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Summary.  We study the equil ibr ium in the use o f  
synonymous  codons by eukaryotic organisms and 
find five equations involving substi tution rates that 
we believe embody  the impor tan t  implications o f  
equil ibrium for the process of  silent substitution. 
We then combine  these five equations with addi- 
tional criteria to determine sets o f  substi tution rates 
applicable to eukaryotic organisms. One me thod  
employs the equil ibrium equations and a principle 
o f  m a x i m u m  entropy to find the most  uni form set 
o f  rates consistent with equilibrium. In a second 
me thod  we combine  the equil ibrium equations with 
data  on the m a n - m o u s e  divergence to de te rmine  
that set of  rates that is most  neutral yet consistent 
with both types o f  data (i.e., equi l ibr ium and di- 
vergence data). Simulations show this second meth-  
od to be quite reliable in spite of  significant satu- 
ration in the substi tution process. We find that when 
divergence data are included in the calculation o f  
rates, even though these rates are chosen to be as 
neutral as possible, the strength o f  selection inferred 
from the nonuni formi ty  o f  the rates is approxi-  
mately doubled.  Both sets o f  rates are applied to 
estimate the human-mouse  divergence t ime based 
on several independent  subsets o f  the divergence 
data consisting o f  the quartet,  C- or T-ending duet, 
and A- or G-ending duet  codon sets. Both rate sets 
produce patterns o f  divergence t imes that are short- 
est for the quartet  data, in termediate  for the CT- 
ending duets, and longest for the AG-ending duets. 
This indicates that  rates of  transitions in the duet- 
codon sets are significantly higher than those in the 
quar te t -codon sets; this effect is especially marked  
for A ~ G, the rate o f  which in duets must  be about  
double that in quartets. 

Key words: Synonymous  codon -- Codon equilib- 
r ium -- Silent substitution - Fixation rates -- 

H u m a n - m o u s e  divergence t ime --  Eukaryotes " 
Simulat ion --  M a x i m u m  entropy -- M i n i m u m  se- 
lectivity 

I. Introduction 

The proposal  that silent substi tutions might  provide 
the basis for a useful evolut ionary clock seems to 
have first been put  forward by Jukes (1980) and 
Miyata et al. (1980). Our  purpose in this article is 
to investigate the relation of  this proposal  to detailed 
substitution rates that could form the basis for sucla 
a clock. We have argued in Part  I o f  this paper  that 
the equil ibr ium properties o f  eukaryotic coding se- 
quences make them uniquely suited to serve as too- 
lecular clocks. We will express these equilibriurO 
properties as equations der ived from the codon-fre" 
quency distribution for 40 eukaryotic  sequences as 
reported by Gran tham et al. (1981) (see also Table 
4 o f  Part  I). In this form they provide the foundatioO 
on which the detailed rates may  be constructed. 

Our analysis consists o f  three steps. In Section II 
we investigate the informat ion about  rates that  may 
be obtained f rom equil ibr ium considerations. In the 
ideal situation a complete  de terminat ion  should be 
possible. Imperfect ions in the eukaryotic equilibri" 
urn, however,  limit the useful constraints on rates--" 
in this case to five equations. In Section III these 
five equations are combined  with addit ional  criteria 
to determine complete  sets o f  silent-substitutiorJ 
rates. In one de terminat ion  we make use of  maxi" 
m u m  entropy inference as pioneered by JayneS 
(1957a, b) and applied in a setting similar to ours 
by Holmquis t  and Cimino (1980). This determines 
the most  uni form set o f  rates consistent with the 
equil ibrium data. In addit ion to epistemological 



reasons for this approach (see Jaynes 1978), this 
quality of uniformity seems desirable because many 
Studies have been done in the past assuming that 
all rates are equal [see Holmquist and Cimino (1980) 
for discussion]. In a second determination of  rates 
We Combine the equilibrium constraints with data 
based on five homologous sequence pairs from hu- 
man and mouse (or rat) to determine rates of special 
significance for the human-mouse divergence. The 
COnsistency of the rate sets found is examined in 
SeCtion IV. Both rate sets are applied to estimate 
the human-mouse divergence time from the com- 
plete data and from three independent subsets of  
the data. Significant discrepancies are found in the 
estimated times. Such discrepancies, along with the 
n~ of  the rates determined, lead to the 
COnclusion that strong selective constraints act 
against silent changes even over short divergence 
times. Implications for the silent clock are dis- 
CUSsed. 

II. Equilibrium Constraints 

In Part I of this paper we applied a constrained 
raethod of least squares to find best-fitting nonneg- 
ative solutions to the Eqs. (3) of Part I. Although 
this method is useful and efficient for the study of 
equilibria, it is not useful for finding an overall best 
set of rates. The 12 equations of form (3) of Part I 
generally yield best least-squares rate solutions, the 
COrresponding rates of which are not proportional 
to each other unless the system is in exact equilib- 
r/urn. Frequently in each of the 12 solutions a num- 
ber of rates are set to zero. The reason for this is 
discussed in the Results section of Part I and an 
example is given in Table 8 there. The example 
shows that the distortion produced by the least- 
Squares process does not produce anything we can 
recognize as a best overall set of rates for the eu- 
kary~ We must therefore take a different ap- 
l~roach. 

1~.~ Our approach is first to define a fitting function 
1 ~R), where R is any nonnegative rate vector with 

components. Given such a rate set R, we deter- 
mine equilibrium distributions for the synonymous- 
%don sets of each amino acid with a degenerate 
Code. For each such amino acid the total number 
~ifL~ in the data is distributed in the equi- 
'oraum distribution and for each codon the differ- 
. eaee between the actual and the equilibrium counts 
is c0~Puted" The sum of the absolute values of each 
~o f these differences then serves as the measure of fit 

r that amino acid. The sum of measures of fit for 
all 18 amino acids with degenerate codes is the value 
I~(R). Thus F(R) is a measure of  how well R agrees 
With the codon counts in the experimental data. We 
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use the absolute value rather than the square of  
differences so that estimates of R wilt be more robust 
(see Efron 1979). 

