Inverse Scattering Problem for the Schrödinger Equation with Magnetic Potential at a Fixed Energy

G. Eskin, J. Ralston

Department of Mathematics, University of California, Los Angeles, CA 90024, USA

Received: 1 August 1994/in revised form: 3 January 1995

Abstract: In this article we consider the Schrödinger operator in $R^n, n \geq 3$, with electric and magnetic potentials which decay exponentially as $|x| \to \infty$. We show that the scattering amplitude at fixed positive energy determines the electric potential and the magnetic field.

1. Introduction

Consider the Schrödinger equation in R^n , $n \geq 3$, with magnetic potential $A(x) =$ $(A_1(x),...,A_n(x))$ and electric potential $V(x)$:

$$
-\sum_{j=1}^{n}\left(\frac{\partial}{\partial x_j}+iA_j(x)\right)^2u+V(x)u=k^2u,
$$
\n(1)

 $k > 0$, or equivalently

$$
- \Delta u - 2i \sum_{j=1}^{n} A_j(x) \frac{\partial u}{\partial x_j} + q(x)u = k^2 u, \qquad (1')
$$

where

$$
q(x) = \sum_{j=1}^{n} \left(A_j^2(x) - i \frac{\partial A_j}{\partial x_j} \right) + V(x).
$$
 (2)

We will assume that the potentials A and V are real-valued and exponentially decreasing, i.e.

$$
\left|\frac{\partial^{\alpha}V(x)}{\partial x^{\alpha}}\right| \leq C_{\alpha}e^{-\delta|x|}, \qquad \left|\frac{\partial^{\beta}A_j}{\partial x^{\beta}}\right| \leq C_{\beta}e^{-\delta|x|}, \quad j=1,\ldots,n,
$$
 (3)

for $0 \leq |\alpha| \leq P, 0 \leq |\beta| \leq P+1$, where $P = n+4$. We consider the solutions of (1) of the form

$$
u = e^{ik\omega \cdot x} + v(x, \omega, k), \qquad (4)
$$

^{*} This research was supported by National Science Foundation Grant DMS93-05882.

where v is the outgoing solution of

$$
-Av - 2i\sum_{j=1}^{n}A_j(x)\frac{\partial v}{\partial x_j} + (q(x) - k^2)v = e^{ik\omega} \cdot x \left(-2k\sum_{j=1}^{n}\omega_j A_j(x) - q(x)\right) \tag{5}
$$

obtained by the limiting absorption method. By this argument v exists and is unique whenever k^2 is not an embedded eigenvalue, and, combining Sect. 5 of Hörmander [4] with the proof of Theorem 3.3 of Agmon [1], one sees that (3) implies there are no embedded eigenvalues. Representing v in terms of the outgoing fundamental solution of $\Delta + k^2$, it follows that as $|x| \to \infty$,

$$
v(x,\omega,k) = \frac{e^{ik|x|}}{|x|^{\frac{n-1}{2}}} \left(a\left(\frac{x}{|x|},\omega,k\right) + O\left(\frac{1}{|x|}\right) \right),\tag{6}
$$

where $a(\theta, \omega, k)$ is defined to be the scattering amplitude. Our objective is to prove

Theorem 1. *Fix k > 0. Then one can recover* $V(x)$ *and the magnetic field B =* curl *A from the scattering amplitude* $a(\theta, \omega, k)$ *,* $(\theta, \omega) \in S^{n-1} \times S^{n-1}$.

Note that, if A and A' satisfy (3) and *curl A = curl A'*, then $A' - A$ is the gradient of function φ satisfying

$$
\left|\frac{\partial^p \varphi}{\partial x^p}\right| \leq C_p e^{-\delta |x|}, \quad 0 \leq |p| \leq P. \tag{7}
$$

To see that changing A to $A' = A + \frac{\partial \varphi}{\partial x}$ does not change the scattering amplitude note that, if one replaces $u(x)$ by $w(x) = u(x)e^{-i\phi(x)}$, then $w(x)$ will satisfy

$$
-\left(\frac{\partial}{\partial x} + iA(x) + i\frac{\partial \varphi}{\partial x}\right)^2 w + V(x)w = k^2w.
$$

However, this does not change the scattering amplitude, since

$$
w = u(x)e^{-i\varphi(x)} = e^{-i\varphi(x)} \left(e^{ik\omega \cdot x} + a\left(\frac{x}{|x|}, \omega, k\right) \frac{e^{ik|x|}}{|x|^{\frac{n-1}{2}}} + O\left(\frac{1}{|x|^{\frac{n+1}{2}}}\right) \right)
$$

= $e^{ik\omega \cdot x} + a\left(\frac{x}{|x|}, \omega, k\right) \frac{e^{ik|x|}}{|x|^{\frac{n-1}{2}}} + O\left(\frac{1}{|x|^{\frac{n+1}{2}}}\right).$

In this article as in [2] we will use $h(\xi, k\omega, k)$, the Fourier transform of $-(A + k^2)v$, to study the scattering amplitude. Since v is obtained by limiting absorption,

$$
v(x, \omega, k) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \frac{h(\xi, k\omega, k)e^{ix \cdot \xi}}{|\xi|^2 - k^2 - i0} d\xi, \qquad (8)
$$

and, taking the asymptotics of (8) when $\theta = x/|x|$ is fixed and $|x| \to \infty$, one obtains

$$
a(\theta,\omega,k)=C_{n,k}h(k\theta,k\omega,k),C_{n,k}=\frac{1}{4\pi}\left(\left(\frac{k}{2\pi}\right)^{\frac{1}{2}}e^{-\frac{i\pi}{4}}\right)^{n-3}.
$$
 (9)

From (5) one sees that h satisfies

$$
h(\xi,\zeta,k) + \frac{1}{(2\pi)^n \int_{\mathbb{R}^n} \frac{q_0(\xi-\eta,\eta)h(\eta,\zeta,k)}{|\eta|^2 - k^2 - i0} d\eta = -q_0(\xi-\zeta,\zeta) \,,\tag{10}
$$

where

$$
q_0(\xi,\zeta) = 2\sum_{j=1}^n \hat{A}_j(\xi)\zeta_j + \hat{q}(\xi).
$$
 (11)

Note that (3) implies that $q_0(\xi-\zeta,\zeta)$ is analytic in (ξ,ζ) for $|\text{Im }\zeta| < \delta/2$, $|\text{Im }\zeta| < \delta/2$. For fixed λ , the integral operator

$$
T_{\lambda}w = \frac{1}{(2\pi)^{n}}\int_{\mathbb{R}^{n}}\frac{q_{0}(\xi-\eta,\eta)w(\eta)}{|\eta|^{2}-\lambda-i0}d\eta
$$
 (12)

is compact in the space $H_{\alpha,N}, 0 < \alpha < 1, n-1 < N < n+4$. Here $H_{\alpha,N}$ is the weighted Hölder space used in [2]: let $||f||_{\alpha,N} = ||(1 + |\xi|^2)^{N/2}f||_{\alpha}$, where $|| \cdot ||_{\alpha}$ is the standard Hölder norm, and define $H_{\alpha,N}$ as the completion of $C_0^{\infty}(R^n)$ is $\|\cdot\|_{\alpha,N}$. Moreover, T_{λ} depends analytically on λ for Im $\lambda > 0$ and extends continuously to the positive real axis, $\lambda > 0$. In the same way that Theorem 5.2 of [4] showed that the homogeneous equation corresponding to (5) had no nontrivial square-integrable solutions, it can be used here to show the $I + T_{k^2}$ has no nontrivial solutions in $H_{\alpha,N}(R^n)$. Hence we see that the Fredholm operator $I + T_{k^2}$ is invertible on $H_{\alpha,N}$ for $k > 0$. This will be useful in what follows.

In the case that the magnetic field \hat{B} is small uniqueness results at fixed energy have been obtained previously by Henkin and Novikov [6] and by Sun [9]. Recently Nakamura, Sun and Uhlmann [5] obtained the uniqueness result analogous to Theorem 1 for the Dirichlet to Neumann map. This implies Theorem 1 for magnetic and electric potentials of compact support. In fact, when the magnetic and electric potentials have compact support, as in [9], uniqueness for inverse scattering at fixed energy and uniqueness for the Dirichlet-to-Neumann map inverse problem at fixed energy are equivalent.

For potentials without compact support the previous work which influenced us considerably was by Novikov [8]. He proved Theorem 1 in the case of zero magnetic potential, and the methods of [8] could be used to give a different proof of some of the results in Sect. 2.

Finally, we are deeply indebted to Adrian Nachman for calling our attention to a serious error in the first version of Sect. 2.

2. Faddeev-Type Scattering Amplitudes

Following Faddeev [3] and Novikov-Khenkin [6], we introduce a new scattering amplitude which will contain a large parameter. The later will be helpful in solving the inverse scattering problem.

Let v be an arbitrary unit vector, $|v| = 1$, and $E_{v,\sigma}(x)$ be the following fundamental solution to the equation $(-\Delta - k^2)u = f$:

$$
E_{\nu,\sigma}(x) = \frac{1}{(2\pi)^n \int_{\mathbb{R}^n} \eta \cdot \eta - k^2 + i0(\eta_\nu - \sigma)},
$$
\n(13)

where $\eta_{y} = \eta \cdot v$ and $-k < \sigma < k$. Comparing $E_{y,\sigma}(x)$ with the fundamental solution

$$
E_0(x) = \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \frac{e^{ix} \cdot \eta}{\eta \cdot \eta - k^2 - i0} d\eta , \qquad (14)
$$

we have

$$
E_{v,\sigma}(x) = E_0(x) - \frac{i\pi k^{n-2}}{(2\pi)^n} \int_{k\omega \cdot v > \sigma} e^{ix \cdot k\omega} d\omega,
$$
 (15)

where $d\omega$ is the area element of the unit sphere in \mathbb{R}^n . Analogously to (10) consider the following integral equation

$$
h_{\nu,\sigma}(\xi,\zeta,k)+\frac{1}{(2\pi)^n}\int\limits_{\mathbb{R}^n}\frac{q_0(\xi-\eta,\eta)h_{\nu,\sigma}(\eta,\zeta,k)}{\eta\cdot\eta-k^2+i0(\eta_{\nu}-\sigma)}d\eta=-q_0(\xi-\zeta,\zeta).
$$
 (16)

Set

$$
v_{v,\sigma}(x,\zeta,k)=\frac{1}{(2\pi)^n}\int\limits_{\mathbb{R}^n}\frac{h_{v,\sigma}(\zeta,\zeta,k)e^{ix\cdot\xi}}{\zeta\cdot\zeta-k^2+i0(\zeta_v-\sigma)}d\zeta\,,\qquad (17)
$$

assuming that $h_{v,\sigma}(\xi,\zeta,k)$ is the solution of (16). Then $v_{v,\sigma}(x,\zeta,k)$ is a solution of the differential equation (5) for $\zeta = k\omega$ with asymptotics at infinity that can be obtained by applying the stationary phase method to (17).

