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Abstract: In this article we consider the Schrodinger operator in R, n 2 3, with
electric and magnetic potentials which decay exponentially as |x| — oo. We show
that the scattering amplitude at fixed positive energy determines the electric potential
and the magnetic field.

1. Introduction

Consider the Schrodinger equation in R", n = 3, with magnetic potential A(x) =
(41(x),...,4,(x)) and electric potential V'(x):

" 2
—Z< + id; (x)) U+ V(x)u=ku, (1)
j=1
k > 0, or equivalently
212A (x) + q(x)u = Ku, (1)
where
04,
q(x) = Zl <A (x) - l—) +V(x). (2)
A

We will assume that the potentials 4 and ¥V are real-valued and exponentially
decreasing, i.e.

"V (x) ] o'4; ol

S| S Cae™, 7| S G j=1,n, 3)
for 0 £ |o) £ P,0 < |B| £ P+ 1, where P =n+ 4. We consider the solutions of
() of the form

u=2é" "7 4oolx,m,k), 4)
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where v is the outgoing solution of

ZZZA (x) —|— (g(x) — k*)p = €* <—2kiij_,-(x) — q(x)) (5)
=

obtained by the limiting absorption method. By this argument v exists and is unique
whenever k% is not an embedded eigenvalue, and, combining Sect. 5 of Hérmander
[4] with the proof of Theorem 3.3 of Agmon [1], one sees that (3) implies there
are no embedded eigenvalues. Representing v in terms of the outgoing fundamental
solution of A+ k2, it follows that as |x| — oo,

zk|x|
v(x, w, k) = r——( (| |,w,k)+0<é—|>> , (6)

where a(0, w, k) is defined to be the scattering amplitude. Our objective is to prove

Theorem 1. Fix k > 0. Then one can recover V(x) and the magnetic field B =
curl A4 from the scattering amplitude a(0,w,k),(0,w) € §"~' x §"~1.

Note that, if 4 and A4’ satisfy (3) and curl A = curl A', then A" — 4 is the
gradient of function ¢ satisfying

6pq)

| SCe ™ 0= pl =P (7)

To see that changing 4 to 4’ = 4 + ? does not change the scattering amplitude
note that, if one replaces u(x) by w(x) = u(x)e ™) then w(x) will satisfy

0 . 0 2 _ g2
—(a +lA(x)+za> w4 V{x)w=k'w

However, this does not change the scattering amplitude, since

ik
w= ”(x)eQi(p(X) =T e Ty a(iv w, k) < n|i|1 +0 1n+1
x| 2 [x| =

4 k||
= ¢ 'x+a(i,w,k> d — +0 ! o -
|xl n2 th’H—

x|

In this article as in [2] we will use A(& kw,k), the Fourier transform of
—(4 +k*)v, to study the scattering amplitude. Since v is obtained by limiting
absorption,

1 h(E, ko, k)e™<
Gy b e —F—10

v(x, m,k) = dé, (8)

and, taking the asymptotics of (8) when 6 = x/|x| is fixed and |x| — oo, one obtains

n—3

(0,0, k) = nkh(k@kwk)cnk_$<(§k;>7e_%> . (9)
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From (5) one sees that 4 satisfies

1 f qO(é - A, ’7)}1(’1» é/ak)

MEEO Gard, -k - 10

dn=—qu(¢ =40, (10)

where

go(&,0) = 2&12,(5):,- +4(5). (11
2

Note that (3) implies that go(¢ — {,{) is analytic in (£,{) for [Im ¢&| < 6/2,
[Im {| < 6/2. For fixed A, the integral operator

1 f qo(& — n,m)w(n)

T =
T @ry e E = i— 10

dn (12)

is compact in the space H,y,0 <o < 1l,n—1 < N < n+4. Here H, y is the
weighted Hélder space used in [2]: let | fllun = [|(1+ [EPY2 S |lar where || ||, is
the standard Holder norm, and define H, n as the completion of CP(R" ) is || [|«n-
Moreover, 7 depends analytically on A for Im 2 > 0 and extends continuously to
the positive real axis, 4 > 0. In the same way that Theorem 5.2 of [4] showed that
the homogeneous equation corresponding to (5) had no nontrivial square-integrable
solutions, it can be used here to show the / + 7> has no nontrivial solutions in
H, n(R"). Hence we see that the Fredholm operator / + 7, is invertible on H, y
for £ > 0. This will be useful in what follows.

In the case that the magnetic field B is small uniqueness results at fixed energy
have been obtained previously by Henkin and Novikov [6] and by Sun [9]. Re-
cently Nakamura, Sun and Uhlmann [5] obtained the uniqueness result analogous to
Theorem 1 for the Dirichlet to Neumann map. This implies Theorem 1 for magnetic
and electric potentials of compact support. In fact, when the magnetic and electric
potentials have compact support, as in [9], uniqueness for inverse scattering at fixed
energy and uniqueness for the Dirichlet-to-Neumann map inverse problem at fixed
energy are equivalent.

For potentials without compact support the previous work which influenced us
considerably was by Novikov [8]. He proved Theorem 1 in the case of zero magnetic
potential, and the methods of [8] could be used to give a different proof of some
of the results in Sect. 2.

Finally, we are deeply indebted to Adrian Nachman for calling our attention to
a serious error in the first version of Sect. 2.

2. Faddeev-Type Scattering Amplitudes

Following Faddeev [3] and Novikov—Khenkin [6], we introduce a new scattering
amplitude which will contain a large parameter. The later will be helpful in solving
the inverse scattering problem.

Let v be an arbitrary unit vector, |v| = 1, and E, ;(x) be the following funda-
mental solution to the equation (—4 — k?)u = f:

eix . qdn

Eyo = ’
o) (2775)"mfnf1 < — k> +10(n, — o)

(13)
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where 1, = - v and —k < ¢ < k. Comparing £,,(x) with the fundamental solu-
tion

1 eix °y
E = dny, 14
o(x) (27t)”Ianr]-17~k2—i0n (14)
we have
inkn-z ix * ko
Ev,o‘(x):EO(x)* FZYe f € dw, (15)

(2n)n kw-v>o

where dw is the arca element of the unit sphere in R”. Analogously to (10) consider
the following integral equation

1 f qo(é - W)hv,o(”ly C:k)
(27'[)" R H-n— k2 + lO(nV - J)

hyo(& 4 k) + dn = —qo(¢ = (,0). (16)

Set

1 I hyo(E, 0 R)e™ " ¢
QY gn &+ &~ K2 +i0(E, — 0)

assuming that A, (&, {, k) is the solution of (16). Then v, »(x,,k) is a solution
of the differential equation (5) for { = kw with asymptotics at infinity that can be
obtained by applying the stationary phase method to (17).

