that this makes sense. Moreover this approach fails to give 
any prediction on the long time dynamics corresponding to a given initial vorticity 
function. 

The most common approach is to use a convenient finite dimensional approxima- 
tion of  the system, possessing an invariant Liouville measure. Then one can consider 
the canonical measures associated to the constants of the motion and try to perform 
a thermodynamic limit in the space of generalized functions when the number of 
degrees of  freedom goes to infinity. For example, for 2D Euler equations one can 
consider the N Fourier-mode approximation or the point-vortex approximation. Two 
difficulties arise in this approach. The first is to choose a relevant scaling to per- 
form the limit; an interesting comment on this point can be found in [26], see also 
[16, 4]. The second is even more fundamental: generally, the approximate system will 
have less constants of the motion than the continuous one (I), so that the long time 
dynamics of  that system may be very different from that of  the continuous one. 
For more comments and references on these previous attempts see for example 
[33, 35, 26]. 

4) Our Approach. As expounded in [33] for 2D Euler equations, our approach is 
based on the following points. 

1. Identify the long time limits of the dynamical system as Young measures. M~ 
is a suitable compactification of L ~  since the narrow convergence (when t goes to 
infinity) of  6~tq towards some Young measure v preserves the information given by 
the constants of the motion, that is, for all function f 

/ f (C'tq(x)) dx --+ / (vx, f) dx , 
s s 
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but the left-hand side is constant and equal to (71-q, f}, so that: 

f u x dx = 7cq. 
S2 

The same kind of arguments applies to the other invariants. For example, in the case 
of Euler equations, since ~btq converges weakly towards 0(x), we have for the energy 
E(4)tq ) --+ E(#),  which is the energy of the Young measure u, see [33]. 

Thus we see that the constants of the motion of (I) bring constraints on the possible 
long time limits. 
2. For a given initial state q, the corresponding equilibrium state is the Young measure 
u* which minimizes the Kullback information functional I~(u) (Tr = dx | 7c o, 
I$2]~r 0 = ~Vq) under the constraints given by the constants of the motion. Thus 

u* (or more generally the set f * )  will have the concentration property given by 
Corollary 3.3. 
3. In other words, to get u*, we have computed the thermodynamic limit in the space 
M of the "microcanonical" measures #.~. (defined in Sect. III) with the conditioning 

given by the constants of the motion. But the probability measure ~v~. = (~  7r 0, on 
the space E~. of the density functions which are constant on each element of the 
equipartition ~ ' ,  is not conserved by the flow ~t; so that the compatibility with the 
dynamics of the system is not a priori ensured. 

In [33] the method was justified by an invariance theorem. That is, the concentra- 
tion property is conserved by the extended flow ~t. The proof given in [33] works 
equally well for systems like (I) satisfying hypothesis H1, H2, H3. Indeed, the crucial 
point is the (obvious) fact that the functional I~(u) is conserved by the extended flow. 
Another straightforward consequence is that the equilibrium set f *  is conserved by 
~)t ( (S t ( f* )  = ~*).  So, if ~*  = {u*} then ~t(u*)  = u* and the mean density u*(x) 
is a stationary solution of (I). 

It was argued by Eyink and Spohn [13] that the above invariance property was not 
enough to provide a complete justification of the method. Their interesting comments 
lead us to develop here some further arguments. 

Let us apply the contraction principle to the mapping u ~ ~ from M,. into L ~  
endowed with the weak topology cr(L ~ ,  L 1) (we suppose that % is supported by the 
interval I - r ,  r]). Then we deduce from Theorem 3.1 that the family of measures 7rz. 
has the large deviation property with rate function 

Obviously, the functional J is conserved by ~t. 
Now, for any Borel subset A of L ~ ,  we have (using the notation ~ as a convenient 

shortcut): 

7r~.(~t(A)) ,~ exp ~ J(4)t(A)) = exp ~ , 

where J(A)  = inf J ( f ) ,  so that 
fEA  

7rz,(~St(A)) ~ 7rs(A) , when d(~F) -+ O. 
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It means that the measures 7r~. are, in some approximate sense, conserved by the flow 
4~ t. It appears that this argument can be sharpened to give something looking like a 
classical justification. 

5) Towards a More Complete Justification. Let us start with some heuristical consider- 
ations. Let us suppose that the flow ~5 t is "well approximated" by some N-dimensional 
dynamical system: 

(~N)t : EN --+ EN,  

that is, for any given q, (qSg)tq N is close to qStq in the L 2 n o r m  (here qN denotes an 
2 approximation of q in the L -sense); and this approximation is uniform for t in the 

interval [0, T], for N large enough (depending on T). 
Let us suppose now that (qsg) t has an invariant Liouville measure #N on E N. Of 

course, we cannot expect that (qPN)t will have the same constants of the motion as 
4~ t, but since the constants of  the motion of 4~ t are uniformly continuous functionals 
on the compact space M~, any finite subset of  these functionals will be approximately 
conserved by the flow (~N)t during the time interval of  interest (for N large enough). 

