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Abstract. A supersymmetric generalization of the Krichever map is used to 
construct algebro-geometric solutions to the various super Kadomtsev- 
Petviashvili (SKP) hierarchies. The geometric data required consist of a suitable 
algebraic supercurve of genus g (generally no t  a super Riemann surface) with a 
distinguished point and local coordinates (z, 0) there, and a generic line bundle of 
degree g -  1 with a local trivialization near the point. The resulting solutions to the 
Manin-Radul SKP system describe coupled deformations of the line bundle and 
the supercurve itself, in contrast to the ordinary KP system which deforms line 
bundles but not curves. Two new SKP systems are introduced: an integrable 
"Jacobian" system whose solutions describe genuine Jacobian flows, deforming 
the bundle but not the curve; and a nonintegrable "maximal" system describing 
independent deformations of bundle and curve. The Kac-van de Leur SKP system 
describes the" same deformations as the maximal system, but in a different 
parametrization. 

1. Introduction 

The theory of the generalized KdV equations, or the KP hierarchy, stands at the 
crossroads of several flourishing branches of modern mathematics and physics: 
Riemann surfaces, algebraic geometry, integrable systems, loop groups, conformal 
field theory, string theory, and quantum gravity. The centerpiece of the theory is 
the construction of algebro-geometric solutions to this infinite system of nonlinear 
differential equations from geometric data, and the dual interpretation of the 
solutions as flows in the moduli space of geometric data or in an infiniie- 
dimensional Grassmannian [1-6]. The geometric "Krichever" data consist of a 
Riemann surface with a choice of local coordinate near a distinguished point, and a 
generic line bundle of degree g -  1 with a choice of local trivialization, and the flow,s 
deform the line bundle. The Krichever construction which produces the solutions 
has become a basic tool in the operator formalism of conformal field theory 
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because of its utility for describing deformations of the geometric data. In 
particular it is closely connected to the action of the Virasoro algebra. 

Various supersymmetric generalizations of the KP hierarchy have been 
proposed. Of these, the SKP hierarchy of Manin and Radul (MRSKP hierarchy) 
has attracted the most attention [7]. The algebraic theory of this hierarchy is now 
well understood, particularly its integrability and the conditions for the unique 
solvability of its initial value problem [8]. The interpretation of the hierarchy in 
terms of flows on a super Grassmannian has also been discussed [9]. Although it 
has been generally assumed that algebro-geometric solutions must arise from 
super Riemann surfaces in some way (because of the appearance of the 
supersymmetric derivative operator D throughout the theory), this has never been 
demonstrated even though the elements of the super Krichever construction have 
been developed [10-13]. Some solutions have been obtained by Mulase [8] and by 
Pakuliak [14] in terms of the super elliptic functions [15] on supertori, indicating 
that such an algebro-geometric construction should exist in genus 1. In contrast, 
Radul [16] showed that solutions of the MRSKP hierarchy can be obtained from 
pairs of solutions to ordinary KP, raising the question of how two sets of ordinary 
Krichever data are to be related to the presumed super Krichever data. 

A supersymmetric generalization of the approach to the KP hierarchy via loop 
groups, affine Lie algebras, and bosonization has been given by Kac and van de 
Leur, who arrived at a quite different formulation of a SKP hierarchy (KVSKP 
hierarchy) as Hirota bilinear equations [17, 18]. This KVSKP hierarchy has been 
studied by Bergvelt ['19], who explained its geometric interpretation in terms of 
orbits of the general linear supergroup action on a super Grassmannian. This had 
been a confusing issue because the ordinary KP theory makes use of the projective 
embedding of the Grassmannian given by the Pliicker coordinates, which does not 
generalize to the super Grassmannian. However, the relation of this KVSKP 
hierarchy to that of Manin and Radul, and the possibility of constructing algebro- 
geometric solutions, remained unclear. A similar formulation of a SKP hierarchy 
using the language of superconformal field theory and a different, supersymmetric 
bosonization was given by LeClair [20]. 

In this paper we will explain the relation between these different SKP 
hierarchies, and-use the super Krichever construction t o  obtain the algebro, 
geometric solutions. The geometric Krichever data which generate a solution 
consist of a (lll)-dimensional supermanifold (supercurve), which is no t  a super 
Riemann surface except in the case of genus 1, with given local coordinates near a 
distinguished point, and a line bundle satisfying certain cohomology conditions 
(these restrict its degree to be g -  1 but also give a constraint on the supercurve, 
unlike the KP case) and with a given local trivialization near the point. In contrast 
to the ordinary case, the SKP hierarchies describe deformations of the supermani- 
fold as well as the line bundle. Thus, these flows take place not in the Picard variety 
of a fixed supermanifold, but in the universal Picard bundle over the moduli space 
of supercurves, whose fiber at any curve is its Picard variety. Arbitrary 
deformations of the bundle are possible, but only those deformations of the 
supercurve which preserve projectedness: changes in the patching of the odd 
coordinate but not the even one. The KVSKP hierarchy includes all deformations 
of these types, which are not integrable since deformations of the supermanifold 
and bundle do not generally commute. The MRSKP hierarchy describes a special 
subset of the deformations in which changes in the supermanifold are coupled to 
changes in the bundle in such a way that the resulting flows do commute. Neither 
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hierarchy is a precise geometric analogue of the ordinary KP hierarchy which, by 
deforming the line bundle only, can be used to solve the Schottky problem of 
characterizing the Jacobian varieties (here viewed as the Picard varieties of line 
bundles) of Riemann surfaces. We will introduce a new, integrable SKP system 
which provides this missing analogue. We also generalize the theory to families of 
Krichever data, which is to say nonsplit supermanifolds, and observe that in this 
case the geometric construction of the solutions requires not just a local 
trivialization, but actually a choice of a particular transition function, for the line 
bundle. Equivalently, this amounts to a choice of connection in the universal 
Picard bundle. 

The paper is organized as follows. Section 2 is a review of the Krichever theory 
of algebro-geometric solutions to the ordinary KP hierarchy, with emphasis on the 
formulation in terms of pseudodifferential operators, commutative rings of 
ordinary differential operators, and their deformations rather than the alternative 
treatment in terms of tau functions. Section 3 contains the generalization to the 
super case, with the focus on the MRSKP hierarchy. We discuss the cohomology 
conditions to be imposed on the geometric data and their consequences, the 
definition of the super Grassmannian, the way in which the supersymmetry 
relation D 2= ~x leads to deformations of the supermanifold as well as the line 
bundle on it, and the extension to (nonsplit) families of geometric data. Section 4 
modifies the construction so that only the line bundles are deformed by the flows, 
leading to the new "Jacobian" SKP hierarchy introduced here. Section 5 further 
generalizes the construction to include all deformations of the type described 
above. The resulting "maximal" SKP hierarchy is shown to be equivalent to the 
KVSKP hierarchy. Section 6 contains the conclusions and directions for further 
research. 