Now we shall find the relation between %, (&, {,k) and A(¢,{, k). Analogously
to (15) we have

1 qo(& — n,mhy 5(n,{, k) y = 1 qo(& — 1, mhy (1, C,k)d
QY gnn - 7 — k2 4 i0(n, — 0) QaYigs n-n+k—i0

(%, 0, k) = d¢, a7)

ink" 2
e ke ko) o(ko.Ldo. (18)
w > V>0

It follows from (16) and (18) that

1 f qo(é - n, 77)hv,o(7la C:k)d
@nY'gn  ne-n—k*—i0
ink" 2

=Gy, .fmqo(é — ke, koo Yy, o ko, £, K )d oo — qo(& — £,0) . (19)

hyo (&, 0 k) +

Set
_ go(& — n,mw(n)
Algo)w = (2n)",g; S dn, (20)
and
A(R)w = 1 f h(¢,n, k)w(n) d @n

T @aygen k-0
That (10) has a unique solution is equivalent (cf. [2]) to the equality

(I +Algo)I +A(h)) =1 . (22)
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Since I + A(qo) has an inverse, it follows from (22) that
(I + AU + A(go)) =1 (23)

or equivalently

1 I h(&,n,k)qo(n — (,0)

h(éagzk)+q0(£_ CaC)+ (271:),, R N ],] _kZ _ lO

dp=0. (23)

Applying I + A(k) to (19) and using (23) and (23'), we obtain (cf. [3] and [6],
formula (1.7)):

: kn—2
hol&0R) = hELR) —~ o [ Bk, gk, (R)de . (24)
(27!) kw * v>o
Since I + A(qo) is invertible, Eq. (24) has a unique solution for any A({, (k) if
and only if Eq.(16) has a unique solution. Indeed, if ¢(&) is a solution of the
homogeneous equation corresponding to (16), i.e.

N —n qo(& — n,mo(n) _
(&) +(2m) ni[ = K4 00 — J)dn =0, (25)

then from (25) and (18) with 4, replaced with ¢ we conclude that

_ d e 2
p(&) + (my [ IR IIOO TR p g6 ko ko)t

re Nen—kE—i0  Qry,, .

V>

Applying (I + A(h)) to both sides of this, we have

=2
0= 0@+ T [ ek Do), (26)

i.e. @ restricted to |¢| = & solves the homogeneous equation corresponding to (24).

Conversely, suppose ¢(&) is a nonzero solution of the preceding equation (26) on

the sphere of radius k. Then (26) extends ¢ to R", since A(&, kw, k) is defined for

& € R, Applying I + A(go) to both sides of (26), we see that ¢ satisfies (25).
Denote by E,(x,z) the following function:

] e g
Ey(x,2) = I "

- , Imz>0.
nYgn (n+29) - (1 +2v) — &2 ‘

Note that F,(x,z) is a fundamental solution for (~i—§; +zv) . (_i'a% +2zv) — k%, ie.

K—ia% +zv> . <_i6_i +zv> — kz} Ey(x,z) = 0(x).

Note that the distribution [(7 +2v) - ( +2v) — k*]7" is not analytically dependent
on z for Im z > 0. This gives rise to the d-equation in inverse scattering (see, for
example [6]).
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Denote by A,(¢,(,k,z) the solution of the following integral equation:

E=nn+zhOE kZ)
(n+zv) - (n+2v) -k

= —qo(E—{,{+2zv), z=it, 7>0. 27)

q0
h(&, k) + (2 v

Let Tl.(Tl) denote the operator

70 —n ¢ 9o(C =, 4 i) f(n)dn
i f10) = @m) ]an (n+iwv) - (n+iwv)y—k2

(28)

Then (27) can be written

[+ T{R)(E) = —go(é = 6, + i)

and
h(& 0k i) = —[( + Ti) 'qo( = = LL+ 1),
provided (I + T (1)) ! exists. The analyticity of 4, in 7 will be important for us.

Thus we need to study the analyticity of 7}, in © when f(1) is analytic in a strip
Im 5| <e We will use coordinates #,=n-v, ' =n5—mnv, r=|q| and
o' =1n'/|%'|. For n real and T = pu + io,

Im((n + itv) - (g +itv) — k%) = 2un, — 2u0 .

Hence, for |,| > &, Re v > 0 and |Imz| < &/2 the denominator in the integral

defining T7, () does not vanish. Thus, choosing y € C§°(R) such that y(s) is sup-
ported in |s| < 2¢ and 1 — x(s) is supported in |s| > &, we have

) _ o X(m)qo(E =, +iTv) f()dn
[T f1(&) = 2n) nif 1+ 709) - (n + 7v) — &2

¢ (U= x(m))go(& — n,n 4 itv) f(n)dn
+ (2m) nix n+itv) - (n +itv) — k2

=V UE + VP 116),

where [Vr(z)f](f) is analytic in (&,7) in the set |[Imé| < 4, Re 7 > 0 and
|Il’1’1‘L’| < 81/2.
In our coordinates we have
(n+itv) - (p+ i) —k* = (r — VB)r +VB),

where B = k2 + (t — in,)?. Using © = u+ic again, we have Re B =k + 12 —
o +20n, — 1%, and Im B =2uc — 2un,. Hence for k* > 8¢, Re B > k?/8 for
|nv] < 2&1 and |Im 7| < &;/2, and we fix VB as the square root in the right half
plane. We wish to define ¥, and hence T,(T ), by analytic continuation from 7 > 0.
When t > 0, i.e. when g > 0 and ¢ =0, r — VB =£0 for ny =0, and we have sgn

(Im B) = —sgn #,. Therefore, we will deform the integration in » in

(Tx(m)qo(é — o+ i) f () dr)
(r — VB)(r + VB)

[V(l)f](f)— [ do' fd

sn—2
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into the upper half plane for , > 0 and into the lower half plane for 4, < 0. We

need to deform [0,00) far enough that 7 — +/B will not vanish on the new contour
for 7 in a complex neighborhood of [0,7¢]. Note that for = = u + io,

VB =12 + k2 +2i(c — ) — (o — 1, )?

= V12 F 40— )+ O((6 — 1))
/uz + k2
Hence, for |o| < &/2 and |1, < 2¢;, we have [Re(vB — \/p? + k?)| < C&? and
lIm VB| < 5&/2 + Ce2. We now fix & > 0 such that Ce? < k/3,5¢,/2 + Ce? <
¢/2 and 8¢ < k2. Then we may deform the r integration in yi [ to the piecewise

linear curve I' from 0 to k/2 to k/2 + ie/2 sgn n, to /k? + 13 + k/2 + ie/2 sgn ny

to \/k2 4 79 + k/2 to co. With this choice of I',7 — v/B will not vanish on I' for
75| < 2e1,l0] < &/2 and 0 £ p £ 7. Thus we have proven:

Lemma 1. If f(n) is analytic in |Im n| < ¢ satisfying |f(n)] £ C(1 + [y|)™"!