Now we shall find the relation between $h_{v,\sigma}(\xi,\zeta,k)$ and $h(\xi,\zeta,k)$. Analogously to (15) we have

$$
\frac{1}{(2\pi)^n \int_{\mathbb{R}^n} \frac{q_0(\xi - \eta, \eta) h_{\nu, \sigma}(\eta, \zeta, k)}{\eta \cdot \eta - k^2 + i 0(\eta_{\nu} - \sigma)} d\eta = \frac{1}{(2\pi)^n \int_{\mathbb{R}^n} \frac{q_0(\xi - \eta, \eta) h_{\nu, \sigma}(\eta, \zeta, k)}{\eta \cdot \eta + k^2 - i 0} d\eta
$$

$$
- \frac{i\pi k^{n-2}}{(2\pi)^n \int_{k\omega} \int_{\nu > \sigma} q_0(\xi - k\omega, k\omega) h_{\nu, \sigma}(k\omega, \zeta, k) d\omega. \tag{18}
$$

It follows from (16) and (18) that

$$
h_{v,\sigma}(\xi,\zeta,k) + \frac{1}{(2\pi)^n \int_{\mathbb{R}^n} \frac{q_0(\xi-\eta,\eta)h_{v,\sigma}(\eta,\zeta,k)}{\eta \cdot \eta - k^2 - i0} d\eta}
$$

=
$$
-\frac{i\pi k^{n-2}}{(2\pi)^n \int_{k\omega} \int_{v>\sigma} q_0(\xi - k\omega,k\omega)h_{v,\sigma}(k\omega,\zeta,k) d\omega - q_0(\xi-\zeta,\zeta).
$$
 (19)

Set

$$
A(q_0)w = \frac{1}{(2\pi)^n \int_{\mathbb{R}^n} \frac{q_0(\xi - \eta, \eta)w(\eta)}{\eta \cdot \eta - k^2 - i0} d\eta, \qquad (20)
$$

and

$$
A(h)w = \frac{1}{(2\pi)^n \int_{\mathbb{R}^n} \frac{h(\xi, \eta, k)w(\eta)}{\eta \cdot \eta - k^2 - i0} d\eta.
$$
 (21)

That (10) has a unique solution is equivalent $(cf. [2])$ to the equality

$$
(I + A(q_0))(I + A(h)) = I.
$$
 (22)

Since $I + A(q_0)$ has an inverse, it follows from (22) that

$$
(I + A(h))(I + A(q_0)) = I \tag{23}
$$

or equivalently

$$
h(\xi,\zeta,k) + q_0(\xi-\zeta,\zeta) + \frac{1}{(2\pi)^n} \int_{\mathbb{R}^n} \frac{h(\xi,\eta,k)q_0(\eta-\zeta,\zeta)}{\eta \cdot \eta - k^2 - i0} d\eta = 0. \tag{23'}
$$

Applying $I + A(h)$ to (19) and using (23) and (23[']), we obtain (cf. [3] and [6], formula (1.7)):

$$
h_{v,\sigma}(\xi,\zeta,k)=h(\xi,\zeta,k)-\frac{i\pi k^{n-2}}{(2\pi)^n}\int_{k\omega}h(\xi,k\omega,k)h_{v,\sigma}(k\omega,\zeta,k)d\omega.
$$
 (24)

Since $I + A(q_0)$ is invertible, Eq. (24) has a unique solution for any $h(\xi, \zeta, k)$ if and only if Eq. (16) has a unique solution. Indeed, if $\varphi(\xi)$ is a solution of the homogeneous equation corresponding to (16), i.e.

$$
\varphi(\xi) + (2\pi)^{-n} \int\limits_{\mathbb{R}^n} \frac{q_0(\xi - \eta, \eta) \varphi(\eta)}{\eta \cdot \eta - k^2 + i 0(\eta, -\sigma)} d\eta = 0, \qquad (25)
$$

then from (25) and (18) with h_{v} replaced with φ we conclude that

$$
\varphi(\xi) + (2\pi)^{-n} \int\limits_{\mathbb{R}^n} \frac{q_0(\xi - \eta, \eta) \varphi(\eta) d\eta}{\eta \cdot \eta - k^2 - i0} = \frac{i\pi k^{n-2}}{(2\pi)^n} \int\limits_{k\omega} \int\limits_{\nu > \sigma} q_0(\xi - k\omega, k\omega) \varphi(k\omega) d\omega.
$$

Applying $(I + A(h))$ to both sides of this, we have

$$
0 = \varphi(\xi) + \frac{i\pi k^{n-2}}{(2\pi)^n}_{k\omega} \int\limits_{\nu > \sigma} h(\xi, k\omega, k) \varphi(k\omega) d\omega, \qquad (26)
$$

i.e. φ restricted to $|\xi| = k$ solves the homogeneous equation corresponding to (24). Conversely, suppose $\varphi(\xi)$ is a nonzero solution of the preceding equation (26) on the sphere of radius k. Then (26) extends φ to Rⁿ, since $h(\xi, k\omega, k)$ is defined for $\xi \in R^n$. Applying $I + A(q_0)$ to both sides of (26), we see that φ satisfies (25).

Denote by $E_v(x, z)$ the following function:

$$
E_{\nu}(x,z)=\frac{1}{(2\pi)^n}\int_{\mathbb{R}^n}\frac{e^{ix\cdot \eta}d\eta}{(\eta+z\nu)\cdot(\eta+z\nu)-k^2},\quad \text{Im } z>0.
$$

Note that $E_y(x, z)$ is a fundamental solution for $\left(-i\frac{\partial}{\partial x} + zy\right) \cdot \left(-i\frac{\partial}{\partial x} + zy\right) - k^2$, i.e.

$$
\left[\left(-i\frac{\partial}{\partial x}+zv\right)\cdot\left(-i\frac{\partial}{\partial x}+zv\right)-k^2\right]E_v(x,z)=\delta(x).
$$

Note that the distribution $[(\eta + zv) \cdot (\eta + zv) - k^2]^{-1}$ is not analytically dependent on z for Im $z > 0$. This gives rise to the $\overline{\partial}$ -equation in inverse scattering (see, for example [6]).

Denote by $h_{\nu}(\xi, \zeta, k, z)$ the solution of the following integral equation:

$$
h_{\nu}(\xi,\zeta,k,z) + \frac{1}{(2\pi)^{n}} \int_{\mathbb{R}^{n}} \frac{q_{0}(\xi-\eta,\eta+z\nu)h_{\nu}(\nu,\zeta,k,z)}{(\eta+z\nu)\cdot(\eta+z\nu)-k^{2}} d\eta
$$

= $-q_{0}(\xi-\zeta,\zeta+z\nu), \quad z= i\tau, \quad \tau > 0.$ (27)

Let $T_{i\tau}^{(1)}$ denote the operator

$$
[T_{i\tau}^{(1)}f](\xi) = (2\pi)^{-n} \int_{\mathbb{R}^n} \frac{q_0(\xi - \eta, \eta + i\tau v) f(\eta) d\eta}{(\eta + i\tau v) \cdot (\eta + i\tau v) - k^2} \,. \tag{28}
$$

Then (27) can be written

$$
[(I + T_{i\tau}^{(1)})h_{\nu}](\xi) = -q_0(\xi - \zeta, \zeta + i\tau\nu)
$$

and

$$
h_{\nu}(\xi,\zeta,k,i\tau) = -[(I+T_{i\tau})^{-1}q_0(\cdot-\zeta,\zeta+i\tau\nu)](\xi),
$$

provided $(I + T_{i\tau}^{(1)})^{-1}$ exists. The analyticity of h_{ν} in τ will be important for us. Thus we need to study the analyticity of $T_{i\tau}^{i\,\,\tau}$ in τ when $f(\eta)$ is analytic in a strip $|\text{Im} \eta| < \varepsilon$. We will use coordinates $\eta_v = \eta \cdot v$, $\eta' = \eta - \eta_v v$, $r = |\eta'|$ and $\omega' = \eta'/|\eta'|$. For η real and $\tau = \mu + i\sigma$,

$$
\mathrm{Im}((\eta + i\tau v) \cdot (\eta + i\tau v) - k^2) = 2\mu\eta_v - 2\mu\sigma.
$$

Hence, for $|\eta_{\nu}| > \varepsilon_1$, Re $\tau > 0$ and $|\text{Im}\,\tau| < \varepsilon_1/2$ the denominator in the integral defining $T_{i\tau}^{(k)}$ does not vanish. Thus, choosing $\chi \in C_0^{\infty}(R)$ such that $\chi(s)$ is supported in $|s| < 2\varepsilon_1$ and $1 - \chi(s)$ is supported in $|s| > \varepsilon_1$, we have

$$
[T_{it}^{(1)}f](\xi) = (2\pi)^{-n} \int_{\mathbb{R}^n} \frac{\chi(\eta_v)q_0(\xi - \eta, \eta + iv)f(\eta)d\eta}{(\eta + iv) \cdot (\eta + iv) - k^2} + (2\pi)^{-n} \int_{\mathbb{R}^n} \frac{(1 - \chi(\eta_v))q_0(\xi - \eta, \eta + iv)f(\eta)d\eta}{(\eta + iv) \cdot (\eta + iv) - k^2} \equiv [V_{\tau}^{(1)}f](\xi) + [V_{\tau}^{(2)}f](\xi),
$$

where $[V_{\tau}^{(2)}f](\xi)$ is analytic in (ξ,τ) in the set $|\text{Im }\xi| < \delta$, Re $\tau > 0$ and $|\text{Im}\,\tau| < \varepsilon_1/2$.

In our coordinates we have

$$
(\eta + i\tau v) \cdot (\eta + i\tau v) - k^2 = (r - \sqrt{B})(r + \sqrt{B}),
$$

where $B = k^2 + (\tau - i\eta_y)^2$. Using $\tau = \mu + i\sigma$ again, we have Re $B = k^2 + \mu^2$ $\sigma^2 + 2\sigma\eta_v - \eta_v^2$, and Im $B = 2\mu\sigma - 2\mu\eta_v$. Hence for $k^2 > 8\varepsilon_1^2$, Re $B > k^2/8$ for $|\eta_v| < 2\varepsilon_1$ and $|\text{Im } \tau| < \varepsilon_1/2$, and we fix \sqrt{B} as the square root in the right half plane. We wish to define $V_{\tau}^{(1)}$, and hence $T_{i\tau}^{(1)}$, by analytic continuation from $\tau > 0$. When $\tau > 0$, i.e. when $\mu > 0$ and $\sigma = 0$, $r - \sqrt{B} \neq 0$ for $\eta_{\nu} \neq 0$, and we have sgn (Im B) = $-\text{sgn }\eta_v$. Therefore, we will deform the integration in r in

$$
[V_{\tau}^{(1)}f](\zeta) = \int_{S^{n-2}} d\omega' \int_{\mathbb{R}} d\eta_{\nu} \left(\int_{0}^{\infty} \frac{\chi(\eta_{\nu})q_0(\zeta - \eta, \eta + i\tau \nu) f(\eta) r^{n-2}}{(r - \sqrt{B})(r + \sqrt{B})} dr \right)
$$

into the upper half plane for $\eta_{v} > 0$ and into the lower half plane for $\eta_{v} < 0$. We need to deform [0, ∞) far enough that $r - \sqrt{B}$ will not vanish on the new contour for τ in a complex neighborhood of [0, τ_0]. Note that for $\tau = \mu + i\sigma$,

$$
\sqrt{B} = \sqrt{\mu^2 + k^2 + 2i(\sigma - \eta_v)\mu - (\sigma - \eta_v)^2}
$$

= $\sqrt{\mu^2 + k^2} + i(\sigma - \eta_v) \frac{\mu}{\sqrt{\mu^2 + k^2}} + O((\sigma - \eta_v)^2).$

Hence, for $|\sigma| < \varepsilon_1/2$ and $|\eta_v| < 2\varepsilon_1$, we have $|Re(\sqrt{B} - \sqrt{\mu^2 + k^2})| < C\varepsilon_1^2$ and $|\text{Im }\sqrt{B}| < 5\epsilon_1/2 + C\epsilon_1^2$. We now fix $\epsilon_1 > 0$ such that $C\epsilon_1^2 < k/3, 5\epsilon_1/2 + C\epsilon_1^2 <$ $\varepsilon/2$ and $8\varepsilon_1^2 < k^2$. Then we may deform the r integration in $V_t^{(1)}$ to the piecewise linear curve *F* from 0 to $k/2$ to $k/2 + i\epsilon/2$ sgn η_v to $\sqrt{k^2 + \tau_0^2} + k/2 + i\epsilon/2$ sgn η_v to $\sqrt{k^2 + \tau_0} + k/2$ to ∞ . With this choice of $\Gamma, r - \sqrt{B}$ will not vanish on Γ for $|\eta_{\nu}| < 2\varepsilon_1, |\sigma| < \varepsilon_1/2$ and $0 \le \mu \le \tau_0$. Thus we have proven:

Lemma 1. If $f(\eta)$ is analytic in $|\text{Im } \eta| < \varepsilon$, satisfying $|f(\eta)| \leq C(1 + |\eta|)^{-n-1}$ *for* $|\text{Im } \eta| < \varepsilon$, *then* $[T_{i\tau}^{(1)}f](\xi)$ *has an analytic extension from* $\tau > 0$ *to the half strip* $\{(\xi, \tau) : |\text{Im } \xi| < \delta - \varepsilon$, Re $\tau > 0$, $|\text{Im } \tau| < \varepsilon_1/2\}$.

Let $A_{N,r}$ denote the space of functions $f(\eta)$, analytic on $S_r = \{\eta \in \mathbb{C}^n :$ $|\text{Im } \eta| < r$ and continuous on \overline{S}_r , which satisfy

$$
|f(\eta)| \leq C(1+|\eta|)^{-N}
$$

on S_r . $A_{N,r}$ is a Banach space in the norm

$$
||f||_{N,r} = \sup_{S_r} (1 + |\eta|)^N |f(\eta)|.
$$

Proposition 1. For ε_1 sufficiently small $T_{i\tau}^{(1)}$ is a family of compact operators on $A_{n+1, \delta/3}$, depending continuously on τ in the closed half strip $D = \{\tau = \mu + i\sigma :$ $\geq 0, |\sigma| \leq \varepsilon_1/2$ *and analytically on* τ *in* $\stackrel{\circ}{D}$ *, the interior of D.*

Remark 1. The choice $N = n + 1$ is made simply to make the Banach spaces used here compatible with those used in Sect. 3. The δ here is from (3).