2. The KP Hierarchy and the Kriehever Construction 

We begin with a review of the KP hierarchy and the construction of algebro- 
geometric solutions by means of the Krichever map. The KP hierarchy is a set of 
equations for the deformation of a pseudodifferential operator 

g -~  o -t- u 2 c~ - l -t- u 3 63 - 2 -t- . . . .  (1) 

Here a = d/dx, and the coefficients ui(x, t) should be regarded as formal power series 
in x and in the infinitely many deformation parameters tl, t2 .... (the question of 
convergence of these series is not of central importance in the geometric theory). 
Such pseudodifferential operators are multiplied by using the generalized Leibniz 
rule 

= r( i+ l ) r ( n - i + l ) "  (3) 

The absence of a term Ul ~~ in L is necessary and sufficient for the existence of a 
pseudodifferential operator 

S = I  +sl~ -1 +s2Q-2 + ... (4) 
with 

S-  1LS = 0. (5) 
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The KP hierarchy is the infinite set of commuting flows on the space of operators L 
given by 

a--L-L = [L~+, L] = - [L~_, L] (6) 
a t  n 

where L~+ denotes the differential operator part of L n, obtained by dropping all 
terms containing negative powers of ~, and LL = L n -  L~+ consists of the terms 
dropped. These equations are equivalent to 

0S 
dt~ = - LL S=  -(SOnS-1)_S.  (7) 

Algebro-geometric solutions to the KP hierarchy are constructed from sets of 
Krichever data (M, p, ~e, z, q$), where M is a compact connected Riemann surface 
(more generally, an irreducible algebraic curve) of some genus g, p is a (smooth) 
point of M, z is a local coordinate vanishing at p, L,e is a line bundle (more 
generally, a torsion free rank I sheaf) on M satisfying the cohomology conditions 
H ~  and q$ is a local trivialization of ~ over a neighbor- 
hood, say U = {Izl < 1}, ofp. The cohomology conditions on ~ ,  together with the 
Riemann-Roch theorem 

dim H~ ~e) -  dim H I(M, ~ )  = deg ~ + 1 - g, (8) 

imply that d e g ~ = g - 1 ,  so that ~ belongs to the same connected component 
Pic g- 1M of PicM as the spin bundles K l/z, K being the canonical bundle of M. 
More importantly, the Riemann-Roch theorem for ~| gives 

dim n ~ ~ | (9(p)) - dim HI(M, LP | (9(p)) = 1, (9) 

so that although Lf has no holomorphic sections, it does have a unique (up to 
normalization) section holomorphic except for a simple pole at p. (Here we use the 
fact that tensoring with (9(p) increases dimH ~ by at most unity.) Using the 
trivialization q$ we can represent this section as a function s(z) in the chart U : s(z) 
= z-  1 + holomorphic. Similarly, dim H~ ~ @ (9(np)) = n and H 1 (M, 
Lf@(9(np))=0 for all n>0, so that there are unique (up to normalization 
and linear combination with sections having lower-order poles) sections holo- 
morphic except for a pole at p of any positive order. Via the trivialization ~b, the space 
H~ ~ )  spanned by such sections becomes a space of functions on the circle 
Izl = l bounding U, in fact a point W of the Grassmannian Gr consisting of all 
closed subspaces of Lz(S l) for which the projection onto H + = span {z- 1, z-  z .... } 
is Fredholm of index zero. W actually belongs to the big-cell of Gr, consisting of 
subspaces for which the projection is an isomorphism. (In keeping with our general 
philosophy we will usually view the elements of W as formal Laurent series rather 
than functions.) 

I fM is covered by the Stein patches U and M\p,  then &e is trivial on each patch 
and is completely described by its transition function h(z) on the intersection U\p. 
We now deform ~ to a (formal) family of bundles ~(x,  t) having the transition 
function 

exp(  x z - l +  .=l~tnZ-") h(z)=-G(z'x't)h(z)" (10) 

At least formally, this family actually parametrizes the entire connected compo- 
nent Pic g- t M, with considerable redundancy: the deformation is trivial whenever 
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G(z, x, t) extends to a holomorphic function on M \ p .  It will be crucial that expxz- 1 
is an eigenfunction of 0 = d/dx with eigenvalue z- 1, hence also an eigenfunction of 

exp ~ t,0" with eigenvalue exp ~ t . z-" .  In the language of quantum field theory, 
r l = l  I I = 1  

x will play the role of a source for generating "insertions" of z-1. By the 
semicontinuity theorem 1-21] this family of bundles generically continues to enjoy 
the cohomology properties H ~  H ' =  0, so that there is a function s(z, x, t ) = z - 1  
+ holomorphic in z, representing via q5 in U the unique section with a simple pole 
at p. In the other chart of the covering, M \ p ,  this section is represented by the 
function restricting to G(z,x,  t)h(z)s(z,x,  t) on U\p.  However, since the "unper- 
turbed" transition function h(z) plays no role in the analysis, it is customary to drop 
it and represent the section by the "wave function" or "Baker-Akhiezer function" 
w(z, x, t) = G(z, x, t)s(z, x, t). The x-dependence of the Baker-Akhiezer function 
provides a convenient basis for the space of sections W, since Okw(z, x, t) = G(z, x, t) 
(z - k -1  +higher powers of z). Thus w(z,x ,  t) and its derivatives (more precisely, 
G(z, x, t )-  1 times these) form a basis for the entire space of sections W. 

Now let H ~  (9) be the ring of functions on M holomorphic except for a 
pole of any finite order at p. For any such function f (z) ,  f ( z )w(z ,  x, t) represents a 
section of 5r with a pole only at p, so using the basis just described it can be written 
as P ( f ) w ( z ,  x, t) with P ( f )  a differential operator in x with coefficients depending 
on x and t. For each t, the association of P(f)  to f gives a commutative ring R(t) of 
differential operators isomorphic to H ~  (9); more precisely, we obtain an 
isospectral family of commutative rings of differential operators. 

Now let S = 1 + s l(x, t) O- 1 + S2(X ' t) 0 - 2 + . . .  be the unique pseudodifferential 
operator such that 

s(z, x, t) exp xz- 1 = z- 1S expxz- 1, (11) 

or, equivalently, 

w(z, x, t) = z -  1SG(z, x, t). (12) 

(The successive derivatives in S produce the successive terms in w viewed as a 
Laurent series in z.) A short calculation will show that S, or equivalently L 
- -SOS-1,  is a solution to the KP hierarchy. Each derivative Ow/Ot, represents a 
section with a pole of finite order at p, and expressing it in terms of the basis of 
x-derivatives of w shows that 

Ow 
- Bn(t)w (13) 

Ot. 

for some differential operator B.(t). Combining this with the derivative of (12), 

Ow - 1 OS 
- -  = z G + z -  I S z - " G  
Or, 

= z -  10S S -  1SG + z -  aSO"S- 1SG 

OS 
= Ot~ S -  lw + SO"S- lw ,  (14) 

yields 

Bn-= OS s-1 Ot. + SO.S-  1. (15) 
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Because the first term on the right contains only negative powers of 0, the 
differential operator B, must be the differential operator part of the second term, 
that is, L"+. Therefore, rearranging (15), 

0S 
ate, =(B, -L")S= -L"__S, (16) 

which is the KP hierarchy. It should be stressed that the geometric deformations of 
the Krichever data make sense for arbitrary line bundles on Riemann surfaces; the 
cohomology conditions on the bundle are required only in order to describe these 
flows by their effect on the operator S and thereby produce the KP hierarchy. 