Sor |Im n| < &, then [T[(TI) SIE) has an analytic extension from © > 0 to the half
strip {(&,7) 1 [Im {] < 8 —¢ Re 7 >0, [Im 1| < g/2}.

Let Ay, denote the space of functions f(x), analytic on S, ={npe (C":
Im 7| < r} and continuous on S,, which satisfy

lfl < 1+ g~

on S,. Ay, is a Banach space in the norm
£y, = sup(l + £ ()] -

Proposition 1. For ¢ sufficiently small TI.(TI) is a family of compact operators on
Any1,5/3, depending continuously on v in the closed half strip D = {t = pu+io:

pz0, |o| £ e&/2} and analytically on t in [o), the interior of D.

Remark 1. The choice N =n + 1 is made simply to make the Banach spaces used
here compatible with those used in Sect. 3. The 6 here is from (3).

Proof. For 1 € D, TV f =y 1 v £ by definition. Since 2 + (1, + it)? — k2

does not vanish for » € I' and 7 € D, the operator Vi satisfies

.1 + )| S )| 2||dr|
(14 n]» ’

OSIO] < G [ do fdn, fl1E=
n—2 R r

N

(29)

where the constant C, is uniformly bounded on compact subsets of D. By hypothesis
(3) for any &' < 9,

|90(& — mn + iwv)] = Cror(1+]E—n))™" (1 + [n]) (30)
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for £ € Sy_, and 5 € S;, where again C, y is uniformly bounded on compact subsets
of D. Since |f()| £ (1 + )™ | f ||, o0 S, the integrand in (29) is bounded
by

|rnA2l

A E =y g

¢
Since for any p > 0,

A+EDPA+[E=a)y PA+ D™ £ CA+E—aD)™7 + A+ [1)77),

we conclude

A+ Y2V FUON £ Cl Sl - (31)

Taking ¢ = 6/3 and &' = 56/6, we have [V £1(€) analytic in Ss/2. Thus for © € D,

(1) maps A1, 83 into A, 5 with norm uniformly bounded on compact subsets
of D. Hence V" is compact for 7 € D.

In proving Lemma 1 we showed that for f € 4,41 43, [Vr(l) J1(&) was analytic

in (£,7) for € D and £ € ;5. Since the norm of Vf(l) as an operator on 4,41, 43

is uniformly bounded on compact subsets it follows by Cauchy’s formula that v
is an analytic family of operators for ¢ € D.

For 1 € B the preceding arguments apply equally well to V% and we may

o]
conclude that Tl-(rl) is an analytic family of compact operators in D. However, since

@ Py (I = x(m))go(& —n,n — ov + luV)f(n)
[ pH-sz](é) ( ) ]1‘{[*; l1’] _ O'Vl _ k2 _ ’u + 21,u(m B O') '1

_ Qn) f(l Kty + 0))go(€ — 1 — v, + i) f(n + 0v) dn
n? — k2 — 12 + 2ipn,

5

we need to show that V' +)w extends continuously to x4 =0 from p > 0. Since
1y does not vanish on the support of (1 — x(n, + ¢)) for |o| < &/2, we can again
deform the integration in » into Im » > 0 for n, > 0 and into Im » < 0 for , < O,
using the piecewise linear contour I'" connecting 0 to &/2 + ig/2 sgn n, to 3k/2 + ig/2
sgn 7y to 3k/2 to oo. Then for r € I” and 0 £ p < ¢y,

- — &~ 2+ 2ip |7 = | — K+ 2|

< Crop|r + Iy — (sgn 1)k,

because » = (1 + isgn #,)t on the first segment of I'” and »? = 2i(sgn 1, )t*. Since
(7[> + Iny — (sgn n,)k])™" is locally integrable with respect to |r|"~2d|r|dy,, we
may argue as follows. Removing small disks about (r,#,) = (0, +k) in the integral

defining Vfl +)m f, we get an operator to which our previous arguments apply. Since

this operator differs in norm from Vﬁ)m

the radius of disks, uniformly for 0 < u < ¢/2, we conclude that Vft Jr)w
continuously to a compact operator on u=0. []

by an amount which goes to zero with
extends
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In Sect.3 we will show that [ + T is invertible on Hg ,y( for t > 0. This
implies immediately that it is invertible on 4,41, 53, since the null space of I + T,{f)
on Ay41. 63 18 a subspace of its nullspace on Hp »41. Therefore, by Proposition 1 the
set Z where I + Ti(Il) is not invertible is discrete in D and closed of measure zero in

D {Re t = 0}. In particular, there is an open interval I = (1,0,) C (—&1/2.£/2)
such that [ + Ti(fl) is invertible for T = —ig, s € 1. Hence

h(E LR i) = [+ TS goC + = L L+ itn))(€)

exists for t € D\Z and is analytic in (&,{,7) on S5 X S5 X 10)\Z.

Qur goal is to recaver A,(&, [,k it} from the scattering data. To make the con-
nection with scattering data we will need o use 1= —is and identify 4, with a
translate of A, ;. Since denominator (1 4 i1v) - (1 + itv) — k? with © = u — iv goes
to 7 - n+20n + 0> — k> as u | 0, we can remove the contour deformation in the
definition of V" f. However, since the integration in r is deformed into the upper
half-plane when #, > 0 and the lower half-plane when #, < 0, we have

(1) _ —n qo(¢ — n,m+ av) f(n)
(75 f1(8) = 2n) 1ani’l'71+2077v+02—k2+i0'1v m,

and for ¢ € I, (&, {,k, o) is the unique solution in 4,11 53 to

£ +Qry | qo(& —n,n+av) f(y,{)

dy = —go(¢ — Gy
g 1+ 9+ 20m, + 0f — k2 + 0y, n=—go(¢—({+av). (32)

Since the changes of variables ¥ — n —ov, { - £ —ov and { — { — ov, transform
Eq. (32) to (16), we conclude that 4,(& — ov,{ — ov,k, 0) is the unique solution of
(16) in A, s/3 and hence for ¢ €1,

hv(é_ava C—O'V,k,ﬂ') :hV,J(éaak)' (33)

Therefore, assuming the results of Sect. 3, we have proven the following theo-
rem:

Theorem 2. The solution h(&,{, k, it) of (27) exists for T € D\Z and is analytic in
(&,8,1) on Ssn x Sz % (lo) \Z). The limiting values of h(&,(, k,it) when © — —ia
satisfy (33), where h, ;(&,[,k} is the solution of (16).