Proof. For $\tau \in D$, $T_{i\tau}^{(1)}f = V_{\tau}^{(1)}f + V_{\tau}^{(2)}f$ by definition. Since $r^2 + (\eta_v + i\tau)^2 - k^2$ does not vanish for $r \in \Gamma$ and $\tau \in D$, the operator $V_{\tau}^{(1)}$ satisfies

$$
|[V_{\tau}^{(1)}f](\zeta)| \leq C_{\tau} \int\limits_{S^{n-2}} d\omega' \int\limits_{\mathbb{R}} d\eta_{\nu} \int\limits_{\Gamma} \frac{|q_0(\zeta - \eta, \eta + i\tau)||f(\eta)||r^{n-2}||dr|}{(1+|\eta|)^2} \,, \tag{29}
$$

where the constant C_{τ} is uniformly bounded on compact subsets of D. By hypothesis (3) for any $\delta' < \delta$,

$$
|q_0(\xi - \eta, \eta + i\tau \nu)| \leq C_{\tau, \delta'}(1 + |\xi - \eta|)^{-n-4}(1 + |\eta|)
$$
 (30)

for $\xi \in S_{\delta'-\varepsilon}$ and $\eta \in S_{\varepsilon}$, where again $C_{\tau,\delta'}$ is uniformly bounded on compact subsets of D. Since $|f(\eta)| \leq (1 + |\eta|)^{-n-1} ||f||_{n+1,\varepsilon}$ on S_{ε} , the integrand in (29) is bounded by

$$
C_{\tau,\delta'} \frac{|r^{n-2}|}{(1+|\xi-\eta|)^{n+2}(1+|\eta|)^{n+2}}.
$$

Since for any $p > 0$,

$$
(1+|\xi|)^p(1+|\xi-\eta|)^{-p}(1+|\eta|)^{-p} \leq C((1+|\xi-\eta|)^{-p}+(1+|\eta|)^{-p}),
$$

we conclude

$$
(1+|\xi|)^{n+2} |[V_{\tau}^{(1)}f](\xi)| \leq C \|f\|_{n+1,\varepsilon}.
$$
\n(31)

Taking $\varepsilon = \delta/3$ and $\delta' = 5\delta/6$, we have $[V_{\tau}^{(1)}f](\xi)$ analytic in $S_{\delta/2}$. Thus for $\tau \in D$, $V_{\tau}^{(1)}$ maps $A_{n+1,\delta/3}$ into $A_{n+2,\delta/2}$ with norm uniformly bounded on compact subsets of D. Hence $V_{\tau}^{(1)}$ is compact for $\tau \in D$.

In proving Lemma 1 we showed that for $f \in A_{n+1,\delta/3}$, $[V_t^{(1)}f](\zeta)$ was analytic in (ξ, τ) for $\tau \in D$ and $\xi \in S_{\delta/2}$. Since the norm of $V_{\tau}^{(1)}$ as an operator on $A_{n+1, \delta/3}$ is uniformly bounded on compact subsets it follows by Cauchy's formula that $V_{\tau}^{(1)}$ is an analytic family of operators for $\tau \in D$.

For $\tau \in \mathring{D}$ the preceding arguments apply equally well to $V_{\tau}^{(2)}$, and we may conclude that $T_{ir}^{(1)}$ is an analytic family of compact operators in $\stackrel{\circ}{D}$. However, since

$$
[V_{\mu+i\sigma}^{(2)}f](\xi) = (2\pi)^{-n} \int_{\mathbb{R}^n} \frac{(1 - \chi(\eta_v))q_0(\xi - \eta, \eta - \sigma v + i\mu v)f(\eta)}{|\eta - \sigma v|^2 - k^2 - \mu^2 + 2i\mu(\eta_v - \sigma)} d\eta
$$

= $(2\pi)^{-n} \int_{\mathbb{R}^n} \frac{(1 - \chi(\eta_v + \sigma))q_0(\xi - \eta - \sigma v, \eta + i\mu v)f(\eta + \sigma v)}{|\eta|^2 - k^2 - \mu^2 + 2i\mu\eta_v} d\eta,$

we need to show that $V_{\mu+i\sigma}^{(2)}$ extends continuously to $\mu = 0$ from $\mu > 0$. Since η_{y} does not vanish on the support of $(1 - \chi(\eta_{y} + \sigma))$ for $|\sigma| < \varepsilon_{1}/2$, we can again deform the integration in r into Im $r > 0$ for $\eta_v > 0$ and into Im $r < 0$ for $\eta_v < 0$, using the piecewise linear contour Γ' connecting 0 to $\varepsilon/2 + i\varepsilon/2$ sgn η_v to $3k/2 + i\varepsilon/2$ sgn η_v to 3k/2 to ∞ . Then for $r \in \Gamma'$ and $0 \leq \mu \leq \varepsilon_{1/2}$,

$$
\begin{aligned} |\eta \cdot \eta - k^2 - \mu^2 + 2i\mu \eta_v|^{-1} &= |r^2 + \eta_v^2 - k^2 - \mu^2 + 2i\mu \eta_v|^{-1} \\ &\leq C_{k, \, \varepsilon/2} (|r|^2 + |\eta_v - (\text{sgn } \eta_v)k|)^{-1} \,, \end{aligned}
$$

because $r = (1 + i \text{sgn } \eta_v)t$ on the first segment of Γ' and $r^2 = 2i(\text{sgn } \eta_v)t^2$. Since $(|r|^2 + |\eta_y - (\text{sgn }\eta_y)k|)^{-1}$ is locally integrable with respect to $|r|^{n-2}d|r|d\eta_y$, we may argue as follows. Removing small disks about $(r, \eta_v) = (0, \pm k)$ in the integral defining $V_{\mu+i\sigma}^{(2)}f$, we get an operator to which our previous arguments apply. Since this operator differs in norm from $V_{\mu+i\sigma}^{(2)}$ by an amount which goes to zero with the radius of disks, uniformly for $0 \leq \mu \leq \varepsilon_1/2$, we conclude that $V_{u+i\sigma}^{(2)}$ extends continuously to a compact operator on $\mu = 0$. \Box

In Sect. 3 we will show that $I + T_{\sigma}^{(1)}$ is invertible on $H_{0,n+1}$ for $\tau \gg 0$. This implies immediately that it is invertible on $A_{n+1,\delta/3}$, since the null space of $I + T_{n'}^{s}$. on $A_{n+1, b/3}$ is a subspace of its nullspace on $H_{0, n+1}$. Therefore, by Proposition 1 the set Z where $I + T_{it}^{(1)}$ is not invertible is discrete in $\stackrel{\circ}{D}$ and closed of measure zero in $D \cap \{ \text{Re } \tau = 0 \}$. In particular, there is an open interval $I = (\sigma_1, \sigma_2) \subset (-\varepsilon_1/2, \varepsilon_1/2)$ such that $I + T_{ir}^{(1)}$ is invertible for $\tau = -i\sigma, \sigma \in I$. Hence

$$
h_{\nu}(\xi,\zeta,k,i\tau)=[(I+T_{i\tau}^{(1)})^{-1}q_0(\cdot-\zeta,\zeta+i\tau\nu)](\xi)
$$

exists for $\tau \in D\backslash Z$ and is analytic in (ξ, ζ, τ) on $S_{\delta/2} \times S_{\delta/2} \times D\backslash Z$

Our goal is to recover $h_{\nu}(\xi,\zeta,k,i\tau)$ from the scattering data. To make the connection with scattering data we will need to use $\tau = -i\sigma$ and identify h_y with a translate of $h_{v, \sigma}$. Since denominator $(\eta + i\tau v) \cdot (\eta + i\tau v) - k^2$ with $\tau = \mu - i\sigma$ goes to $\eta \cdot \eta + 2\sigma\eta_v + \sigma^2 - k^2$ as $\mu \downarrow 0$, we can remove the contour deformation in the definition of $V_t^{(1)}f$. However, since the integration in r is deformed into the upper half-plane when $\eta_{y} > 0$ and the lower half-plane when $\eta_{y} < 0$, we have

$$
[T_{\sigma}^{(1)}f](\xi)=(2\pi)^{-n}\int\limits_{\mathbb{R}^n}\frac{q_0(\xi-\eta,\eta+\sigma\nu)f(\eta)}{\eta\cdot\eta+2\sigma\eta_{\nu}+\sigma^2-k^2+i0\eta_{\nu}}d\eta\,,
$$

and for $\sigma \in I, h_{\nu}(\xi, \zeta, k, \sigma)$ is the unique solution in $A_{n+1, \delta/3}$ to

$$
f(\xi,\zeta)+(2\pi)^{-n}\int\limits_{\mathbb{R}^n}\frac{q_0(\xi-\eta,\eta+\sigma\nu)f(\eta,\zeta)}{\eta+\eta+2\sigma\eta,\tau+\sigma^2-k^2+i0\eta,\omega}d\eta=-q_0(\xi-\zeta,\zeta+\sigma\nu). \quad (32)
$$

Since the changes of variables $\eta \rightarrow \eta - \sigma v$, $\xi \rightarrow \xi - \sigma v$ and $\zeta \rightarrow \zeta - \sigma v$, transform Eq. (32) to (16), we conclude that $h_y(\xi - \sigma y, \zeta - \sigma y, k, \sigma)$ is the unique solution of (16) in $A_{n+1,\delta/3}$ and hence for $\sigma \in I$,

$$
h_{\nu}(\xi - \sigma \nu, \ \zeta - \sigma \nu, k, \sigma) = h_{\nu, \sigma}(\xi, \zeta, k). \tag{33}
$$

Therefore, assuming the results of Sect. 3, we have proven the following theorem:

Theorem 2. *The solution* $h_v(\xi, \zeta, k, i\tau)$ *of* (27) *exists for* $\tau \in D\Z$ *and is analytic in* (ξ,ζ,τ) on $S_{\delta/3}\times S_{\delta/3}\times (D\setminus Z)$. The limiting values of $h_\nu(\xi,\zeta,k,i\tau)$ when $\tau\to -i\sigma$ *satisfy* (33), where $h_{v,\sigma}(\xi,\zeta,k)$ is the solution of (16).

Since the unique solvability of (16) in $A_{n+1,\delta/3}$ implies the unique solvability of (24) in $C(S^{n-1})$, we know that (24) has a unique solution for $\sigma \in I$. Hence, knowing the scattering amplitude $h(\xi,\zeta,k)$ for $|\xi|^2 = |\zeta|^2 = k^2$, we can find $h_{\nu,\sigma}(\xi,\zeta,k)$ for $|\xi|^2 = |\xi|^2 = k^2$ and $\sigma \in I$, which translates (by (33)) to knowing $h_v(\xi)$ for $|\xi + \sigma v|^2 = |\zeta + \sigma v|^2 = k^2$, for $\sigma \in I$. Since $h_v(\xi, \zeta, k, i\tau)$ is analytic for $(\xi, \zeta, k, i\tau)$ $S_{\delta/3} \times S_{\delta/3} \times (\check{D} \setminus Z)$ with a continuous extension to $S_{\delta/3} \times S_{\delta/3} \times (-iI)$, we can determine it on the variety

$$
(\xi + i\tau v) \cdot (\xi + i\tau v) = (\zeta + i\tau v) \cdot (\zeta + i\tau v) = k^2
$$

for $(\xi, \zeta, \tau) \in S_{\delta/3} \times S_{\delta/3} \times (\overset{\circ}{D} \setminus Z)$ by analytic continuation.

Fix $l \in \mathbb{R}^n, \mu \in \mathbb{R}^n, n \geq 3$, such that

$$
l \cdot v = 0,
$$
 $\mu \cdot v = 0,$ $l \cdot \mu = 0,$ $\mu \cdot \mu = 1,$ (34)

and put

$$
\xi(s) = \frac{1}{2}l + s\mu,
$$

\n
$$
\zeta(s) = \frac{-1}{2}l + s\mu,
$$

\n
$$
z(s) = i\tau(s) = i\sqrt{s^2 + \frac{1}{4}l \cdot l - k^2},
$$
\n(35)

 $s \geq s_0$, s_0 large. We have that $h_y(\xi(s), \zeta(s), k, z(s))$ is analytic in s for $s > s_0$ and

$$
(\xi(s) + i\tau(s)v) \cdot (\xi(s) + i\tau(s)v) = (\zeta(s) + i\tau(s)v) \cdot (\zeta(s) + i\tau(s)v) = k^2.
$$

Hence $h_y(\xi(s), \zeta(s), k, z(s))$ is known for $s > s_0$.

