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Abstract: We give complex holomorphic descriptions of  Yang-Mills instantons on 
tubular four manifolds with nontrivial circle bundles over Riemann surfaces as 
section. 

O. Introduction 

Let Y be a nontrivial circle bundle. By the discussion in [8], we know that instantons 
on Y x R can be divided into three classes, namely those with fiat limits without 
holonomy along the fibre circle of  Y, those with fiat limits with holonomy along 
the fibre circle and those with mixed limits. In [8], we give complex holomorphic 
descriptions of  instantons on Y x R whose flat limits have trivial holonomy along the 
fibre circle. In this sequel, we give a complex holomorphic description of instantons 
whose fiat limits have nontrivial holonomy along the fibre circle. The holomorphic 
data used to describe these instantons is basically different from that in [8], due to 
the holonomies of  the flat limits along the fibre circle of  Y. Nevertheless the method 
used to establish these results is similar to the one used in [8]. 

We assume the reader is familiar with [8] and shall make constant references to 
[8], and we shall continue to use the notation introduced in [8]. 

1. Some Definitions and Statements of the Main Results 

Let Y be a circle bundle with non-trivial Chern class over some Riemann surface 
22. Let L and S be the associated line bundle and ruled surface, and also let 220 and 
22~ be the two divisors in S as before. By Lemma 3.1 of  [8], there is a metric g 
on Y and a holomorphic structure on Y • R such that the tube metric g + dt  | dt  
on Y x R is a Hermitian metric and is conformal to a Kaehler metric. Moreover 
Y x R as a complex manifold can be compactified to a ruled surface. 

For our main results, first we need to look at the behaviour of  this Hermitian 
tube metric and the Kaehler metric under certain natural maps between tubes Y x R 
for different circle bundles Y. 
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Let I 7 be the circle bundle over 27 with first Cheru class c1(17) = 1 if Cl(Y) > 0 
and - 1  if Cl(Y) < 0, and/7 be the holomorphic line bundle associated to Y in the 
above construction of the Kaehler metric on 17 • R. Clearly we can take Y to be 

17| and take the associate holomorphic line bundles L = s174 There is an obvious 
~c-fold covering map from 17 to Y, or equivalently a branched one from s to L, 
which induces a local biholomorphic map from 17 • R C/~ to Y • R C L. Let S and 
S be the ruled surfaces associated with L and L respectively, then the covering map 
extends to a covering map from S to S, branched over S0 and Z ~ .  Note that under 
this covering map, a point (33, i) in 17 x R is taken to some point (y, t = m?) rather 
than (y, t = ~') in Y • R. 

The following lemma says that we can adjust the Kaehler forms on the Riemann 
surface 27 by a constant to make the Kaehler metrics constructed on 17 • R C s and 
Y • R c L conformal under the covering map. 

Lemma 1.1. Let f] =/~--22(/72g -}- dF | dF) and s = r-22(r2 0 + dr | dr) be the 
Kaehler metrics on 17 • R and Y • R as in Lemma 3.1. I f  the Kaehler form @ on 

used in the construction of f2 is chosen to be K2~9 for the corresponding form 
g9 in ~2, then s = K2(2 under the covering map. 

Proof This is not too difficult. First, r = F K under the map. Secondly, the connec- 
tion form 0 on L is pulled back to x0 on s for the connection form 0 on/7, thus the 
metric 9 = {9 + (-iO) | (-iO) on Y is pulled back to x2~ for the corresponding 0 

on 17, by the hypothesis that O = x 20. It is also simple to see that 2 = ,~____21 + 1, by 

the fact that Fo --- ~cP~. It then follows by simple calculation that under the covering 
map 

O0 = x2~o 

and 
0 = ~2fi . 

Note that the identity map of L and of any bundle on L is lifted to a cyclic 
transformation group of order x of  [ ,  or of  the pull-back bundle on s in the bundle 
case, through the covering map. We shall denote the transformation group, of  I7, or 
of  the pull-back bundle on it, indiscriminately by G~. The action of G~ on L extends 
holomorphically over S0 and 27~, on which it acts trivially. 