Since the unique solvability of (16) in 4,4, 5 implies the unique solvability of
(24) in C(S"""), we know that (24) has a unique solution for ¢ € /. Hence, know-
ing the scattering amplitude (&, {, k) for |¢“|Z = |C|2 = k%, we can find hy o (&0 K)
for |f|2 = |C|2 = k? and ¢ € I, which translates (by (33)) to knowing h,(&,( ko)
for £ 4 cfv|2 =+ av|2 = k2, for ¢ € I. Since h,(&,{, k,it) is analytic for (£,{,1) €

]

Ssy3 x Ss3 x (D\Z) with a continuous extension to Ss;3 X S3;3 X (—il ), we can de-
termine it on the variety

(E+ity) - (E4 i) = ((+ i) - C+ i) =K

for (&,{,7) € Ss;3 x Ssp3 % (Io) \Z) by analytic continnation.
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Fix I € R", u € R",n = 3, such that

—

l’V:O, M'VZO’ [.‘u:O, weu=1, (34)

and put
E(s) 1l+
S)y= —
ST S

)= 31+ m,

z(s):ir(s):iq/ser%l -l -k, (35)

s = 59, So large. We have that h,(&(s),{(s), k,z(s)) is analytic in s for s > 59 and
(&(s) + it(s)v) = (&(s) + ix(s)v) = (L(s) + ix(s)v) - (L(s) + in(s)v) = k*.
Hence A,(E(s), {(s),k,z(s)) is known for s > sp.

Remark 1. In the case A(x) = 0 the operator TI-(TU has a small norm in Hy 41 (see
Proposition 4) when t > 0 is large. Substituting & = &(s),{ = {(s),z = z(s) = it(s)
in (27) and passing to the limit when s — 400, we obtain that the integral in (27)

tends to zero, and we can recover
V(1) = lim hy(&(s), {s)kz(s5)).

Thus we obtain an alternate proof of R. Novikov’s result [8].

3. Solution of an Integral Equation

In this section we set z = it and only consider t real and positive.
In order to solve the integral equation (27) when 1 is large and positive we will
pass to an equivalent differential equation. Let

PN N ORN 5
vy(x, kz) = (2m) ]ﬁfn(n—l-zv) P — 1,

z=it, t>0. (36)

Then v, satisfies the differential equation

[(—i0/0x + zv)* — k% + 24(x) + (—id/0x + zv) + g(x)]v,

= —2(L42v) - A(x)e™ " ¢ —g(x)e™ " ¢ (37)
Our strategy will be to construct solutions of the equation
[(—id/ox +zv)* — k* 4 24(x) - (—id/ox +20) + g(xX)v = [ (37)

for all f in the Banach space Hy ,+1(R"), where Hy xy(R") is defined as the closure

of Cg°(R") in the norm, || fll v = sup(1 + [ENDYIF (&), i.e. Hon is the Fourier
transform of Hy . Then )

ME) = [ ((id)ox +2v)" = K )o(x)e™™ " “dx
R7
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will be a solution of (27) with the inhomogeneous term replaced by 7(¢), i.e.

HE) + (2m) " [ qo(E — 1,1 + zv)h(n)

gr(n4+2v) - (n +2zv) — k2 = (&), (38)

and we will show that # € Hy ,+1. Thus we can conclude that J 4+ T(l) (see (28))
maps Hy ,+1 onto Hy 1 for 7> 0. Since T( ) is also compact on Hy 41 for v > 0,

it follows that 7 + Ti(t) is invertible on Hp 41 for 7> 0, and (27) is uniquely
solvable in Hy, ,.1, when 7 is sufficiently large positive.
We will look for a solution of (37') in the form

o, b,z) = my~" [ S 20, {,z)el " 1

(M +2zv) - (n+2v)— k2 (39)

where z = it,7 > 0. Here ¢g(x,{,z) is the new unknown and §(#,{,z) is its Fourier
transform in the first variable. The factor c(x,#,z) will be chosen so that the ana-
logue of Eq. (27) for § will not have the unbounded terms in go(& — #, 4 + zv). For
this reason we choose c(x,n,z) as a solution of the transport equation

dc
—21— (n+2v) +24(x) - (n+2v)0a(n,2)c = 0 (40)
of the form ¢ = exp(—iy1¢). Thus ¢ must satisfy

(n+zv) -

=A(x) - (n+2v), (40")

and we choose

o AR - (t2v)er " E
¢ =) I[i’ i& - (n+2zv)

The function y,(#n,z) is (40) is a cutoff to a neighborhood of (y +2zv) - (n +
zv) = k2. The cancellation of unbounded terms is not needed outside this neighbor-
hood, and it is convenient to have ¢ = 1 there. We choose y(¢) € C5°(R) such that
(1) 2 0,7(t) =1 on |¢| < &2 and %(¢) =0 on |z| > ¢, and define

(41)

yi(mz) =1y <|(’7 +zv) - (n+2v) —k2|> |

Il + 2+ &2
Since, setting #, =#n - v

(1 +2v) - (n+20) =K = (0 = 7 = £ 42, (42)
it follows that on the support of y;

ey’ + 72+ k) = |9 - (@ + £,

(12) < 2w < (120 ) 3)

and hence
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Setting ' = — (y - v)v, (42) also implies that on the support of y;,
2ol P4y + 7+ K 2+ — 7 = K+ 22|
and hence, using (43),
(1+ 2)' 2 (1-26)(7 + &) — (1 +2e); + 2el|

1 — 1/2
(1 —2e)(7* + k) + (2 (1 +Z> @ +Tk2)1/2 -1 +2s)) 7 -

Thus, choosing ¢ sufficiently small and 1, sufficiently large, we have for 7 = 1,

[\

() +2 < Gl (44)

on support y;.

We will need some detailed estimates on ¢@. The behavior of ¢ in the x-variables
is strongly dependent on #. We introduce u = #'/|#’|, and use the orthogonal ex-
pansion x =xv+ x4+ x,, where x) is the projection of x on the orthogonal
complement of span {v,n}.

Proposition 2. Assume that B(x) is a vector-valued function satisfying (3) and
define

v (B ()
Voo +2v) = (2m) ]Rf" E-(n+2zv) €

Then for (,z) € supp x1,T = 79 and |a| + |B| £ P in (3') one has

dé.

el s [ (45)

alal+1Bly
‘ oxxonf | =

Proof. By contour integration one computes

e/ xié1x26a) 1 1

dés

@en2 f

—d = .
r2 & (n+2v) “ 2n 'y — (v + 2)2

Thus
1 B(x— y1v—yu) - (n+2v)
x,n+zv) = —
VG ) 27T]Rf2 ' [y1 — (v +2)y2

Vs (46)

and, using (3'), for |«| £ P,

oty

Ce ™=yl —yutr il |y 4 7y
W(x, n+zv)

<

47)
R2 7|y — (v +2) 32

Since (43) and (44) imply that

7|31 = (s + 2)p2] = (1 |31 — muy2)? -+ T2 33)'7?