Remark 1. In the case $A(x) = 0$ the operator $T_{ir}^{(1)}$ has a small norm in $H_{\zeta, n+1}$ (see Proposition 4) when $\tau > 0$ is large. Substituting $\xi = \xi(s), \zeta = \zeta(s), z = z(s) = i\tau(s)$ in (27) and passing to the limit when $s \to +\infty$, we obtain that the integral in (27) tends to zero, and we can recover

$$
\hat{V}(l) = \lim_{s \to \infty} h_{\nu}(\xi(s), \zeta(s), k, z(s)).
$$

Thus we obtain an alternate proof of R. Novikov's result [8].

3. Solution of an Integral Equation

In this section we set $z = i\tau$ and only consider τ real and positive.

In order to solve the integral equation (27) when τ is large and positive we will pass to an equivalent differential equation. Let

$$
v_{\nu}(x,\zeta,k,z)=(2\pi)^{-n}\int_{\mathbb{R}^n}\frac{h_{\nu}(\eta,\xi,k,z)e^{ix\cdot\eta}}{(\eta+z\nu)\cdot(\eta+z\nu)-k^2}d\eta,\quad z=iz,\ \tau>0\,. \tag{36}
$$

Then v_y satisfies the differential equation

$$
[(-i\partial/\partial x + zv)^2 - k^2 + 2A(x) \cdot (-i\partial/\partial x + zv) + q(x)]v_v
$$

= -2(\zeta + zv) \cdot A(x)e^{ix \cdot \zeta} - q(x)e^{ix \cdot \zeta}. (37)

Our strategy will be to construct solutions of the equation

$$
[(-i\partial/\partial x + zv)^2 - k^2 + 2A(x) \cdot (-i\partial/\partial x + zv) + q(x)]v = f \qquad (37')
$$

for all f in the Banach space $H_{0,n+1}(R^n)$, where $H_{0,N}(R^n)$ is defined as the closure of $C_0^{\infty}(R^n)$ in the norm, $||f||_{0,N} = \sup_{\xi} (1 + |\xi|)^N |\hat{f}(\xi)|$, i.e. $H_{0,N}$ is the Fourier transform of $H_{0,N}$. Then

$$
h(\xi) = \int_{\mathbb{R}^n} ((-i\partial/\partial x + zv)^2 - k^2)v(x)e^{-ix \cdot \xi}dx
$$

208

will be a solution of (27) with the inhomogeneous term replaced by $\hat{f}(\xi)$, i.e.

$$
h(\xi) + (2\pi)^{-n} \int_{\mathbb{R}^n} \frac{q_0(\xi - \eta, \eta + z\nu)h(\eta)}{(\eta + z\nu) \cdot (\eta + z\nu) - k^2} d\eta = \hat{f}(\xi),
$$
 (38)

and we will show that $h \in H_{0,n+1}$. Thus we can conclude that $I + T_{it}^{(1)}$ (see (28)) maps $H_{0,n+1}$ *onto* $H_{0,n+1}$ for $\tau \gg 0$. Since $T_{\tau\tau}^{(1)}$ is also compact on $H_{0,n+1}$ for $\tau > 0$, it follows that $I+ T_{i\tau}^{(+)}$ is invertible on $H_{0,n+1}$ for $\tau \gg 0$, and (27) is uniquely solvable in $H_{0,n+1}$, when τ is sufficiently large positive.

We will look for a solution of $(37')$ in the form

$$
v(x,\zeta,z) = (2\pi)^{-n} \int_{\mathbb{R}^n} \frac{c(x,\eta,z)\tilde{g}(\eta,\zeta,z)e^{ix\cdot\eta}}{(\eta + zv)\cdot(\eta + zv) - k^2} d\eta,
$$
 (39)

where $z = i\tau, \tau > 0$. Here $q(x, \zeta, z)$ is the new unknown and $\tilde{q}(\eta, \zeta, z)$ is its Fourier transform in the first variable. The factor $c(x, \eta, z)$ will be chosen so that the analogue of Eq. (27) for \tilde{g} will not have the unbounded terms in $q_0(\xi - \eta, \eta + zv)$. For this reason we choose $c(x, \eta, z)$ as a solution of the transport equation

$$
-2i\frac{\partial c}{\partial x} \cdot (\eta + zv) + 2A(x) \cdot (\eta + zv)\chi_1(\eta, z)c = 0
$$
 (40)

of the form $c = \exp(-i\gamma_1\varphi)$. Thus φ must satisfy

$$
(\eta + zv) \cdot \frac{\partial \varphi}{\partial x} = A(x) \cdot (\eta + zv), \qquad (40')
$$

and we choose

$$
\varphi = (2\pi)^{-n} \int\limits_{\mathbb{R}^n} \frac{\hat{A}(\xi) \cdot (\eta + zv)e^{ix \cdot \xi}}{i\xi \cdot (\eta + zv)} d\xi. \tag{41}
$$

The function $\chi_1(\eta, z)$ is (40) is a cutoff to a neighborhood of $(\eta + zv) \cdot (\eta + zv)$ zv) = k^2 . The cancellation of unbounded terms is not needed outside this neighborhood, and it is convenient to have $c \equiv 1$ there. We choose $\chi(t) \in C_0^{\infty}(R)$ such that $\gamma(t) \geq 0, \gamma(t) = 1$ on $|t| < \varepsilon/2$ and $\gamma(t) = 0$ on $|t| > \varepsilon$, and define

$$
\chi_1(\eta,z)=\chi\left(\frac{\left|(\eta+zv)\cdot(\eta+zv)-k^2\right|}{\left|\eta\right|^2+\tau^2+k^2}\right)\,.
$$

Since, setting $\eta_v = \eta \cdot v$,

$$
|(\eta + zv) \cdot (\eta + zv) - k^2| = ((|\eta|^2 - \tau^2 - k^2)^2 + 4\tau^2 \eta_v^2)^{1/2}, \qquad (42)
$$

it follows that on the support of χ_1

$$
\varepsilon(|\eta|^2 + \tau^2 + k^2) \geq ||\eta|^2 - (\tau^2 + k^2)|,
$$

and hence

$$
\left(\frac{1-\varepsilon}{1+\varepsilon}\right)|\eta|^2 < \tau^2 + k^2 < \left(\frac{1+\varepsilon}{1-\varepsilon}\right)|\eta|^2. \tag{43}
$$

Setting $\eta' = \eta - (\eta \cdot \nu)v$, (42) also implies that on the support of χ_1 ,

$$
2\varepsilon(|\eta'|^2 + \eta_v^2 + \tau^2 + k^2) \geq ||\eta'|^2 + \eta_v^2 - \tau^2 - k^2| + 2\tau|\eta_v|,
$$

and hence, using (43),

$$
(1+2\varepsilon)|\eta'|^2 \ge (1-2\varepsilon)(\tau^2+k^2) - (1+2\varepsilon)\eta_v^2 + 2\tau|\eta_v|
$$

$$
\ge (1-2\varepsilon)(\tau^2+k^2) + \left(2\left(\frac{1-\varepsilon}{1+\varepsilon}\right)^{1/2}\frac{\tau}{(\tau^2+k^2)^{1/2}} - (1+2\varepsilon)\right)\eta_v^2.
$$

Thus, choosing ε sufficiently small and τ_0 sufficiently large, we have for $\tau \geq \tau_0$,

$$
(\tau^2 + k^2) + \eta_v^2 \le C_{\varepsilon} |\eta'|^2
$$
 (44)

on support χ_1 .

We will need some detailed estimates on φ . The behavior of φ in the x-variables is strongly dependent on η . We introduce $\mu = \eta'/|\eta'|$, and use the orthogonal expansion $x = x_1v + x_2\mu + x_1$, where x_1 is the projection of x on the orthogonal complement of span $\{v, \eta\}.$

Proposition 2. Assume that $B(x)$ is a vector-valued function satisfying (3) and *define*

$$
\psi(x,\eta+ zv) = (2\pi)^{-n} \int_{\mathbb{R}^n} \frac{\hat{B}(\xi) \cdot (\eta + zv)}{\xi \cdot (\eta + zv)} e^{ix \cdot \xi} d\xi.
$$

Then for $(\eta, z) \in \text{supp } \chi_1, \tau \geq \tau_0$ *and* $|\alpha| + |\beta| \leq P$ *in* (3') *one has*

$$
\left| \frac{\partial^{|\alpha|+|\beta|} \psi}{\partial x^{\alpha} \partial \eta^{\beta}} \right| \leq C_{\alpha\beta} \tau^{-|\beta|} e^{-\frac{\delta}{2}|x_{\perp}|} \,. \tag{45}
$$

Proof. By contour integration one computes

$$
(2\pi)^{-2} \int\limits_{\mathbb{R}^2} \frac{e^{i(x_1\xi_1+x_2\xi_2)}}{\xi \cdot (\eta + z\nu)} d\xi_1 \ d\xi_2 = \frac{1}{2\pi} \frac{1}{|\eta'|x_1 - (\eta_{\nu} + z)x_2} \ .
$$

Thus

$$
\psi(x, \eta + zv) = \frac{1}{2\pi} \int_{\mathbb{R}^2} \frac{B(x - y_1v - y_2\mu) \cdot (\eta + zv)}{|\eta'|y_1 - (\eta_v + z)y_2} dy,
$$
 (46)

and, using (3'), for $|\alpha| \leq P$,

$$
\left| \frac{\partial^{|\alpha|} \psi}{\partial x^{\alpha}} (x, \eta + z \nu) \right| \leq \int_{\mathbb{R}^2} \frac{C e^{-\delta |(x_1 - y_1)\nu + (x_2 - y_2)\mu + x_\perp|} |\eta + z \nu|}{\|\eta'\| y_1 - (\eta_{\nu} + z) y_2\|} d\nu.
$$
 (47)

Since (43) and (44) imply that

$$
\|\eta'|y_1 - (\eta_v + z)y_2\| = ((|\eta'|y_1 - \eta_v y_2)^2 + \tau^2 y_2^2)^{1/2}
$$

\n
$$
\geq C\tau (y_1^2 + y_2^2)^{1/2} = C\tau |y|,
$$
\n(48)

it follows from (43) and (47) that

$$
\left. \frac{\partial^{|\alpha|} \psi}{\partial x^{\alpha}} (x, \eta + z \nu) \right| \leq C_{\alpha} e^{-\frac{\delta}{2}|x_{\perp}|}
$$

for $|\alpha| \leq P$, where C_{α} is independent of η and z.