Next we define two kind of complex holomorphic objects. 
First consider the following class of  holomorphic bundles. Let gp be the set of  

rank two holomorphic bundles on S with trivial first Chern class such that their 
restrictions over 270 and 27~ are assigned with filtration structures, i.e., holomorphic 
line sub-bundles in our case of  rank two. Such bundles are now called (quasi-) 
parabolic bundles ([2, 7, 14]) following the original work of Metha and Seshadri 
([14]). Consider holomorphic bundle isomorphisms which respect the filtrations over 
S0 and 27~ between bundles in gp. Such bundle isomorphisms define an equivalence 
relation in Sp and preserves its subset gp(i,j) consisting of elements of gp such that 

the Chern class of  the line bundle L0 in the filtration over 270 is Cl(L0) - icl(L) [Cl(L)J 
jCl(L) and that of the line bundle in the filtration over S ~  is c l ( L ~ ) -  ICl(Z)l over S ~ .  

Define .A4p and .A4p(i,j) to be the resulting spaces of  the equivalence classes by 
the action, corresponding respectively to $p and $p(i,j) .  
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Next we consider another class of  holomorphic bundles. Let ~ be a holomorphic 
bundle on S satisfying the following conditions: 

(1) The restrictions of ~ over S0 and S ~  are unitary fiat with some given pref- 
ered unitary structures and split holomorphically and orthogonally into two compat- 
ible flat line sub-bundles, i.e., 

ElZo = Lpo @ Lpo 1 , 

and 

where Lpo and Lpo ~ are the holomorphic flat line bundles on Z, under the natural 
identifications of Z0 and Z~  with Z, associated with some flat connections P0 c .~i 
and po~ c ~'j respectively as in Sect. 1 of  [8]. 

(2) There is a holomorphic action of G~ on ~ covering the action of G~ on S. 
(3) Lpo and L~01 are the eigenspaces of the generator to E G~ on ~[Zo with 

eigenvalues e~ 2~i and e -~2~i respectively, and Lpo ~ and L~ 1 are the eigenspaces of 
J " - -  ~ 2 ~ z i  to on {]z~ with eigenvalues e~ 2~ and e . 

Let {c(i, j)  be the set of such bundles. As in [8], we consider two kinds of 
equivalence relations in ~c(i,j). First we define an equivalence relation in ~c(i,j) 
by defining two such bundles to be equivalent if they are holomorphically isomorphic 
by a G~ equivariant isomorphism which respects the splittings of the two bundles 
over the ends So and Zoo. Such an isomorphism necessarily restricts to isomorphisms 
between the holomorphic fiat line bundles with the same eigenvalues in the splittings 
of the two bundles over S0 and Zo~. Define Ado(i,j) to be the space of  equivalence 
classes of elements in ~c(i,j). 

Second we consider isomorphisms which are also unitary over one end. If 
Cl(Y) > 0, we define a new equivalence relation in Ec(i,j) by defining two bundles 
to be equivalent if they are holomorphically isomorphic by an equivariant isomor- 
phism which respects the splittings over the two ends and the given preferred unitary 
structures over the end Z0. Define Muo(i,j) to be the resulting space of equivalence 
classes of ~o(i,j). Similarly if Cl(Y) < 0, we define the space A4"-'~u(i,j). 

With these definitions, the main results of this article can be stated as follows. 

Proposition 1.2. There is a 1-1 correspondence between .A/[p(i,j) and J~4o(i,j). 

Theorem 1.3. There is an injective map from .M(i , j)  to Aduo(i,j) if  cl(Y) > 0, 
and to .AAcu(i,j) if  cl(Y) < O. 

Our original goal is to describe instantons in AA(i,j) in terms of bundles in 
Cp(i,j) with some extra unitary structures over the ends, using Proposition 1.2 as 
an intermediate step. However we have not been able to decide what kind of unitary 
structures on bundles in A/lp(i,j) correspond to the given preferred unitary structures 
over 2;0 and Z~  on bundles in ~c(i,j) under the correspondence in Proposition 1.2, 
therefore we are unable to obtainN at this stage a correspondence like the one in 
Proposition 1.2 for the space A/tuc(i,j) or .A/lou(i,j). Thus we only obtain the partial 
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results here. The problem mentioned is essential to a proper general definition of the 
"admissable" Hermitian metrics for general parabolic bundles on higher dimensional 
manifolds ([2]). 