Therefore, since we are interested in the long time dynamics of  (I), say for example 
at time T, it is natural to consider the microcanonical measures fiN obtained by 
conditioning #N by the constants of  the motion of  (I); and then to perform the 
thermodynamic limit of  ]~N in the space M,  which is the good candidate for the long 
time limits. 

Of course this program is not easy to carry through in general. Nevertheless it is 
exactly what is done in Corollary 3.3 with the "Liouville" measure 7r~.. 

It remains to show that 7r.z, is actually conserved by a flow on E z, which 
approximate ~t. 

An Approximation of the Flow q5 t. Let us begin with t = 1, let .~" be an equipartition 
of  Y2 and E S the subset of  the functions of  L ~  which are constant on the sets Y2 i 
of  .~'. We can construct an approximation of  4~ 1 in the following way: For a given 
integer p > 1, we write 

(2p)n(,~') 

z .=U 
where each C s is a box which is a product of intervals of  the form 

I k =  r - , r - -  , k = - p , . . . , p - 1 .  
P P 

First, we construct a mapping Pp:Ez. --+ L~ .  For q E C s, q = ~ q i l s ? i ,  
Pp(q) = ~ qil~f(s?i), where p~ denotes the Lagrangian flow associated to q~, the 

center of  the box C ~. Now, we approximate this mapping Pp by a mapping Pp,.~ 
taking its values in Ez. .  This can be done by means of the following lemma whose 
proof is given in the appendix. 

L e m m a  4.1. Let ~ be an open bounded subset of R d, ~,~" = {~i} ,  ~ = { Oi }, two 
equipartitions of X? with the same number n of elements. Then, there is a permutation 
cr o f { l , . . . ,  n} such that vol(f2 i A 0 ~(i)) > O, for all i. 

We apply the lemma for each s and choose a permutation cr  such that 

vol(p~(Y2 i) N Y2 ~(i)) > 0,  for all i .  
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Then we define the mapping gtp, S by: 

Then we have the following result. 

Proposi t ion 4.2. For d(~') small enough and p large enough (depending on d(~)) ,  
~p,~. uniformly approximates 4)1 on E.z.. That is: ffzp,.~.(q) is close to ~l(q) in L ~  
endowed with the narrow uniform structure of M (uniformly with respect to q E EgO. 

Proof. At first, it is an easy exercise to check that for d(.Z') small enough Op,.~.(q) is 
close to gtp(q) for the narrow uniform structure of  M (uniformly for q E E~.). This 
follows from the fact that the Lagrangian flow ~1 satisfies a H61der estimate which 
is uniform for q in L ~ .  

Now, let S fixed. For p large enough, ~p(q) will be close to (bl(q) in the L e norm 
(uniformly for q E E~.). Indeed, by (HI),  r is continuous from E.~. into L ~  (for 
the L 2 norm) and s i n c e / ~ ,  is compact, it is uniformly continuous on E~.. The result 
follows by noticing that on L ~  the uniform structure of  the L 2 norm is stronger than 
the one induced by the narrow uniform structure of  M.  

It is clear that ~Pp,.~. conserves the distribution rCq. For any probability measure % 
n 

on [ - r ,  r], the measure @ % on E~.  is also obviously conserved on each box C ~. 

But it is not globally conserved, since two different boxes C ~ and C s' can have the 
same image by ~),.~.. 

With a slight change, one can get a one to one mapping Op,j .  from E S onto E~.. 
We proceed as follows. M~ is a compact metrizable space for the narrow topology, let 
us denote d(., .) a distance function defining the uniform structure. Now, we define a 
one to one mapping q~ --~ q~(*), where ~ is a permutation of the indices of the boxes, 
in the following way: 

max d(q ~(~), ~ l q  ~) = min max d(q k(*) , g ' lq~) ,  
k s 

where k runs over the permutations of  the indices of  the boxes satisfying rCqk(8) = ~rqS. 

This mapping is straightforwardly extended (as above for ~p) from C s onto C ~(~) to 
get finally a one to one mapping (gp,.Z. from E~.  onto E~..  Obviously, rCq and the 
measure rc S are conserved by ~gp,.Z.. 

Of course, it remains to prove that (Op,.~. is also a good approximation of r (i.e. an 
analog of Proposition 4.2 holds for 6)p,.Z.). Despite the fact that this property follows 
common intuition, it is not easy to prove rigorously. We can only conjecture that it 
is true at present. 