To estimate η derivatives of ψ we first observe that (48) implies

$$
\left|\frac{\partial}{\partial \eta_j}\left(\frac{1}{|\eta'|y_1-(\eta_v+z)y_2}\right)\right|=\left|\frac{\frac{\partial|\eta'|}{\partial \eta_j}y_1-\frac{\partial \eta_v}{\partial \eta_j}y_2}{(|\eta'|y_1-(\eta_v+z)y_2)^2}\right|\leq \frac{C}{\tau^2|y|}.
$$

Thus, differentiating (46),

$$
\left| \frac{\partial \psi}{\partial \eta_j} \right| \leq \frac{C}{\tau} \int_{\mathbb{R}^2} \frac{|B(x - y_1 v - y_2 \mu)| dy}{|y|} + \frac{C}{\tau} \int_{\mathbb{R}^2} \left| \frac{\partial B}{\partial x} (x - y_1 v - y_2 \mu) \right| dy
$$

$$
\leq \frac{C}{\tau} e^{-\frac{\delta}{2}|x_\perp|}.
$$

Repeating the same argument and noting that $\frac{\partial |v|}{\partial \eta^{\gamma}}(|\eta'|y_1-(\eta_y+z)y_2)^{-1}$ is homogeneous of degree -1 in y for any γ , one concludes

$$
\left| \frac{\partial^{|\alpha|+|\beta|} \psi}{\partial x^{\alpha} \partial \eta^{\beta}} \right| \leq \frac{C_{\alpha\beta}}{\tau^{|\beta|}} e^{-\frac{\delta}{2}|x_{\perp}|} \tag{49}
$$

for $|\alpha| + |\beta| \leq P$ and $\tau \geq \tau_0$ on the support of χ_1 . \Box

To study φ in (41) we will use Proposition 2. We introduce

$$
w = x_1 - (\eta_v + z)|\eta'|^{-1}x_2
$$
 and $w' = y_1 - (\eta_v + z)|\eta'|^{-1}y_2$

and observe that

$$
\frac{1}{w - w'} = \frac{1}{w(1 - \frac{w'}{w})} = \sum_{k=0}^{N} \frac{(w')^k}{w^{k+1}} + \frac{(w')^{N+1}}{w^{N+1}(w - w')} \,. \tag{50}
$$

Then we can write (46) with B replaced by A/i in the form

$$
\varphi(x, \eta + zv) = \frac{1}{2\pi i} \int_{\mathbb{R}^2} \frac{A(y_1v + y_2\mu + x_1) \cdot (\eta + zv)}{|\eta'|(x_1 - y_1) - (\eta_v + z)(x_2 - y_2)} dv
$$

=
$$
\frac{1}{2\pi |\eta'| i \int_{\mathbb{R}^2} \frac{A(y_1v + y_2\mu + x_1) \cdot (\eta + zv)}{w - w'} dv.
$$
 (51)

Using (50) to expand (51), the remainder term in (50) contributes a term to φ of the form

$$
\frac{1}{2\pi i} \frac{1}{w^{N+1}} \int\limits_{\mathbb{R}^2} \frac{B_N(x - y_1v - y_2\mu, \eta, z) \cdot (\eta + zv)}{|\eta'| y_1 - (\eta_v + z)y_2} \, dy \, ,
$$

where $B_N(x, \eta, z) = (x_1 - (\eta_v + z)|\eta'|^{-1}x_2)^{N+1}A(x)$ satisfies (3) uniformly in (η, z) on the support of χ_1 for $\tau \geq \tau_0$. The other terms in (50) contribute terms to φ of the form

$$
\frac{1}{2\pi i} \frac{1}{w^{k+1}} \int_{\mathbb{R}^2} |\eta'|^{-1} A(x^{\perp} + y_1 v + y_2 \mu) \cdot (\eta + z v) (w')^k \, dy \, .
$$

Thus we see that for any $N \geq 0$, when (η, z) is in the support of χ_1 and $\tau \geq \tau_0$,

$$
\varphi = \sum_{k=1}^{N-1} w^{-k} b_k(x_{\perp}, \eta, z) + w^{-N} b_N , \qquad (52)
$$

where $\psi = b_N$ satisfies (45) and $b_k(x_\perp, \eta, z)$ is exponentially decreasing in x_\perp together with its derivatives up to order P uniformly in (η, z) .

Substituting (39) into $(37')$ and using (40) , we obtain

$$
C(x, D, z)g + T_1g + T_2g + T_3g = f,
$$
\n(53)

where

$$
[T_1g](x) = (2\pi)^{-n} \int_{\mathbb{R}^n} \frac{(-2iA \cdot \frac{\partial c}{\partial x} + qc)\hat{g}(\eta)e^{ix\cdot \eta}}{(\eta + zv)\cdot (\eta + zv) - k^2} d\eta,
$$

$$
[T_2g](x) = (2\pi)^{-n} \int_{\mathbb{R}^n} \frac{(-\Delta c)\hat{g}(\eta)e^{ix\cdot \eta}d\eta}{(\eta + zv)\cdot (\eta + zv) - k^2},
$$

$$
[T_3g](x) = (2\pi)^{-n} \int_{\mathbb{R}^n} \frac{2(1 - \chi_1)A \cdot (\eta + zv)c\hat{g}(\eta)e^{ix\cdot \eta}}{(\eta + zv)\cdot (\eta + zv) - k^2} d\eta,
$$

and $C(x, D, z)$ is a pseudo-differential operator with symbol $c(x, \eta, z)$.

In Sects. 4 and 5 we will need uniform estimates on the norms of the operators $e^{-ix + \zeta} T_i e^{ix + \zeta}, j = 1,2,3$, and $e^{-ix + \zeta} C e^{ix \cdot \zeta}$. Since multiplication by $e^{ix + \zeta}$ is not bounded on $H_{0,N}$ (for $N > 0$) and $\zeta \to \infty$, these estimates do not follow from estimates on the norms of the T_j , $j = 1, 2, 3$ and C on $H_{0,N}$. To prove what we will use later efficiently we are going to equip $H_{0,N}$ with a family of norms, $\| \cdot \|_{\zeta,N}$ so that estimates in these norms *uniform in* ζ will imply the needed estimates for Sects. 4 and 5. We will refer to $H_{0,N}$ with the norm $\| \cdot \|_{\zeta,N}$ as " $H_{\zeta,N}$ "

Proposition 3. Let $H_{\ell,N}(R^n)$ be the closure of $C_0^{\infty}(R^n)$ in the norm $||f||_{\ell,N} =$ $\sup_{\mathbf{p}_n} (1 + |\xi - \zeta|)^N |\hat{f}(\xi)|$. Then $C(x, D, z)$ is invertible as an operator on $H_{\zeta, n+1}$ (R^n) for τ sufficiently large.

Proof. Our approach here will be to show that $C(x, D)$ and the operator $C^{(-1)}(x, D)$ with the reciprocal symbol $e^{i\chi_1\varphi}$ are bounded on $H_{\zeta,n+1}$. Then the composition formula for pseudo-differential operators and Proposition 2 will be used to show

$$
C^{(-1)}C = I + T, \t\t(54)
$$

where the norm of T on $H_{\zeta,n+1}$ goes to zero as $\tau \to \infty$ uniformly in ζ .

The proof that C and $C^{(-1)}$ are uniformly bounded on $H_{\zeta,n+1}$ uses only (52). Expanding $c(x, \eta, z) = \exp(-i\varphi\chi_1)$ in a Taylor series in $\varphi\chi_1$, it is clear that $c - 1$ also has an expansion of the form (52) for $\tau \geq \tau_0$. A linear transformation of R^n takes w in (52) to the standard complex variable $z = s + it$. Hence analytic functions of w are annihilated by the pull-back of $\partial/\partial \overline{z}$ under this transformation which is

 $\frac{\partial}{\partial u} = \frac{1}{2}(\frac{\partial}{\partial x_1} + (\eta_y + z)|\eta'| \rvert^{2} \frac{\partial}{\partial x_2}).$ From (52) we have $\|(\partial^{|\alpha|}/\partial x^{\alpha})\partial c/\partial \overline{w}\|_{L^1(\mathbb{R}^n)} \leq C$ for $|\alpha| < P$ uniformly on support χ_1 for $\tau > \tau_0$. Thus setting $v_0 = \partial c/\partial \overline{w}$,

$$
|\hat{v}_0(\xi, \eta, z)| \leq C(1 + |\xi|)^{-P+1} \,. \tag{55}
$$

Thus, since $P \ge n+2$, the inverse Fourier transform of $v_0(\xi)(\xi_2 + (\eta_y + z))$ $|\eta'|^{-1}\xi_1$ ⁻¹ is continuous, tending to zero as $|x| \to 0$. Since c is bounded, we conclude (by Liouville's theorem)

$$
c(x, \eta, z) = 1 + (2\pi)^{-n} \int_{\mathbb{R}^n} \frac{2\hat{v}_0(\xi)e^{ix\cdot\xi}}{i(\xi_2 + (\eta_v + z)|\eta'|^{-1}\xi_1)} d\xi
$$

= 1 + (2\pi)^{-n} \int_{\mathbb{R}^n} \frac{2\hat{v}_0(\xi)|\eta'|e^{ix\cdot\xi}}{i\xi \cdot (\eta + zv)} d\xi. (56)

Using (55) and (56), given $C(x, D, z)g = h$, we have, setting $c_1 = c - 1$,

$$
\hat{h}(\xi) = \hat{g}(\xi) + \int_{\mathbb{R}^n} \tilde{c}_1(\xi - \eta, \eta, z) \hat{g}(\eta) d\eta,
$$

where $\tilde{c}_1(\xi, \eta, \zeta)$ has support in the support of χ_1 and satisfies

$$
|\tilde{c}_1(\xi,\eta,z)| \leq C|\eta'| (1+|\xi|)^{-n-1} |\xi \cdot (\eta + z\nu)|^{-1} . \tag{57}
$$

Hence

$$
\sup_{\xi} (1+|\xi-\zeta|)^{n+1} |\hat{h}(\xi)| \leq (1+\sup_{\xi,\zeta} \int_{\mathbb{R}^n} (1+|\xi-\zeta|)^{n+1} |\hat{c}_1(\xi-\eta,\eta,z)|
$$

$$
(1+|\eta-\zeta|)^{-n-1} d\eta) \sup_{\zeta} (1+|\xi-\zeta|)^{n+1} |\hat{g}(\xi)|,
$$

and the boundness of $C(x,D,z)$ on $H_{\zeta,n+1}(R^n)$ uniformly in (ζ,z) for $\tau \geq \tau_0$ follows from (57) and the estimate

$$
(1 + |\xi - \zeta|)^{n+1} (1 + |\xi - \eta|)^{-n-1} (1 + |\eta - \zeta|)^{-n-1}
$$

\n
$$
\leq C((1 + |\xi - \eta|)^{-n-1} + (1 + |\eta - \zeta|)^{-n-1}).
$$
\n(58)

To see that C is *invertible* on $H_{\zeta,n+1}$ when τ is large, we recall that the integral remainder formula for Taylor series implies that the symbol of $C^{(-1)}(x, D, z)C(x, D, z) - I$ is given by

$$
r(x,\eta,z)=\sum_{|\alpha|=1}(2\pi)^{-n}\int\limits_{\mathbb{R}^n}\left(\int\limits_0^1e^{ix\cdot\zeta}\frac{\partial c^{-1}}{\partial\eta^\alpha}(x,\eta+t\zeta)\zeta^\alpha dt\right)\tilde{c}_1(\zeta,\eta)d\zeta
$$

The analogue of (57) for $\partial c^{-1}/\partial \eta^{\alpha}$, $|\alpha| = 1$, is

$$
\left|\frac{\partial \tilde{c}^{-1}}{\partial \eta^{\alpha}}(\xi, \eta, z)\right| \leq C \frac{|\eta'|}{\tau} (1+|\xi|)^{-n-1} |\xi \cdot (\eta + zv)|^{-1}.
$$

We can now apply the argument, used above to show that $C(x, D, z)$ is bounded on $H_{\zeta,n+1}$, to $R(x,D,z)$. The superpositions in ζ and τ produce no new difficulties and

the factor of $1/\tau$ in the estimate for $\partial c^{-1}/\partial \eta^{\alpha}$ above makes $||R(x,D)||$ go to zero as $\tau \to \infty$. Thus C is invertible for τ sufficiently large. \Box

Proposition 4. The norms of the operators $T_1(\tau)$, $T_2(\tau)$ and $T_3(\tau)$ on $H_{\zeta,n+1}(R^n)$ *tend to zero as* $\tau \rightarrow \infty$ *uniformly in* ζ *.*

Proof. Let $\tilde{T}_k(\xi - \eta, \eta, z)$ be the kernel of the Fourier transform of T_k , $k = 1, 2, 3$, **i.e.**

$$
\widehat{T_k g}(\xi) = \int\limits_{\mathbb{R}^n} \tilde{T}_k(\xi - \eta, \eta, z) \hat{g}(\eta) d\eta.
$$

In order to show that the norm of T_k on $H_{\zeta,n+1}(R^n)$, is arbitrarily small for τ large uniformly in ζ , it suffices to prove that

$$
\sup_{\zeta,\zeta}\int\limits_{\mathbb{R}^n}(1+|\zeta-\zeta|)^{n+1}|\tilde{T}_k(\zeta-\eta,\eta,z)|(1+|\eta-\zeta|)^{-n-1}d\eta\leq \frac{C}{\tau}\log\tau. \qquad (59)
$$

On the support of $1 - \chi_1$ we have $|(\eta + zv) \cdot (\eta + zv) - k^2| \ge \frac{\varepsilon}{2}(|\eta|^2 + \tau^2 + k^2)$. Hence

$$
|\tilde{T}_3(\xi-\eta,\eta,z)| \leq C(1+|\xi-\eta|)^{-n-1} \frac{|\eta+zv|}{|\eta|^2 + \tau^2 + k^2} \leq \frac{C}{\tau}(1+|\xi-\eta|)^{-n-1},
$$

and (59) for $k = 3$ follows from (58).