2. The Correspondence Between .A4~(i,j) and .A4e(Lj) 

In this section, we prove Proposition 1.2. 
The construction in this section essentially exhibits the equivalence between 

what is now called an orbifold bundle or V-bundle and a parabolic bundle with 
rational weights ([7, 13]). What perhaps is more important is that it shows how on 
higher dimensions, in contrast to dimension 1 ([2, 7, 14]), the global topological 
information of the relevant divisor in the base manifold is reflected in the parabolic 
structures over the divisor when one goes from an orbifold bundle to a parabolic 
bundle and vice versa. 

Let ~ be a holomorphic bundle on S representing an element of  .Ad'--'~(i,j). We 
shall construct from E a holomorphic bundle on S which represents an element of  
. M p ( i , j )  in a canonical way. The bundle is a holomorphic extension over Z0 and 
X~  of the quotient bundle C[r• on Y x R of/?le• by G~. We now illustrate how 
the extension is constructed. Again we do this for one end, say Zoo. 

Let 0 be a local coordinate neighbourhood of some point at S o .  Adjust 0 if  
necessary; we suppose 0 is G~ invariant and as before comes from a trivialization 
of the holomorphic line bundle/~. Thus 0 covers a similar local coordinate neigh- 
bourhood U of S at Z ~ .  Let (Z,~) be the complex coordinates on 0 and ( z ,w)  
on U so that the covering map is given by z = Z~,w = ~. We first extend ~lr• 
locally on each such U, then show that the local extensions patch together to give 
a global extension of g. 

! I I To construct the local extension on U, choose a holomorphic basis gO = {el, e2} 

of El0 such that el Ionzoo and e2lons~ are local bases ofLpo o and L ~  respectively. 
Let 

go ~ l i e ~ 0 
= tog 0 ~ , 

O _ < l _ < x - - 1  0 e 

where as before to denote the generator of  G~ covering the multiplication by e ~  
on the i plane. Clearly go(O,~) = Xgu(O,~), thus replacing by a smaller 0 if  

necessary, go is also a holomorphic basis of ~ on 0 and has the same property as 
I go with respect to the spliting of ~ over Zoo. Consider the action of G~ on go,  by 

construction 

e ~- 0 
j2rri togo = go 0 e ~ 

Thus ,(Jo) 
ho = go 0 Z - j  

is a G~ invariant holomorphic basis of  ~ lo \z~ .  So it descends to a holomorphic 
basis hu of EIu\s  ~.  We extend EIu\z ~ over the whole U by defining hv to be a 
holomorphic basis of  the extension bundle on U or, in another words, by patching 
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g[u\zoo with the trivial C 2 bundle on U by identifying hu with the obvious trivial 
basis of the latter. We denote the extended bundle still by S. In case confusion may 
arise, we shall precede it with the term "the extended." 

The local extension thus constructed is independent of the particular choice of 
the local basis 00 of g on 0 we start with. Moreover, there is a distinguished 
holomorphic line sub-bundle of the restriction over U N S ~  of the extended bundle 
g on U, namely the one defined by the first section of the basis hv, in the sense 
that it is also independent of the choice involved. These facts will follow from the 
following arguments for the more general fact that the local extensions of g[r• 
just constructed patch together to give a global extension of g over Zoo and the 
local line sub-bundles on Zoo defined in the local extensions patch together to give 
a global line sub-bundle of the restriction of the extended g. 

Let 0 1 and U2 be two local coordinate neighbourhoods as above. Suppose 
01 n U2 is non-empty, otherwise it is trivial. Let s = -~1012. By our choice of the 

~--1 
coordinates, 012's are the transition functions of the holomorphic line bundle L , 
the minus sign corresponding to the fact that we are working around Zoo rather 
than Zo. 