> Cr(y} + y))'? = Crly|, (48)
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it follows from (43) and (47) that
‘alail/,

(o +2v)| < Cpem 2Ll

Ox®

for |a| £ P, where C, is independent of # and z.
To estimate # derivatives of ¥ we first observe that (48) implies

il ! Oy
a< I )\_ Wr-me | _
o \In'|y1 — (v +2)32 ('l = (e +2)n2 2| = 2y]

Thus, differentiating (46),

ay| _ € |BG— yv—yldy | C |28

WNi<E + S 1L = v — )| d

o1, T]sz o T]sz (= y1v = pap)|dy
éce%lm_

T
Repeating the same argument and noting that 8I"/an?(|n'|y; — (gy +2)y2)~! is
homogeneous of degree —1 in y for any y, one concludes

lel+1Bly, - Cup
axxonf | T lbl

for lo| + B} < P and © = 19 on the support of y;. O

e 3kl (49)

To study ¢ in (41) we will use Proposition 2. We introduce

w=x;—(y+2)| % and w =y —(n+2)0 |

and observe that

1 _ 1 B N (wl)k (WI)N-H (50)
w—w ~w(l—%’)_k:o whtl D WNH I (y — W)
Then we can write (46) with B replaced by A/i in the form
1 A(yv + + < (n+zv
o+ 2v) = ~— [ /()’1 Yapt +x1) - (1 +2v)
2nigs |0|Ger = 1) = (my + 2)02.— y2)
1 A .

li v+ np+x1) - (n+zv) dy. (51

- 21|y’ |i > w—w

Using (50) to expand (51), the remainder term in (50) contributes a term to ¢ of
the form

_L 1 f BN(X*J’IV_J’ZII;’%Z) '(7]+ZV)d
2mi wNH S [ |y1 = (ny +2)y2

>

where By(x,1,2) = (x1 — (s + 2)|7’| "x2)V 1 4(x) satisfies (3) uniformly in (#,z)
on the support of y; for 7 = 7y. The other terms in (50) contribute terms to ¢ of
the form L

s S TG v e - (2 dy
R2
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Thus we see that for any N = 0, when (»,z) is in the support of y; and © = 7o,
N—1

o= wkb(xinz)+w by, (52)
k=1

where W = by satisfies (45) and bi(x,,%,7z) is exponentially decreasing in x|
together with its derivatives up to order P uniformly in (y,z).
Substituting (39) into (37') and using (40), we obtain

Cx,D,z)g+Twg+Thg+Thg=f, (53)

where

o g (S20d - E 4 ge)g(mye” T
[T39](x) = (27) ]ﬁr (n+zv) - (n+2v) -k

H

oy (A 1y
L@ =C " L vz - o -0

e 20 =) - G+ 2v)ed(me
Tsgltx) = (m) " [ S B .

and C(x,D,z) is a pseudo-differential operator with symbol c(x,#,z).

In Sects. 4 and 5 we will need uniform estimates on the norms of the operators
e iTe™ " j=1,2,3, and e7* * {Ce™{. Since multiplication by ¢* * ¢ is not
bounded on Hyy (for N > 0) and { — oo, these estimates do not follow from
estimates on the norms of the 7,7 = 1,2,3 and C on Hy y. To prove what we will
use later efficiently we are going to equip Hoy with a family of norms, || [|;n
so that estimates in these norms uniform in { will imply the needed estimates for
Sects. 4 and 5. We will refer to Hy v with the norm || ||, » as “Hyy.”

Proposition 3. Let Hy y(R") be the closure of C§°(R") in the norm || f|:n =

suppa(l + |€ — C\)N|f‘(§)|. Then C(x,D,z) is invertible as an operator on Hy .
(R") for T sufficiently large.

Proof. Our approach here will be to show that C(x, D) and the operator C'~"(x, D)
with the reciprocal symbol ¢*1¢ are bounded on Hy,.;. Then the composition
formula for pseudo-differential operators and Proposition 2 will be used to show

ceVc=1+T, (54)

where the norm of 7 on H; .4 goes to zero as T — oo uniformly in (.

The proof that C and C(~ are uniformly bounded on Hy ,,; uses only (52).
Expanding c(x,#,z) = exp(—i@y)) in a Taylor series in ¢y, it is clear that ¢ — 1
also has an expansion of the form (52) for © = to. A linear transformation of R"
takes w in (52) to the standard complex variable z = s + it. Hence analytic functions
of w are annihilated by the pull-back of 9/0z under this transformation which is
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& =3GE +(n+ 2|7 %), From (52) we have [[(21*!/2x*)ac/ew|| ey < C
for |o| < P uniformly on support y; for © > 7o. Thus setting vy = 0c/dw,

|Bo(&,m,2)] < C(1+ [€))~FF. (55)

Thus, since P = n+ 2, the inverse Fourier transform of ()& + (1 +2)

l7’|~'€1)"" is continuous, tending to zero as |x| — 0. Since ¢ is bounded, we con-
clude (by Liouville’s theorem)

N 260(8)e* ¢
1 +Qrn)™" —
i ﬂif" i(£2+(77v+z)|’7/| 161)

_ o 260(E)n e
1 ORI
RGN R ey

Using (55) and (56), given C(x,D,z)g = h, we have, setting ¢; =c¢ — 1,

W) = d(&) + [ &&= nn,2)d(n)dn

R7

c(x,n,2)

dé . (56)

where &,(&,#,{) has support in the support of y; and satisfies

E(Emz) < Cl [+ e e () (57)
Hence
sup(1+ & — ()™ AO)] < (1 +spg J A +1E= 2 eE —nn,2)|
< ¢l R7

(1+ g =L~ dmysup(1 + [€ — {19,
9

and the boundness of C(x,D,z) on H ,41(R") uniformly in ({,z) for © = 1o fol-
lows from (57) and the estimate

A+ E=LYTA+E—q)™ A+ =™
SCL+E=—n)™  +A+n=CH . (58)

To see that C is invertible on H;,., when 7 is large, we recall that the
integral remainder formula for Taylor series implies that the symbol of
CV(x,D,z)C(x,D,z) — I is given by

_ Lo poc! s
rumz)= 3> Q2rn)y™" [ <felx ‘ ~ (X,’?"HC)Cadf) ci({mdl.
Je|=1 R7 \0 on
The analogue of (57) for dc™!/on®, |«| = 1, is

ot ! _
% ena| = i ea

We can now apply the argument, used above to show that C(x, D,z) is bounded on
Hi yi1, to R(x,D,z). The superpositions in { and 7 produce no new difficulties and
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the factor of 1/7 in the estimate for dc~!/dn* above makes ||R(x,D)| go to zero as
T — o0. Thus C is invertible for 7 sufficiently large. [1

Proposition 4. The norms of the operators Ti(z), To(t) and T5(t) on Hy 1 1(R")
tend to zero as t — oo uniformly in (.