To estimate \tilde{T}_1 we note that (42) implies that for all (η, z) ,

$$
|\eta + zv) \cdot (\eta + zv) - k^2| \ge \frac{1}{2} (||\eta|^2 - (\tau^2 + k^2)| + 2\tau |\eta_v|)
$$

= $\frac{1}{2} (||\eta| - (\tau^2 + k^2)^{1/2}|||\eta| + (\tau^2 + k^2)^{1/2}| + 2\tau |\eta_v|)$
 $\ge \frac{\tau}{2} (||\eta| - (\tau^2 + k^2)^{1/2}| + |\eta_v|).$ (60)

Since $c-1$ has an expansion of the form (52), *qc* and $A \cdot \frac{c}{\alpha}$ satisfy (3) with constants uniform in (η, z) for $\tau > \tau_0$. Thus, from (58) and (60),

$$
\sup_{\xi,\zeta} \int_{\mathbb{R}^n} (1 + |\xi - \zeta|)^{n+1} |\tilde{T}_1(\xi - \eta, \eta, z)| (1 + |\eta - \zeta|)^{-n-1} d\eta
$$
\n
$$
\leq \frac{C}{\tau} \sup_{\zeta,\zeta} \int_{\mathbb{R}^n} \frac{(1 + |\xi - \eta|)^{-n-1} + (1 + |\eta - \zeta|)^{-n-1}}{||\eta| - (\tau^2 + k^2)^{1/2}| + |\eta_{\nu}|} d\eta
$$
\n
$$
\leq \frac{2C}{\tau} \sup_{\zeta} \int_{\mathbb{R}^n} \frac{(1 + |\xi - \eta|)^{-n-1}}{||\eta| - (\tau^2 + k^2)^{1/2}| + |\eta_{\nu}|} d\eta.
$$
\n(61)

Setting $R = (\tau^2 + k^2)^{1/2}$, $\eta = R\zeta$ and $l(\zeta) = ((|\zeta| - 1)^2 + \zeta_y^2)^{1/2}$ in the last line of (61), this gives

$$
\sup_{\xi,\zeta} \int_{\mathbb{R}^n} (1 + |\xi - \zeta|)^{n+1} |\tilde{T}_1(\xi - \eta, \eta, z)| (1 + |\eta - \zeta|)^{-n-1} d\eta
$$
\n
$$
\leq \frac{C}{\tau} \sup_{\xi} \int_{\mathbb{R}^n} (1 + |\xi - R\zeta|)^{-n-1} (l(\zeta))^{-1} R^{n-1} d\zeta
$$
\n
$$
\leq \frac{C}{\tau} \left[\sup_{\xi} \int_{\mathbb{R}^n} (1 + |\xi - R\zeta|)^{-n-1} R^{n-1} d\zeta \right.
$$
\n
$$
+ \sup_{\xi} \int_{l(\zeta) < \varepsilon_0} (1 + |\xi - R\zeta|)^{-n-1} (l(\zeta))^{-1} R^{n-1} d\zeta \right].
$$
\n
$$
\leq \frac{C}{\tau} \left[\frac{1}{R} + R^{n-1} \sup_{\xi} \int_{l(\zeta) < \varepsilon_0} (1 + |\xi - R\zeta|)^{-n-1} (l(\zeta))^{-1} d\zeta \right].
$$

Here ε_0 is any fixed constant, and we assume $\varepsilon_0 \ll 1$. Since $\tau \sim R$ for $\tau > \tau_0$, it suffices to show

$$
\tau^{n-1} \sup_{\zeta} \int\limits_{l(\zeta) < \varepsilon_0} (1 + \tau |\xi - \zeta|)^{-n-1} (l(\zeta))^{-1} \, d\zeta < C \tag{62}
$$

for $\tau > \tau_0$ to conclude that (59) holds for $k = 1$.

To prove (62) we note first that when $|\xi'| < \frac{1}{2}$,

$$
\int_{l(\zeta)<\varepsilon_0} (1+\tau|\xi-\zeta|)^{-n-1} (l(\zeta))^{-1} d\zeta \leq \int_{l(\zeta)<\varepsilon_0} (1+c_0\tau)^{-n-1} (l(\zeta))^{-1} d\zeta,
$$

where $c_0 = \min_{l(\zeta) < \varepsilon_0} |\zeta - \zeta| > 0$, and (62) holds.

To establish (62) for $|\zeta| > \frac{1}{2}$ we will use spherical coordinates in the hyperplane $\zeta \cdot v = 0$ with $r = |\zeta'|$ and polar angle $\theta = \cos^{-1}(\frac{1}{|\zeta\eta|} \cdot \frac{1}{|\zeta\eta|})$. Then we have $d\zeta = r^{n-2}dr d\omega d\zeta_{\nu}$, where $d\omega$ is the volume form on S^{n-2} , and we also have

$$
|\zeta - \xi| = (r^2 - 2|\xi'|r\cos\theta + |\xi'|^2 + (\zeta_v - \xi_v)^2)^{1/2}
$$

$$
\geq \frac{1}{2}(((r - |\xi'| \cos\theta)^2 + (\zeta_v - \xi_v)^2)^{1/2} + |\xi'||\sin\theta|).
$$
 (63)

Likewise, there is $c > 0$ such that

$$
l(\zeta) \ge c((r-1)^2 + \zeta_v^2)^{1/2} \,. \tag{64}
$$

Now we consider $v = (r - 1, \zeta_v)$ and $v_0 = (|\zeta'| \cos \theta - 1, \zeta_v)$ as vectors in R^2 and use $\parallel \parallel$ to denote the norm on R^2 . From (63) and (64) we have

$$
\int_{l(\zeta)<\varepsilon_0} (1+\tau|\zeta-\zeta|)^{-n-1} (l(\zeta))^{-1} d\zeta
$$
\n
$$
\leq C \int_{\mathbb{R}^2 \times S^{n-2}} \frac{(1+\tau(\|v-v_0\|+|\sin \theta|))^{-n-1}}{\|v\|} dr d\zeta_v d\omega.
$$

We split the integral over $R^2 \times S^{n-2}$ into an integral over $\{\zeta : ||v|| \ge ||v - v_0||\}$ in which we replace $||v||$ by $||v - v_0||$ and an integral over $\{\zeta : ||v|| \le ||v - v_0||\}$ in which we replace $||v - v_0||$ by $||v||$. Since the two integrands that are produced this way differ only by a translation in the (r, ζ_v) -plane, we have the estimate

$$
\int_{l(\zeta) < \varepsilon_0} (1 + \tau |\xi - \zeta|)^{-n-1} (l(\zeta))^{-1} d\zeta
$$
\n
$$
\leq C \int_{\mathbb{R}^2 \times S^{n-2}} \frac{(1 + \tau ((s^2 + t^2)^{1/2} + |\sin \theta|))^{-n-1}}{(s^2 + t^2)^{1/2}} ds dt d\omega
$$
\n
$$
\leq C \int_{0}^{\infty} \int_{S^{n-2}} (1 + \tau (u + |\sin \theta|))^{-n-1} du d\omega
$$
\n
$$
\leq C \int_{0}^{\infty} \int_{0}^{\pi/2} (1 + \tau (u + \theta))^{-n-1} \theta^{n-3} du d\theta
$$

and, setting $\tau u = r, \tau \theta = s$, we have

$$
\int_{l(\zeta)<\varepsilon_0} (1+\tau|\xi-\zeta|)^{-n-1} (l(\zeta))^{-1} d\zeta \leq \tau^{-n+1} C \int_{0}^{\infty} \int_{0}^{\infty} (1+r+s)^{-n-1} s^{n-3} dr ds.
$$

Thus, since the integral is finite, we have (62), and (59) holds for $k = 1$, in the stronger form

$$
\sup_{\xi,\zeta} \int_{\mathbb{R}^n} (1+|\xi-\zeta|)^{n+1} |\tilde{T}_1(\xi-\eta,\eta,z)| (1+|\eta-\zeta|)^{-n-1} d\eta \leq \frac{C}{\tau}.
$$
 (64')

From (56) one sees that

$$
|\tilde{\Delta}c(\xi-\eta,\eta)| \leq C(1+|\xi-\eta|)^{-P+3}|\eta'||(\xi-\eta)\cdot(\eta+ z\nu)|^{-1}
$$
,

and hence

 $\bar{\gamma}$

$$
|\tilde{T}_2(\xi-\eta,\eta,z)| \leq \frac{C(1+|\xi-\eta|)^{-P+3}|\eta'|}{|(\xi-\eta)\cdot(\eta+ zv)|(\eta+ zv)\cdot(\eta+ zv)-k^2|},
$$

and by the reasoning that leads to (61), we have (note $P \ge n + 4$ is needed):

$$
\sup_{\xi,\zeta} \int_{\mathbb{R}^n} (1 + |\xi - \zeta|)^{n+1} |\tilde{T}_2(\xi - \eta, \eta, z)| (1 + |\eta - \zeta|)^{-n-1} d\eta
$$
\n
$$
\leq \frac{C}{\tau} \sup_{\xi} \int_{\mathbb{R}^n} \frac{(1 + |\xi - \eta|)^{-n-1} |\eta'| d\eta}{|(\xi - \eta) \cdot (\eta + i\tau v)| (|\eta| - (\tau^2 + k^2)^{1/2}| + |\eta_v|)} . \tag{65}
$$

Setting $R = (\tau^2 + k^2)^{1/2}$, $\beta = \tau(\tau^2 + k^2)^{-1/2}$, $\eta = R\zeta$ and $l(\zeta) = ((|\zeta| - 1)^2 + \zeta_v^2)^{1/2}$, (65) becomes

$$
\sup_{\xi,\zeta} \int_{\mathbb{R}^n} (1+|\xi-\zeta|)^{n+1} |\tilde{T}_2(\xi-\eta,\eta,z)| (1+|\eta-\zeta|)^{-n-1} d\eta
$$
\n
$$
\leq \frac{C}{\tau} R^{n-1} \sup_{\xi} \int_{\mathbb{R}^n} \frac{(1+|\xi-R\zeta|)^{-n-1} |\zeta'| d\zeta}{|(\xi-R\zeta)\cdot(\zeta+i\beta\nu)| l(\zeta)}
$$
\n
$$
= \frac{C}{\tau} R^{n-2} \sup_{\xi} \int_{\mathbb{R}^n} \frac{(1+R|\xi-\zeta|)^{-n-1} |\zeta'| d\zeta}{((\zeta-\zeta)\cdot\zeta)^2 + \beta^2(\zeta_v-\zeta_v)^2)^{1/2} l(\zeta)}.
$$

Since $\beta \to 1$ as $\tau \to \infty$ and $\beta R = \tau$, to show $||T_2|| \to 0$ as $\tau \to \infty$, it suffices to show for $\tau > \tau_0$ that

$$
\tau^{n-2} \sup_{\xi} \int\limits_{\mathbb{R}^n} \frac{(1+\tau|\xi-\zeta|)^{-n-1}|\zeta'|d\zeta}{((\xi-\zeta)\cdot\zeta)^2+(\xi-\zeta\cdot)^2)^{1/2}(\zeta)} \leq C \log \tau. \tag{66}
$$

When $I(\zeta) > \varepsilon_0$, the integrand in (66) is essentially the same as the one we considered for T_1 : note that $({\xi - \zeta}) \cdot {\zeta = |\zeta - \zeta/2|^2 - |\zeta/2|^2}$. Thus we again assume that $I(\zeta) < \varepsilon_0 \ll 1$. We have

$$
(((\xi - \zeta) \cdot \zeta)^2 + (\xi_v - \zeta_v)^2)^{1/2} > \frac{1}{2} (|(\xi - \zeta) \cdot \zeta| + |\xi_v - \zeta_v|)
$$

= $\frac{1}{2} (||\zeta' - \xi'/2|^2 - |\xi'/2|^2 + \zeta_v(\zeta_v - \xi_v)| + |\xi_v - \zeta_v|)$
 $\ge \frac{1}{2} (||\zeta' - \xi'/2|^2 - |\xi'/2|^2| + (1 - \varepsilon_0)|\xi_v - \zeta_v|).$