Let 901 and 905 be the local bases of g on U1 and on U2 with which we 
start the local extensions of glr• on U1 and U2 respectively. Let hu~ and hu5 the 
corresponding local bases for g on Ul \ X~ and on U2 \ S ~  as above. Consider 
the transition between hu~ and hu2. First we have 

~! 

00z = 0C?l T12 

for some holomorphic GI(2, C) valued matrix func t ion  Tt12 on  L~ 1 r-i ~-~2 which is 

upper triangular on UI n U2 n S~ .  Note that the first diagonal entry of 7~'12 is the 
transition of the line bundle Lp~ in the splitting of g on S ~ .  It follows that 

( ) ( ) (  ) hos=g05 ~2 0 Zl J 0 ~t ~2 0 
0 z2--s =hOl 0 fll T12 0 z 2"- j " 

So the transition function between ho~ and h02 is 

( ) (  ) # 1 2 =  Z1 J 0 ~t ~ 0 
0 ~ T12 0 z 2 J 

It is defined on U1 A ~ / 2 \ Z e c ,  holomorphic and G~ invariant, ho, and h05 being 

holomorphic G~ invariant bases of g on U1 N U2 \ 2J~. Thus it descends to a holo- 
morphic GL(2, C) valued function T12 on U1 N U2\Z~.  Clearly T12 is the transition 
function between hwl and hu2 on U1 N U 2 \ S ~ .  

It suffices to show that T12 extends holomorphically over UI N U2 A Zc~ and 
is upper triangular there, for it then follows that our local extensions indeed patch 
together to give a global extension of g[rxR, and that the local line sub-bundles also 
patch together to give a global holomorphic line sub-bundle of g[z~. We then define 

1 J J 1 of g over ~ by defining a parabolic structure with weights - ~  < - ~  < ~ < 
the parabolic structure to be the one determined by the line bundle constructed above 

j" j 
and by assigning the weights ~ to the line bundle and - ~  to 8[z~. 
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From the definition of T12 , it is easy to see that its lower triangular entry tends 
to 0 as z l ,  or equivalently z2, goes to 0. Also the first of its diagonal entries, when 
lifted to U1 N U2 \ S ~ ,  is the same as the corresponding entry in the matrix TI2 
multiplied by ~2, and the second diagonal entry, when lifted to U, is the same as 
the corresponding entry of T12 multiplied by ~-j gi2. In particular they are bounded. 
Consequently these entries all extend holomorphically over S ~ ,  on which the lower 
triangular entry vanishes, the first diagonal entry is equal to the restriction of the 

corresponding entry of T'12 over S ~  multiplied by the function ~2 and the second 
~, ~- j  

one is equal to the restriction of the second diagonal entry of  T12 multiplied by 12 " 
Finally it is also clear from the construction that the upper triangular entry of T12, 

2 ~  

which is holomorphic on U1 N U2 \ S ~ ,  is bounded by C �9 [z 1 ~ [. Since 2j < to, 

[Zl I - ~  < Izl [ -1, it is actually bounded, being holomorphic. So it also extends holo- 
morphically over U1 n U2 n S~ .  

The above discussion also shows that the line sub-bundle of CIz ~ constructed 

is precisely L | | Lp~. 
Similarly E can be extended over So and the extended E has a parabolic struc- 

1 i i ture of weights - ~  < - Z  < Z < �89 and the line subbundle defining the parabolic 

structure is [-|  | Lpo. 
Up to now, we have constructed for~any given element ~ of ~ ( i , j )  an element 

o e of Ep(i,j). This defines a map from Cc(i,j) to ~p(i,j). It is also rather clear that 

the map descends to a map from A4~(i,j) to .A/[ p( i , j  ). Thus we have shown the 
correspondence in one direction. 

To get the correspondence in the opposite direction, one simply reverse the above 
construction. The correspondence thus obtained is then trivially the inverse of the 
earlier one. This completes the proof of Proposition 1.2. 