Now the constraint the data places on R is that 
F(R) should be small, and our problem seems re- 
duced to a simple minimization of F(R). Both ad- 
vantages and disadvantages, however, attend the use 
of the function F. A clear advantage is that min- 
imization of F(R) no longer entails a tendency to 
minimize the components of  R, because F takes the 
same value on any two vectors R that are propor- 
tional to each other. Disadvantages of the use of  
F(R) are that F is a complicated nonlinear function 
of R, the minimization of which is a lengthy cal- 
culation, and that the value of F(R) when near its 
minimum tends to be somewhat insensitive to 
changes in R. This later difficulty is related to the 
lack of  exact equilibrium in the data and suggests 
limitations on our ability to infer the complete R 
from the data. The function F(R) nevertheless pro- 
vides a useful measure of nearness to equilibrium 
in the data with respect to a given R. To illustrate 
this we have carried out minimizations of F for 
several of the data sets analyzed in Part I, with the 
following results: 

rain F(R) --- 206 for the 16 weakly expressed bac- 
terial sequences; 

= 213 for the 40 eukaryotic sequences; 
--- 438 for the 13 highly expressed bac- 

terial sequences; 
--- 381, 498, 422, 467, 470 for the data 

for the 16 weakly expressed bacterial 
sequences randomized  uni formly  
among synonymous codons for each 
amino acid as in SM1 (see Methods 
in Part I) and repeated five times. 

Minima were found by the conjugate gradient 
method of Powell (1977) and all calculations (in- 
cluding those elsewhere in this paper) were made on 
the DEC KL-10 computing facility of the National 
Institutes of Health. Unfortunately, such calcula- 
tions are lengthy and not suitable for large simula- 
tions such as were discussed in Part I of this paper. 

We point out that the maximum value of  F pos- 
sible for these data sets is approximately 2000. This 
is true because the number of  codons in each data 
set is close to 1000 and the worst R could do would 
be to dictate placement of  all codons where none 
were previously; the sum of absolute values of error 
would then count each codon twice, yielding an F(R) 
c~ose to 2000. In practice this theoretical maximum 
cannot be obtained for the data, because each codon 
is represented more than zero times. Such a value 
is possible, but very unlikely, for the random trials. 
The calculated minimum values shown are consis- 
tent with the balances found in Part I for the 16 
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Table 1. Total codon counts from 40 eukaryotic sequences as 
reported by Grantham et al. (1981) a 

Third base 

Amino acid A C G T 

Quartets 
Ser 9 18 2 16 
Thr  11 28 6 15 
Pro 10 17 5 14 
Ala 14 38 6 28 
Gly 16 32 11 22 
Val 5 21 33 9 
Total counts 65 154 63 104 

CT-ending duets 
Ser 21 12 
Asn 28 8 
His 21 10 
Asp 24 16 
Tyr 23 10 
Cys 13 10 
Phe 28 13 
Total counts 158 79 

AG-ending duets 
Lys 19 49 
Gin 10 28 
Glu 21 34 
Total counts 50 111 

a See also Table 4 o f  Par t  I. Codon  coun t s  are added  to produce  
an  average quar te t  and  average duets.  Data  used  by permiss ion  
of authors and publisher 

weakly expressed bacterial sequences and the 40 eu- 
karyotic sequences and with the nonequil ibrium of  
the 13 highly expressed bacterial sequences, which 
appear at the same level as do r andom distributions. 

Though m i n i m u m  F(R) produced in this way are 
o f  interest because o f  their relevance to the question 
of  equilibrium, the R corresponding to a m i n i m u m  
can only under ideal circumstances be considered 
the most  appropriate estimate for the substitution 
rates for the given class of  sequences. Neither  the 
equilibrium nor  the data are perfect, and there exist 
many  R for a given data set that produce F(R) values 
close to the min imum.  For  this reason we shall im- 
pose only the strongest requirements of  the equilib- 
r ium data on R and complete the determinat ion o f  
R by some independent  criterion. We believe this 
is the only realistic way of  choosing among those 
possible R that come close to minimizing F(R). 

We are specifically concerned with the eukary- 
otes, though the method  is applicable to other cases. 
We wish to consolidate the data and impose their 
strongest requirements on R. For  this purpose we 
note that the six codons for serine may  be considered 
to consist o f  a quartet  (four each beginning with UC) 
and a duet (two each beginning with AG). Then Ser, 
Thr, Pro, Ala, Gly, and Val yield six quartets that, 
if  equilibrium were perfect, would each impose the 

Table  2. Rates  as relative subs t i tu t ion  probabil i t ies I 

S imula t ion  
Rate Rt Ru Rnl mean (SD) 

rAC 0.099 0.322 0.311 0.327 (0.027) 
rAo 0.107 0.058 0.058 0.033 (0.010) 
rAT 0.107 0.076 0.086 0.099 (0.015) 
rCA 0.068 0.171 0.176 0.180(0.011) 
rc~ 0.043 0.023 0.017 0.023 (0.007) 
rcT 0.054 0.035 0.035 0.031 (0.005) 
raa 0.048 0.027 0.027 0.015 (0.005) 
roe 0.120 0.093 0.101 0.112 (0.016) 
r~r 0.128 0.060 0.052 0.044 (0.015) 
rvA 0.066 0.024 0.017 0.021 (0.008) 
rTc 0.111 0.068 0.068 0.060 (0.011) 
rvo 0.048 0.044 0.053 0.054 (0.008) 