Again using the coordinates $r = |\zeta'|$, $\theta = \cos^{-1}(\zeta'/|\zeta'| \cdot \zeta'/|\zeta'|)$, we have

$$
|\zeta' - \xi'/2|^2 - |\xi'/2|^2 = r^2 - r|\xi'| \cos \theta
$$

and

$$
(((\xi - \zeta) \cdot \zeta)^2 + (\zeta_v - \zeta_v)^2)^{1/2} \geq c((r - |\zeta|) \cos \theta)^2 + (\zeta_v - \zeta_v)^2)^{1/2} = c ||v - v_0||,
$$

in the notation used earlier. Thus, using (64), for $|\xi'| \leq 1/2$,

$$
\int\limits_{l(\zeta)<\varepsilon_0}\frac{(1+\tau|\xi-\zeta|)^{-n-1}|\zeta'|d\zeta}{((\zeta-\zeta)\cdot\zeta)^2+(\zeta-\zeta_\nu)^2)^{1/2}l(\zeta)}\leq C\int\limits_{l(\zeta)<\varepsilon_0}\frac{(1+c_0\tau)^{-n-1}dr\,d\zeta_\nu\,d\omega}{\|v-v_0\|~\|v\|}\,,
$$

and, since $|\xi'| \leq 1/2$ implies $||v_0|| \geq \frac{1}{2}$, this is bounded by Cr^{-n-1} . Hence we may assume that $|\xi'| > 1/2$, and in this case (63) implies

$$
\int_{l(\zeta)<\varepsilon_0} \frac{(1+\tau|\zeta-\zeta|)^{-n-1}|\zeta'| d\zeta}{(((\zeta-\zeta)\cdot\zeta)^2 + (\zeta_{\nu}-\zeta_{\nu})^2)^{1/2} l(\zeta)}\n\leq C \int_{l(\zeta)<\varepsilon_0} \frac{(1+\tau(\|v-v_0\|+|\sin\theta|))^{-n-1} dr d\zeta_{\nu} d\omega}{\|v-v_0\| \|v\|} \equiv I_1.
$$

Since (64) implies $||v|| < \varepsilon_0$ when $l(\zeta) < \varepsilon_0$, we see that contribution to I_1 from integration over $\{\theta : ||v_0(\theta)|| \geq \frac{1}{2}\}\$ is bounded by Cr^{-n-1} . Thus we may replace the domain of integration in I_1 by $\{l(\zeta) < \varepsilon_0\} \cap {\{\|v_0\| < \frac{1}{2}\}}$.

At this point the argument used for T_1 leads to divergent integrals, and we need to use the fact that the factors in the denominator only vanish simultaneously when $|\zeta'| \cos \theta = 1$. To bound I_1 , we set $z = (\|v_0(\theta)\|^{-1})v$. Then

$$
I_{1} \leq C \int_{S^{n-2} \times \{\|z\| \leq \|p_{0}\| - 1\} \cap \{\|p_{0}\| < 1/2\}} \frac{(1 + \tau |\sin \theta|)^{-n-1}}{\|z - v_{0}/\|v_{0}\| \| \|z\|} dz d\omega
$$
\n
$$
\leq C \int_{S^{n-2} \cap \{\|v_{0}\| < 1/2\}} (1 + \tau |\sin \theta|)^{-n-1} \log (\|v_{0}(\theta)\|^{-1}) d\omega
$$
\n
$$
\leq C \int_{0}^{\pi/2} (1 + \tau \theta)^{-n-1} \max \{\log 2, -\log \|v_{0}(\theta)\| \} \theta^{n-3} d\theta
$$
\n
$$
\leq C \tau^{2-n} \int_{0}^{\pi \tau/2} (1 + \beta)^{-n-1} \beta^{n-3} \max \left\{ \log 2, -\log \left\|v_{0}\left(\frac{\beta}{\tau}\right)\right\| \right\} d\beta
$$
\n
$$
I_{1} \leq c \tau^{2-n} \int_{0}^{\pi \tau/2} (1 + \beta)^{-n-1} \beta^{n-3} \max \left\{ \log 2, -\log \left|1 - \left|\xi'\right| \cos \frac{\beta}{\tau} \right| \right\} d\beta. \quad (67)
$$

If $1/2 \leq |\xi'| \leq 1$, then $|1 - |\xi'| \cos \beta / \tau| \geq c_0^2 \beta^2 \tau^{-2}$ with c_0 independent of $|\xi'|$. Hence, in this case $I_1 \leq ct^{2-n} \log \tau$ for τ large. If $|\xi'| > 1$, then $1 - |\xi'| \cos \theta = 0$ has a unique solution θ_0 in the interval [0, $\pi/2$] and we have

$$
|1-|\xi'|\cos\theta| \ge c_0^2(\theta-\theta_0)^2
$$

with $0 < c_0 < 1$ and c_0 independent of $|\xi'|$. Thus

$$
|1-|\xi'|\cos\beta/\tau|\geq \frac{c_0^2}{\tau^2}(\beta-\beta_0)^2,
$$

where $\beta_0 = \tau \theta_0$. Thus for $\tau > 1$.

$$
\max\{\log 2, -\log|1 - |\xi'| \cos \frac{\beta}{\tau}|\}
$$

\n
$$
\leq \log 2 + 2 \log \tau - 2 \log c_0 + 2(-\log|\beta - \beta_0|)_{+}.
$$
 (68)

Combining (68) with (67) we see that $I_1 \leq C\tau^{2-n} \log \tau$ for τ large in this case also. Thus (66) holds and the proof of Proposition 4 is complete.

It follows from Propositions 3 and 4 that for $\tau \gg 0$ there exists a unique solution g in $H_{0,n+1}$ of the integral equation (53), given by

$$
g = (I + (I + T)^{-1}C^{(-1)}(T_1 + T_2 + T_3))^{-1}(I + T)^{-1}C^{(-1)}f, \qquad (69)
$$

where T is the operator in (54). Thus v, given by (39) with this choice of g , is a solution of (37'). Thus to complete the proof that (27) has a unique solution in $H_{0,n+1}(R^n)$ when $\tau \gg 0$, we need only show that \check{h} given by

$$
\check{h}(x) = ((-i\partial/\partial x + zv)^2 - k^2)v
$$

is in $H_{0,n+1}$. From (39) we see that

$$
h=Cg+T_2g+Sg,
$$

where T_2 is the operator in (53) and

$$
Sg = (2\pi)^{-n} \int_{\mathbb{R}^n} \frac{-2i\frac{\partial c}{\partial x} \cdot (\eta + zv)\hat{g}(\eta)e^{ix\cdot \eta}}{(\eta + zv) \cdot (\eta + zv) - k^2} d\eta
$$

= $(2\pi)^{-n} \int_{\mathbb{R}^n} \frac{-2A(x) \cdot (\eta + zv)\chi_1(\eta, z)c\hat{g}(\eta)e^{ix\cdot \eta}}{(\eta + zv) \cdot (\eta + zv) - k^2} d\eta$ (70)

by (40). From (70) one sees that S is an operator of the same type as T_1 in (53) with an additional factor of $\eta + zv$ in the numerator. However, since we showed that the norm of T_1 on $H_{\zeta,n+1}$ was $O(\tau^{-1})$ uniformly in ζ for $\tau \to \infty$, and $|\eta + zv| \leq c\tau$ on support χ_1 (see (43)), it follows that S is bounded on $H_{\zeta,n+1}$, uniformly in (ζ,τ) for $\tau > \tau_0$. This completes the verification that $h_v(\xi, \zeta, k, i\tau) \in H_{\zeta, n+1}$.

4. Recovering the Magnetic Field

Proposition 5. Let $h_v(\xi, \zeta, k, z)$ be the unique solution of (27) in $H_{0,n+1}$ for $\tau \gg 0$, *and let g_y*(x, ζ, k, z) *be the unique solution in* $H_{0,n+1}$ *of* (53) *with* $f = -(q(x) +$ $2(\zeta + zv)$. $A(x)$)exp(ix $\cdot \zeta$) for $\tau \gg 0$. Then

$$
h_{\nu}(\xi,\zeta,k,z) = \tilde{g}_{\nu}(\xi,\zeta,k,z) \tag{71}
$$

when $(\xi + zv) \cdot (\xi + zv) - k^2 = 0$.

Proof. We have

$$
v_{v}(x,\zeta,k,z) = (2\pi)^{-n} \int_{\mathbb{R}^{n}} \frac{h_{v}(\eta,\zeta,k,z)e^{ix \cdot \eta} d\eta}{(\eta + zv) \cdot (\eta + zv) - k^{2}}
$$

= $(2\pi)^{-n} \int_{\mathbb{R}^{n}} \frac{c(x,\eta,z)\tilde{g}_{v}(\eta,\zeta,k,z)e^{ix \cdot \eta} d\eta}{(\eta + zv) \cdot (\eta + zv) - k^{2}}$. (72)

As we observed earlier $c_1 = c(x, \eta, z) - 1$ has an expansion of the form (52) for $\tau > \tau_0$. Thus, as in the proof of the bound on T_2 in Proposition 4, we see that

$$
f(\xi,\zeta,k,z)=(2\pi)^{-n}\int\limits_{\mathbb{R}^n}\frac{\tilde{c}_1(\xi-\eta,\eta,z)\tilde{g}_\nu(\eta,\zeta,k,z)d\eta}{(\eta+zy)\cdot(\eta+zy)-k^2}
$$

belongs to $H_{0,n+1}$ as a function of ζ , and hence is continuous in ζ . Since the Fourier transform of (72) gives (a.e. in ξ)

$$
\frac{h_{\nu}(\xi,\zeta,z)}{(\xi+ z\nu)\cdot(\xi+ z\nu)-k^2}=\frac{\tilde{g}_{\nu}(\xi,\zeta,k,z)}{(\xi+ z\nu)\cdot(\xi+ z\nu)-k^2}+f(\xi,\zeta,k,z),
$$

where h_{ν} and \tilde{g}_{ν} are also continuous in ξ , (71) follows immediately. \square

By Proposition 1 and the discussion following it we can recover $h_{\nu}(\xi(s), \zeta(s), k$, $z(s)$) from the scattering amplitude $h(k\Theta, k\omega, k)$. Recall (see (34), (35)) that given the orthogonal frame $\{v, \mu, l\}$ with $|\mu| = |v| = 1$,

$$
\xi(s) = \frac{1}{2}l + s\mu,
$$

\n
$$
\zeta(s) = -\frac{1}{2}l + s\mu,
$$

\n
$$
z(s) = i\tau(s) = i\sqrt{s^2 + |l|^2/4 - k^2}
$$
\n(73)

for $s > s_0$. Since $({\xi(s) + z(s)y}) \cdot ({\xi(s) + z(s)y}) - k^2 = 0$, it follows from Proposition 5 that $h(k\theta, k\omega, k)$ determines $\tilde{g}_y(\xi(s),\zeta(s),k,z(s))$ for $s > s_0$.

To recover the magnetic field we can begin with representation for q_y given by (69) with $f = -(q(x) + 2(\zeta + zy) \cdot A(x)) \exp(ix \cdot \zeta)$, take the Fourier transform in x, evaluate at $\xi = \xi(s)$, $\zeta = \zeta(s)$, $z = z(s)$ as in (73), divide by $z(s)$ and take the limit as $s \to \infty$. Since the norms of T, T_1, T_2 and T_3 on $H_{\zeta(s),n+1}$ go to zero and $\frac{1}{|z(s)|}||f||_{\zeta(s),n+1}$ is bounded as $s\to\infty$, it follows that $h(k\theta, k\omega, k)$ determines

$$
\lim_{s \to \infty} (2\pi)^{-n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{(-2)(\zeta(s) + z(s)\nu)}{z(s)} \cdot \hat{A}(\eta - \zeta(s))
$$

$$
\times e^{-ix \cdot (\zeta(s) - \eta) + i\chi_1(\eta, z(s))\varphi(x, \eta + z(s)\nu)} d\eta dx \qquad (74)
$$

Replacing $\eta - \zeta(s)$ by η , (74) becomes

$$
\lim_{s \to \infty} (2\pi)^{-n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{(-2)(\zeta(s) + z(s)\nu)}{z(s)} \cdot \hat{A}(\eta)
$$

$$
\times e^{ix \cdot \eta - ix \cdot (\zeta(s) - \zeta(s)) + i\chi_1(\eta + \zeta(s), z(s))\varphi(x, \eta + \zeta(s) + z(s)\nu)} d\eta dx
$$
 (75)

By (73) $\xi(s) - \zeta(s) = l$ and $\lim_{s \to \infty} (\zeta(s) + z(s)v)/z(s) = v - i\mu$. Also (see definition of χ_1 before (42))

$$
\lim_{s\to\infty}\chi_1(\eta+\zeta(s),z(s))=\chi(0)=1.
$$

Finally

$$
\lim_{s \to \infty} \varphi(x, \eta + \zeta(s) + z(s)v) = \lim_{s \to \infty} (2\pi)^{-n} \int_{\mathbb{R}^n} \frac{\hat{A}(\xi) \cdot (\eta + \zeta(s) + z(s)v)e^{ix \cdot \xi}}{i\xi \cdot (\eta + \zeta(s) + z(s)v)} d\xi
$$

$$
= (2\pi)^{-n} \int_{\mathbb{R}^n} \frac{\hat{A}(\xi) \cdot (\mu + iv)}{i\xi \cdot (\mu + iv)} e^{ix \cdot \xi} d\xi \equiv \varphi(x, \mu + iv). \tag{76}
$$