3. Equivariant Holomorphic Description of .A4(i,j) 

In this section, we first prove an analogue of Theorem 2.1 of  [8] and then Theorem 
1.3. The proof of the former is largely an application of Theorem 2.1 of [8] and 
the construction of the map of Theorem 1.3 is a refinement of the one for the 
corresponding map of Theorem 2.2 in [8]. 

First we prove the following analogue of Theorem 2.1 of [8]. 

Theorem 3.1. Let ~ be a holomorphic bundle on S representing some element of  
Jk4~"-~u(i,j) and let C be the quotient bundle on Y x R of gl~xR by G~. There is a 
unique Hermitian metric H on C for which the following holds. 

(a) The curvature FH of  the Chern connection A14 on Y x R satisfies 

iAFH = 0 . 

(b) Let IZI be the lift of  H to E. Then I~ is bounded in the sense that for 
any smooth Hermitian metric fS, say, on ~, d(IYI, K)  < ~ where d denotes the 
distance in the space of  Hermitian metrics as in [8]. Moreover, i f  el(Y) > 0 , / 7  
is an extension of the given unitary structures of C over So and if  e l(Y)  < O, IYI 
is an extension of the unitary structures o f  ~ over S~ .  
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(C) I f  c l (Y)  > 0, the connection AH on SIy• limits to the flat connection Po 
as t goes to - oo  and i f  cl(Y) < O, it limits to the flat connection poo as t goes 
to oo. 

Proof  By Theorem 2.1 o f  [8], there is a unique Hermitian metric H on s215 

satisfying (1), (2) and (3) o f  the theorem. By the uniqueness, H is also Gx invariant. 

To see this, one simply checks that the Hermitian metric H '  -- t0tH also satisfies the 
properties o f / t .  Here t0H is the pull-back o f / q ,  i.e., 

toI7101, ~)(Z, g,) = IYl(toq, to~)(e~ Z, ~)  . 

It follows tha t / - )  descends to a Hermitian metric H on s215 We show that H 
satisfies the conditions of  the theorem. 

(a) follows from (1) f o r / t .  
(b) is just (2). 
(c) is slightly more subtle . Flat connections on Y are lifted to flat connections 

on Y by the covering map. The images of  the lifting are the same on two kinds 
of  flat connections on Y, namely those in t o ] ~  and the reducible ones in be+. The 
fact that the asymptotic flat limits of  AH lie in tO]U] rather than in ~'+ is reflected 

in the fact that the G~ action on glzouz  has eigenvalues e -4-i2~i and e -4-~2~i. We 
show (c) in the case cl(Y) < 0, i.e. AH limits to Poo as t ---+ oo. The other case is 
identical. 

Let 0 be a local neighbourhood of  27o0 in S as before, and U be the corre- 
sponding neighbourhood of  27o0 in S. Similarly let (Z, v~) and (z = Z ~, w --- r~) be 
the corresponding coordinates on 0 and U. It suffices to show that the holonomy 

of  A~ along the circle Izl = r tends to 0 e_~2~i as r goes to O. 

As in the last section, let go be a local holomorphic basis o f  EIO such that 

( e ~2*ti 0 ) 
togo = go 0 e -~27ti 

( d ~i o ) 
Let e 0 = go 0 e_j& . It is a G~ invariant basis o f  s Let ev  be the 

corresponding basis o f  8[u\z~.  Let-40 be the connection matrix form of  AR under 

the basis go. As /q is only continuous at So0, we see that -40 is only defined on 
0 \ Xo~. The point is the restriction of  .4a over the three manifolds IZ[ = r limit to 
the zero form as r goes to 0 in the tube picture 17 x R. 

To see this, let H '  be a Hermitian metric on s as in Lemma 5.2 [8]. I f  necessary 

we a s s u m e / 1 '  is G~ invariant, as we obviously can. Let .4'g be the connection matrix 
form of  Ag, under the basis go. By the remark that follows Lemma 5.2 in [8], we 
see that 

IA'~b0 = O ( e - ' ) ,  t ~ ~ .  
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On the other hand, by Lemma 5.5 of  [8], 
~1 lag -Agb0 = O(e-~t), t ~ oo 

for some positive number 6. It follows that 

IAg[Oo = O(e-~t), t ~ c~ . 