�9 Rates  were de te rmined  unde r  the  following constra ints :  R;, equi" 
l ibr ium data  and  m a x i m u m  entropy;  Rn, equi l ib r ium and htt- 
m a n - m o u s e  data  and  m a x i m u m  entropy;  Rm, equi l ibr ium and 
h u m a n - m o u s e  data  and  m i n i m u m  selectivity. See text for dis- 
cuss ion of the different rate sets and the simulation 

same condit ions (equations) on the rate set R. We 
add the counts from all six quartets to produce a0 
average quartet. Likewise, f rom the seven C- or T- 
ending duets we produce an average CT-ending duet, 
and from the three A- or G-ending duets we produce 
an average AG-ending duet. Table 1 shows how the 
addit ion o f  the codon counts within each group is 
performed. It is clear that the average for each tYP e 
o f  codon within a group is a weighted averag e 
weighted by the frequencies o f  occurrence o f  tlae 
different codons. There is no need to divide the su~  s 
by a total, because only relative size is important '  
F rom the average quartet  and the two average duets 
we derive five independent  equations that R is re- 
quired to satisfy exactly. After some manipulation, 
these five equations take the forms 

rGg = 0.45rAG, (I) 
rTc = 2.00rex, (2) 
rGc = 2.44(rCA + rcc) -- 1.03rAc -- 0.86rCT, (3) 
rTA = 0.63(rgc + rAT) + 0.35rAG -- 1.48rcg, (4) 
rT~ = 1.48rcg + 0.61rGx -- 0.63rgc 

-- 0.35rAG -- 0.52rex. (5) 

Details o f  their derivation are contained in the AP" 
pendix. In the next section we combine  these co0" 
ditions with additional criteria to determine R, and 
use F(R) as a measure o f  the fit o f  such R to the 
equilibrium data. 

III. Substitution Rates 

We shall use two different criteria to determine a 
set o f  rates R compatible  with Eqs. (1)-(5). The first 
approach is to apply the principle o f  m a x i m u m  Oa" 
tropy of  Jaynes (1957a, b) in a manner  similar to 



its use by Holmquist and Cimino (1980). In this 
method we combine with Eqs. (1)-(5) the require- 
meats that the rates be normalized to add up to 1 
and that under these six constraints an R be deter- 
mined that maximizes the entropy expression 

E = 2 rxv log rxv, (6) 

Where X and Y are the bases of the substitutions 
X -~ y .  The calculation is accomplished by using 
the six constraining equations on R to write the 12 
elements of R in terms of six independent variables 
and then maximizing Eq. (6) in terms of these in- 
dependent variables by the conjugate gradient meth- 
od of Powell (1977). ;l'he resultant rate set (R0 for 
!he eukaryotes is listed in Table 2. For this R, F(R) 
is 230, which is close to the absolute minimum of  
213 mentioned in the previous section and consis- 
tent with the extraction of maximum information 
about R from the eukaryotic equilibrium data. As 
discussed in the Introduction, maximizing Eq. (6) 
COrresponds to finding the most uniform set of rates 
consistent with the data. [For a further discussion 
of the general approach of  maximum entropy in- 
ference, see Jaynes (1978).] 

The second approach to determination of R also 
employs Eqs. (1)-(5), but is designed to fit the silent 
changes perfectly in five human-mouse sequence 
!aairs. For this purpose we considered eight homol- 
Ogous gene pairs of human and mouse (or rat) and 
ChOse the five that were most nearly in equilibrium 
for analysis. These five gene pairs are coding regions 
for the Ig gamma chain C region, insulin, growth 
hormone, prolactin, and Ig kappa chain C region. 

t~e actual sequences were taken from the Genbank 
data bank or the National Biomedical Research 
FOUndation data bank. 

"l'he five human-mouse sequence pairs were pro- 
CeSsed as follows: For each pair of  homologous se- 
quences an alignment was made at the protein level, 
and if an amino acid replacement had taken place 
then the codons at that position were removed from 
their respective DNA sequences. Likewise, nucleo- 
tires appearing in a gap were eliminated. When this 
l~rocess of elimination was completed each pair of 
Sequences differed only by silent mutations. All the 
Sequences of  each organism were then strung to- 
gether in the same order end-to-end to make two 
long sequences. These two resultant sequences con- 
tain all the data we shall consider and they differ at 
Corresponding positions only by silent changes. We 
refer to the two sequences composed in this way as 
SUmmary sequences for the human-mouse com- 
laarison. 

The Summary sequences may be used to write 
~idd~ti~ for R. Let denote equations Nx(v) the 

-averaged count of base X in the two summary 
SeqUences since their divergence, where X is counted 
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only in the third codon positions and then only if  
substitution X -~ Y would be silent. Because the 
sequences are near equilibrium throughout this time 
period, Nx(v) is well defined for each pair of bases 
XY. To determine Nx(v) we used the synonymous- 
codon distributions from the 40 eukaryotic se- 
quences as reported by Grantham et al. (1981), but 
corrected for the actual amino acid proportions in 
the summary sequences; this proved, however, to 
be a very small correction. Let Nxv denote the num- 
ber of pairs of X and Y in either order that occur 
when paired (homologous) bases in the third codon 
position are examined throughout the aligned sum- 
mary sequences. For short [less than 100 million 
years (Myr)] periods since divergence, saturation of 
silent changes is not as great as for longer periods, 
and we shall assume that changes develop linearly 
with time. Thus we may write 

Nx~v)rxv + Nv(x>rvx = Nxv. (7) 

We shall subsequently examine the error resulting 
from making this linearity assumption for the case 
we are investigating. 

To help clarify the terms in Eq. (7) it is useful to 
consider the concrete example where X = A and 
Y = G. Then NA(G) is the average number of occur- 
rences of A in both summary sequences where A is 
a third base of  a codon and A ~ G would be silent. 
Assuming the summary sequences are at equilibri- 
um, NA~G) should not change with time and is not 
affected by the differences that develop between the 
two summary sequences over time. The number 
NGtA) has a similar meaning, but need not equal 
NA~G>. On the other hand, NAG (=NrA) is the number 
of third-codon-position differences of  the form A vs 
G or G vs A between the two present-day summary 
sequences. Over short time periods NA~ should in- 
crease linearly with time beginning at time zero. The 
increase is produced by rAG acting on the NAto) sites 
and roA acting on the NG(A) sites in both summary 
sequences. This gives rise to Eq. (7). Time is not 
included as a factor on the left side of Eq. (7) because 
for simplicity we have assumed one unit of  time to 
equal the time since divergence of the two se- 
quences. This allows the correct determination of  
relative rates to be made. Determination of  absolute 
rates would require setting the time scale by meth- 
ods that are not our concern here (cf. Wilson et al. 
1977). 