Proof. Let Tk(é —#,14,z) be the kernel of the Fourier transform of T}, £ = 1,2,3,
ie.

Trg(8) = ]an Tu(€ — n,m,2)d(n) dn .

In order to show that the norm of 7 on Hy ,.i(R"), is arbitrarily small for 7 large
uniformly in {, it suffices to prove that

sup [ (1+ 16 = D" ITE = mn )1+ In = )y < Slogz. (59)
C, IRII

On the support of 1 — y; we have |(7 +2v) + (7 +2v) — k2] = £(|n* + 2% + k).
Hence

lm+zv] _ C

IT5(¢ = n.m2)| < C(1+1é—17|)‘”‘1I T —(1+[e =)™,

and (59) for k£ = 3 follows from (58).
To estimate T} we note that (42) implies that for all (7,2),

1 :
+2) - 0 +2) = B Z 5l = (@ + K]+ 2elm)
1
= 5l = (& + ) P[n] + (2 + ) + 2l

2 Z(llnl = @+ + ). (60)

Since ¢ — 1 has an expansion of the form (52), gc¢ and 4 - g—f{ satisfy (3) with

constants uniform in (n,z) for 7 > 15. Thus, from (58) and (60),

sup [ (112 = C)" ITA(E = )| = L)
&t R

C A+E—nh™ "+ A +]p-H!

—sup [

T & Re Il — (22 + &2)12] + |n,|

IIA

dn

_ —n—1
gsupf (+1E =D . 1)

¢ v |l = (2 + )2 + [



Inverse Scattering Problem for the Schrédinger Equation with Magnetic Potential 215

Setting R = (7 + k2)V2, 4 =R and 1) = ((|{| — 1) + *)'? in the last line

of (61), this gives
sup [ (14 {& = L™ |72(& = mm2I(1+ | — )"

&L Ry _
< Soup [0 +1E - R0 R L
¢ RR7
< ¢ {sup JQ+E—=RY'RaL
T 1 ¢ Re

+sup [ (1+|f—RC|)_”'1(Z(C))‘1R”_1d§}.
& I <gg

1% + Rt sup [ (1+]¢ — RN L
s I(D<g

C

Here g is any fixed constant, and we assume &, < 1. Since 7 ~ R for 7 > 1g, it

suffices to show
lsup [ (L= < C (62)

& (0y<ep

for T > 1¢ to conclude that (59) holds for & = 1.
To prove (62) we note first that when |&'| < 1

2)
[ A+de=h™'any™"de = [ U +eon)™ MUY de,
I)<eg 1)<z

where ¢y = minygy<,, | — | > 0, and (62) holds.
To establish (62) for |¢'| > 1 we will use spherical coordinates in the hyper-

plane { - v =0 with » = |{’| and polar angle 0 = cos_l(%—1 . I;—;l) Then we have
dl = r"*drdwd{,, where dw is the volume form on §”~2, and we also have
£ =&l = (¢ =21 |reos 04 1" + (G — &)

= %(((r — &' eos 0) + (L = &))" + 1 sin 8]) . (63)

Likewise, there is ¢ > 0 such that
I0) 2z e((r— 1Y+ )72, (64)

Now we consider v = (r — 1,{,) and v = (|| cos @ — 1,¢,) as vectors in R? and

use || || to denote the norm on R%. From (63) and (64) we have
IO I 4D B V(9 a4
(D <eg

_ . —n—1
c [ A+ (v UO||||UI+\|SM|)) drd{,de |

R2xsn—2

A
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We split the integral over R*> x §"~2 into an integral over {{: |lv]l = |lv — wol}
in which we replace ||v]| by ||[v — vo}| and an integral over {{: |[v]] < v — vo]} in
which we replace ||v — vg|| by ||v]|. Since the two integrands that are produced this
way differ only by a translation in the (r,{,)-plane, we have the estimate

[ (U 4E= gy ey "dt
I(O<e
(1 + o((s* + )2 4 | sin 0])) ="

R dsdtdw

JIA

C

R2xsn—2

Cf [ (1 +t(u+|sinf]))™" 'dudw
0 gn—2

fIA

ooTL/2

SCf [ +t(u+0))"'0"  dudb
00
and, setting tu = r,t = s, we have

J e =y aE) Tl S C [(L 5T drds
({)<ep 00

Thus, since the integral is finite, we have (62), and (59) holds for £ =1, in the
stronger form

210

SU}D J A= TE =)+l —)7" dn £ = (64")
&L RY

From (56) one sees that
e = nm) S CA+[E— )2 IE—m) -+
and hence
CU+[E=nD)"FIn|
(n+z)(n+zv) - (n+zv)— K|’
and by the reasoning that leads to (61), we have (note P = n+4 is needed):

s}lfmf (1+1E = O T2 —mn2) (1 + n = )"V dy
[ n

To(E—n,n,2)| £
|T2(¢ '13712)|_|(é_n)'

C L+ &=yl dn
< =, . 65
e T wy ey ey Tpr D

Setting R = (12 + k)2, f = o(x? + k)=, n = RCand I(0) = ((|¢] — 1) + )2,
(65) becomes

sup J (1 [& = )™ T = )|+ g = L7

< %R”“sup / (1+|¢— RED™ |l

¢ re (€= RO - (C+ipv)[IL)

CCos (L+RIE— Lh"|¢]de
=R D DT PG - LD

O

]
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Since f — 1 as T — oo and fiR = 1, to show |13 — 0 as t — oo, it suffices to
show for T > 1 that

n

-2 (I+z)E=¢H N de
N (G B B SO ety

< Clogr. (66)

When 1({) > &, the integrand in (66) is essentially the same as the one we

considered for T;: note that (¢ — () - { = |{ — 5/2|2 — |£/2r2. Thus we again assume
that I({) < & < 1. We have

(=0 0P+ G =G > S4E -0 - U +18 — )

= 2 &P~ |EP + 4t~ 21+ e~ L)

v

S = &2 =122+ (1 = sl ~ G-
Again using the coordinates » = |{’|, 6 = cos'({'/|{’| - &'/|E'|), we have
| = &2 — | /2F = r* — | cos O
and
(€= P+ (&= 0" 2 o((r = [ c0s 0 + (& = L)' = ello — ol
in the notation used earlier. Thus, using (64), for |&'| < 1/2,

! (1 +|&=¢) N de c (14 cot)™" 'drdl,dw
1< (&= - O + (& = LV U<z lo— wol| ||vll

A

>

and, since |¢'| < 1/2 implies ||vp]| = 1, this is bounded by Ct™"~'. Hence we may
assume that [£'| > 1/2, and in this case (63) implies

(A +é=Lh"dt
1wy (€= = O + (& — LP)PIE)

(1 + (|l ~ vo| + | sin 0])) " drd{,dw _ s
=1.