Thus if we normalize the three manifold [Z I = Y to a standard neighbourhood in 
and consider the restrictions of  Ag as forms on this standard neighbourhood in Y, 
then these forms indeed limit to zero matrix form as Y goes to O. 

Now let Ae be the connection matrix form of A9 under the basis eo, then 

0 - j  0 eJOi Ag 0 e -joi 

Since both the connection A 9 and the basis e 0 are G~ invariant, the connection 

form Ae is also G~ invariant. Now the term ( j o )idO is manifestly G~ invariant, 
0 - j  

e-JOi 0 e fii 0 
it f~176 that the term ( 0  ej0i )Ag(  0 e _ f i i )  isals~ 

three Gx invariant terms descend on U \ Z ~  respectively to Ae, 

and a term we denote by a, so 

(J) A e  -~ o = j idO + a .  
0 - ~  

(J) o J idO 
0 - ~  

Again normalize the three manifold ]z I = r to a standard neighbourhood in Y, then 
the proceeding discussion implies that the restrictions of  a to ]z I = r , considered 
as forms on this neighbourhood in Y tend to zero form as r goes to 0. Thus the 
holonomy of the restriction of  At/ along any circle [z[ = r limits to 

e - ~  o ---~ = e~ 2m 0 1 

0 e -  7 2hi 

as r goes to 0. This shows (c). 
Finally the uniqueness follows from the corresponding uniqueness f o r / t .  This 

completes the proof of  Theorem 3.1 
By similar arguments to the ones in Sect. 5 of  [8], there is an ASD connection 

At/o on E over Y x R which is compatible with the Hermitian metric H0 on E and 
is gauge equivalent to An by a positive definite self-adjoint gauge transformation of 
E I Y x R  determined in a canonical way. It follows that there is a map from ~cu(i,j) 
to the set of  gauge equivalence classes of  ASD connections on (E, H0). 

Next we construct the map from .A4(i,j) to .A4cu(i,j) and prove Theorem 1.3. 
The construction is similar to the construction in Sect. 6 of  [8], and we shall use 
some of the results there. 
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An instanton on Y • R is lifted to an instanton on }7 • R, and thus determines 
a complex holomorphic structure on the vector bundle where it sits. As in Sect. 6 
of  [8], the bundle is then extended over the ends in a natural way to give a holo- 
morphic bundle on S with unitary flat structures over the ends. 

Theorem 3.2. Let A be an instanton on (E, Ho) over Y • R with asymptotic fiat 
limits [A_~]  E ~.  and JAm] E .~j. Let (E, Ho) be the lift o f  (E, Ho) on Y • R 
and A the lift o f  A by the covering map. Then the bundle E with the holomorphic 
structure determined by .4 extends holomorphically over Zo and S ~ .  The extended 
bundle, which we denote by ~ satisfies the following conditions. 

(a) The bundle E splits holomorphically over So and Z ~  as follows. 

glz0 -- LtA_ 1 m 

and 

In particular ~ are unitarily flat over the two ends. 
(b) The Hermitian metric t71o on ~ extends continuously over So and Zoo on 

which it is defined by the flat unitary structures of  ~ in (1) over the ends. 
(c) The Gx action on E extends over the two ends to an Gx action on ~ which 

respects the splittings of  ~ in (1). Moreover the action has eigenvalues e~ 2~i on 

L[A_~] and e - ~  2~i on L -1 and has eigenvalues e~ 27ti on L[A~] and e - ~  2~i on [A_~], 
L-1 [A~]" 

Again we shall only prove the theorem for the end Zoo. 
First we need an analogue of  Lemma  6.2 of  [8]. 

L e m m a  3.3. Let U be a local coordinate around Zoo as before and let 0 be the 
angular coordinate of  the holmorphic coordinate z. Let A be an instanton on Y • R. 
I f  [Am] E .~j for some j ,  then there exist a number 6 > 0 and a gauge gu on U 
such that the connection form of  A under the gauge is given by 

A =  -~ 0 0 - J  idO + a ,  

where a satisfies the following condition." I f  

V k a  = a io . . . i k e io  @ �9 �9 �9 eik  , 

then 
1 

laio...ik I = O( I ) 
zia(io, . . . , ik  ) - -6  ' 

m 

for any nonnegative interger k. 