Not all solutions to the KP hierarchy are obtained by this construction. If the 
local coordinate z is chosen so that z-k extends to a holomorphic function on M\p, 
then the ring R(t) must contain a differential operator P(z-k), which must in fact be 
L k in view ofLkw = sOks - lz-  1SG = z-kw. Therefore, up to an equivalence relation 
reflecting changes of the local coordinate, the solutions obtained all have the 
property that some power L k is a pure differential operator. Furthermore, the ring 
R(t) contains an operator of each sufficiently high order. It is possible to 
reconstruct all the geometric data (M,p,z, ~e, 40 from such a solution S. S 
determines w, which, together with its derivatives, gives a basis for the space of 
sections W. The ring of functions H~ (9) (restricted to U and expressed in 
terms of the local coordinate z) is the maximal stabilizer of W, the maximal set A w 
of formal Laurent series in z with AwWC W. The affine part M\p of the algebraic 
curve M is then Spec Aw, and from the module W over Aw one constructs the sheaf 
17V on SpecAw which is just the family of bundles ~ [21]. Because both the 
functions in Aw and the sections in W come with information about their pole 
orders at p, we know how to form local functions or sections holomorphic at p by 
taking quotients, in particular a function having a simple zero at p which can serve 
as a local uniformizing parameter. This enables us to glue onto M\p a standard 
disk U with this uniformizing parameter, whose relation to z is known, and this 
gives the extensions of the curve and the sheaf to the point at infinity p. Because we 
have a realization of the ring of functions A w as a ring of commuting differential 
operators R(0), we can give a more elementary description of these algebraic 
constructions. Choose a pair of operators P and Q of relatively prime order from 
R(0) and consider their simultaneous eigenspaces, P~p =21p and Qlp =#~p. One 
shows that the eigenspaces are one-dimensional (so they are the simultaneous 
eigenspaces of all the operators in the ring) and that the operators P and Q, or their 
eigenvalues, satisfy a polynomial relation F(P, Q) = 0 or F(2, #) = 0 which is just the 
equation of the affine curve M\p in C z [22]. ~ is the bundle whose fiber at any 
point of this curve is the eigenspace for the given eigenvalues. The maximal ideal in 
SpecR(0) associated to such a point consists of all operators in the ring having 
eigenvalue zero on that eigenspace. 

3. The Manin-Radul SKP Hierarchy 

The MRSKP hierarchy is a set of flow equations deforming a pseudosuperdif- 
ferential operator of the form 

L = D + u  I +u2 D - I + u a D - 2 + . . . ,  (17) 

where D = 0r + ~0x, and the coefficients ui(x, 4, t) are formal power series in the even 
variables x, t2, and the odd variables 4, t2,-1, n= 1, 2, .... Here we assume that 
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Dul + 2u2 = 0, which is necessary and sufficient for the existence of a pseudosuper- 
differential operator 

with 

S= 1 + s l D -  1 + s 2 D - 2  + . . .  (18) 

S-  1LS =D.  (19) 

The generalized Leibniz rule here can be deduced from D -  1 __ D~- 1, which follows 
from D z= ~x. The M R S K P  hierarchy reads 

aL 
= [L2+ ", L ]  = - [L2_ ", L ] ,  (20) 

t~t2n 

~L = [L2+n- 1, L] - 2L zn + ~ t2k_l [L~ n + 2*- 2, L] 
~ t 2 n -  1 k = 1 

OL 
= - - [ L ~ ' - I , L ] +  ~ t~k_ 1 , (21) 

k = l  ~t2n+ 2 k -  2 

where the brackets are supercommutators and L" = U+ + L ~_ is the decomposition 
into nonnegative and negative powers of D. The sign conventions adopted here for 
the flow parameters t~ are those of Mulase [8] and differ slightly from those of 
Manin and Radul and of Ueno et al. [7, 9]. The equivalent system for the operator 
S is 

~S 
- LZ_"S, (22) 

Ot2~ 

L2_~-1+ ~ tek_lL2_ ~+2k-2 S, (23) 
k = l  

where L ~ = SDnS- 1. 
We will now use a supersymmetric generalization of the Krichever map 

[10-13] to construct solutions to the M R S K P  hierarchy from a set of geometric 
data (M, p, ~,q~, z, 0, q~). Here M is a compact connected complex supermanifold [23] 
of dimension (111), not necessarily a super Riemann surface, p is an irreducible 
divisor on M (its body Pred is a single point of Mred), ~ is a line bundle on M 
satisfying H~ ~ ) =  Hi(M, Sf) = O, (z, O) are local coordinates on M near p such 
that p is defined by the equation z = 0, and q~ is a trivialization of cp in the 
neighborhood U =  {Iz[ < 1} of p. 

The significance of the cohomology conditions on ~ again follows from the 
super Riemann-Roch theorem [24]. This creates a potential problem because the 
super Riemann-Roch theorem is not universally valid. It certainly holds when M is 
split, with no nilpotent parameters in its structure sheaf besides 0, so we consider 
this case first. More precisely, M is assumed to be a single supermanifold of 
dimension (1]1) for now; shortly we will consider families of such supermanifolds 
over parameter spaces of the form Spec/x (fix, f12,..., fiN), so that functions on M 
may depend on N globally defined odd parameters fl~ as well as on 0. The super 
Riemann-Roch theorem reads 

dim HO(M, ~a)_  dimHl(M, • ) =  (deg,W + 1 -gldeg,s + degg + 1 - g ) .  (24) 
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On a split supermanifold such as M, an expression f(z) + 0g(z) extends to a global 
function exactly when f(z) extends to a global function on Mred and g(z) extends to 
a global section of a certain line bundle on Mred; this is the bundle denoted do in 
(24). For  a super Riemann surface, d o is a spin bundle, of degree g -  1, but here the 
cohomology conditions clearly imply d e g ~ = g - 1  and degdo=0. Therefore 
supermanifolds M satisfying these conditions cannot be super Riemann surfaces 
except in the case g = 1, which neatly allows the solutions to M R S K P  in terms of 
super elliptic functions obtained by Pakuliak [14] and by Mulase [8]. 

The super Riemann-Roch theorem for L:| gives 

dim n ~ (M, ~ | (9 (p)) - dim n a(M, ~ | (riCo)) = (1 I1), (25) 

so that there are unique (up to normalization) even and odd sections of 
holomorphic except for simple poles at p. Similarly, Ha(M, 2'| 0 and 
dimH~ ..~| for all n>0 ,  and there are unique (up to normaliz- 
ation and linear combination with sections having lower-order poles) even and 
odd sections with behavior z-"  and Oz-" near p, for any n>0 .  

