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Abstract:  In this article we consider the Schr6dinger operator in R n, n => 3, with 
electric and magnetic potentials which decay exponentially as Ix[ --+ cx~. We show 
that the scattering amplitude at fixed positive energy determines the electric potential 
and the magnetic field. 

1. Introduct ion 

Consider the Schr6dinger equation in R n, n > 3, with magnetic potential A(x)  = 
(Al(x)  . . . .  ,A , ( x ) )  and electric potential V(x): 

_ ~  a + i A j ( x )  u +  V ( x ) u = k 2 u ,  
j=l  

k > 0, or equivalently 

where 

(1) 

�9 n 0u 
- A u  - 2 , y ] A j ( x ) ~ -  + q(x)u = kZu, (1 ' )  

j - l  OX; 

( q(x) = ~ A ~ ( x ) -  Oxj J + V (x ) .  (2) 
j= l  

We will assume that the potentials A and V are real-valued and exponentially 
decreasing, i.e. 

OPAJ < C~e -6lxl, j = 1 . . . .  ,n (3) 
~3x[r = 

U V ( x )  < C~e_glxl ' 
~XO~ 

for 0 < Ic~l < P ,0  < I//I < P +  1, where P = n + 4 .  We consider the solutions of  
(1) of  the form 

u = e ik~ " x + v(x, co, k ) ,  (4) 

* This research was supported by National Science Foundation Grant DMS93-05882. 
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where v is the outgoing solution of 

- A v  - 2 i ~ A j ( x ) - ~ x  ~ + (q(x)  - kZ)v = e ik~ " x -2k~-~cojA/(x ) - q(x) (5) 
j=l j j=l  

obtained by the limiting absorption method. By this argument v exists and is unique 
whenever k 2 is not an embedded eigenvalue, and, combining Sect. 5 of H6rmander 
[4] with the proof of  Theorem 3.3 of Agmon [1], one sees that (3) implies there 
are no embedded eigenvalues. Representing v in terms of the outgoing fundamental 
solution of A § k 2, it follows that as [x[ --+ ~ ,  

eik]x' ( X (~X[) )  

where a(O, co, k)  is defined to be the scattering amplitude. Our objective is to prove 

Theorem 1. Fix k > O. Then one can recover V(x)  and the magnetic f ie ld  B = 
curl A f rom the scatterin9 amplitude a(O, co, k),(O, co) E S n - l x  S "-1. 

Note that, if A and A' satisfy (3) and curl A = curl A ~, then A / - A  is the 
gradient of function q~ satisfying 

~P(P < Cpe -Olx[, 0 < [Pl < P .  (7) 
~xP = = 

gq~ 
To see that changing A to A ~ = A + ~ does not change the scattering amplitude 
note that, if one replaces u(x) by w(x)  = u(x)e -i~(x), then w(x)  will satisfy 

- ~x § iA(x) + i w + V(x )w = k2w.  

However, this does not change the scattering amplitude, since 

+ a  
Ixl T 

Ixl T txl - 

In this article as in [2] we will use h(~,kco, k),  the Fourier transform of 
- ( A  +k2)v ,  to study the scattering amplitude. Since v is obtained by limiting 
absorption, 

v(x, co, k )  - 1 h(~, koJ, k )e  ix~ 

and, taking the asymptotics of  (8) when 0 = x/Ix I is fixed and Ixl ---+ oo, one obtains 

1 ((2~)�89 ,,~)n-3 
a(O, co, k)  = Cn, eh(kO, kco, k) ,Cn,,  = ~ e -X  . (9) 
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From (5) one sees that h satisfies 

1 qo(~ - t/,t/)h(t/,~,k)dt/ 

where 

201 

= - q o ( r  - ~ , ~ . ) ,  ( l O )  

n 

q o ( ~ , ~ ) = 2 ~ A j ( ~ ) ~  + q ( ~ ) .  (11) 
j = l  

Note that (3) implies that q 0 ( ~ -  ~,~) is analytic in (~.,~) for IIm ~l < 6/2, 
IIm ~1 < 6/2. For fixed 2, the integral operator 

1 q0(~ - 17, t/)w(t/) , 
TAw-  (2~z)n f ~5---~-_--~ at/ (12) 

is compact in the space H~,N,O < ~ < 1 ,n- -1  < N <  n + 4 .  Here H~,N is the 
weighted H61der space used in [2]: let [Ifll~,m = 11(1 + 1~I2)N/2NII~, where II I1~. is 
the standard H61der norm, and define H~,N as the completion of C~(R ~ ) is II II~,N. 
Moreover, Tj~ depends analytically on 2 for Im 2 > 0 and extends continuously to 
the positive real axis, 2 > 0. In the same way that Theorem 5.2 of [4] showed that 
the homogeneous equation corresponding to (5) had no nontrivial square-integrable 
solutions, it can be used here to show the I + Tk2 has no nontrivial solutions in 
H~,N(R ~ ). Hence we see that the Fredholm operator I + 1)~2 is invertible on H~,N 
for k > 0. This will be useful in what follows. 

In the case that the magnetic field B is small uniqueness results at fixed energy 
have been obtained previously by Henkin and Novikov [6] and by Sun [9]. Re- 
cently Nakamura, Sun and Uhlmann [5] obtained the uniqueness result analogous to 
Theorem 1 for the Dirichlet to Neumann map. This implies Theorem 1 for magnetic 
and electric potentials of compact support. In fact, when the magnetic and electric 
potentials have compact support, as in [9], uniqueness for inverse scattering at fixed 
energy and uniqueness for the Dirichlet-to-Neumann map inverse problem at fixed 
energy are equivalent. 

For potentials without compact support the previous work which influenced us 
considerably was by Novikov [8]. He proved Theorem 1 in the case of zero magnetic 
potential, and the methods of [8] could be used to give a different proof of some 
of the results in Sect. 2. 

Finally, we are deeply indebted to Adrian Nachman for calling our attention to 
a serious error in the first version of Sect. 2. 

2. Faddeev-Type Scattering Amplitudes 

Following Faddeev [3] and Novikov-Khenkin [6], we introduce a new scattering 
amplitude which will contain a large parameter. The later will be helpful in solving 
the inverse scattering problem. 

Let v be an arbitrary unit vector, Iv] = 1, and Ev,~(x) be the following funda- 
mental solution to the equation ( -A  -k2 )u  = f :  

1 # x .  ~dt/ 
Ev~(X)- (2~z)n- f~.. , (13) 

" t~ �9 t / - k  2 + i O ( q v - a )  
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where t/~ = t/ �9 v and - k  < cr < k. Comparing E~,~(x) with the fundamental solu- 
tion 

1 e ix �9 ~1 

Eo(x)  (2re) n r;, t~ . t/ - k 2 - iOdt/ ' (14) 

we have 
i~zk n-2 

E,,,~(x) = Eo(x)  (2=) n f e ix " k~~ (15) 
k o o . v > ~  

where de) is the area element of the unit sphere in R ". Analogously to (10) consider 
the following integral equation 

1 qo(~  - t/, t/)h~,~(t/, r  dt/ 
h ~ , ~ ( { , t , k ) + ~ 7 ~ f  ~_ 7 / -  k-2-7 i O n _  a) = - q o ( { -  ( , ( ) .  (16) 

Set 
1 r h~,~(~,~,k) eix" r 

v,,,a(x, ~,k ) (17) 

assuming that hv,~(~,(,k) is the solution of (16). Then vv,~(x,~,k) is a solution 
of the differential equation (5) for ~ = kco with asymptotics at infinity that can be 
obtained by applying the stationary phase method to (17). 