Finally, if we suppose that such a result is true, at long time (say t = T, T integer), 
for d(.~-') small enough and p large enough, the flow q5 T will be well approximated 
by (Op,.z.)T, SO that the classical appeal to ergodic theory holds. 

6) Resolution of the Variational Problem. As we have previously seen, the equilibrium 
set ~ *  corresponding to a given initial datum q is the set of  the solutions u* of the 
variational problem, 

(V.P.) I~(u*)  = inf{I~(u) lu E ~ } ,  
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where ~ is the closed set of the Young measures u satisfying 

[ u x dx = 7rq, (*) 

g2 

(**) other constraints ( ene rgy . . . ) .  

Using Lagrange multipliers, we can get easily the equation satisfied by the critical 
points of (V.P.) (Gibbs states' equation). We refer to [33] for Euler equations and to 
[24] for the quasi-geostrophic model. 

In this section we shall make two comments.  The first comment is relative to the 
choice of the basic probabili ty measure %. Indeed, it is natural to examine how the 

1 
equilibrium set defined by (V.P.) depends on 7r 0. As previously, denote 7r 0 = ~ 7rq, 

and suppose that we choose another probabili ty distribution 7r I on [ - r ,  r] to define 
the rate function I,,,,  7r ~ = dx | 7r 1. The condition (*) implies that, for almost all 
x, u x is absolutely continuous with respect to 7r 0. On the other hand, one easily gets 
for u C 4 :  

I~,(~) = I~ ( . )  + Is?lI~l(~r0). 

Thus we see that, provided that I ~  (Tr0) < +oo ,  minimizing I~ or I F, on f gives the 

same equilibrium set 4 * .  In the degenerate case ITr ~ (Tr0) = +oc ,  I~, is identical to 

+oo,  and the corresponding equilibrium set is equal to ~ .  
To summarize: in the non-degenerate case, the equilibrium set does not depend on 

the choice of 7r 1. It is then very natural to choose 7r I = 7r 0. 
We come now to the resolution of (V.P.) in the particular case of Example 1. We 

have: 

and the unique solution of (V.P.) is v* = dx | 7r 0. Let us suppose that the Lagrangian 
flow ~t  associated to u is mixing in the usual sense of ergodic theory, that is: for any 
measurable subsets A, B of  X2, we have 

lim v o l ( ~ t l ( A )  n B) = vol(A) - vo l (B) .  
t - - - + ~  

In that case, we can easily prove that when t ---+ ec, 

6~t q --~ u* ,  for the narrow topology.  

This simple result l inking the long time dynamics with the equilibrium state leads to 
the following important comment. 

1 For a given q, since ~ tq  = q ( ~ t  ), many other topological invariants are conserved 
by the flow: for example, if q is a patch with n connected components,  the same will 
be true of  ~btq for all t. So we may a priori think that an equilibrium state will depend 
not only on the constants of  the motion that we have considered but on q itself. 
Example 1 shows that in fact these invariants play no role. We see that, when t goes 
to infinity, the Dirac Young measure 6,~t q approximates better and better in the narrow 

topology the limit u*, while the supplementary invariants that ~ tq  conserves bring 
no constraints at the limit on the state u*. This is due to the fact that these invariants 
are not uniformly continuous for the uniform structure induced on L ~  by the narrow 
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uniform structure of M r. Indeed, any uniformly continuous invariant has a unique 
continuous extension F on M r. Then, at the limit, u* must satisfy the constraint 
F ( u * )  = lim F ( ~ t q  ) = F(q) .  

t--+ oo  

Let us notice also that, for Example 1, the mapping ~ ,  :E,~. ~ E~. defined by 

where the permutation ~ is chosen such that vol(~l(f2 i) n X? ~(0) > 0, is obviously 
one to one and conserves the distribution 7rq and the measure K~'. 

V. Comments  

1. The idea to consider such equilibrium states for the Boltzmann-Poisson equation 
was first introduced by Lynden-Bell [22]. As noticed in [41], since the region occupied 
by the stars is the whole space R 3, equilibrium states do not exist in that case. 
Moreover, even if the particles are constrained to move in a bounded domain of the 
space, their speed is distributed over all of R3; so that the domain is not naturally 
bounded in the case of kinetic equations. This of course needs some supplementary 
technical work to define rigorously the equilibrium states. 
2. In the case of Euler equations and more generally for the quasi-geostrophic model 
the same equilibrium states can be obtained by using the classical point-vortex 
approximation, see [23, 24]. 