<c
s [o—oll Tl

Since (64) implies ||v]| < & when I{({) < &, we see that contribution to /; from
integration over {0 : [|uo(6]] = 1} is bounded by Ct™""'. Thus we may replace the
domain of integration in /; by {{({) < &} N {|jve] < 1}.

At this point the argument used for 7| leads to divergent integrals, and we need
to use the fact that the factors in the denominator only vanish simultaneously when
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|€'] cos O

fl

1. To bound 11, we set z = (||vg(8)]|~")v. Then

(1+7|sinf])=""!

I

IA

C
sl = soli= Do <172y 1 = 2o/ o]l 1112l

<cC f (14 t|sin 6]) ™ " log (lvo(®)]| ") de
§7=20 |lwpll <1/2}

dzdw

/2
< C [(1+10)""""max{log2, — log ||vo(8)|| } 0" 3d6
0
nt/2 ﬁ
< CPT" [ (1+ ) "B max {logZ,-—log vy (;)H} dp
0
/2
I =

et [ (1+ )" 'p"* max {log 2, —log
0

= \C’|cos§ }dﬁ. (67)

If 1/2 £ |&) £ 1, then |1 —|&'|cos B/z] = c3B*r~2 with ¢q independent of ||,
Hence, in this case I} < ct*"logt for 7 large. If || > 1, then 1 — |&'|cos§ =0
has a unique solution f in the interval [0,7/2] and we have

1= 1 cos ] = c(0 — 6,
with 0 < ¢y < 1 and ¢y independent of |£|. Thus
2
¢
1~ 1€ cos el = D8 oy

where Sy = 10y. Thus for 7 > 1.

max{log2, —log |1 — |&'| cos EI}
T
< log2+2logt—2logcy+2(=1log|f — fol)s . (68)

Combining (68) with (67) we see that I; < Ct®>"logt for t large in this case
also. Thus (66) holds and the proof of Proposition 4 is complete. [J

it follows from Propositions 3 and 4 that for 7 >> 0 there exists a unique solution
g in Hy ,4 of the integral equation (53), given by

g=U+U+T)'CONN+ T+ 1) ' d+ 1)V, (69)

where T is the operator in (54). Thus v, given by (39) with this choice of g, is
a solution of (37’). Thus to complete the proof that (27) has a unique solution in
Hy .1 (R") when 7> 0, we need only show that /4 given by

h(x) = ((—id)ox +zv)? — K)o
is in Hg py1. From (39) we see that

h=Cg+Tg+Syg,
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where 75 is the operator in (53) and

o —2i% - (4 +zv)g(n)e™ "

S = (Gn) g (M+2v) - (n+2v) — k2

— (2n)—nf —24(x) - (y ‘|‘ZV)XI(11,Z)cg"(;7)eix-rl
R (n+zv) - (n+2v)—k?

dn (70)

by (40). From (70) one sees that S is an operator of the same type as I3 in (53)
with an additional factor of # + zv in the numerator. However, since we showed that
the norm of Ty on Hy 1 was O(z™") uniformly in { for T — oo, and |z +Zv| <ct
on support x; (see (43)), it follows that S is bounded on H .1, uniformly in (C T)
for T > 7¢. This completes the verification that 4,(&,{, &, it) € Hy piy.

4. Recovering the Magnetic Field

Proposition 5. Ler h,(&,{,k,z) be the unique solution of (27) in Hy nyy for 2> 0,
and let gy(x,{,k,z) be the unique solution in Honr1 of (53) with f = —(q(x)+
2L+ zv). A(x))exp(ix - {) for 1> 0. Then

hy(& ok z) = §.(E Lk 2) (71)

when (E+2zv) - (E+2zv) —k? = 0.
Proof. We have

_ —n hV(ﬂ: C, k;Z)eix ) rldl’]
v(x, 0, k,z) = (2n) nifn T2 (o) B

—n o C,1,2)g,(n, Kk, z)e™ " Tdy
— @
(2m) IRf (1 +2v) - (n+2v)— k2

(72)

As we observed earlier ¢; = ¢(x,%,z) — 1 has an expansion of the form (52) for
7 > 1¢. Thus, as in the proof of the bound on 75 in Proposition 4, we see that

_ —n 51(6 -, naz)gv(ns §9kaz)d7]
f(éaZ;’k:Z)“(zn) ]lil’; (11+ZV) .(11+2v)kk2

belongs to Hy 41 as a function of £, and hence is continuous in £. Since the Fourier
transform of (72) gives (a.e. in &)

hv(é (:,Z) — gv(i) C,k,z)
(E+zv)  (E+zv)—k  (E4zv)- (E+zv)— Kk

+ f(& Gk 2),

where £, and g, are also continuous in &, (71) follows immediately. L[]
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By Proposition 1 and the discussion following it we can recover h,(&(s), {(s), k,
z(s)) from the scattering amplitude A(k®, kw, k). Recall (see (34), (35)) that given
the orthogonal frame {v,u, !} with |u| = |v] =1,

1
é(s) = El‘f'SM,

()= —51 +u,

z{s) = it(s) = iy/s* + |{]*/4 — K (73)

for s > sq. Since (&(s) +z(s)v) - (&(s) +z(s)v) — k* = 0, it follows from Proposi-
tion 5 that A(kf, kw, k) determines §,(&(s),{(s),k,z(s)) for s > so.

To recover the magnetic field we can begin with representation for g, given
by (69) with f = —(q(x) -+ 2({ + zv) - A(x))exp (ix « {), take the Fourier trans-
form in x, evaluate at ¢ =E&(s), {={(s), z=2z(s) as in (73), divide by z(s)
and take the limit as s — oo. Since the norms of 71,71,7> and T3 on Hyg) pti
go to zero and ﬁ“ Sllesy,n+1 18 bounded as s — oo, it follows that h(k0, kw, k)

determines

(=2)(Us) + z(s)»)

lim =)™ [ | - Al — Us
Jmen~ [ =00 (= (s))
X e~ EO=HL OO gy (74)
Replacing n — {(s) by #, (74) becomes
: - (=2)L) +2(s)v) 4
lim (27)™" - A
Jim ( ]ﬁf HJ () ()

X @ 1 EO=LO i AN g (75

By (73) &(s) — {(s) = I and limg— o ({(s) + z(s)v)/z(s) = v — iu. Also (see defini-
tion of y; before (42))

Jim i (n + (), 2(s) = ((0) = 1.