Now we shall find the relation between h,,,~({, ~,k) and h(~, (,k). Analogously 
to (15) we have 

(2!)  nf ,  t/.q~ dt/ k 2 + iO(t/v - (27~)n f l  qo(_~-_t/,t/)hv, a( t / ,~ ,k)  0 at/ 

iTck  n -  2 

�9 f>-v qo(~ - kco, koo)hv, a(koo, ~, k )dco.  (18) (2n) n 
ko) 

It follows from (16) and (18) that 

1 qo({ - t / , t /)h~,o(t/ ,( ,k) d 

i=k n-  2 
f qo(~ - kco, koo)hv, o(k~o,(,k)do~ - qo(~ - ( , ( ) .  (27z) n k~ �9 v>~ (19) 

Set 

_ _l f q 0 ( r  t / , t / ) w ( t / ) ,  
A ( q o ) w  (2~),~, ~ ]--~22k5 770i0 at/, (20) 

and 
1 ~ h ( ~ , t / , k ) w ( t / )  , 

A ( h ) w  
(2rt)"~J,, 77. t / -  k 2 _ 

/ 

io at /-  

That (10) has a unique solution is equivalent (cf. [2]) to the equality 

(21) 

(1 + A(qo ) ) ( I  + A ( h ) )  = I .  (22) 
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Since I +A(qo) has an inverse, it follows from (22) that 

(I + A(h))(I + A(qo)) = I (23) 

or equivalently 

1 h( ~, tl, k )qo( q 
~' ~ ) d r / =  0 . (23 ' )  h(~'~'k)+q~ ~ - ~ - ~  iO 

Applying I +A(h)  to (19) and using (23) and (23% we obtain (cf. [3] and [6], 
formula (1.7)): 

iT-ok n- 2 
h,, ~(~,&k)  = h(~,(,k) (2~z) n k~ .f.>h(~,koo, k)h,,,~(kco,&k)do2. (24) 

Since I+A(qo)  is invertible, Eq. (24) has a unique solution for any h(~,&k) if 
and only if Eq. (16) has a unique solution. Indeed, i f  ~o(~_) is a solution of  the 
homogeneous equation corresponding to (16), i.e. 

qo(~ - r/, t/)~oO/) 
q~(~) + (27r) -n f - = 0 (25) 

then from (25) and (18) with h,, replaced with q} we conclude that 

(p(~) + (2n)_n f qo(~ - ti, tl)q}(q)dtl _ i~kn-2 f qo({ - kco, k(o)q)(koo)dco. 
~,,, r/ �9 /1 -- k 2 - i0 (2~z) n k,o �9 ~>~ 

Applying (I + A(h)) to both sides of  this, we have 

i~zk n-2 
- -  f h(~,k~,k)qg(kco)doa, (26) O = ~ p ( ~ ) +  (2~) ~k~ >~ 

i.e. ~o restricted to ]~[ = k solves the homogeneous equation corresponding to (24). 
Conversely, suppose (p(~) is a nonzero solution of  the preceding equation (26) on 
the sphere of  radius k. Then (26) extends ~p to R ", since h(~,k~,k) is defined for 
~ c R ~. Applying I +A(qo) to both sides of  (26), we see that q~ satisfies (25). 

Denote by Ev(x,z) the following function: 

1 t e ix " ~d~ 
E~(x,z) Im Z > 0.  

(2~)~d,  ( r / +  zv) �9 (q + zv) - k 2' 

Note that E,,(x,z) is a fundamental solution for ( - i ~  + zv) �9 ( - i ~  + z v ) -  k 2, i.e. 

E ( - i  ~--~ + zv) " ( - i  ~--~ + zv) - k2] Ev(x,z) = 3(x) �9 

Note that the distribution [ ( r /+  zv) �9 (~ + zv) - k2] -1 is not analytically dependent 
on z for Im z > 0. This gives rise to the {-equation in inverse scattering (see, for 
example [6]). 
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Denote by hv(~, ~,k ,z )  the solution of  the following integral equation: 

1 qo(~ - rl, q + z v ) h v ( v , ~ , k , z )  , 

= - q o ( ~ . - ~ . , ~ + z v ) ,  z = i r ,  r > 0.  (27) 

Let T,~ 1) denote the operator 

[T}~l)f](r = (2~z)-" f qo(r - ~/,r/+ i -cv) f (~)d~ 
~,, (~/+ ~ v )  : ( -~7  z7~v)~k 5 "  (28) 

Then (27) can be written 

[(I + T})l)hv](~) = -qo (~  - r r + i-cv) 

and 
h,,(~, (, k, i'c) = - [ ( I  + T/z)-lq0( �9 - (, ( + i-cv)](r 

provided (I  + T/(~I)) -1 exists. The analyticity of  hv in -c will be important for us. 

Thus we need to study the analyticity of  T},l) f  in z when f ( q )  is analytic in a strip 
[Ira q[ < e. We will use coordinates r b = r / . v ,  r / ' =  r/-~/,,v, r =  ]~/'[ and 

= q ' / I q ' l -  For t/ real and -c = # + ia, 

Im((~/+  i-cv) �9 (~ + i-cv) - k 2) = 2p~/v - 2 # a .  

Hence, for Irbl > el, Re ~ > 0 and IIm-cl < el/2 the denominator in the integral 

defining T,~ 1) does not vanish. Thus, choosing Z E C ~ ( R )  such that Z(s) is sup- 
ported in Isl < 2el and 1 - Z(s) is supported in Isl > el, we have 

[T~l)f](~) = (2~)_ ~ f X(t/~)q0(~ - r/, ~/+ i 'cv)fO1)d ~ 

+ (2re)_ . f (1 - X(~))q0(~ - q ,~/+ i -cv) f (~)dq 
~ (~ + izv) �9 (*1 + i-cv) -- k 2 

[V~(1)f](~) + [V~2)f](~),  

where [g(z)f](~)  is analytic in ({,-c) in the set [Imp[ < 6, Re z > 0 and 
[Im-c[ < 81/2. 

In our coordinates we have 

(~ + i-cv) �9 (~ + i-cv) -- k 2 ~- ( r  - -  x / B ) ( r  -r- ~ v / B ) ,  

where B = k 2 + ( - c -  irb) 2. Using -c = # + i a  again, we have Re B = k 2 + p2 _ 
a 2 +  2a~/ , , -  q2, and Im B = 2 # o r -  2/~r b. Hence for k 2 ~> 8/3 2, Re B > k2/8 for 

Ir/vl < 2el and IIm -c[ < e~/2, and we fix v ~  as the square root in the right half  

plane. We wish to define V~ 1), and hence T/() ), by analytic continuation from -c > 0. 
When z > 0, i.e. when p > 0 and cr = 0, r -  x/B=t =0 for qv=t =0, and we have sgn 
( Im B) = - s g n  q~. Therefore, we will deform the integration in r in 

[V,( ' )f](~) = f d o J f d t b  (c~Z(t/")q~ q ' r / +  ~ v ) f O 1 ) r ~ - 2 d r  ) 
sn 2 ~,. ~kdO (1 ~ - -  v / B ) ( t "  -~ v / B )  
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into the upper half plane for t/~ > 0 and into the lower half plane for t/~ < 0. We 
need to deform [0, oc) far enough that r - v ~  will not vanish on the new contour 
for ~ in a complex neighborhood of  [0, ~0]. Note that for z = # + ia, 

x/B = V/# 2 + k 2 + 2i(cr - r/v)# - (~r - -  ? i v )  2 

= , / # ;  + k~ + ;(~ - ,v)  [ + o ( ( ~ ,  ,v)~) .  

Hence, for I~1 < ~1/2 and [t/~ I < 2s,, we have IReCv/B - ~/#2 +k2) l  < C~ 2 and 

IIm v ~ l  < 5e~/2 + Cal. We now fix e, > 0 such that Cg~ < k/3,5~1/2 + Ce 2 < 
s/2 and 8e 2 < k 2. Then we may deform the r integration in v} l ) f  to the piecewise 

curve F from 0 to k/2 to k/2 + ie/2 sgn t h, to ~ + z~ + k/2 + is~2 sgn t h, linear 

to V / ~  + % + k/2 to oc. With this choice o f  F, r - ~ will not vanish on F for 
I~1 < 2~,, I~1 < el/2 and 0 < # < %. Thus we have proven: 

Lemma 1. I l l ( q )  is analytic in [Im ql < +, satisfying If(+)l ~ c(1  + [~1) -"-~ 
for lira r/[ < e, then [T~t)f](4) has an analytic extension from ~ > 0 to the half 
strip {(4, O ' lira 41 < 6 - e, Re ~ > 0, IIm ~l < ~1/2}. 

Let AN, r denote the space o f  functions f(r / ) ,  analytic on S~ = {t/C C ' "  
lira q[ < r} and continuous on S~, which satisfy 

If(~)l ~ C(1 + I~1) -N 

on S~. AN, r is a Banach space in the norm 

Ilfllx, r = sup(l + l+l)NlfO?)l . 
S,+ 

Proposition 1. For el sufficiently small Ti(~ 1) is a family of  compact operators on 
Anti, 6/3, depending continuously on z in the closed half strip D -- {z = t~ + ia �9 

o 

__> o, I~1 _-< ~/2} and analytically on ~ in D, the interior of  D. 

Remark 1. The choice N = n + l is made simply to make the Banach spaces used 
here compatible with those used in Sect. 3. The 6 here is from (3). 