 $\sim 10^{11}$

Hence the limit in (75) equals

$$
I = -2(2\pi)^{-n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} e^{-ix \cdot l + i\varphi(x, \mu + iv) + ix \cdot \eta}(v - i\mu) \cdot \hat{A}(\eta) d\eta dx
$$

= $2i \int_{\mathbb{R}^n} e^{-ix \cdot l + i\varphi(x, \mu + iv)} (\mu + iv) \cdot A(x) dx$. (77)

Comparing (76) with $(40')$, we see that

$$
(\mu + iv) \cdot \frac{\partial \varphi}{\partial x} = (\mu + iv) \cdot A(x),
$$

and hence, using the coordinates (x_1, x_2, x^{\perp}) introduced before Proposition 2, we have \mathcal{L} Δ

$$
I = 2 \int_{\mathbb{R}^{n-2}} e^{-i\ell \cdot x^{\perp}} \left(\int_{\mathbb{R}^2} \left(\frac{\partial}{\partial x_2} + i \frac{\partial}{\partial x_1} \right) e^{i\varphi} dx_1 dx_2 \right) dx^{\perp}.
$$

We have

$$
\int_{\mathbb{R}^2} \left(\frac{\partial}{\partial x_2} + i \frac{\partial}{\partial x_1} \right) e^{i\varphi} dx_1 dx_2 = \lim_{R \to \infty} \int_{x_1^2 + x_2^2 \le R^2} \left(\frac{\partial}{\partial x_2} + i \frac{\partial}{\partial x_1} \right) e^{i\varphi} dx_1 dx_2
$$

$$
= \lim_{R \to \infty} \int_0^{2\pi} e^{i\varphi(R)} \cos \theta, R \sin \theta, x^{\perp}, \mu + iv \sin \theta + i \cos \theta) R d\theta,
$$

by Green's theorem with $x_1 = r \cos \theta$ and $x_2 = r \sin \theta$. Returning to the expansion (52) for φ , we have

$$
\varphi = \frac{1}{2\pi i} \frac{1}{x_1 - ix_2} \int_{\mathbb{R}^2} A(y_1v + y_2\mu + x^{\perp}) \cdot (\mu + iv) dy_1 dy_2 + O((x_1 - ix_2)^{-2}).
$$

Thus

$$
\lim_{R \to \infty} \int_{0}^{2\pi} e^{i\varphi(R} \cos \theta, R \sin \theta, x^{\perp}, \mu + iv)(\sin \theta + i \cos \theta) R d\theta
$$

= $i \int_{\mathbb{R}^2} A(y_1 v + y_2 \mu + x^{\perp}) \cdot (\mu + iv) dy_1 dy_2$,

and

$$
I = 2i \int_{\mathbb{R}^{n-2}} e^{-i\ell \cdot x^{\perp}} \left(\int_{\mathbb{R}^2} A(y_1v + y_2\mu + x^{\perp}) \cdot (\mu + iv) dy_1 dy_2 \right) dx^{\perp}
$$

= $2i\hat{A}(l) \cdot (\mu + iv)$.

Since μ and v are a general orthonormal pair perpendicular to l, we conclude that for all $l \in R^n$, *I* determines $\hat{A}(l) - (\hat{A}(l) \cdot l)l/|l|^2$. In other words *I* determines *A* modulo the gradient of

$$
\rho(x) = (2\pi)^{-n} \int_{\mathbb{R}^n} e^{il \cdot x} i \hat{A}(l) \cdot l/|l|^2 dl = -\Delta^{-1} (\nabla \cdot A), \qquad (78)
$$

and hence I determines *curl A.*

5. Recovering the Electric Potential

To recover $V(x)$ we need to compute the next term in the asymptotic expansion of (69) which yielded (74) as the leading term. We have determined $A(x)$ modulo the gradient of a function of the form (78). Hence, we may assume that we know the scattering data for the problem with the $A(x)$ here and $q =$ $q' \equiv A \cdot A - i \nabla \cdot A$, since the scattering data only depends on the magnetic field $B = \text{curl } A$. This scattering data determines the Fourier transform of the solution g_0 of (53) with $f = f_0 \equiv -(q' + 2(\zeta + zv) \cdot A(x)) \exp(ix \cdot \zeta)$ on the set $(\zeta, \zeta, z) =$ $({\zeta(s)}, {\zeta(s)}, z(s))$ given by (73). Among the operators in (69) only T_1 is changed when we replaced g by g_0 , and we denote the new operator by $T_{1,0}$. Thus, subtracting the representation (69) for g_0 from the representation (69) for g, we may assume that we know the Fourier transform on the curve $(\zeta(s), \zeta(s), z(s))$ of

$$
(I + (I + T)^{-1}C^{(-1)}(T_1 + T_2 + T_3))^{-1}(I + T)^{-1}C^{(-1)}(f - f_0)
$$

–
$$
(I + (I + T)^{-1}C^{(-1)}(T_1 + T_2 + T_3))^{-1}(I + T)^{-1}C^{(-1)}(T_1 - T_{1,0}))
$$

•
$$
(I + (I + T)^{-1}C^{(-1)}(T_{1,0} + T_2 + T_3))^{-1}(I + T)^{-1}C^{(-1)}f_0.
$$
 (79)

Taking the limit in the Fourier transform of (79) at $(\xi(s), \zeta(s), z(s))$ as $s \to \infty$, we recover

$$
\lim_{s \to \infty} (2\pi)^{-n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} -\hat{V}(\eta - \zeta(s)) e^{-ix \cdot (\zeta(s) - \eta) + i\chi_1(\eta, z(s))\varphi(x, \eta + z(s)v)} d\eta dx
$$

$$
- \lim_{s \to \infty} \mathscr{F}(C^{(-1)}(T_1 - T_{1,0})C^{(-1)}f_0)(\zeta(s), \zeta(s), z(s)) \equiv J_1 - J_2.
$$

By the same computation that derived (77) from (75), we have

$$
J_1 = -\int\limits_{\mathbb{R}^n} e^{-ix \cdot l + i\varphi(x,\mu+i\nu)} V(x) dx.
$$
 (80)

To compute J_2 we argue as follows. $T_1 - T_{1,0} = VCL$, where L multiplies the Fourier transform by $((\eta + zv) \cdot (\eta + zv) - k^2)^{-1}$. Since *[V, C]* goes to zero and $C^{(-1)}C$ goes to the identity as $s \to \infty$, we can conclude that

$$
J_2 = \lim_{s \to \infty} (2\pi)^{-2n} \int\limits_{\mathbb{R}^n} \int\limits_{\mathbb{R}^n} \int\limits_{\mathbb{R}^n} \frac{\hat{V}(\xi(s) - \eta)}{(\eta + z(s)v) \cdot (\eta + z(s)v) - k^2}
$$

$$
\times (-2(\zeta(s) + z(s)v) \cdot \hat{A}(\delta - \zeta(s)))
$$

$$
\times e^{ix \cdot (\delta - \eta) + i\chi_1(\delta, z(s))\varphi(x, \delta + z(s)v)} d\delta dx d\eta.
$$

Replacing δ by $\delta + \zeta(s)$ and η by $\eta + \zeta(s)$, and arguing as before (recall $(\zeta(s) + \zeta(s))$ $z(s)y$) \cdot $(\zeta(s) + z(s)y) = k^2$, we have

$$
J_2 = (2\pi)^{-2n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} \frac{\hat{V}(l-\eta)}{2\eta \cdot (\mu + iv)} (-2(\mu + iv) \cdot \hat{A}(\delta))
$$

 $\times e^{ix \cdot (\delta - \eta) + i\varphi(x, \mu + iv)} d\delta dx d\eta$

$$
= (2\pi)^{-n} \int_{\mathbb{R}^n} \int_{\mathbb{R}^n} -\frac{\hat{V}(\ell - \eta)(\mu + iv) \cdot A(x)e^{-ix \cdot \eta + i\varphi(x, \mu + iv)}}{(\mu + iv) \cdot \eta} dxd\eta.
$$

Proceeding as before with $x_1 = x \cdot v$ and $x_2 = x \cdot \mu$,

$$
\int_{\mathbb{R}^n} e^{-ix \cdot \eta + i\varphi(x, \mu + iv)} (\mu + iv) \cdot A(x) dx
$$
\n
$$
= \int_{\mathbb{R}^{n-2}} e^{-ix^{\perp} \cdot \eta + i} dx^{\perp} \int_{\mathbb{R}^2} e^{-i(x_1 \eta_1 + x_2 \eta_2)} (-i) \left(\frac{\partial}{\partial x_2} + i \frac{\partial}{\partial x_1} \right) (\overline{c}(x, \mu + iv) - 1) dx_1 dx_2,
$$

and by Green's theorem

$$
\int_{\mathbb{R}^2} e^{-i(x_1\eta_1 + x_2\eta_2)} (-i) \left(\frac{\partial}{\partial x_2} + i \frac{\partial}{\partial x_1} \right) (\overline{c} - 1) dx_1 dx_2
$$
\n
$$
= \lim_{R \to \infty} \int_{x_1^2 + x_2^2 \le R^2} e^{-i(x_1\eta_2 + x_2\eta_2)} (\eta_2 + i\eta_1)(\overline{c} - 1) dx_1 dx_2
$$
\n
$$
+ \int_0^{2\pi} e^{iR(\eta_2 \cos \theta + \eta_1 \sin \theta)} R(\sin \theta + i \cos \theta)
$$
\n
$$
\times (\overline{c}(R \cos \theta, R \sin \theta, x^{\perp}, \mu + i\nu) - 1) d\theta \Bigg]. \tag{81}
$$

Since

$$
\overline{c}(R \cos \theta, R \sin \theta, x^{\perp}, \mu + i\nu) - 1 = \frac{1}{2\pi R} \cdot \frac{f(x^{\perp})}{\cos \theta - i \sin \theta} + O\left(\frac{1}{R^2}\right),
$$

the second integral in the limit in (81) goes to zero as R goes to infinity when (η_1, η_2) + 0. The first integral just goes to the Fourier transform of \bar{c} - 1 in (x_1, x_2) multiplied by $(\eta_2 + i\eta_1) = (\mu + i\nu) \cdot \eta$. Thus

$$
J_2 = -\int_{\mathbb{R}^n} e^{-iy} \cdot {}^l V(y) (e^{i\varphi(y,\mu+iv)} - 1) dy.
$$

Thus $J_1 - J_2 = -\int_{\mathbb{R}^n} e^{-iy} \cdot {}^lV(y)dy$. Since l is arbitrary, we have determined the Fourier transform of V and the proof is complete.

References

- 1. Agmon, S.: Spectral properties of Schr6dinger operators and scattering theory. Annali di Pisa, Serie IV, 2, 151-218 (1975)
- 2. Eskin, G., Ratston, J.: The Inverse Backscattering Problem in Three Dimensions. Commun. Math. Phys. 124, 169-215 (1989)
- 3. Faddeev, L.D.: The inverse problem of quantum scattering II. J. Sov. Math. 5, 334-396 (1976)
- 4. H6rmander, L.: Uniqueness theorems for second order elliptic differential equations. Comm. in PDE 8, 21-64 (1983)
- 5. Nakamura, G., Sun, Z., Uhlmann, G.: Global Identifiability for an Inverse Problem for the Schrödinger Equation in a Magnetic Field. Preprint
- 6. Novikov, R.G., Khenkin, G.M.: The $\bar{\partial}$ -equation in the multidimensional inverse scattering problem. Russ. Math. Surv. 42, 109-180 (1987)
- 7. Novikov, R.G.: The inverse scattering problem on a fixed energy level for the two-dimensional Schrödinger operator. J. Funct. Anal. **103**, 409–463 (1992)
- 8. Novikov, R.G.: The inverse scattering problem at fixed energy for the three-dimensional Schrödinger equation with an exponentially decreasing potential. Commun. Math. Phys. 161, 569-595 (1994)
- 9. Sun, Z.: An inverse boundary value problem for Schrödinger operator with vector potentials. Trans of AMS 338 (2), 953-969 (1993)

Communicated by B. Simon