Since the M R S K P  flow deforms the bundle ~ and, as we will see, the 
supermanifold M, producing a (nonsplit) family depending on the odd parameters 
t2,-1, it is necessary to reexamine the super Riemann-Roch theorem in the 
nonsplit case. We consider families over Spec ^ (ill, f12, -.-, fiN); the case of infinitely 
many odd parameters can be treated as a direct limit. As above, the consequence of 
the super Riemann-Roch theorem which we need is the fact that 
dimH~ L#| (9(np)) = (nln). In the nonsplit case the dimension here should be the 
dimension over the parameter space ^ (fla, f12 .. . .  , fiN), and the result can fail if 
H~ is not a freely generated module over this ring [24, 25]. 
Associated to a family of supermanifolds (M, (9) and bundles ~ there is a split 
supermanifold (M, (9~) and bundle ~ obtained by quotienting out the ideal d 
generated by the fli in all sheaves. The conclusion we need will follow if we can 
show that the quotient map H~ ~)~H~ ~ )  is surjective, so that each 
section in the split case extends to a section over the family. We will show that this 
follows from the conditions Hi(M, 6r 0 which are satisfied by our Krichever 
data. First, these conditions imply that Hi(M, ~ ) =  0 as well, since if c were any 
nontriVial eocycle here then flail2.., fine would be a nontrivial cocycle in Hi(M, ~). 
From our analysis in the split case, this implies that Ha(M, (~@ (9(np))~) = 0 for all 
n > 0. We now apply the exact sequence 

O~ A J(fll, flz ..... f l N ) , ~  ~'/drJ+ l ~ ~' /di  ~O (26) 
and its consequence 

H~ M, .~/dj+ ~)--*H~ M, ~/dJ) ~ ^ ~(fl~, f12,..., fiN)Ha( M, ~ )  (27) 

to ~ =  5:| to conclude inductively in j that sections in the split case do 
extend. Therefore, the cohomology conditions on the Krichever data are sufficient 
to guarantee that the space of sections W is freely generated over any purely odd 
parameter space. 

In contrast, the space of functions H~ (9) need not be freely generated. 
However, because Ha(M,(9(np))=O for n sufficiently large, t h e  spaces 
H~ (9)/H~ (9(np)) of functions having sufficiently high pole order n +  1 
must be freely generated by the same argument as above. 

The space H~ ~)  of sections of ~e holomorphic except for finite-order 
poles at p can be viewed as a point W of the big-cell of a super Grassmannian Gr. 
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Points of Gr are subspaces of the space of formal Laurent series ~ (a, + Ob,)z" 
n b  -o0  

for which the projection onto H + = span {z-", Oz-", n = 1, 2,...  } is Fredholm of 
index zero [11-13]. In the split case these are vector subspaces over C, while in the 
nonsplit case "subspaces" means freely generated modules over the finite- or 
infinite-dimensional odd parameter space. The coefficients a,, b, are valued in the 
parameter space. The big-cell consists of subspaces for which the projection is an 
isomorphism. The results above show that the space W of sections belongs to the 
big-cell even in the nonsplit case. 

We can obtain a convenient basis for W by deforming the transition function 
h(z) 1 of ~ by exp(xz- 1 + 40) and acting with differential operators (x and 4 acting 
as sources for z-  1 and 0), but now this expression is not an eigenfunction of D: 

D exp(xz- 1 + 40) = (0 + 4z- i) exp(xz- i + 40), (28) 

where 0 + 4z- 1 is not an eigenvalue because it contains the variable 4 on which D 
acts. In fact, D is a nonintegrable vector field in view of [-D, D] = 2 D  2 = 2~ x ~ 0, so it 
has no nontrivial eigenfunctions at all. The equation Dw(x, 4) = 2~p(x, 4), with 2 an 
odd parameter, implies D2~p = -221p = 0, which is readily seen to imply that ~p is 
constant. Nevertheless, D can be considered to have "operator-valued 
eigenvalues": 

D exp (xz- i + 40) = (0 - z-  iO0) exp(xz- i + 40), (29) 

where the "eigenvalue"is indeed independent of the variables on which D acts. This 
motivates the further deformation of the bundle ~e by multiplying its transition 

function with the "eigenvalue" of the operator exp ~ t.D" which plays a central 
n = l  

role in the algebraic theory of the MRSKP hierarchy [8]. The "transition 
function" of the resulting family of bundles ~(x ,  4, t) will be 

exp [n=i ~ t2nZ-"+ n=l ~ t2n- I(OZ-n+I--Z-"OO)] exp(xz-i+40)h(z)" (30) 

This can be simplified by using e a +B__ e%%-ta,BJ/2, which holds when A and B 
commute with [A, B]. Here 

A ~- ~ t2m_102 --+1, B=-- ~ t2n_lZ-nOo, ( 3 1 )  
m = l  n = l  

and the commutator 

[A ,B]=  ~ t2m_lt2,_iZ-m-"+i=o (32) 
m , n = l  

vanishes due to its symmetry in the odd parameters t2n_ 1" The "transition 
function" is then 

(33) 

1 Note that in the sprit case this transition function cannot depend on 0, since it must be even and 
no other odd parameters are available to form even products 
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If we let s(z, O, x, 4, t) be the expression in terms of the trivialization ~b in U of the 
unique section of this family of bundles with the behavior z-  1 + holomorphic in z, 
and let the Baker-Akhiezer function w(z, O, x, 4, t) be the restriction to U\p of this 
section in the other chart M\p of the covering (times h(z)-~), then the relation 
between these will be 

w(z, O,x, 4, t)=exp [,~l (tz,z-" + t2n- lOz-"+ i) 1 

xex Ex  0 
It is now clear that the family of "transition functions" under discussion 

involves deformations of the supermanifold M as well as the bundle ~ .  The 
transition function h(z) of ~ has indeed been multiplied by the factor 

exp [ ~ (t2"z-" + t2"- lOz-"+ l)] exp(xz- l + i (35) 

However, a "Schiffer deformation" [-26] has simultaneously been performed on the 
supermanifold M itself. That is, the disk U has been cut out of M, and then 

reattached with the identification of 0 on its boundary and 0 -  ~ tzk- lz -k on the 
k = l  

boundary circle of M \  U. Because this shift of the 0 coordinate does not extend 
holomorphically throughout the interior of U, it cannot be removed by a 
redefinition of this coordinate but rather induces a nontrivial change in the 
complex supermanifold structure of M. Such variations of moduli are familiar in 
the operator formalism in (super) conformal field theory [10, 27], where they are 
generated by the stress tensor of the theory. Here the variation in moduli is coupled 
to the deformation of the bundle by the use of the tZn_i to parametrize both 
deformations. An important consequence of this coupling was the vanishing of the 
commutator (32). These deformations of supercurve and bundle, but not more 
general ones with independent parameters, actually commute z. The MRSKP 
system thus describes a flow of the Krichever data, not in the Picard variety of M 
only, but in the universal Picard bundle whose fiber over any point M in the 
moduli space of supermanifolds having d e g g = 0  is Pic~ This is the true 
significance of the relation D 2= ~x, which had led most investigators to expect a 
relation between SKP and super Riemann surfaces. Instead, the nonintegrability 
of D requires the presence of both 0 and 00 in its "eigenvalues," which lead 
respectively to deformations of bundle and curve, with identical parameters. 