Proof For r E D, ~ T~(1)f = V}Of + Vz(2)f by definition. Since r 2 + (qv + i 'c) 2 --  k 2 

does not vanish for r E F and z r D, the operator V~ (1) satisfies 

I[V}l)f](4)l ~ c~ f dco'fd~vf Iq~ 211drl 
sn  2 ~ F (1 + ]ql) 2 ' 

(29) 

where the constant C~ is uniformly bounded on compact subsets o f  D. By hypothesis 
(3) for any 6 ~ < 6, 

Iqo(4 - q,q + iTv)l ~ c+,~,(1 + 14 - t / l)-n-4( 1 + I~1) (30) 
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for 4 E S~,_~ and 7 r S~, where again C~, ~, is uniformly bounded on compact subsets 
of  D. Since I f (7) l  < (1 + 171) -n-111fHn+La on S~, the integrand in (29) is bounded 
by 

c ,a, (1 + 14 - 71) +2(1 + 171r += ' 

Since for any p > 0, 

(1 + I~I)P(1 + 14 - 71)-P( 1 + 17[) - p  ~ c( (1  + 14 - 71) - p  + (1 + lTI ) -p ) ,  

we conclude 

(1 + l~])=+2[[v~')f](~)[ < cIIfll~+l,~. (31) 

Taking e -- 8/3 and N = 58/6 ,  we have [V}l)f](4)  analytic in S~/2. Thus for r E D, 

V O) maps An+l,8~3 into An+2,8/2 with norm uniformly bounded on compact subsets 

of  D. Hence V~ (~) is compact for z r D. 

In proving Lemma 1 we showed that for f c An+1,8/3 , [v(X)f](4 ) was analytic 

in (4, r)  for z E D and 4 E S~/2. Since the norm of  V} 1) as an operator on An+l,~/3 

is uniformly bounded on compact subsets it follows by Cauchy's  formula that V} ~) 
is an analytic family of  operators for ~ E D. 

For ~ E / )  the preceding arguments apply equally well to V} 2), and we may 

conclude that T~ l) is an analytic family of  compact operators i n / ) .  However,  since 

[V(2)iof](~ ) = (2~z)-" f (1 - Z(7~,))qo(4 - 7 ,7  - av + i / 2 v ) f ( 7 )  d 7 
~" 17 - avl 2 - k2 - /22  + 2i/2(7,, _ a )  

= (2~)_ n f (1 - Z(7v + a))q0(4 - 7 - av ,7  + i / 2 v ) f ( 7  + a V ) d 7  ' 
IRn 1712 _ k 2 _/22 + 2i/27v 

we need to show that v (2) extends continuously to /2 = 0 from /2 > 0. Since ' # + i a  

7~ does not vanish on the support o f  (1 - Z(7~ + a ) )  for Io-1 < 81/2, we can again 
deform the integration in r into Im r > 0 for 7~ > 0 and into Im r < 0 for 7,, < 0, 
using the piecewise linear contour U connecting 0 to e/2 + i8/2 sgn 7~ to 3k /2  + ie/2 
sgn 7,, to 3k/2 to oc. Then for r E U and 0 < / 2  < 81/2, 

17 " 7 - -  k 2  - / 22 Jr- 2i/27~1-1 = [r 2 + 7 2 - k 2 - / 2 2  __ 2i/27~1-~ 

< Ck,~/z(lr[ e + 17~ - (sgn 7, ,)kl)  -~ , 

because r = (1 + isgn 7u)t on the first segment of  U and r 2 = 2i(sgn 7v)t 2. Since 
(Ir12 + I t /~-  (sgn 7u)kl) -1 is locally integrable with respect to Irln-ZdlrldT~, we 
may argue as follows. Removing small disks about (r, 7V) = (0, •  in the integral 
defining V (2) f ]l+i~d, we get an operator to which our previous arguments apply. Since 

this operator differs in norm from v (2) by an amount which goes to zero with 
�9 # + i a  

the radius of  disks, uniformly for 0 =< /2 =< el/2, we conclude that v (2), u+io extends 
continuously to a compact operator on/2  = 0. [] 
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In Sect. 3 we will show that I + T~ tJ is invertible on H0,,~+t for ~ >> 0. This 

implies immedialely that it is inverlible on A,+1,6/3, since the null space of  I + T,~ ~) 
on An+1.6/3 is a subspace o f  its nullspace on H0,,+~ Therefore, by Proposition 1 the 

o 

set Z where 1 + Ti~ 1) is not invertible is discrete in D and closed of  measure zero in 

D N {Re z-~ 0}. In particular, there is an open interval 1 = (a l ,a2)  C ( - e l / 2 , e l / 2 )  

such that I + Ti~ ~) is invertible for z = - i a ,  0- E I .  Hence 

hv(~, ~, k, iz)  = [(I + Tt ( 1 ) ) - l q 0  ( �9 - ~, ~ -[- izv)](~)  

0 

exists for r 6 D \ Z  and is analytic in (r  on S~/2 • $6/2 • D \ Z .  

Our goal is to recover h,,(~_,~,k, i z )  from the scattering data. To make the con- 
neclion with scattering data "~e will need to use z = -icr and identify h,, with a 
translate of  h~, o. Since denominator ( r /+  izv)  . (rl + izv) - k 2 with z = ~r - iv goes 
to q . r 7 + 2aq~ + a 2 - k 2 as /~ .L 0, we can remove the contour deformation in the 

definition of  V(~l)f. However, since the integration in r is deformed into the upper 
half-plane when r/~ > 0 and the lower half-plane when r/~ < 0, we have 

[T~(1)f](~) = (2re)-" f qo(r - ~I, ~ + 0 -v ) f (q )  d~l, 
1R n /// �9 t /  ~ -  2 0 " t / v  q -  0 -2 - -  k 2 + i0~/v 

and for a E I, h v ( ~ , ( , k , a )  is the unique solution in An+1,6/3 to 

f (~ ,~ )  4 - ( 2 z t ) - " f  q ~  d , l = - q o ( ~ - ~ , ~ + ~ r v  ) . (32) 
~,, ~ - ~ § 2ar/~, 4- a 2 - k 2 + i(b'lv 

Since the changes of  variables r/---+ r / -  cry, ~ ~ ~ - av and ( --+ ~ - av, lransform 
Eq. (32) to (16), we conclude that h v ( ~ -  o r , ( -  av, k , a )  is the unique solulion o f  
(16) in A~+1,~/3 and hence for a E I ,  

h~(~ - av, ( - av, k , a )  = hv, , (~ , ( ,k) .  (33) 

Therefore, assuming the results of  Sect. 3, we have proven the following theo- 
rem: 

Theorem 2. The solution hv(~ , ( , k ,  iz)  o f ( 2 7 )  exis ts  f o r  z C D \ Z  and  is analyt ic  in 

(~,~,~)  on S~/3 x S~/3 ~4 ( 1 ) \ Z ) .  The  l imiting values o f  hv(~,~,k ,  iz)  when z --~ - t a  
sat i s fy  (33)~ where  h~,~(~,~,I~) # the solution o f  (I6). 

Since the unique solvability of  (16) in A,,+ 1~ ~/3 implies the unique solvabihty of  
(24) in C ( S  ~-1 ), we know that (24) has a unique solution for cr ~ I .  Hence, know- 

ing the scattering amplitude h(~,~,k) for Ir ~ = I~12 - - k  2, we can find hv ,~ (~ , ( , k )  

for I~12 = I ~ l Z -  - k 2 and a ~ 1, which translates (by (33)) to knowing h v ( r  

for Ir + o-v] z = [( + avl 2 = k2,  for cr ~ I .  Since h~(~,~,k,  iz)  is analytic for ( r  

$6/3 x $6/3 x ( ~ ) \ Z )  with a continuous extension to $6/3 x $6/3 x ( - i i ) ,  we can de- 
termine it on the variety 

(~ + izv)  �9 (~ + izv)  = (~ 4- izv) �9 (~ § izv) = k 2 

0 

for (~,~,~) ~ S~/3 x S~/~ • ( D \ Z )  by analytic continuati~n~ 
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l . v = O ,  # . v = 0 ,  

and put 
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/ - # = 0 ,  # . # = 1 ,  (34) 

~(s) = l l + s # ,  

~(s)  = l + s # ,  

z ( s )  = iz(s)  = i s 2 4- -~I . l - k 2 , (35) 

s > so, so large. We have that h v ( ~ ( s ) , ~ ( s ) , k , z ( s ) )  is analytic in s for s > so and 

(~(s)  4- i z ( s )v)  �9 (~(s)  + iv(s)v)  = (~(s)  4- i z (s )v)  �9 (~(s) + iv(s)v)  = k 2 . 