Finally

Tim @G+ L)+ 26w) = lim (2 [ AEL_ WL FHOME 1T,

R7 lf ° (17+C(S)+Z(S)V)

. (S R (7R 3 D ST ,
= (2n) ]an ié-(,u+iv)e “d& = olx, u+iv). (76)
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Hence the limit in (75) equals

= _2(2n)—nf f e*ix i ptiv)+ix i](v _ Z,U) . /i(n)dr]dx
R»? R”

=2i [ ™ " Oty 4 i)« A(x)dx . (77)
IRVI
Comparing (76) with (40"), we see that
.. Op ‘
ety = =@+iv) - Ax),

and hence, using the coordinates (x;,x,,x*) introduced before Proposition 2, we

have
. J .
[=2 | e x* | (— +i—a~> edxidx, | dxt .
Rr—2 R2 axZ axl
We have
0 0 < il 0 A
[ (— + i—) e%dxidx; = lim f (— + i—) e dxidx;
Rz \ 0% Ox1 R=00, 5 0%y 0x)
1 2=

2n .
. i L ), - .
— lim felfp(R COS6,R SIN0 x ,u-H\)(slnG_‘_l COS@)RdG,
R—o0 0

by Green’s theorem with x; = » cos € and x, = r sin 0. Returning to the expansion
(52) for ¢, we have

1 1
Q=5 — [A(yiv+ yau+x) - (u+ iv)dndy, + O((x1 — ix2) %)
L X — le]Rz
Thus
2n .
lim [ e/*(k COSE.R S H’xL’“"")(siHQ +1i cos0)RdO
R—o0 0
=i [ Av+ yau+xT) - (A iv)dyidys
RrR2
and |

Iy
[=2 [ e (f A(yv+ yap+xb) - (u+ iv)dy]dy2> dx*
RA—2 R2

=2iA(1) - (u+iv).
Since g and v are a general orthonormal pair perpendicular to /, we conclude that

for all / € R",I determines A(/) — (A(I) - 1){/|I|*. In other words I determines 4
modulo the gradient of

p(x) = Q2r)7" [ & FiAl) - |1l = —47N(V - 4), (78)
Rll

and hence I determines curl A.
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5. Recovering the Electric Potential

To recover V(x) we need to compute the next term in the asymptotic expan-
sion of (69) which yielded (74) as the leading term. We have determined A(x)
modulo the gradient of a function of the form (78). Hence, we may assume
that we know the scattering data for the problem with the A(x) here and ¢ =
g =A4-A4-1iV - A, since the scattering data only depends on the magnetic field
B = curl4. This scattering data determines the Fourier transform of the solution
go of (53) with /= fo = —(¢' + 2({ + zv) - A(x))exp(ix - {) on the set (£,{,z) =
(&(5),{(s),2(s)) given by (73). Among the operators in (69) only 77 is changed
when we replaced g by gy, and we denote the new operator by 7). Thus, sub-
tracting the representation (69) for gy from the representation (69) for g, we
may assume that we know the Fourier transform on the curve (&(s),{(s),z(s))
of

T+ +TY'CONT + T+ Y)Y T+ TY'CEN(Sf - fo)
— U+ +T)CENT + T+ B) N+ T)7'CEN(T — Thg))
I+ +T)ICTN T+ T+ 1) W+ 1) 'y (79)

Taking the limit in the Fourier transform of (79) at (&(s),{(s),z(s)) as s — oo,
We recover

lim (Zﬂ)_”f f . I}(f’] _ C(S))e—ix-(f(s)—n)ﬂ'xl(n,z(s))q;(x,r]-»—z(s)v)dndx
F—0C R” IR"

— lim F(C(T) = Tig)CD £o)(Es), {(s),2(5)) =T = .
By the same computation that derived (77) from (75), we have

Jl _ _f e—[x . l+i(p(x,,u+iv)V(x)dx. (80)
R~

To compute J, we argue as follows. T — Ty = VCL, where L multiplies the
Fourier transform by (( +2zv) « (5 +2v) — k*)~!. Since [V,C] goes to zero and
C-DC goes to the identity as s — oo, we can conclude that

. _ V(E(s) — 1)
J = lim (2n)™%"
2 s—l»rgo( ™) ]Rf,,mf,, ]an (n+z(s)v) - (n+z(s)v) — k2

X (=2(Ls) + 2(s)v) - A(S — 0N

X €+ O GNP g Sy
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Replacing 6 by 6 + {(s) and n by n+ {(s), and arguing as before (recall ({(s)+
z(s)v) - ({(s) + z(s)v) = k?), we have

. P — 1) iv) - A

Jo =Qr)™*" S (T2t ) - 4(6))

S F AT R
o (5_;1)+i<p(x,u+1"’)d5dxd7’l

) l}(f _ 7’])(# +iv) - Alx e—ix » ntiglap+iv)
—n [ | - ) A)
R k" (u+iv) « n

dxdy .

Proceeding as before with x; =x - v and x, = x - 4,

f e—ix-n+i<p(x,u+iv)(ﬂ +iv) - A(x)dx
]Rn
—ixi-qj‘ 1 —i(x1)+x212) : 0 ; g = :
= [ e dx*t [ e7ftmtam)—py [ — +i— ) (@(x,p + iv) — Ddxidxz,
RA—2 R2 8)62 8x1

and by Green’s theorem

) 0 0
—inm+end iy 2 i Y (F — d
Je (0 (o i ) (€= Dandn

R2
= lim [ eTtmmIn)(y, 4 jny )(© — 1)dx;dx,
R—oo x%%—x; §R2

2 .
+ feiR(n2COSH+7llsln€)R(sin9+Z- cos 9)
0

X (Z(R cos0, R sinf,x,u+iv) —1)do| . (81)
Since
_ , 1 f(xH) 1
J_ 7 —_— _ — . — —
¢(R cosO,R sinb,x",u+iv) — 1= o= cosf —7snd +0{ =),

the second integral in the limit in (81) goes to zero as R goes to infinity when
(n1,12)=+0. The first integral just goes to the Fourier transform of ¢ — 1 in (xy,x2)
multiplied by (n2 + i) = (¢ +iv) - 5. Thus

Jo=—[e 7 W (p)(eH — ydy .
[Rn

Thus Jy —J, = — [g. €™ " 'V(y)dy. Since [ is arbitrary, we have determined the
Fourier transform of V' and the proof is complete.
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