We can now complete the verification that these geometric flows produce 
solutions to the MRSKP hierarchy. As before, w and its derivatives D"w provide a 
basis of sections of ~e(x, 4, t). The even order derivatives D Z n w  give even sections 
having leading poles z - " -  1, while odd order derivatives D 2n-  l w give odd sections 
with leading poles Oz-". We introduce the wave operator S by 

s(z, O, x, 4, t) exp(xz- 1 + 40) = z-  i S exp (xz- 1 + ~0), (36) 

2 One could object here that the 0 variable in the term exp(xz- 1 + G0) was certainly shifted as a 
result of the Schiffer deformation, showing a failure of commutativity. This term should be viewed 
as merely an auxiliary deformation introduced to provide a convenient basis for the space of 
sections via its derivatives with respect to x and r The significant deformations are the 
t-dependent ones at x = ~ = 0 
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which, using (34), translates into 

w(z,O,x,4,t)=z-l Sexp[,~a (t2nZ-n +t2n-lOz -n+ l) 

-- z-  tSG(z, O, x, 4, t). (37) 

Modulo the difference in sign conventions this is the same relation between wave 
function and wave operator found in the purely algebraic study of the MRSKP 
hierarchy [9], and it leads directly to the MRSKP equations (22, 23). Expressing 
the derivatives of w with respect to the t, in terms of the basis of sections D"w gives 

0w 
Ot~ = B,(t)w, (38) 

B. superdifferential operators. (The B. with odd subscripts are actually w i t h  the 
\ 

superdifferential operators of infinite order, as is clear from the explicit formulas 
below. Formally this causes no trouble, but it could be avoided by redefining 

~t2n~2k-2-~W ) 
in terms of aw ~ t 2 k - 1 .  Comparing this with the B2n-1  

Ot2n- 1 k = 1 
derivatives of (37) yields 

and 

B - t~S s - t  
2n-- t~t2 n + SD2n S -  1, (39) 

~S S - I + S D 2 n - I S - I +  ~ t 2 k _ l S D 2 n + 2 k - 2 s  -1 . (40) 
BEn - 1 -- Ot2n_11 k = 1 

The infinite sum in this last equation corrects for the fact that t~/&2,_ 1 brings down 
an unshifted 0 from G(z, O, x, 4, t) while D 2"- 1 involves ~/0~, which brings down the 
shifted 0. These equations imply that 

B z n = L  %n , (41) 

Bzn-1  = L z n - 1  + ~ ~2kl- _ 1~+/-2n+ 2k--2 , (42) 
k=l  

Inserting these expressions in (39, 40) and rearranging immediately produces the 
MRSKP equations in the form (22, 23). 

The connection between Krichever data and commutative tings of differential 
operators also generalizes to the super case. As before, consider the super- 
commutative ring H~ (9) of functions on M holomorphic except for poles at 
p. Assign a superdifferential operator P(f) to any such function f by 
f(z,O)w(z,O,x,~,t)[t-o=P(f)w(z,O,x, 4,t)[~=o, where the right side is the ex- 
pression of the section fw in the basis of derivatives of w. The result is a 
supercommutative ring R(0) of superdifferential operators isomorphic to 
H~ (9). To show the supercommutativity, let f and g be two functions of 
definite Z2 parities ~,~. Then fgw = fP(g)w = ( -  1)S~ P(g) fw = ( -  1)~ P(g)P(f)w. 
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But also, fgw=(-1)S~gfw= P(f)P(g)w. Since the operators are uniquely deter- 
mined by their action on w, it follows that P(f)P(g) = ( -  1)S~P(g)P(f). Repeating 
the construction for nonzero t will realize the MRSK flow as a (nonisospectral) 
family of supercommutative rings R(t). Because the function f(z, O) is defined 
inside U, fs is the restriction of a section of 5O to U. Transforming to the 
representative fw of this section in the other chart M\p introduces the shift of 0, 
so the correct correspondence between functions f and superdifferential 
operators P(f) is 

f ( z ,  O- ~ t2k_lZ -k) W(z, O,X, ~, t)=P(f)w(z, O,x, ~, t). (43) 
\ k = l  / 

ff the local coordinate z was chosen so that z-k extends to a global function on 
M\p, then the corresponding operator is P(z -k) = L 2k. Therefore the solutions we 
obtain are all such that some even power of L is a pure differential operator. 
Furthermore, since the MRSKP flow does not alter the patching of the z 
coordinate, this property will be preserved under the flow. However, no odd power 
L2n - 1 belongs to the ring R(0), since in a supercommutative ring any odd operator 
must have square zero, whereas L is conjugate to the nonintegrable vector field D. 
If the local coordinate 0 is chosen so that Oz- ~ extends to a global function, then the 
corresponding operator is P(Oz -l) = St3~O~S-1. Since the flow does change the 
patching of 0, this property is not preserved under the flow; Oz-t will not extend to 
a global function on the deformed supercurve, and SOlOnS-1 will not be a pure 
superdifferential operator for nonzero t. 

Once again it is possible to reconstruct all the geometric data from the 
corresponding wave operator S(t=0). S determines w, which along with its 
derivatives gives a basis for the space of sections W in the super Grassmannian Gr. 
The rest of the argument was developed in [13] where the invertibility of the super 
Krichever functor was shown. Once again the ring of functions H~ (9) is 
obtained as the maximal set Aw of formal Laurent series in z and 0 such that AwW 
C W. The affine curve M\p should be SpecAw, and indeed there is a natural notion 
of Spec of a supercommutative ring having this property. Writing 
Aw=(Aw)oO(Aw)x, the reduced space of M\p will be Spec(Adv)o, while the odd 
part of the structure sheaf of M\p is the sheaf (~)1 .  The sheaf W constructed from 
the module W over Aw is then 5 ~ restricted to the affine curve. As before, these 
sheaves extend over the point p because the information about the pole orders of 
their sections at p allows us to form quotients holomorphic at p, and local 
uniformizing parameters there, so that we know how to glue in U with a sheaf of 
germs of sections holomorphic at p. The pair of Riemann surfaces and bundles 
used by Radul to construct algebro-geometric solutions in the split case can be 
made visible in the same way. Writing W= Wo@OWt, we can view the two W~ as 
points of an ordinary Grassmannian. If their maximal stabilizers in the space of 
ordinary Laurent series are Awi, then Radul's curves are the SpecAwi and his 
bundles are the sheaves ~ .  In fact, both stabilizers coincide, and the common 
curve is the body (reduced space) of M. Our construction in the split case therefore 
gives only the subset of Radul's solutions for which the two curves are the same. If 
it is true that our construction gives all finite-dimensional orbits of the MRSKP 
flows (see Sect. 4), the implication is that Radul's solutions with distinct curves are 
infinite-dimensional orbits. 