Hence hu ( r  is known for s > so. 

R e m a r k  1. In the case A ( x )  = 0 the operator T~(~ ~) has a small norm in Hr (see 
Proposition 4) when v > 0 is large. Substituting ~ = ~(s), ~ = ~(s) , z  = z ( s )  = iv(s)  
in (27) and passing to the limit when s ~ +oc ,  we obtain that the integral in (27) 
tends to zero, and we can recover 

l)(l) = lim h ~ ( ~ ( s ) , ~ ( s ) , k , z ( s ) ) .  
S - - ~  OO 

Thus we obtain an alternate proof of  R. Novikov 's  result [8]. 

3. Solution of an Integral Equation 

In this section we set z -- iT and only consider v real and positive. 
In order to solve the integral equation (27) when z is large and positive we will 

pass to an equivalent differential equation. Let 

hv( rh ~, k , z  )e ix'~ 
v , , ( x , ~ , k , z ) = ( Z ~ ) - "  f (tl+7~v ) . - ~ v ) - _ k i d t l ,  z = i %  v > 0.  (36) 

Then v,, satisfies the differential equation 

[(--iO/~X -- ZV) 2 - -  k 2 @ 2A(x) �9 (- i~/c~x 4- zv)  4- q(x)]vv 

= - 2 ( ~  4-zv )  �9 A ( x ) e  ix " ~ - q (x )e  ix " ~ (37) 

Our strategy will be to construct solutions of  the equation 

[ ( - iO /Sx  4- z y )  2 - k 2 4- 2A(x) �9 ( - i ~ / O x  4- zv)  4- q(x)]v  : f (37')  

for all f in the Banach space Ho, n+l(Rn),  where HO, N ( R  ~) is defined as the closure 

of  C ~ ( R  ~) in the norm, ]}fl]0,N = supe(1 + ]4[)NI]'(4)I, i.e. Ho, N is the Fourier 
transform of  H0, N. Then 

h(~)  = f ((-ic3/c~x 4- z v )  2 - k 2 ) v ( x ) e  - ix  " r  
IRn 
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will be a solution of  (27) with the inhomogeneous term replaced by f ( ~ ) ,  i.e. 

h(~)  + ( 2 , 0  -~  f qo(c." - 11,11 + zv)h(11) 
~.  (11 + z v )  �9 (11 + z v )  - k 2d11 

(38)  

and we will show that h c H0,n+l. Thus we can conclude that I + T/(~ 1) (see (28)) 

maps H0,n+l onto Ho, n+l for z >> 0. Since ~(I) is also compact on H0,n+~ for z > 0, 

it follows that I +  T/(~ 1) is invertible on H0,~+x for ~ >> 0, and (27) is uniquely 
solvable in H0,~+l, when v is sufficiently large positive. 

We will look for a solution of  (37 ' )  in the form 

v(x,~,z)  = (2n) -~ f c(x'11'z)O(11'~'z)eix " ~ d (39) 
R" (11 q- zV) �9 (11 q- ZV) -- k 2 11' 

where z = iT, r > 0. Here g(x,~.,z) is the new unknown and 0(11,~,z) is its Fourier 
transform in the first variable. The factor c(x, 11,z) will be chosen so that the ana- 
logue of  Eq. (27) for ~ will not have the unbounded terms in q0(~ - 11,11 + zv). For 
this reason we choose c(x, 11,z) as a solution of  the transport equation 

3c 
- 2 i ~ x  �9 (11 + zv) + 2A(x) �9 (11 + zv)zl(11,z)c = 0 (40) 

of  the form c = exp(-i)Cl~O). Thus (p must satisfy 

&o 
(11 + zv) �9 ~ = A(x)  �9 (11 + zv ) ,  (40')  

and we choose 
e ~i(~) �9 (11 + zv)e ix " ~ 

qo = ( 2 n ) - " j  i~ : (~Tz~- d e .  (41) 

The function Z1(11,z) is (40) is a cutoff to a neighborhood of  (11 + z v ) .  (11 + 
zv) = k 2. The cancellation of  unbounded terms is not  needed outside this neighbor- 
hood, and it is convenient to have c ~ 1 there. We choose X(t) E C ~ ( R )  such that 
) 6 0  > 0, z ( t )  = l on  Itl < e/2 and Z(t) = 0 on Itl > e, and define 

Z1(11,z) = z ( l(11+ z v ) "  (A_+__zv~- k21) 
[1112 -1- T 2 @ k 2 

Since, setting 11u = 11 �9 v, 

1(11 + z v ) .  (11 + z v ) - k 2 1  =((11112 - "L2 -- k2)2 + 4"c211~) 1/2 , (42) 

it follows that on the support of  Zl 

~(]1112 + ~2 + k 2) __> ][1112 _ (~2 + k2)], 

and hence 

1 - -  g < k2  1 -~ 8 - 1112 ( ~ )  [1112 .r2+ < (~.~_~) , . (43) 
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Setting t / =  ~ / -  (r/ �9 v)v, (42)  also implies that on the support of Zl, 

2~(Ir/I 2 + r/2~ + t 2 + k 2)  ~ IIr/I 2 + r/2~ - t 2 - -  k21 + 2qrl,,I, 

and hence, using (43), 

(1 + 2a)lr/[ 2 ~ (1 - 2g)('c 2 + k 2)  - (1 + 2a)r/2 + 2@,,I 

> ( 1 - 2 e ) ( z  2 + k  2 ) +  2 1 - a  1/2( t2+k2)  1/2 ( l + 2 e )  q~. 

Thus, choosing e sufficiently small and r0 sufficiently large, we have for z > t0, 

@2 + k 2) + t/~ < C~lq'l 2 (44) 

on support ZI. 
We will need some detailed estimates on qo. The behavior of qo in the x-variables 

is strongly dependent on q. We introduce # = t/'/lt/I, and use the orthogonal ex- 
pansion x = X l V + X 2 # + x •  where x• is the projection of x on the orthogonal 
complement of span {v, rl}. 

Proposition 2. Assume that B(x)  is a vector-valued function satisfying (3) and 
define 

~t(x,r l + zv) = (2re) -n f B(S~ )- "-(rl +--ZV)eiX " ~-d~. 
~ (~ + zv) 

Then for  (tl, z ) E supp )~l, z > to and [c~ I + Ifil <= P in (3') one has 

0>1+1~1@ < C~yc-I*~le-~lx~l (45) 
&~ &//~ = 

Proof. By contour integration one computes 

(2~c) -2 f ei(X~-l+X2r 
: = 

1 1 
2re Iq'[xl - ( ~  + z)x2 " 

Thus 
1 f B ( x  - ylv  - y2#) �9 ( t /+ZV)dy ' (46) 

O(x, ~ + z~) = ~ ~ ' ~  (~v + z)y2 

and, using (3'), for I~l --< P, 

~-x~ tl-~- Z~ ) ~ f Ce-hl(xl-yl)v+(x2-y2)l~+xzll1~ + zvl dy.  (47) 

~2 II~/'[yl - (tb + z)y2l 

Since (43) and (44) imply that 

II/~'IYl - -  (~v @ z)Y2[ = ( ( I~ / lYl  --  ~vY2) 2 -I- t 2 y 2 )  1/2 

>--_ c , ( d  + y~)1/2 = Ctlyl ,  (48) 
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it follows from (43) and (47) that 

01<r zv) _S~_x~ (X,~ + < Ge-~lxil 

for I~l 5- P, where C~ is independent of t/ and z. 