There are six equations of  the form (7), which 
together with Eqs. (1)-(5) leave only one degree of 
freedom for R. The form of Eqs. (7) makes it gen- 
erally impossible to add a separate condition Y~ rxv = 
1, because this will prove impossible to satisfy. Thus, 
R is almost completely determined. We have used 
the maximum entropy principle to complete the de- 
termination of R; this is reported in normalized 
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form as rate set RH in Table 2. However ,  for our  
special purposes we have chosen to study a different 
me thod  o f  complet ing the de terminat ion  o f  R. I f  
silent changes were complete ly  neutral, we would 
have rac and ra-G equal, because rAc on one D N A  
strand would represent  the sum of  A ~ C changes 
on that strand and T ~ G changes on the opposite 
strand, and rvG would be the same sum with the 
strands reversed. The  larger o f  the ratios rAc/rvG and 
r-m/rAc thus becomes a measure o f  the selective force 
acting. Five other  reciprocal pairs o f  rate ratios are 
related in the same way. For  any given R, all o f  
whose components  are positive, let I(R) denote  the 
largest of  the twelve ratios of  form rAc/rTG, rTUrAc, 
rCA/rOT, rGa-/rcA, etc. Then I(R) is a function o f  R 
and is always greater than or equal to 1 because the 
reciprocal o f  each ratio considered is also a ratio 
considered. It is convenient  to refer to I(R) as the 
index of  selectivity o f  the rate set R. Clearly, by 
minimizing I(R) we make all ratios as close to 1 as 
possible. By standard linear programming tech- 
niques we have found that R consistent with Eqs. 
(1)-(5) and (7) for which I(R) is a min imum.  This 
R is then the most  selectively neutral rate set con- 
sistent with Eqs. (1)-(5) and (7). In its s tandard nor- 
malized form (in which the sum of  rates is 1 but  the 
t ime scale is adjusted to allow this) it is listed in 
Table 2 as rate set Rm. For  this set of  rates, I(R) is 
the ratio r~c/rc~, which is 5.94, the smallest possible 
value consistent with all o f  the data. For  this set o f  
rates the fitting function F(R) takes the value 238, 
which is again a reasonably good fit to the data o f  
Gran tham et al. (1981) on codon usage for eukary- 
otes. 

It is convenient  to term the me thod  o f  determin-  
ing R by minimizing I(R) the me thod  o f  minimum 
selectivity, as opposed to the me thod  o f  m a x i m u m  
entropy. By way of  comparison,  I(Rn) = 7.32. Thus  
R,~ is considerably more  neutral than R~, but  the 
two entropies are E ( R u ) =  3.0675 and E(Rnl )=  
3.0611, a difference of  only 0.0064 bits and not  
significant by most  standards (note that this calcu- 
lation depends on using more  decimal places than 
are listed in Table 2). For  this reason and because 
we wish to ascertain the lowest level of  selection 
required by the data, we focus our  at tent ion on the 
m i n i m u m  selectivity me thod  o f  determining R. 

As a test of  the me thod  o f  m i n i m u m  selectivity 
described here, we used the set o f  rates Rm based 
on Eqs. (7) and the human-mouse  summary  se- 
quence data to simulate a sequence divergence, and 
in turn applied the same me thod  to the simulated 
data in an a t tempt  to reproduce the original rates. 
We first muta ted  one o f  the 589 codon summary  
sequences 10,000 t imes to bring it to equil ibrium. 
We then took two identical copies and mutated them 
according to the human-mouse  rate set Rm o f  Table  

2 until 218 differences were produced (the summarY 
sequences differ in 218 positions). The  numbers  NxY 
were then de te rmined  and used in Eqs. (7), and that 
set o f  rates was de termined  that  satisfied Eqs. (1)- 
(5) and (7) and minimized  the index o f  selectivity. 
This was repeated 100 times. The  average and stan- 
dard deviat ion o f  the 100 resultant rate sets are 
shown in Table 2. In the trials we found that on the 
average 457 mutat ions  were required to produce just 
218 differences between the two sequences. The  ra- 
tio of  total to observed substi tutions predicted is 
2.10 (=457/218).  This  may  be compared  with a ratio 
o f  1.65 for the human-mouse  beta hemoglobin  gene 
pair, which may be calculated using nonrandorn 
REH theory by the methods  o f  Holmquis t  et al. 
(1982, p. 304). The lower figure may  be explained 
partly by the fact that  n o n ran d o m  REH  theory em- 
ploys a single substi tution intensity for all three co- 
don positions, which may  underest imate  somewhat 
the substi tution intensity at the third position, and 
partly by the fact that the hemoglobin  genes have 
proven  to be not  as close to equi l ibr ium as the mol- 
ecules we used to compose  the summary  sequences 
of  our study. 

It is evident  that the mutat ional  process must  be 
viewed as highly saturated. In spite o f  this level of 
saturation, the recovery o f  the original rates is re- 
markably good. The  reason this is possible with the 
linearity assumption o f  Eqs. (7) is that all o f  the 
numbers  Nxv tend to be affected to the same extent 
by the saturation. To the extent that the effect is 
uni form it does not  produce an error  in the relative 
rates. For  example,  examinat ion  o f  Eqs. (1)-(5) and 
either the m a x i m u m  entropy or m i n i m u m  selectiV" 
ity me thod  shows that i f  all numbers  Nxv in Eqs. 
(7) are reduced by 10%, all componen ts  of  a solution 
R will be reduced by 10%. Such a reduct ion would 
have no effect on the ratios of  the different rates and 
would be impor tan t  only in determining the absO" 
lute t ime scale o f  the rates, which is not  o f  interest 
here. Only when saturation reduces different Nxe 
values by different fractions is error  in t roduced into 
the relative rates. The  simulation shows that this 
problem is not  too severe in our  case. Only the rates 
A -~ G and G ~ A are significantly in error, both 
being relatively underest imated.  As we shall see sub" 
sequently, this is a fault not  o f  the method,  but  of 
at tempting to represent the differences between the 
summary  sequences as produced by a single set of 
rates. This difficulty has little i f  any effect on the 
index o f  selectivity, which averaged 6.1 (1.2) for the 
simulation, as compared  with 5.9 for the human" 
mouse rate set R.~. It is useful to point  out that for 
divergences over  longer periods and where saturn" 
tion is a critical problem, Eq. (7) may  still be applied 
if  one o f  the available methods  is used to correct 
the Nxv for the effects o f  saturation. 