Although the deformation of Krichever data described by the MRSKP 
hierarchy produces a nonsplit family of data, the discussion above is still restricted 
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to the case in which the initial data is split. The discussion must still be generalized 
to include initial data which is itself a nonsplit family over Spec ^ (fl, f2,-.., fiN). 
Since the cohomology conditions imposed on this data are sufficient to guarantee 
that all spaces of sections are freely generated over this parameter space, most of 
the discussion carries over unchanged except for the additional dependence of the 
wave function and wave operator on the additional parameters. However, the fact 
that the transition function h(z, O) of the initial line bundle ~ may now depend on 0 
introduces a major conceptual difference. In writing the relation between the wave 
function and the wave operator, the initial transition function h(z) was omitted, 
which was permissible because this factor is not changed by the flow. Because the 
flow shifts 0, however, a factor h(z, O) will change under the flow. We can simply 
redefine the geometric flows to include an additional deformation of the line 
bundle so as to keep this factor constant, which then allows us to omit it and obtain 
the MRSKP system via the same computation as before. However, we then 
encounter the problem that the transition function for a given bundle is arbitrary 
up to a cocycle. If a different initial transition function g(z, 0) is chosen, so that the 
ratio g(z, O)/h(z, O) extends to a holomorphic function in M\p, this ratio will 
generally not extend holomorphically after a shift of 0. This means that the 
geometric flow on the Krichever data, and the resulting solution to the MRSKP 
hierarchy, are not uniquely determined by the initial data but depend also on the 
choice of a particular transition function for the initial bundle ~e. Equivalently, 
one must choose a trivialization of ~e in M\p as well as in U. This is in agreement 
with the fact that the unique solvability of the initial value problem for the 
MRSKP hierarchy can be proven only in the split case [8]. 

The geometric picture of the flows makes it clear that this situation was to be 
expected. The integral curves of these flows are paths in the universal Picard 
bundle over the moduli space of supercurves. Although there is a well-defined 
notion of a flow along a fiber of such a Picard bundle, deforming 6r but not M, 
there is no invariant notion of a horizontal flow deforming M but not ~e. Given a 
choice of transition function h(z, 0), we can define a horizontal flow by keeping the 
same transition function as M changes, but the definition obviously depends on 
the choice of h(z, 0). The MRSKP flow is then a specific diagonal flow in the 
universal Picard bundle, the diagonal direction being defined relative to the 
horizontal direction specified by the choice of h(z, 0). Thus the choice of initial 
transition function is roughly equivalent to a choice of a connection in the 
universal Picard bundle. It would be interesting to investigate the geometry of this 
situation in more detail. 

The reconstruction of the geometric data from a solution in the nonsplit case is 
no more difficult than in the split case. The only difference is in the decomposition 
Aw=(Aw)o@(Aw)l, where due to the presence of the parameters fi, (Aw)o now 
contains even nilpotents. Spec(Aw)o now gives the reduced space of M\p already 
equipped with the even part of the structure sheaf of M\p itself, and (~--w)l provides 
the odd part of the full structure sheaf. Because Aw still contains functions with 
behavior z -n and Oz -n for all sufficiently large n, it is still possible to obtain local 
uniformizing parameters at p as quotients of its elements, and thereby to complete 
the affine supercurve M\p to M. 

As in the KP case, the geometric flows on the Krichever data make sense for 
arbitrary supercurves M and bundles ~ .  The cohomology conditions on these 
objects serve only to constrain the structure of W so as to allow its description and 
that of the flows in terms of the wave operator S. Unlike the KP case, however, the 



546 J.M. Rabin 

cohomology conditions are actually needed to guarantee that W is freely 
generated and so can be viewed as a point of Gr in the nonsplit case. This means 
that the description of the flows on arbitrary Krichever data will actually require a 
significantly generalized notion of Grassmannian. 

4. The Jacobian SKP Hierarchy 

Given the geometric understanding of the MRSKP hierarchy, it is easy to 
construct new SKP hierarchies which describe alternative deformations of the 
geometric Krichever data. In particular, we can construct one which describes 
deformations of the line bundle ~a on a fixed supermanifold M by simply omitting 
the Schiffer deformation from the formula relating the wave function and the wave 
operator. Since these flows on the universal Picard bundle are purely vertical, no 
choice of connection will be necessary in the nonsplit case. This new SKP 
hierarchy will be a more natural supersymmetric generalization of ordinary KP 
from the geometric point of view than is the Manin-Radul hierarchy. We will refer 
to it as the Jacobian SKP hierarchy. The new relation replacing (37) will be 

w(z, O,x, 4, t)=z-'Sexp I ~= 1 (t2nz-" + t2n_ lOz-n+a)+XZ-l+ G0], (44) 

which easily leads to the new SKP hierarchy 

OS - (SO"~S-~)_S=-(SDZ"S-~)_S, (45) Ot2, 
~S at2,_~- (S#r (46) 

Note that S~D2"S- 14= ~SD2,S- 1 = ~L2,, because the operator S contains #~ and so 
does not commute with 4. This means that there is no simple way to rewrite the 
Jacobian SKP system completely in terms of L rather than S. The same will be true 
of the "maximal" SKP hierarchy discussed in Sect. 5. Thus, although the Manin- 
Radul hierarchy is not the most geometrically natural supersymmetric generaliz- 
ation of ordinary KP, it is distinguished as the only simple generalization which 
can be written in Lax form as a flow on L. Since the connection between the KP 
hierarchy and 2d quantum gravity is made via the Lax formalism [28-30], it is the 
MRSKP hierarchy which is expected to be relevant for 2d quantum supergravity. 
Indeed, its interpretation in this context has recently been investigated in [31]. 
However, since the odd flows have not been interpreted, and indeed seem 
incompatible with any reasonable string equation, the alternative odd flows of the 
Jacobian hierarchy should also be examined in this context. These Jacobian flows 
can of course be realized as an isospectral family of supercommutative rings R(t) 
via the correspondence between functions and superdifferential operators 
discussed in Sect. 3. 