To estimate 17 derivatives of 0 we first observe that (48) implies 

8[~'1. &Iv 
o~/j f f / ' l y a - (~v+z )y2  ( I r / ' l y , - ( n v + z ) y 2 )  2 = 7221y1 

Thus, differentiating (46), 

~4, _c f le(x - y,v - y2~)ldy C_ f _~B (x ~qj <= + & - y l v -  Y2#) dy 
72 r~, 2 ~Y-I 72 N2 

C a < _e -y l x •  . 
T, 

Repeating the same argument and noting that Ol~l/~3rl~(Itltlyl- (q~ +z)y2)  -1 is 
homogeneous of degree -1  in y for any 7, one concludes 

=< w'~ (49) 

for  I~l + I/~1 --< P a n d  ~ -_> 720 o n  the support of Z1. []  

To study (p in (41) we will use Proposition 2. We introduce 

w=x~-(,7~+z)l~'l-lx2 and w ' =  y l - ( q v + Z ) l q ' l - l y 2  

and observe that 

1 1 ~--~ ( W t )  k (W') N§ 
- - w, = ( 5 0 )  w - w' w(1 w )  ~=9 wk§ ~- w N §  w -- W ' )  

Then we can write (46) with B replaced by A/i in the form 

1 A ( y l v + y 2 ~ + x •  �9 ( r l+zv )  
~o(x,~ + zv)= ~ 1r  ;)~--Z) + 

-2rc~1'[i fA(y'v+y2e+--x--~)'Ol+zv)w - w' dy .  (51) 

Using (50) to expand (51), the remainder term in (50) contributes a term to qo of 
the form 

1 1 BN(X -- ylv  -- y2[l, tl, z)  �9 (tl -}- zv) 
2rc~ W y+I f [~Tly~ - ~v ~zz)y;  

,/y, 

where B N ( X , q , z ) =  ( x l -  Oh, +z)l~'l-lx2)N+lA(x) satisfies (3) uniformly in (r/,z) 
on the support of Z1 for z => 720. The other terms in (50) contribute terms to q~ of 
the form 

1 1 
2-Triw~+lfN_ 2 In'l-*A(x • + y~v + y2/2) �9 ( n  q - z v ) ( W t ) k d y  . 
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Thus we see that for any N > 0, when (q,z) is in the support of  )h and z > z0, 

N-1  
q) = ~ w-~bk(x•  + w--NbN , (52) 

k-I 

where ~ = bN satisfies (45) and bk(x• z ) is exponentially decreasing in x• 
together with its derivatives up to order P uniformly in (t/,z). 

Substituting (39) into (37')  and using (40), we obtain 

C(x ,D,z )g  + Tlg + T2g + T3g = f ,  (53) 

where 

( -  2iA oc ~ ix �9 �9 Ux + qc)g(rl) e 
tool(x) = - "  l ~, ( t / +  

dr/, 

[T2g](x) = (2re) - "  f (-Ac)OOT)e ix" Ud~l 

[T39](x) = (2~) -~ f 2(1 - x 1 ) A  �9 (q +zv)cO(rl)e ix" ~ 

and C(x ,D,z )  is a pseudo-differential operator with symbol c(x, rl, Z ). 

In Sects. 4 and 5 we will need uniform estimates on the norms of  the operators 
e ix �9 ~TjeiX �9 : , j  = 1,2,3, and e -ix " r ix<. Since multiplication by e ix " ~ is not 
bounded on Ho,x (for N > 0) and ~---+ oc, these estimates do not follow from 
estimates on the norms of  the Tj , j  = 1, 2, 3 and C on H0,N. To prove what we will 
use later efficiently we are going to equip HO,N with a family of  norms, ][ ]]~,N 
SO that estimates in these norms uniform in (. will imply the needed estimates for 
Sects. 4 and 5. We will refer to Ho, N with the norm II II~,N a s  "H~,N." 

Proposition 3. Let  H~,N(R n) be the closure o f  C ~ ( R  ~) #~ the norm I[flIcN = 

sups,,(1 + 13 - ~l)NIJ~(~)l �9 Then C(x ,D, z )  is invertible as an operator on He,,+1 
(R")  fo r  ~ sufficiently large. 

Proo f  Our approach here will be to show that C(x ,D)  and the operator C(-~)(x ,D)  
with the reciprocal symbol e i~lq~ a re  bounded on H~.n+l. Then the composition 
formula for pseudo-differential operators and Proposition 2 will be used to show 

C(-1)C = I + T ,  (54) 

where the norm of T o n  H~,n+ l goes to zero as z --~ oc uniformly in ~. 
The proof that C and C (-1) are uniformly bounded on H:,n+l uses only (52). 

Expanding c(x, rl,z ) = exp(-i~o)h) in a Taylor series in (PZ~, it is clear that c -  1 
also has an expansion of  the form (52) for z > T0. A linear transformation of  R n 
takes w in (52) to the standard complex variable z = s + it. Hence analytic functions 
of  w are annihilated by the pull-back of  0/02 under this transformation which is 
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~ __-- ~(0_~21 ~ ~_ (~/v @Z)[~ ' ]  -1  ~@1). From (52) we have II(OI</&=)&/O~IIL,(~,, ~ <= C 
for Ict[ < P uniformly on support ;gl for ~ > r0. Thus setting v0 = ~?c/~, 

l~o(4,t/,z)l =< c(1  + I~l) -P+~ . (55) 

Thus, since P > n + 2 ,  the inverse Fourier transform of  Vo(~)(~2 + (qv + z )  
] r f ] - l~ l )  -1 is continuous, tending to zero as Ix l -+  0. Since c is bounded, we con- 
clude (by Liouville 's  theorem) 

2~o( s )e ix~. 
c(x, lLz ) = 1 + (Z/r) -n f " d~ 

2M~)l~'le;X r 
= l + ( 2 n )  -n f z ~ - ~ d r  (56) 

~n 

Using (55) and (56), given C(x,D,z)g = h, we have, setting cl = c -  1, 

~n 

where &(~,q,~) has support in the support of  Zl and satisfies 

I~i(~,~,z)l _-< Cl~'l(1 + I~])-"-~l~ �9 (~ +zv)1-1  . (57) 

Hence 

sup(1 + I ~ -  q)n+'l&~)l --< (1 + sup f (1 + I~ - ~l)~+'16,(~- ~,~,z)l 
~,~ ~,,~ 

(1 + I/7 - ~1) -~ 3 dr/)sup(1 + 1r - q)~+l l0(g) l ,  

and the boundness of  C(x,D,z) on H_c,n+I(R ~) uniformly in (~,z) for z > ~o fol- 
lows from (57) and the estimate 

( 1 + 1 4 - ~ 1 ) ~ + 1 ( l + l ~ . - q l )  -~ ~ ( l + l q - f f ] ) - ~ - I  

_< c ( ( ~  + 14 - ~1) -"-~ + ( ~  + I~ - ~1) . - 1 ) .  ( 5 8 )  

To see that C is invertible on H~,n+l when z is large, we recall that the 
integral remainder formula for Taylor series implies that the symbol of  
C(-~)(x,D,z)C(x,D,z)- I is given by 

r(x,q,z)= ~ (27z)-" f e ix" ~ - - ( x , q  + t[)[~ dt & ( [ , r / ) d [ .  

The analogue of  (57) for ~c-~/~ff, 17[ = 1, is 

~ - - I  i 77 )--n 11~ ZV)] 1 ~Z-(~. ,  r~, z) < e l f / l (1  + Ir . ( r l +  . 

We can now apply the argument, used above to show that C(x,D,z) is bounded on 
H~,n+~, to R(x,D,z). The superpositions in ~ and v produce no new difficulties and 



214 G. Eskin, J. Ralston 

the factor of  1/z in the estimate for ~?c-'/&ff above makes IIR(x,D)I[ go to zero as 
--+ oc. Thus C is invertible for ~ sufficiently large. [] 

P r o p o s i t i o n  4.  The norms o f  the operators Tl(z), T2(z) and T3(z) on H&,+I(R n) 
tend to zero as r --* cx~ uniformly in ~. 

Proo f  Let i?k({ - n ,n ,z)  be the kernel of  the Fourier transform of  Tk, k = 1,2,3, 
i .e .  