IV. Consistency 

We have determined several sets of  substitution rates 
that may be applied to the human-mouse diver- 
gence. We now wish to compare the predictions of 
rate sets RI and RnI for the human-mouse diver- 
gence time and to study their internal consistency. 

Let the summary sequences for human and mouse 
be denoted by S 1 and $2, respectively. We wish to 
estimate a parameter proportional to the time of 
divergence. We can expect only proportionality and 
not equality because the numbers in Table 2 are 
relative, not absolute, rates. We assume that the 
SUmmary sequences are in equilibrium under the 
rate sets R of  Table 2. Then from a given R and the 
amino acid sequence that underlies both S 1 and $2 
We may determine a relative mutation rate M for 
S 1 or $2. M may be approximated from S 1 by add- 
ing each element of  R that may be applied to a given 
COdon and summing over all codons in S 1. Nearly 
the same M would be obtained in this way from $2. 
We determine M from the exact equilibrium codon 
distributions that would ideally hold for both S1 
and $2. Then the mutation process must go on long 
enough to produce the number D of  differences seen. 
"I?o find the number of mutations required to pro- 
duce D we start with two identical copies of a se- 
quence obtained from S 1 or $2 that is in equilib- 
rium. We then mutate the copies alternately ac- 
cording to the rates R until the number of differences 
b has been produced. This process is repeated 100 
times and the mean number of  mutations required 
to Produce D is found and divided by the mutation 
rate M. The result is an estimate of the relative time 
Since divergence. To test the internal consistency of  
the method, we perform this analysis not only for 
the two summary sequences but also for the sub- 
Sequences derived from these consisting of just the 
quartets, the CT-ending duets, or the AG-ending 
duets. The relative times derived from these three 
SUbsequences are calculated from completely inde- 
1~ data, but should agree if all our assumptions 
are c o r r e c t .  

Results of relative time calculations for the hu- 
faUn-mouse divergence time performed using both ~ te set RI and rate set Rm of Table 2 are given in 

able 3. The independent relative times calculated 
from quartets, CT-ending duets, and AG-ending 
.duets, also listed in Table 3, reveal considerable 
internal inconsistency. It is important to know 
Whether this is due to error in the calculations or to 
a fault in the underlying assumptions. There are 
Several possible sources of  error in the calculations. 
One SOurce of error could be small sample size for 
the SUmmary sequences used and another could be 
SatUration of a sequence by mutations during the 
Simulation process. Both of  these sources of  error 
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Table 3. Relative human-mouse (rat) divergence times" 

Relative divergence times for 
Rate 
set Summary CT-ending AG-ending 
used sequences Quartets duets duets 

R~ 4.10 (0.30) 3.67 (0.37) 4.55 (0.64) 8.71 (1.69) 

R,n 5.41 (0.47) 4.34 (0.66) 7.23 (1.15) 15.56 (3.38) 

"Numbers  are means of divergence times based on 100 simu- 
lations of the relative time, with standard deviations given in 
parentheses. R~ and Rm are rate sets from Table 2 

Table 4. P values for the actual agreement of relative times 
given the simulation results of Table 3 

CT-ending 
duets vs 

Quartets vs AG-ending 
CT-ending duets duets 

R~ 0.13 0 

Rm 0.005 0.002 

are necessarily reflected in the variation in times 
obtained for the individual trials in a simulation. 
The times obtained in a single simulation are not 
distributed normally or in any simple distribution 
as far as we can determine. For short times, at which 
one is far from saturation of  mutations, the distri- 
bution of  times is close to normal, but it develops 
a tail to the right similar to that of  a gamma distri- 
bution as one moves to larger times and conse- 
quently closer to saturation. A sharp cutoff of the 
distribution always exists on the left side because 
there is an absolute minimum number of  mutations 
needed to produce the required number of  differ- 
ences in the two sequences. Because of  the uncer- 
tainty in the nature of the distributions, the standard 
deviations in Table 3 cannot be relied on to support 
the judgment that the average times are inconsistent, 
though they may be a useful indication of this. To 
assess the consistency of the times reported in Table 
3, we assumed the distribution of  100 randomly 
generated times to be representative of  the actual 
distribution of such times for each case. Using these 
distributions, we then calculated the probability that 
when tA > ta (average times), the change represent- 
ed by tg did not take longer to occur than the change 
represented by tB. We compared quartet and CT- 
ending duet times and also CT-ending duet and AG- 
ending duet times in this way; the results are given 
in Table 4. These results are based on simulations 
of 100 trials each, but little change could be expected 
if one used simulations with larger numbers of trials. 
Table 4 confirms the apparent inconsistency in Ta- 
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ble 3 and that this inconsistency cannot be due to 
sample size or the effect of  saturation. 

Another source of  possible error has to do with 
the derivation of the summary sequences. If  in the 
original sequences from which a summary sequence 
is derived there are multiple replacement fixations 
at a particular codon site that finally result in the 
same amino acids occurring in both sequences at 
that site, then this site will be included in the sum- 
mary sequences constructed and may distort the 
data. How often might this occur? In the most ex- 
treme case only 40% of  amino acid positions are 
replaced between the sequences we considered. It 
seems conservative to expect not more than half of 
these to have been doubly replaced. If  replacement 
by any amino acid were equally likely, only about 
1 in 100 sites could be expected to revert back to 
the same amino acid and appear as a simple silent- 
mutation site. Even if this result is multiplied by 2 
or 3 to allow for the unevenness in replacement 
probabilities for shorter times in the Dayhoff et al. 
(1978) PAM matrix, the effect is insignificant. 