The Jacobian SKP hierarchy has been discovered and discussed independently 
by Mulase in the split case (no odd parameters besides the t2,_ 1) 1-32]. He pointed 
out that it is integrable, and that its initial value problem is uniquely solvable using 
the same super Birkhoff decomposition which gives the unique solvability for the 
Manin-Radul hierarchy [8]. Further, he showed that every finite-dimensional 
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orbit of these flows is isomorphic to the suitably defined Jacobian of a (111) 
supercurve M. (The argument is essentially that the reduced orbit must be the 
Jacobian ofa Riemann surface by ordinary KP theory, while the nilpotent parts of 
the flows are effectively infinitesimal and so add no global structure. One need only 
ensure cohomologically that only finitely many of them generate the orbit.) 
Although Mulase's Jacobian is defined as HX(M, (9)/HI(M, Z), whereas the Picard 
group of line bundles would normally be defined with (9 replaced by the sheaf 0o of 
even functions, this does in fact mean that all finite-dimensional orbits are 
obtained from deformations of line bundles in the manner discussed here. The 
difference reflects only Mulase's precise definition of the orbits and his restriction 
to split M. The cohomology group Hi(M,(9) for split M contains the same 
information as the group Hi(M, (9o) for M a family over an odd parameter space, a 
cocycle f + 0g in the former group corresponding to a cocycle f + qOg in the latter, 
with r/an odd parameter. Similar methods should prove that all finite-dimensional 
orbits of the MRSKP flows are obtained by our Krichever construction. However, 
the precise definition of the orbits required for such a proof should wait for a more 
satisfactory definition of a super Grassmannian whose points are non-freely 
generated modules over a parameter space of variable size. 

5. The Kac-van de Leer SKP Hierarchy 

We have seen that the MRSKP hierarchy describes a very specific simultaneous 
deformation of the Krichever data M and 50. It is natural to separate the 
deformations of M from those of 5 ~ and the Jacobian SKP hierarchy introduced 
in Sect. 4 is a step in this direction, deforming 50 only. We can also write equations 
for the deformation of M alone, although as discussed previously this requires 
some choice of a horizontal direction in the universal Picard bundle in the nonsplit 
case. It is most natural to choose a specific transition function for 50 and then write 
a relation between wave function and wave operator including the Schiffer 
deformation of M but no further change in the transition function. This relation 
will be [cf. (37)] 

 =exp[- ")1 ,47, 
and the resulting SKP flow equations for S are 

OS 
0{2,-1 - - (S~D2"S- 1)_ S. (48) 

The Schiffer deformation arising from the MRSKP hierarchy is not the most 
general deformation of M which changes the patching of 0 while preserving that of 
z. To generate all such deformations one must add those which act multiplicatively 
on 0, in effect deforming the bundle g characterizing M. These lead to the relation 
between wave function and wave operator 

w(z 'O'x '~ ' t~=z-lSexp[ xz - l  +~Oexp ,=1 ~' Tz,z-"], (49) 

and the flow equations 

0S 
0?2, _ _ (S~DZn + 1 S-  1)_ S. (50) 
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If we combine the two flow equations just derived with the two comprising the 
Jacobian SKP hierarchy of Sect. 4, we have a set of four equations involving two 
infinite sets of even and odd flow parameters which describe the most general set of 
independent deformations of M and ~ preserving the patching of the z coordinate. 
We will refer to these as the maximal SKP hierarchy. Since such independent flows 
do not commute, the equations are certainly not integrable, but individual flows 
can be exponentiated to one-parameter groups. If the initial M was a projected 
family of supermanifolds, this is the most general set of deformations which 
preserve this property. The meaning of projectedness is that there exists a 
projection map from M to Mrod: algebraically, functions f(z) on Mr~d pull back to 
functions f(z) on M. Since the (S)KP theory realizes the ring of functions on the 
affine curve as a ring of (super)differential operators, projectedness gives an 
inclusion of these rings of operators, and the flows now under consideration are the 
most general preserving this inclusion. 

The KVSKP hierarchy has two infinite sets of even and odd flow parameters, 
and we will argue that it is equivalent to the flows just described. In principle this 
could be demonstrated explicitly using the formulas given by Dolgikh and 
Schwarz [-12], which relate the wave operator S to the super tau function 
appearing in the KVSKP hierarchy, but it seems extremely difficult to carry this 
out. Instead, we will use the work of Kac and van de Leur [18] and of Bergvelt 
[-19], which gives a very complete description of this SKP hierarchy in terms of 
group actions on the super Grassmannian, to relate these group actions to our 
flows. We will summarize this work briefly, omitting some of the more technical 
points. 

Subspaces W in the big-cell of the super Grassmannian Gr have a free basis 
over ^ (fll, fl2, ...,fiN) formed from linear combinations of the standard basis 
elements vi=z -i, vi+l/z=Oz -~, i~Z. An infinite-dimensional general linear 
supergroup acts on such subspaces; the infinitesimal generators of its Lie 
superalgebra glo~loo are the "elementary matrices" E~j which change vj into v~ and 
annihilate all other basis vectors. There is a single orbit C of this group which 
consists of Gr minus a hypersurface, and a natural action of the group on the 
module F(C, Ber*) consisting of sections of the dual Berezinian bundle over C. The 
super tau function as defined by Schwarz 1-11] is a highest weight vector a0 of this 
module. There is a more abstract construction of this module as a Fock space for 
superfermionic operators lp~ in which the group generators are realized as 
Ei~=(_ 1 2j , ) ~pi~pj. The central fact is that the module remains irreducible under a 
smaller "super Heisenberg" algebra s A generated by the operators 

E Ek, k§ (52) 
k~ Z + 1/2 

e(n)= E Ek-1/2,k+', =Oz'+I, (53) 
k ~ Z  

f (n)= Y. Ek.k+,,_l/E=Z " - 1 -  (54) 
k~Z ~0' 

n e Z, where the last equalities give the action on the v~ by multiplication and/or 
differentiation. The super boson-fermion correspondence (superbosonization) 
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provides a representation of these operators as differential operators acting on the 
algebra of polynomials in infinitely many even and odd variables denoted in [18] 
as x,, 0,, n~Z\{0}, and a representation of the ~Pl in terms of them as vertex 
operators. The KVSKP hierarchy is the bosonized representation of the bilinear 
equation 

Z (- ~)2~|174 (55) 
iEZ/2 

Bergvelt has shown that this equation characterizes the points of the orbit C in 
terms of their response to the infinitesimal flows in sa. 