3. In a recent paper [26], Miller et al. exhibit a N-dimensional approximation of 
2D Euler equations on the toms, which preserves the main features of the Hamiltonian 
structure; that is, the degeneracy of the Poisson brackets yielding O(v/N) Casimir 
invariants. This approximation was previously published by Zeitlin [46], see also 
[14, 45]. While it is likely that this equation provides a good approximation of Euler 
flow, the thermodynamic limit in the space of Young measures of the associated 
canonical Gibbs measures is far from obvious. The following simpler problem is not 
even solved. 

Let us consider e l , . . . ,  e N, the usual real orthonormal Fourier basis, con = ~ coiei, 
and let cox evolve according to the usual spectral approximation scheme. Then it is 
well known that the measure rico1.., dco N is conserved, so are the energy and the 
enstrophy ~ co2. Let us consider the Gibbs measures 

1 
( co2) dcol dcoN, for a > # N =  ~ e x p  - N a E  i . . .  0 fixed. 

The following question arises naturally: 
Do the images, by the mapping co --+ ~5~o, of the measures #N have the 

/ 

with constants N and rate function I~(u)  (Tr = dx |  large deviation property 

~r exp(-aco2)dco~ ? 
\ 

/ 
To conclude this comment, let us notice that the large deviation results of Sects. II 

and III provide an easy and rigorous proof of the thermodynamic limit result of Miller 
et al., see [33] Comment 7. 
4. We left no place in this paper for the discussion on the physical relevance of 
these equilibrium states. Such a discussion is necessarily based on an analysis of the 
macroscopic spatial scale at which the flow is observed, of the viscous dissipation scale 
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(if some viscous dissipation process occurs), and of  some characteristic relaxation time 
of  the system. This greatly varies from one system to another (there is no viscous 
dissipation for collisionless kinetic equations) and must be carefully done specifically 
in each case. This is clearly out of the scope of our paper which is an attempt to give 
some clarification on the mathematical  basis of the theory. In our opinion we need 
to distinguish clearly between the mathematical  properties of ideal models and the 
variable conditions under which such equilibrium states might be physical ly relevant. 
Nevertheless, some elements for such an analysis can be found in [35, 40, 26, 13] 
for 2D turbulence, in [39] for Jupiter 's  Great Red Spot, and in [22,41] for stellar 
systems. 
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to improve the present paper. 

Appendix 

Proof  of  Lemma 4.1. We proceed by induction. More precisely, we prove that for all 
k, 1 < k < n, and any family ~ 2 t , . . . ,  O k of  k distinct elements of ~ ' ,  we can find 
01 , . . . ,  O k distinct elements of  ~ '  such that vol(S2 i A O i) > 0. 

This is obviously true for k = 1. Now, let us suppose that the property is true up 
to k < n, and consider a family $21 , . . . ,  Dk+l. 

By the induction hypothesis, there is O 1 , . . . ,  O k, in (~ such that vol(S2 i n 0 i) > 0 
for i = 1 , . . . ,  k. Let us consider g2 k+t. If o k + t  intersects [in the sense vol(D k+t n 
O*)  > 0] an element O* of ~ different from O 1 , . . . ,  O k, the result is proved. 

Otherwise, we have g2 k+t c 01 U . . .  U O k [in the sense vol(J2 k+l A ( . . . ) )  = 
vol(g2k+l)], then g2 k+l intersects at least two different sets 01,  . . . ,  O k, let us denote 
them 0 1 , . . . , 0  p (renumber), 2 _< p <_ k. Now we have ~?k+l C 01 U . . .  U 0 p. 
If  one of the ( 2 1 , . . . ,  f2p, say g2 i, intersects Y2\(O 1 t2 . . .  tO O k) the result clearly 
follows: since f2 i intersects a set O* of  O different from 01 . . . .  , O k, we only have 
to associate O* to f2 i and then O i to g2 k+l. 

So, we may suppose that f2 k+l U f21U. . ,  tJ f2 p C 01 U . . .  U O k. Since the measure 
of  the first set is equal to (p § 1)vo1(/21), it cannot be included in O 1 U . . .  U 0 p, 
so that there is a set 0 p+I (renumber) which intersects a set f2 i for i < p. If  ~?p+l 
intersects g?\(O 1 U . . .  U Ok), the result follows; otherwise, we iterate the construction 
and it yields a sequence 0 i, i = 1 . . .  m,  p < m <_ k, such that f2 "~ intersects 
g2\(O l U . . .  U O k) and for each O i, p < i _< m, there is a S2J with j < i which 
intersects O i. 

Now, to conclude, we associate to g2 ~ a set O* of  ~ '  different from O 1 , . . . ~  O k. 
Then we associate O m to f2 i for i < m,  0 i to ~2J for j < i, and so on till we get an 
index j _< p. We associate this 0 j to g2 k+l and the proof  is complete. 
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