Finally, it could be that the sequences chosen are 
not in good equilibrium. This would reflect the ex- 
istence of selective forces acting in a nonuniform 
way and could make time calculations unreliable. 
The unexplained preponderance of CUG coding for 
Leu in eukaryotic organisms (see Grantham et al. 
1981) is the most unbalanced aspect of eukaryotic 
codon usage, but Leu is not included in the quartets 
or duets we used as a test for internal consistency. 
In selecting the sequences for the human vs mouse 
comparison, we selected from eight pairs the five 
most balanced pairs for construction of  the sum- 
mary sequences. We have compared the balances 
of the quartet and CT- and AG-ending duet sub- 
sequences coming from these summary sequences 
with the expected levels of balance for sequences of 
these lengths. In each case the original sequence was 
mutated 1000 times to bring it into equilibrium and 
then mutated another 1000 times while its distance 
from equilibrium was recorded at each step. All four 
duet subsequences were found to be in better than 
average equilibrium for the mutation rates of  Table 
2. [Note that both R~ and Rn~ satisfy Eqs. (1)-(5), 
and so yield the same equilibrium for the quartets 
and duets.] Thus, in these cases any deviation from 
equilibrium could be more than accounted for by 
the lengths of  the sequences. The quartet subse- 
quences were found to require about a 7% change 
to be brought within one standard deviation of  the 
exact average distance from equilibrium for se- 
quences of their length. Thus, it is clear that lack of  
equilibrium in the summary sequences cannot ac- 
count for the inconsistency of the CT- and AG- 
ending duet times in Table 2, and it appears unlikely 
to have been a major factor in the quartet times. 

V. Discussion 

Few attempts to determine detailed substitution rates 
appear to have been made in the past. Kimura 
(1981a) and Takahata and Kimura (1981) have 
studied models in which several rates are required 
to be equal and used such models to estimate the 
s i lent-mutat ional  distance between homologous 
DNA sequences, but have not reported detailed rates 
involved in such calculations. Holmquist and Cim ~ 
ino (1980) employed three equations defining equi- 
librium among base frequencies and the maximuna 
entropy principle of  Jaynes (1957a, b) to obtain the 
12 rates of fixation for base mutations. They made 
rate determinations for genes from several different 
protein families in each codon position; the results 
were different for the different types. For the third 
codon position such variability may be credited at 
least partially to their treating silent and replace- 
ment changes on the same basis. Not only do re- 
placement changes vary between sequence classes, 
but they generally differ in rate from the silent 
changes. Such differences raise the question of 
whether base frequencies in the third codon position 
are in equilibrium for any possible set of  rates. There 
is no evident way to test for such equilibrium, 
Holmquist (1983) has extended the method to in- 
corporate transition/transversion ratios at various 
divergence times and has considered other possible 
approaches to calculating substitution rates, but has 
reported no rates. In contrast to the studies men- 
tioned, we have taken a more restricted setting and 
attempted a more detailed analysis for this setting. 

We have calculated by three different methods 
sets of  fixation rates for eukaryotic nucleic acid se- 
quences. The results are listed in Table 2. One meth- 
od employs the equilibrium constraints (1)--(5) and 
the principle of  maximum entropy to determine a 
set of  fixation rates, R~, completely independent of 
any homologous sequence comparison. The other 
methods also employ the Eqs. (1)-(5) but were de- 
signed to fit perfectly the silent changes in five hu- 
man-mouse (rat) homologous-sequence pairs in the 
form of  Eqs. (7). The rate set Rn was included only 
for the purpose of  comparison with Rm. These two 
rate sets are very close, as might be expected from 
the fact that each is determined to satisfy a uni- 
formity condition (though the conditions are differ" 
ent). The rate set Rm has the special quality of  being 
the most neutral rate set consistent with the data i~ 
the form of  Eqs. (1)-(5) and (7). Because Eqs. (7) 
assume a linear accumulation of  substitutions with 
time and this is not strictly true, we performed a 
simulation based on Rm that showed that if one 
employs the components of  RiH as substitution rates 
in the usual sense then the method for determining 
Rm will reproduce Rm if applied to the simulated 



divergence (see Table 2 and text). This provides a 
degree of validation for Eqs. (7) and the method of 
determining R]~I. We employed rate sets R] and Rm 
to estimate relative divergence times for human and 
mOUse. The results show considerable discrepan- 
cies, as reported in Tables 3 and 4. 

What conclusions can fairly be drawn from these 
results? The construction of rates based on the hu- 
man-mouse divergence and the estimates of the di- 
Vergence time for human and mouse are both based 
on the standard model of  evolutionary divergence 
of the human and mouse sequences from common 
ancestral sequences by the accumulation of  point 
mutations. I f  this model is accepted, then several 
COnclusions seem appropriate. First, the change C -* 
G is strongly selected against. This is evident already 
in the rate set R1 determined by maximum entropy, 
for which rGc/rcG ----- 2.79 (and no model of diver- 
gence is used). The selection appears much stronger 
in the rate set Rm based on divergence, for which 
r~c/rcG ----- 5.9. For this latter set of  rates we also have 
r/'c/rTG = 5.9, showing that in the human-mouse 
data T -~ G is selected against approximately as 
Strongly as is C -~ G. If  we used the rate set Rn the 
Selection would appear even stronger. The discrep- 
ancies between the divergence times as estimated 
by the rate sets Rj and Rm are perhaps not of great 
irnl~~ but illustrate that the proper choice of 
rates can have a very noticeable effect on the cal- 
CUlation.. What is important is the internal incon- 
sistency among divergence times, which is ofrough- 
ty the - - �9 same pattern for e~ther of the two rate sets. 
This indicates a significantly higher rate of  transi- 
tions in the duet-codon sets than in the quartet- 
COdon sets. The same rates cannot then be applicable 
to the two codon sets; this is especially marked for 
the A ~ G transitions, for which the discrepancy is 
~ore than two-fold. This accounts for the system- 
atic error in recovering the A ~ G rates from sim- 
Ulations based on the human-mouse rate set Rm 
(see Table 2 and accompanying remarks). Transi- 
tions must be relatively selected against in quartets. 
XV How generally applicable are these conclusions? 