TTg(~) = .f fk(~ - n,n,z)O(n)drl .  
Nn 

In order to show that the norm of  Tk on H~,,+j(R') ,  is arbitrarily small for z large 
uniformly in ~, it suffices to prove that 

sup f ( 1  + I{ - ~l)'+'tiPk(~ - r/,n,z)/( 1 + ) l - ( l ) - ' - l d n  < C log v (59) 

On the support of  1 - )~1 we have ](n + z v )  �9 (n + z v )  - k21 ~ ~(]nl 2 + ~2 + k2). 
Hence 

IT3(~ - n , n , z ) l  ~ C(1  + 14 - hi)-'- '  In +zvl ~ (7( 1 + I~- - n l )  - ' - I  , 
1t~12 + i-2 + k  2 --  l" 

and (59) for k = 3 follows from (58). 
To estimate T] we note that (42) implies that for all (n,z), 

In +z~)  �9 (n +zv )  - k=l ~ ~(llql 2 - (~2 + k2)l + 2@~1) 

= ~(llnl - (~2 + k2)l/2liln I + (~2 + k2)1/2 +t- 2@~1) 

2 ( l l t / I -  ( "c2 + k2)1/21 + Invl). (60) 

& satisfy (3) with Since c - 1  has an expansion of  the form (52), qc and A -  Fx 
constants uniform in (t/,z) for z > ~0- Thus, from (58) and (60), 

s u p  f ( 1  + I~ - CI)'+' IT](C - n,n,z)l(1 + In - CI)- ' - '  dn 
~,( 1R n 

c (1 + I~ - hi) - ' - '  + (1 + In - ~1) - ' - 1  dn 
< --  sup f = ~ r  I l n l - ( v 2 + k 2 ) l / 2 l + l n v l  

2 c  (l  + I~ - nl) - ' -~  
< - -  sup f - -  d n .  (61) 
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Setting R = (22 + k2)1/2, q = Rff and l(~) = ((I l l  - 1) ~ + ~)1/= in the last line 
of  (61), this gives 

sup f ( 1  + 13 - WI) "+' I71(~_ - ~ ,~ , z )1 (1  + I~ - C l ) - ' - '  d~  

C __< --  sup f (1 + [~ - R ~ [ ) - n - l ( l ( ~ ) ) •  n-1 d~ 

C < - -  s u p f  (1 + [ ~ -  R~] ) -~ - IR  ~ - '  d~ 

] 
+ s u p  f (1 + [ ~ - R ~ l ) - " - l ( l ( ~ ) ) - ] R  " - Ida |  I 

/ (Q<e  0 l 

Here so is any fixed constant, and we assume e0 << 1. Since ~ ~ R for v > ~o, it 
suffices to show 

C -1 sup  f (1 + ~ [ ~ -  ~ ] ) - , - ] ( / ( ( ) ) - l d ~  < C (62) 
~- I(~)<~o 

for ~ > ~o to conclude that (59) holds for k = 1. 
To prove (62) we note first that when I~-'1 < �89 

f (1 + ~l~ - C l ) - ~ - ' ( / ( C ) )  - '  d~ __< f (1 -~- CoZ')--n--l( /(~))  -1 d~,  
l(~) <~o l(~) <~o 

where co = min/(:)<,~ o 13 - ~] > 0, and (62) holds. 
1 To establish (62) for [~[ > ~ we will use spherical coordinates in the hyper- 

plane ~ �9 v = 0 with r = V/I and polar angle 0 = cos - l ( i  ~ �9 i~-~). Then we have 

d~ = r"-2drdcod~v, where dco is the volume form on S "-2, and we also have 

[~ - -  ~[ = ( r  2 - -  2[~'[r cos 0 + 13'12 + (~  - ~)2)1/2 

>_ ~(((r--[~tlcosO)2 +(~,,--~v)2)l/2 + l~r[lsinO[). (63) 

Likewise, there is c > 0 such that 

l(~) >= c((r - 1) 2 + ~u2) j/2 . (64) 

Now we consider v = ( r -  1,~v) and v0 = (l~'[ cos 0 -  1, ~ )  as vectors in R e and 
use II II to denote the norm on R 2. From (63) and (64) we have 

f (1 + ~]~ - GI) - ~  1(l(~))--1 d ~  

1(~)<~:0 

___< c f ( x + ~ ( l l v - v ~ 1 7 6  drd(vd(~. 
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W e  split the integral over  R 2 x S n-2 into an integral over  {~ : Ilvll > IIv - v011} 
in which  we replace I[vl] by  IIv - Vo[I and an integral over  {~ �9 [Ivl] < Nv - v011} in 
which  we replace ]Iv - v011 by  IIv]l. Since the two integrands that are produced  this 
way  differ only by  a translat ion in the (r, Cv)-plane, we  have the est imate 

f (1 + ~14 - ~ [ ) - n - l ( / ( ~ - ) ) - I  d~ 
1(~)<~o 

<-- C f (l + ~((s2 +tz)l/2 +[sinO[))-n-1 
- -  ~ 2 •  2 (S 2 + t2)1/2 dsdtdco 

O<3 

<= c f  f (1 + ~(u+ IsinOI))-n-ldudco 
0 sn-2 

c~/2 
< C f  f ( 1  + v(u + O))-n-lOn-3dudO 

0 0 

and, setting zu = r, c0 = s, we have  
O<3O<3 

- - n + l  f (1 + z l 4 - C l ) - n - ' ( l ( C ) ) - l d C  < ~ C f f ( 1  - [ - r - } - s ) - n - l s  n 3drds. 
l(~)<e 0 0 0 

Thus,  since the integral is finite, we have  (62),  and (59)  holds for k = 1, in the 
s tronger  form 

C 
sup f (l + [ ~ -  ~[)~+l[Tl(~ - rl, rl,z)[(l + [rl - ~l)-"- l  drl < - - .  (64 ' )  
~,~ ~n "c 

F rom (56)  one sees that 

[Ac(~ - ~.~)1 < C(1  + 1~ - ~/1)-P+3]r - r/) �9 (~ -~- ZM)] - 1  , 

and hence 

C(1 + 14 -- ~1)-P+31r 
1#2(4 - n . , . ~ ) l  --< 

I(~- - ~ )  �9 (~  + ~ v ) l ( ~  + z ~ )  �9 (~ + z v )  - k21 ' 

and by  the reasoning that leads to (61),  we  have (note P => n + 4 is needed):  

sup f (1 + I~ - Gl)~§ - ~ .~ . z ) [ (1  + I~ - GI) - ~ - l  d~/ 
~,( Cn 

c (1 + 14 - ~ 1 ) - ~ - ' 1 r  & 
< - - s u p  f . (65)  
= z r [(~ - r/) �9 (q + izv)l([l~[ - ( T2 + k2)1/21 + [tlvl) 

Sett ing R = (z2 + k2)1/2, fi = ~(~2 + k2)-1/2, rl = R~ and 1(~) = ((1~1 - 1)~ + ~ )a /2 .  
(65)  becomes  

sup f (1 + 14 - ~l)n+~ 17~2(r - ~ .~ . z ) l (1  + I~ - ffl) - ~ - '  d~  

< = C R . - '  (~ + 1~ - < l ) - o - l l ~ ' l d ~  
sup 

"C 

=CR~-asup f ( I + R I ~ - ~ I )  ~-~ l~ ' ld~  
17 r ~ n  ( ( ( ~  - -  ~ )  " ~')2 ~_ f l2(4 v __ ~v)2)1/2l (~)  " 
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Since fl --, 1 as z --+ oo mad fiR = z, to show IIT21I --+ 0 as ~ --+ oo, it suffices to 
show for r > z0 that 

(1 + rrr  - r - n - '  Pr d e  
~ - 2 s ~ p  f ( ( ( ~ - - ~  : ~)2-7(r ~ 2 1 ( ~ )  < C l o g r .  (66) 

When 1(~) > s0, the integrand in (66) is essentially the same as the one we 
considered for 2/'1: note that ({ - ~) �9 ~ = ] ~ -  {/212 -1~/212. Thus we again assume 
that 1(~) < e0 << 1. We have 

( ( ( ~  __ if) �9 ~)2 _~ (~v --  ~v)2) 1/2 > ~(1(~- -- .~) " ~1 + I~,, - ff,,I) 

= ~(11~' -- ~t/212 -- ]~_'/212 + ~v(~v -- ~.v)] + ]~v -- ~v]) 

=> ~(]]~t _ ~/212 _ ]~,/2121 + (1 - s0)l~.v - ~v])- 

Again using the coordinates r = 1['[,0 = c o s - l ( [ ' / l [ ' ]  �9 ~'/1~'1),  w e  have  