Proof of  Lemma 3.3. As in Lemma 6.2 [8], choose a gauge on E over the end 
Y • [T, ~ ) ,  for some T >> 1, such that 

(*) I V ~ ( A  - A ~ ) l m  = O(e -~t) , 

for some number 6 > 0. 
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Since [A~] E Uj, adjust U if neccessary, we can choose a local gauge gu over 
U such that 

A ~  = -~ 0 J idO . 
0 - -~ 

Here 0 is the angular coordinate for z. 

Let a = A - A~,  thus A = ~ 0 J idO + a. By the arguments in Lemma 
0 - ~  

6.2 of  [8], it suffices to show that 

IVkal~o = O([z la) ,  k = o, 1 , . . . .  

Since idO = l tdz ~ it is easy to see that this can be proved in the same way 
as we prove Lemma 6.2 of [8]. 

Consider now the lift of A on E. Let 0 be the local coordinate neighbourhood 
of S o  on S covering U. Let Z and 0 be the corresponding coordinates, covering z 
and 0 respectively. Under the invariant gauge go  of/~ covering gw, the connection 
form 

~c ~ 0 idO + 5 ~- j 
0 - ~  

where 5 is the pull back of a. From Lemma 6.2 of  [8], it follows that if  

v k 5  = aio...ikeio @ . . .  e', k , 

then 
1 

[aio'"ik I = O (  [~lq(io,...,ik)_t< 5 ) , 

( e-j& 0 ) 
Let gl = 0 eJOi . It is a well-defined gauge transform for the pull-back 

bundle on 0 \ {i  = 0}. Under the new gauge g o g l ,  the connection form of A is 
--1 ~ g~ agl,  which we denote by/~. Since idO ltd_e d~ = 2~e - 7-), as in Lemma 6.2 of [8], it 

is easy to see that lVk911 : O ( # ) ,  hence b also satisfies the condition that if 

V k b  : bio...ik eio @ ' ' "  e~i~ , 

then 
f io . . . i ,  [ = O (  1 lel '(i~ ,..., *~ ) -  ~a ) ' 

Thus the connection ti satisfies Lemma 6.2 of  [8]. Apply the extension con- 
struction in Sect. 6 of  [8], we see that the bundle E with the holomorphic structure 
determined by ~i extends over S o  and similarly over So. It follows plainly from 
the construction that the extended bundle E satisfies (a), (b). We now show (c). 

As in Sect. 6 of [8], the extension of E is first constructed locally on each U. In 
" of  g such that the restriction particular, on U there is a local holomorphic gauge go  

of  the first section of g U on 0 n S ~  gives a local trivialization of  the holomorphic 
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line bundle L[A~] and the second one gives a local trivialization of L -1 and [A~], 

II  go = (gogl )To(z, fie) 

for some holomorphic GL(2, C) valued function T o originally defined on 0 \ S ~  

but extended holomorphically over 0 A Zoo on which it equals tr Consider the 
" We have action of G~ under the basis go" 

(togu)(toZ , fie) = gu(tOZ, fi)T~ 1 (toZ, fi) ( 
\ 

e {2ni 0 ) 
0 e -~2ni To(Lfi)  " 

( e~ 2zi 0 ) 
The function Tsl(t0Z, fi) 0 e_{2ni To(3,fi) ,  defined and holomorphic on 

0 \ S ~ ,  clearly extends holomorphically over 0 N S ~ .  Consequently the action of 

G~ extends to a holomorphic action on g lO for each 0 and the extended action 
satisfies (3) locally. By continuity, these local extensions give a global extension of 
G~ action which satisfies (c). This completes the proof of Theorem 3.2 . 

As in Sect. 6 of [8], we see that Theorem 3.2 gives a map from A/l(i,j) to 

Adcu(i,j) and the map is injective. Thus we have the conclusion of Theorem 1.3. 
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