e have made a similar comparison of human vs ~ w, with essentially the same results. Further, D. 
Prnan (unpublished data) has surveyed a larger 

~uraber of sequence pairs and concluded that in 
gerleral in a nonreplacement site of homologous se- 
qUeiaces the probability of  a silent change in quartets 
~ 0.378, whereas in duets it is 0.229. This quartet/ 
duet change ratio of 1.65 differs from the ratio of 3 ~ sunled in the silent-site corrections of Perler et al. 
t~80) and Miyata and Yasunaga (1980) and is con- 
~ Leat With slower rates of mutation in quartets. 

aStings and Emerson (1983) have examined codon 
Stage in muscle and liver and concluded that quar- 

"eodon fixation is under significant selective pres- 
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sure, whereas duet-codon selection appears much 
less constrained. This corroborates the differential 
rates we have proposed. 

Kimura (1977, 1981a, b) has argued, based on 
the preponderance of  synonymous changes among 
all changes and on the limiting of all substitution 
rates approximately by the silent-substituion rate, 
that silent changes must, at least over short times, 
be very close to neutral. At the same time Efstra- 
tiadis et al. (1980), Perler et al. (1980), Kimura 
(I 98 la), and Miyata et al. (1982) have all questioned 
the validity of  the silent clock over long times, and 
Perler et al. have suggested that the difficulty is caused 
by saturation of truly silent changes after a short 
period of perhaps 85-100 Myr, followed by selected 
changes occurring at about one-seventh the initial 
rate. If  one holds to the point-mutational model of  
evolution, our results suggest some modifications of  
or additions to this picture: 

1. Strength of  selection: When divergence data 
are included in the rate calculations, the index of 
selectivity of  the resultant rate set is over twice as 
large as that obtained for the most uniform (maxi- 
mum entropy) rate set that is consistent with the 
nonuniform codon distributions found in sequence 
data. Thus selective pressure appears to be at a higher 
Ievel than would be predicted on the basis of codon 
frequencies alone (see Kimura 1981 h). Evidence for 
constraints acting on divergence at silent sites over 
short time periods has also been presented by Mi- 
yata and Hayoshida (1981) and Sheppard and Gut- 
man (1981). 

2. Degree of saturation: Our simulations on the 
589 codon summary sequences required, on the av- 
erage, 457 mutations to produce 218 changes. This 
suggests that saturation becomes a factor well before 
85 Myr elapses. Support for this point is also avail- 
able from calculations made by Holmquist et al. 
(1982) comparing human, mouse, and rabbit hemo- 
globin genes by nonrandom REH theory. 

3. Inadequacy of a single set of rates: A single set 
of rates is inadequate to deal consistently with silent 
change in the codon sets of different amino acids. 
This claim also finds support in Part I of this article, 
where those eukaryotic rates involving the base G 
are shown not to be homogeneous but to vary among 
the different synonymous-codon sets. 

It is unclear whether rates based on equilibrium 
[Eqs. (I)-(5)] and divergence data [Eq. (7)] and re- 
stricted to a particular class of sequences such as 
a-globins, ~-globins, or insulins would show more 
internal consistency than the rate sets we have cal- 
culated and tested using the human-mouse data. It 
seems likely, however, that such rates would shed 
light on the nature of  the constraints specific to par- 
ticular families of  sequences. 



190 

Acknowledgments. The author would like to thank Ray Mejia 
and David Lipman for helpful suggestions and the latter for mak- 
ing available unpublished results. 

References 

Dayhoff MO, Schwartz RM, Orcutt BC (1978) A model of 
evolutionary change in proteins. In: Dayhoff MO (ed) Atlas 
of protein sequence and structure. Vol 5, Suppl 3, Silver Spring, 
Maryland, pp 345-352 

EfronB (1979) Computers and the theory ofstatistics: thinking 
the unthinkable. SIAM Rev 21:460-480 

Efstratiadis A, Posakony J, Maniatis T, Lawn R, O'Connell C, 
Spritz R, DeRiel J, Forget B, Weissman S, Slightom J, Blechl 
A, Smithies O, Baralle F, Shoulders C, Proudfoot N (1980) 
The structure and evolution of the human #-globin gene fam- 
ily. Cell 21:653-668 

Grantham C, Gautier C, Gouy M, Jacobzone M, Mercier R 
(1981) Codon catalog usage is a genome strategy modulated 
for gene expressivity. Nucl Acids Res 9:143-174 

Hastings KEM, Emerson CP (I 983) Codon usage in muscle and 
liver genes. J Mol Evol 19:214-218 

Holmquist R (1983) Transitions and transversions in evolu- 
tionary descent: an approach to understanding. J Mol Evol 
19:134-144 

Holmquist  R, Pearl D, Jukes T (1982) In: Goodman M (ed) 
Macromolecular sequences in systematic and evolutionary 
biology. Plenum, New York, pp 281-315 

Holmquist R, Cimino JB (1980) A general method for biolog- 
ical inference: illustrated by the estimation ofgene nucleotide 
transition probabilities. Biosystems 12:1-22 

Jaynes E (1978) Where do we stand on maximum entropy? In: 
Levin D and Tribus M (eds) The Maximum entropy for- 
malism. MIT Press, Cambridge, Massachusetts, pp 15-118 

JaynesE (1957a) Information theory and statistical mechanics. 
Phys Rev 106:620-630 

Jaynes E (1957b) Information theory and statistical mechanics 
II. Phys Rev 108:171-190 