] ~ t  ~t/212 _ ]~,/212 = r 2 _ r l~ ,  I co s  0 

and 

( ( ( ~  _ ~) , ~)2 -}- (~v --  ~v)2) 1/2 ~ C((F - - I ~ / I  cosO) 2 -t- (~v - ~v)2)  1/2 = c l l~-  roll, 

in the notation used earlier. Thus, using (64), for ]{'l < 1/2, 

l(~)<cO ( ( ( r  __ if) . if)2 __ (r -- ~v)2)l/2/(ff)  = l(.~)<eO I1~ -- roll Plvll 

and, since Ig'l < 1/2 implies Ilvoll > �89 this is bounded by C~ - n - j .  Hence we may 
assume that [{~[ > l/2,  and in this case (63) implies 

l(-~)<e0 ( ( (~  __ ~) , ~)2 .4_ (~v -- ~v)2)1/21(~) 

__ c f (1 + r  ~011 + l s i n O I ) ) - " - ' d r d ~ v d o o  _ Z l .  

- z(</<~o O]~- v011 IlvlJ 

Since (64) implies IIv]l < e0 when l(~) < s0, we see that contribution to I1 from 
integration over {0 �9 Nv0(0]l > 1} is bounded by Cz -n-1.  Thus we may replace the 

domain of  integration in 1i by {/(~) < co} C? {llv011 < ~}. 
At this point the argument used for Tl leads to divergent integrals, and we need 

to use the fact that the factors in the denominator only vanish simultaneously when 
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]~'l cos 0 = 1. To bound I1, we set z = ([[Vo(0)]] -1)v. Then 

I1 ~ C f (1 -4-zlsin0l) -~-1 
x,, 2• I lz-vo/l lv0ll  II Ilzll dzdc~ 

< c f (1 + z l s i n O l ) - n - ~ l o g ( l l v o ( O ) l l - l ) d c o  
s'-2n{llvoll <1/2} 

re/2 
< c f  (1 + zO) - n - I  max{log 2 , -  log Ilvo(O)ll}O"-3dO 

0 

=< Cz 2-" f (1 +/3) n-1/3~-3max l o g 2 , - l o g  vo d/3 
0 

I1 < cz 2-n f (1 + max log2 , - l og  1 -I~' lcos d/3. (67) 
0 

If 1/2 < I~/I ~ a, then I1 -I~'lcos/3/z I > coa/32r -2 with co independent of I~'l. 
Hence, in this case I1 < cz2-" logz for z large. If 14'1 > 1, then 1 -I~.'1 c o s O =  0 
has a unique solution 0o in the interval [0, ~/2] and we have 

I1 -I~'1 cosOl >_- cg(O - 00) 2 

with 0 < Co < 1 and co independent of]r Thus 

I1-  I~'lcos/3/zl > c2c~ = z2,~ - / 3 o )  2 

where /30 = coo. Thus for z > 1. 

max{log 2 , -  log l1 - I~'1 cos ~1} 

__< l o g 2 + 2 1 o g z - 2 1 o g c o + 2 (  logl f l - f lo] )+ .  (68) 

Combining (68) with (67) we see that I1 < Cz  2-n logz for z large in this case 
also. Thus (66) holds and the proof of Proposition 4 is complete. [] 

It follows from Propositions 3 and 4 that for z >> 0 there exists a unique solution 
9 in H0,n+l of the integral equation (53), given by 

g = ( I + ( I + T ) - 1 C ( - 1 ) ( T 1 + T 2 + T 3 ) ) - I ( I + T ) - I C ( - I ) f  , (69) 

where T is the operator in (54). Thus v, given by (39) with this choice of g, is 
a solution of (37'). Thus to complete the proof that (27) has a unique solution in 
Ho, n+l(R ~) when z >> 0, we need only show that/~ given by 

h(x) = ((-iO/~x 4- z v )  2 -- k2 )v  

is in  No, n+1. From (39) we see that 

h = Cg + Tzg + Sg, 
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where T2 is the operator in (53) and 

�9 3c -2z~ �9 (t/ + z v ) O ( t / ) e  ix'~ 

Sg = (2~) " f -~T zv) : (t/ + zv) - k 2 d~ 
Nn 

= (2~z)_ n f - 2 A ( x )  �9 ( t / +  zv)zl(t / ,z)cO(t/)e ix~ 
~,, ( t /+  zv)  �9 (ti + zv) - k 2 dt/ 

(70) 

by (40). From (70) one sees that S is an operator of  the same type as T1 in (53) 
with an additional factor o f  t / +  zv in the numerator. However, since we showed that 
the norm of  T1 on H~,~+I was O(z -1 ) uniformly in ( for z --+ oo, and I t / + z v  I < cz 
on support Z1 (see (43)), it follows that S is bounded on H; , ,+I ,  uniformly in ( ( , z )  
for z > %. This completes the verification that hv(~,~,k, iQ E H~,,+1. 

4. Recovering the Magnetic Field 

Proposition 5. Let  hv(~,~,k,z)  be the unique solution o f  (27) in Ho,,+l f o r  z >> 0, 
and let g~(x , ( ,k ,z )  be the unique solution in Ho,~+l o f  (53) with f = - ( q ( x ) +  
2((  + zv). A(x) )exp( ix  �9 ~) f o r  z >> 0. Then 

h u ( ~ , ~ , k , z )  = Ov(~, ~,/~,z) (71) 

when ( ~ + zv ) �9 ( ~ + zv ) - k 2 = O. 

Proo f  We have 

hv(t/,~,k,z)eiX" ~dt/ 
v~(x, ( , k , z )  = (2rt) n f ( t / ~  - ( - ~ z v )  --}c2 

Nn 

C(X, t/,Z )Ov( t/, ~ , k , z  )e ~ " '~ dt/ 
= j " 

1R n 
(72) 

As we observed earlier Cl = c(x, t / ,z)  - 1 has an expansion of  the form (52) for 
z > %. Thus, as in the proof  of  the bound on T2 in Proposition 4, we see that 

. . . .  ~ ~ ~(~.  - , , q , Z ) O v ( ~ , ~ , k , z ) d ~  
f ( ~ , ~ , k , z )  = tz~z) j . . . . . .  

~ (t/ + zv )  �9 (t/ + zv )  - k 

belongs to H0,n+l as a function of  ~, and hence is continuous in ~. Since the Fourier 
transform of  (72) gives (a.e. in 3) 

h v ( ~ , ~ , z )  

(3 + zv )  �9 (3  + zv )  - k ;  

0,,(~., (,k,z) 
(3  + zv )  �9 (3 + zv )  - k 2 + f ( r  

where hv and 9v are also continuous in ~, (71) follows immediately. [] 
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By Proposition 1 and the discussion following it we can recover h~(~(s) ,  ( ( s ) ,  k, 
z ( s ) )  from the scattering amplitude h ( k O ,  kco, k ) .  Recall (see (34), (35)) that given 
the orthogonal frame {v,#, l} with Ipl = Ivl = 1, 

~(s) = -1l 2 +s/~, 

1 l ~(s) = - ~  + s ~ ,  

/ 
z ( s )  = i z ( s )  = i ~ / s  2 + 1ll2/4 - k 2 (73) 

for s > so. Since (~(s) + z ( s ) v )  �9 (~ (s )  + z ( s ) v )  - k 2 = 0, it follows from Proposi- 
tion 5 that h(kO, kco, k )  determines ~ v ( ~ ( s ) , ( ( s ) , k , z ( s ) )  for s > so. 