Compare the infinitesimal action of our flows d/Ot,, ~/~{. with that of the 
operators in sa. For example, the deformation of 5q by multiplying its transition 
function with exptz,z-" acts on the subspace W by W~(exp-t2 .z-")W. That is, 
multiplying the restriction to U of a section of La by exp - t2nZ-n yields a section of 
the deformed bundle which is unchanged in M\p. More precisely, since such 
multiplication does not make sense in a space of formal Laurent series, one should 
say that the deformation parametrized by t2. acts infinitesimally on W by 
multiplication with - z - " .  This infinitesimal action is the same (up to sign) as that 
of 2 ( - n ) +  # ( -  n). Note that the deformation does not act multiplicatively on the 
special section s, which is defined as the one with leading pole z - l :  the 
multiplicative action on s produces a section, but not the one with this leading pole. 
The correct action on s is given by the SKP equations. Similarly, the deformation 
of s parametrized by {2,- 1 acts on W by W-+(exp{2,_ lz-"~o) W. Infinitesimally 
this coincides with the action o f f ( -  n + 1). The deformation parametrized by tZn_ 
acts infinitesimally as e ( -  n), and that parametrized by {2, acts as # ( -  n). Thus the 
flows of the maximal SKP hierarchy generate half of the super Heisenberg algebra 
sa. The infinitesimal action of the remaining generators of sa involves positive 
powers ofz. Such flows act in a simple way not only on the subspace W, but on the 
specific section s as well, so that no differential equations are needed to describe the 
action. In terms of the Krichever data, these flows change the choices of local 
trivialization 4~ and local coordinate 0. For example, #(n) for n > 0  acts by 
s~(1 + ez"OOo)S, a change of the 0 coordinate. The conclusion is that the KVSKP 
hierarchy characterizes the points of the orbit C by their response to the same 
deformations described by the maximal SKP hierarchy, plus others whose action 
can be described without the need for differential equations. Under bosonization, z 
becomes a polynomial in the variables Xn, 0,, which are therefore the flow 
parameters corresponding to our t,, {,, although each KVSKP flow can be a linear 
combination of the flows of the maximal hierarchy. The precise relation between 
the two sets of flow parameters depends on the specifics of the bosonization and 
detailed properties of the section o- 0 (tau function) and will not be determined here. 

6. Conclusions and Open Problems 

We have seen that algebro-geometric solutions to all versions of the SKP 
hierarchy can be obtained from suitable geometric data by means of a Krichever 
construction. The data consist of a (1]l)-dimensional supermanifold, generally not 
a super Riemann surface, a line bundle satisfying H ~  and local 
coordinates and trivializations. The SKP equations describe deformations of the 
bundle as well as deformations of the supermanifold of the type which preserve 
projectedness. The Manin-Radul hierarchy describes a specific combination of 
these deformations which is integrable and can be translated into a Lax formalism 
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for a pseudosuperdifferential operator L. The Jacobian SKP hierarchy introduced 
here describes deformations of the bundle only; it is integrable but cannot be put in 
Lax form. The maximal SKP hierarchy describes all possible deformations of the 
stated types, which are also the nontrivial deformations appearing in the hierarchy 
of Kac and van de Leur. The geometric setting for these flows is the universal 
Picard bundle over the moduli space of supercurves. When the initial data is 
nonsplit, the unique definition of the nonvertical flows requires a choice of 
connection in this universal bundle. 

There  are several further directions to pursue. The treatment of general 
(nonsplit) families in this paper has not been as rigorous or as elegant as possible. 
We have shown that the cohomology conditions on the Krichever data guarantee 
that the spaces of sections we need are freely generated over finite-dimensional odd 
parameter spaces, and treated the infinite-dimensional case as a direct limit. The 
SKP flows, however, make sense for geometric data not satisfying the cohomology 
conditions, and infinite-dimensional parameter spaces are fundamental to the 
SKP theory. A more general notion of super Grassmannian should be developed 
which makes sense for arbitrary parameter spaces and without restriction to freely 
generated subspaces of the space of formal Laurent series. This more general 
notion will be the appropriate setting for a proof that the Krichever construction 
produces all finite-dimensional orbits of the MRSKP hierarchy, and for further 
study of the geometry of the universal Picard bundle relevant to the nonsplit case. 
Because the space of sections H~ ~Lg)/H~ ~ | (9(np)) is freely generated for 
sufficiently large n, one might guess that Gr should be defined as the set of all 
submodules, of the space of formal Laurent series with coefficients from a 
parameter space, for which the projection onto span{z -n, Oz -n, n>N} for some N 
gives a free module. This definition must be supplemented by an analogue of the 
Fredholm condition which makes sense over an infinite-dimensional parameter 
space. 

Given a solution S of a SKP hierarchy obtained by the Krichever construction, 
we have seen how to reconstruct the geometric data. We have not addressed the 
question of how to recognize such solutions given only S. This question is closely 
connected with the problem of classifying the supercommutative rings R(0) of 
differential operators which can arise from the construction. In the ordinary KP 
theory it is shown that a solution comes from geometric data whenever Aw is a 
rank 1 algebra, and that essentially all rank 1 algebras of differential operators are 
obtained (the rank being the G.C.D. of the pole orders of the elements of Aw, or of 
the orders of the differential operators). In the split case, we showed in [13] that a 
rank 1 stabilizer Aw does arise from geometric data, but we did not consider the 
realization of Aw by differential operators or the nonsplit case. The development of 
a Burchnall-Chaundy theory of supercommutative rings of superdifferential 
operators, particularly the reconstruction of geometric data from polynomial 
relations among the operators in such a ring, is an important goal. 

We have also not considered in detail the Kriehever construction starting from 
a singular supercurve rather than a smooth supermanifold. Although it is clear in 
general that additional solutions can be obtained in this way, we have not tried to 
describe precisely what kinds of singularities should be allowed, or the types of 
nonmaximal stabilizers A w which arise from the rings H~ (9) on such curves. 
This type of generalization of the Krichever map was considered in [13] in the split 
case, but the significant generalization will be to the case of families and the 
resulting solutions. 
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Another important  question, which also arises in the ordinary K P  theory when 
line bundles are replaced by vector bundles [33], has to do with the geometric 
meaning of noncommutative stabilizers of subspaces W. The discussion of the 
maximal SKP hierarchy shows that it is natural to consider Laurent series in z with 
coefficients that may be differential operators in 0. Equivalently, introducing a 
vector representation If(z), g(z)] for f(z) + 0g(z) [11 ], these become Laurent series 
in z with 2 x 2 matrix coefficients. The maximal stabilizer, in the space of such 
series, of a subspace W is much larger than our Aw and generally nonsuper- 
commutative. Our Aw is a supercommutative subring of this maximal stabilizer 
consisting of series involving 0 but not d0. Another supercommutative subring -~w 
consists of the series involving d0 but not 0. These supercommutative stabilizers are 
important  because the supermanifold M can be recovered via the Spec construc- 
tion only from a supercommutative ring. The question arises of the relation 
between the various supercommutative subrings of the maximal stabilizer (what is 
SpecAw?), and the possible geometric interpretation of the maximal stabilizer 
itself. It is intriguing to note in this connection that in Theorem 1.3 of [13] the 
embedding of Are in a larger nonsupercommutative stabilizer was used in an 
essential way to characterize those rings Aw which arise from geometric data. 

Finally, the equivalence of the KVSKP hierarchy with our maximal hierarchy 
has only been established in general terms. It would be desirable to explicitly relate 
the flow parameters appearing in the two hierarchies. This should shed light on the 
relation between the super tau function and some putative super theta function. In 
principle, the formulas in [12] should provide an answer since they relate the super 
tau function to the wave operator S and give a bilinear identity for the wave 
function which should be equivalent to the KVSKP equation (55). It is not clear 
how explicit these formulas can be made, however. 
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