Jukes TH (1980) Silent nucleotide substitutions and the mo- 
lecular evolutionary clock. Science 210:973-978 

Kimura M (1981a) Estimation of evolutionary distance be- 
tween homologous nucleotide sequences. Proc Natl Acad Sci 
USA 78:454-458 

Kimura M (1981b) Possibility of extensive neutral evolution 
under stabilizing selection with special reference to nonran- 
dom usage of synonymous codons. Proc Natl Acad Sci USA 
78:5773-5777 

Kimura M (1977) Preponderance of synonymous changes as 
evidence for the neutral theory of molecular evolution. Nature 
267:275-276 

Miyata T, Hayoshida H, Kikuno R, Hasogawa M, Kobayashi 
M, Koike K (1982) Molecular clock of silent substitution: 
at least six-fold preponderance of  silent changes in mito- 
chondrial genes over those in nuclear genes. J Mol Evol 19: 
28-35 

MiyataT,  HayoshidaH (1981) Extraordinarily high evolution- 
ary rate of pseudogenes: evidence for the presence of selective 
pressure against changes between synonymous codons. Proc 
Natl Acad Sci USA 78:5739-5743 

Miyata T, Yasunaga T (1980) Molecular evolution o fmRNA:  
a method for estimating evolutionary rates of synonymous 
and amino acid substitutions from homologous nucleotide 
sequences and its application. J Mol Evol 16:23-36 

Miyata T, Yasunaga T, Nishida T (1980) Nucleotide sequence 
divergence and functional constraint in mRNA evolution. 
Proc Natl Acad Sci USA 77:7328-7332 

Perler F, Efstratiadis A, Lomedico P, Gilbert W, Kolodner R, 
Dodgson J (1980) The evolution of genes: the chicken pre- 
proinsulin gene. Cell 20:555-566 

Powell MJD (1977) Restart procedures for the conjugate gra- 
dient method. Math Prog 12:241-254 

Sheppard HW, Gutman GA (1981) Allelic forms of rat K chain 
genes: evidence for strong selection at the level of nucleotide 
sequence. Proc Natl Acad Sci USA 78:7064-7068 

Takahata N, Kimura M (1981) A model of evolutionary baSe 
substitutions and its application with special reference to rap" 
id change of  pseudogenes. Genetics 98:641-657 

Wilson AC, Carlson SS, White TJ (1977) Biochemical evolu" 
tion. Ann Rev Biochem 46:573-639 

Received October 3, 1983/Revised August 25, 1984 

Appendix 

We give here the derivations of Eqs. (1)-(5). We denote the codOn 
counts for the average quartet (see Table 1) by QA, QC, QG, and 
QT, where QA is the total number  of A-ending codons in quartets, 
DC and DT are totals for CT-ending duets, and DA and DG are 
totals for AG-ending duets. Balance equations that would aPP ly 
at equilibrium to individual quartet or duet synonymous-codOn 
sets must also apply to the average codon sets of the same tYP e. 
This allows us, to write 

DA. rA~ = DG" rGA, (1 A) 

DC' rc-r = DT'  rTc, (2A) 

QA'(rAc + rAG + rAT) = QC'rcA + QG'rGA + QT'rTA, (3A) 

QC'(rcA + rc~ + rcr) = QA'rAc + QG'rGc + QT'rTc, (4A) 

QG'(rGA + r~c + rGx) = QA'rAo + QC'rcG + QT'rTG. (5A) 

Equation (1 A) expresses the fact that at equilibrium the flovr 
from all A-ending AG duet codons to all G-ending AG duet 
codons must equal the flow in the reverse direction. EquatiOn 
(2A) expresses the same balance for CT-ending duet codonS. 
Equation (3A) states that  among all quartet codons the flow awaY 
from A-ending codons must equal the flow to A-ending codons 
at equilibrium. Equations (4A) and (5A) express the same coil" 
dition for C- and G-ending codons; a like equation for T-end i~  
codons is not included because it is not independent but can be 
derived from the equations for A-, C-, and G-ending codonS. 

To obtain Eqs. (1)-(5) some manipulation ofEqs. (1A)-(5A) 
is required. First Eqs. (1A)-(2A) can be rewritten as 

rcA = (DA/DG)'rA~, (6A) 
rTc = (DC/DT)'rcT. (7A) 

When the correct values for DA, DC, DG, and DT are obtained 
from Table 1, Eqs. (6A) and (7A) become Eqs. (1) and (2), re- 
spectively. A simple rearrangement of Eq. (4A) yields 

rc, c = (QC/QG). (rcA + rcG + rcr) 
-- (QA/QG)'rAc - (QT/QG)'rTc. (8A) 

By substituting in Eq. (8A) for rTc using Eq. (7A) we eliminate 
rTc from Eq. (8A). When terms containing rcr are collected, we 
obtain 

r~c = (QC/QG)-(rcA + rca) - (QA/QG)'rAc 
+ [QC/QG - (QT'DC)/(QG-DT)] ' rcr .  (9A) 

Substitution from Table 1 then produces Eq. (3). A virtually 
identical rearrangement of Eq. (3A) followed by a substitutiOrL 
for rGA using Eq. (6A) produces 
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rTA = (QA/QT)'(rAc + rat) -- (QC/QT)'rcA 
+ [QA/QT - (QG'DA)/(QT" DG)]rAo. (10A) 

.Substitution from Table 1 produces Eq. (4). The final equation 
Is obtained by substracting the left side ofEq. (4A) from the right 
Side of Eq. (5A) and the right side of  Eq. (4A) from the left side 
of Eq. (5A). The resulting equation is solved for fro, and Eqs. 

(6A) and (7A) are used to eliminate r6A and rrc from the result 
to obtain 

rxa = ( Q C / Q T ) .  rcA + (QG/QT) ' r6r  - (QA/QT).rAc 
+ [(QG-DA)/(QT.DG) - QA/QT]'rAo 
+ [QC/QT - DC/DT] 'rcr .  (11A) 

Finally, substitution from Table 1 produces Eq. (5). 