To recover the magnetic field we can begin with representation for 9,, given 
by (69) with f = - ( q ( x )  + 2 ( ( + z v ) .  A ( x ) ) e x p ( i x .  ~), take the Fourier trans- 
form in x, evaluate at ~ = ~(s), ( =  ((s), z = z ( s )  as in (73), divide by z ( s )  
and take the limit as s---+ oc. Since the norms of T, T1,7"2 and T3 on H~(s),,,+l 

go to zero and iz@s)l]]f][;(s),~+, is bounded as s - +  ec, it follows that h(kO, kco, k )  

determines 

lira (2~z)-" f f ( -2 ) ( ( ( s )  + z ( s ) v )  . f t ( t  l _ ( ( s ) )  
s~oo  R,, ~,, z ( s  ) 

• e - ix  " (~(s)-tl)+iz1(tl'Z(S))p(x'~l+z(s)v)drldx. (74) 

Replacing t / -  ((s) by t/, (74) becomes 

lim (2~) -n f f ( -2)(~(s)  + z ( s ) v )  . A(rl ) 

• eiX �9 ~l ix'({(s)-((s))+iZlOT+((s),z(s))q~(x,q+((s)+z(s)v)dtTdx. (75) 

By (73) { ( s ) -  ~'(s) = l and l i m s ~ ( ( ( s ) + z ( s ) v ) / z ( s ) =  v -  ift. Also (see defini- 
tion of X1 before (42)) 

lira Zl(r/+ ( ( s ) , z ( s ) )  = )~(0) = 1 
s - -+  o o  

Finally 

lira ~o(x, r /+ ;(s) + z ( s ) v )  = lim (2~z)-" f A({~i 
(11 + ((s)  + Z(S)V)e  ix"  

2(~)  . (~ + iV) ~x 
= ( 2 ~ ) - ~  f ~ : ( ~ 7 ~ 7 ~  " ~ d ~ - ~ o ( ~ , ~ + i ~ ) .  (76) 

~ n  
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Hence the limit in (75) equals 

I = - 2 ( 2 ~ )  -n f f e ix �9 l+ie(x,u+a,)+ix �9 ,7(v _ il~) �9 ~i(rl)dtldx 
N n R" 

= 2i f e -ix " l+i~~ + iv) �9 A(x )dx .  (77) 
Nn 

Comparing (76) with (40'), we see that 

&o 
(I ~ + iv) �9 ~x = (It + iv) �9 A (x ) ,  

and hence, using the coordinates (x l ,xz ,x  •  introduced before Proposition 2, we 
have 

~n-2 ~x2 + ei(Pdxldx2 dx2"  

We have 

( 0  ~ x l )  ( 0  i~xl  ) iR 2f ~x2 q- i ei~~ dx; = e~%2+x2<=e21im f ~ + ei~dXl dx2 

2~ 
= lira f e i~(e cos o,e sin 0,x • ~L+i,,)(sin 0 + i cos O)RdO, 

R---~oo 0 

by Green's theorem with xl = r cos 0 and x2 = r sin 0. Returning to the expansion 
(52) for (p, we have 

1 1 
-- . f A(y lv  q- Y2# + x  •  " (F ~ q- iv)dyldy2 q- O((xl - -  i x 2 ) - 2 )  �9 

(P 2~zi x 1 - -  lX2N2 

Thus 
2~ 

lira f e i~(R cos o, e sin o, x',~+iV)(sin 0 + i cos O)RdO 
R-+oo 0 

= i f  A(y lv  + Y2# + x  •  " (!~ + iv)dyldy2, 
p.2 

and 

I = 2 i  f~,n_2 e-i~x< ( f  A ( y ~ v + Y 2 1 ~ + x •  dx•  

= 2iA(l) �9 (U + iv).  

Since bt and v are a general orthonormal pair perpendicular to l, we conclude that 
for all 1 ~ R" , I  determines ~i(l) - (.zi(l) �9 l)l/]l] 2. In other words I determines A 
modulo the gradient of  

p(x)  = (2~r)-" f e il " xiei(l) �9 l/[l]2dl = - A - I ( v  �9 A) ,  (78) 

and hence I determines curl A. 
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5. Recovering the Electric Potential 

To recover V(x )  we need to compute the next term in the asymptotic expan- 
sion of (69) which yielded (74) as the leading term. We have determined A ( x )  
modulo the gradient of  a function of the form (78). Hence, we may assume 
that we know the scattering data for the problem with the A(x) here and q = 
q1 ~ A �9 A - iV �9 A, since the scattering data only depends on the magnetic field 
B =cur lA.  This scattering data determines the Fourier transform of the solution 
go of (53) with f = f0  ~ - ( q '  + 2(~" + zv )  �9 A ( x ) ) e x p ( i x  �9 ~) on the set ({, ~',z) = 
( ~ ( s ) , { ( s ) , z ( s ) )  given by (73). Among the operators in (69) only 1"1 is changed 
when we replaced g by g0, and we denote the new operator by T1,0. Thus, sub- 
tracting the representation (69) for g0 from the representation (69) for g, we 
may assume that we know the Fourier transform on the curve ( ~ ( s ) , ~ ( s ) , z ( s ) )  
of 

( I  + ( I  + T ) - 1 C ( - J ) ( T 1  + T2 + T3))- I ( I  q- r ) - l c ( - 1 ) ( f  - f o )  

- ( I  + ( I  + T ) - I C ( - 1 ) ( T 1  + T2 + T3))-1(I + T ) - I c ( - 1 ) ( T I  - T1,o)) 

�9 ( I + ( I + T ) - I c ( - ~ ) ( T t , o + T 2 + T 3 ) ) - I ( I + T ) - I C ( - 1 ) f o .  (79) 

Taking the limit in the Fourier transform of (79) at ( ~ ( s ) , ( ( s ) , z ( s ) )  as s -+ oc, 
we recover 

lira (2tO -~ f f - l)(r 1 - { ( s ) )e  -ixlr 

- sli+moo ~ ' ( C ( - I ) ( T 1  - T I , o ) C ( - I ) f o ) ( ~ ( s ) ,  ~ ( s ) , z ( s ) )  = J1 - -  J2 .  

By the same computation that derived (77) from (75), we have 

Jl = - f e -ix " l+iq~ (80) 
F,n 

To compute J2 we argue as follows. T1 - Tt,o = VCL, where L multiplies the 
Fourier transform by ( ( r /+zv)  �9 (r 1 + z v )  - k2) -1. Since IV, C] goes to zero and 
C ( - 1 ) C  goes to the identity as s ~ 00, we can conclude that 

~(~(,) q) 
J2 = lim (27t)-2"f  f f 

I 

s--+oo ~ ,  ~" ~" (~l + z (s )V)  �9 (r I q- Z(S)V) -- k 2 

• ( -2(~(s)  + z ( s ) v )  �9 A(a  - ~(s))) 

x e ix " (6-n)+izl(6'z(s))(P(x'a+z(s)v)d3dxdrl. 
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Replacing 6 by 6 + (:(s) and ~1 by r/+ ((s). and arguing as before (recall ( ( ( s )+  
z ( s ) v )  �9 (~(s)  + z ( s ) v )  = k2). we have 

J2 =(2~)-2~ f f f 2r~ : ~S~v)t-zt# + i v ) . . , i ( ~ ) )  
~n Nn Nn 

• e ix �9 (g-~)+i~o(x.~+iV)d~dxdt] 

=(27z)_ n f f l]'(( - t l)(p + iv) �9 A ( x ) e  -ix " ,7+i~o(x,u+i~) 
- dxdrl 

~ .  ~ .  (It + iv) �9 t 1 

Proceeding as before with xl = x �9 v and x2 = x �9 #, 

f e-iX~l+iq~(x'~+iv)(# + iv) �9 A ( x ) d x  
N n 

= f e-iX•177177 e-i(xl,ll+x2q2)(_i) ( 
Nn--2 IN2 ~X2 + i O @ l )  (~(x .p  q- iv) 1 ) d x l d x 2 .  

and by Green's theorem 

f e- i (Xl"~+x2"2~(- i ) (  0 i~) 1R2 ~x2 + (~ -- 1 )dxi dx2 

=e~lim Ix~+xf<R 2 e-i(xl~2+x2~2)(~2 + #/1 )(~ -- 1)dx ldx2  

2re 
+ f eiR(,2cos 0+,l sin 0)R(si n 0 + i cos 0) 

0 

x (~(R cos0. R sin0.x• + i v ) -  1)d0] . (81) 

Since 

1 
~(R cos0,R sin0,x •  = 27zR c o s 0 - i  sin0 + O  

the second integral in the limit in (81) goes to zero as R goes to infinity when 
(ql, r/z)4= 0. The first integral just goes to the Fourier transform of ~ -  1 in (xl,x2) 
multiplied by (r/2 + irll ) = (p + iv) �9 t 1. Thus 

.12 = -- f e - iY  " f V(Y)(eic~ - 1 ) d y .  
F,n 

Thus J1 - J2 -~ - f ~ .  e -iT " l V ( y ) d y .  Since l is arbitrary, we have determined the 
Fourier transform of V and the proof is complete. 
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