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Summary. The maximum likelihood (ML) meth- 
od for constructing phylogenetic trees (both rooted 
and unrooted trees) from DNA sequence data was 
studied. Although there is some theoretical problem 
in the comparison of ML values conditional for each 
topology, it is possible to make a heuristic argument 
to justify the method. Based on this argument, a 
new algorithm for estimating the ML tree is pre- 
sented. It is shown that under the assumption of  a 
constant rate of  evolution, the ML method and 
UPGMA always give the same rooted tree for the 
case of  three operational taxonomic units (OTUs). 
This also seems to hold approximately for the case 
with four OTUs. When we consider unrooted trees 
with the assumption of  a varying rate of  nucleotide 
substitution, the efficiency of  the ML method in 
obtaining the correct tree is similar to those of  the 
maximum parsimony method and distance meth- 
ods. The ML method was applied to Brown et al.'s 
data, and the tree topology obtained was the same 
as that found by the maximum parsimony method, 
but it was different from those obtained by distance 
methods. 
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Introduction 

The maximum likelihood (ML) method for con- 
structing phylogenetic trees was first studied by Ca- 
valli-Sforza and Edwards (1967) for the case of  gene 
frequency data. Later, Felsenstein (1973, 1981) de- 
veloped ML algorithms for constructing unrooted 
phylogenetic trees from amino acid or nucleotide 
sequence data. Kashyap and Subas (1974) also used 
the ML method for estimating a rooted tree from 
three amino acid sequences, assuming a constant 
rate of  amino acid substitution. In Felsenstein's 
method, the ML value is computed for as many 
topologies as possible, and the topology that shows 
the highest ML value is chosen as the final tree. 
However, because of  computational difficulty, the 
ML method is not used frequently. Furthermore, 
there are some theoretical problems that should be 
clarified before its application. 

One problem is that the likelihood function to be 
used varies from topology to topology, so the ML 
values for different topologies are conditional and 
cannot be compared in the usual statistical sense 
(Nei 1987, pp. 323-325). Felsenstein (1984) tried 
to justify his algorithm by using Bayes' theorem, but 
his argument does not seem to be justified, because 
different likelihood functions require different prob- 
ability spaces and we usually do not know the prior 
probability of  each topology. 

Nevertheless, it is likely that the ML value of  the 
correct topology is generally higher than that of  in- 
correct topologies. I have therefore studied sta- 
tistical properties of  the ML method applied for tree 
construction. As will be shown below, the ML value 
can indeed be used as a criterion for estimating the 
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A Table 1. Five possible nucleotide configurations for the case o f  
three O T U s  

............ i j k 

Tree 1 Tree 2 

B 3" a 

.............. i i ~ T l  
Tree 3 

B 

T 1 
Fig. 1. A Three possible topologies for a rooted tree of  three 
OTUs.  B Trifurcation for a rooted tree of  three OTUs.  

correct  topology and branch lengths. However ,  
computer  s imulat ion has shown that the ML meth-  
od does not  show as good performance as some 
other  t ree-making methods  in obtaining the correct  
tree at least under  some situations considered in this 
study. 

In the following, I shall consider the l ikelihood 
functions for rooted and unrooted  trees separately 
and present a new algori thm for searching for the 
topology with the highest ML value. I shall also 
investigate the efficiency o f  the M L  me thod  in ob- 
taining the correct tree in compar ison with other  
t ree-making methods.  

Probability 
for tree s 

Obs. 
No. a fl 7 no. 1 2 3 

Nucleotide configuration" 

1 A A A ml Ut Ut Ut 
2 A A B m2 p q q 
3 A B A m3 q p q 
4 B A A m4 q q p 
5 A B C m~ U~ U5 U5 

a a, B, and ~ are OTUs  of  Fig. 1, and A, B, and C are nucleotides 
that are different from each other 

b See Fig. I A 

nucleotide configuration for the j - th  topology, m~ is 
the observed n u m b er  o f  the i-th nucleotide config- 
uration,  and C = m!/(m~!m2!ma!m4!ms!), m is the 
total n u m b e r  o f  nucleotides examined and is equal 
to the sum of  m, (i = 1 . . . . .  5). 

To  compute  U~j's, we must  know the pattern o f  
nucleotide substi tut ion and the structure (both the 
topology and branch lengths) o f  the tree under  con- 
sideration. We first consider Jukes and Cantor 's  
(1969) one-parameter  model ,  in which a nucleotide 
changes to any other  one with an equal probability. 
In this model,  the probabil i ty that the nucleotide 
for a given site at t ime t is identical with that  at t ime 
0 is 

Pii(t)  = 1/4 + 3,/4 e x p ( - a / 3 M ) ,  ( 2 a )  

whereas the probabil i ty that the nucleotide i at t ime 
0 changes to nucleotide j at t ime t is 

Rooted Trees  

In the case o f  rooted trees, we assume constancy o f  
evolut ionary rate. Thus, the number  of  parameters  
to be est imated for n operational  taxonomic  units 
(OTUs) is n - 1 for bifurcating rooted trees. 

Three OTUs 

Likel ihood Funct ion 
Let us consider the simplest case, in which three 

O T U s  are involved.  There  are three possible to- 
pologies (see Fig. 1A) and five different nucleotide 
configurations (see Table 1). Here,  a nucleotide con- 
figuration means a particular pattern of  nucleotide 
differences at a site among the three OTUs  involved.  
The likelihood function, L(j), for the j- th topology 
(j = l,  2, and 3) is given by 

L(j) = U~jm~U2FEUaF3U4jm4Us/n5 x C, (1) 

where Uij is the probabil i ty of  obtaining the i-th 

Pij(t) = I/4 - V4 exp(-4/3M), (2b) 

where k is the rate o f  nucleotide substi tut ion per 
nucleotide site. X is assumed to be the same for all 
sites and is constant  over  all branches o f  a phylo- 
genetic tree. 

We now consider the probabil i ty o f  having nu- 
cleotides i, j, and k at a given nucleotide site for 
sequences a, /3, and % respectively, under  the as- 
sumption that tree 1 in Fig. 1 A is the correct tree. 
This probabil i ty is given by 

f ( i '  J '  k)  = y ~  gY{Pyk(tL + t 2 ) ~  [Pxy(tl)Pxi(t2)Pxj(t2)]} ' x 

(3) 

where x and y are ancestral nucleotides (see Fig. 1) 
a n d  gy is the probabil i ty o f  having nucleotide y at 
this site. We assume that the nucleotide frequencies 
in D N A  sequences are at equil ibrium, so that  gy = 
0.25 for all nucleotides in the one-parameter  model.  

Probabilit ies Uil (i = 1 , . . . ,  5) for tree 1 in Fig. 



1A can be obta ined by applying equat ion (3) as fol- 
lows. 

U, l = 4f(i, i, i) = (A + Ba2)/l 6, (4a) 

U2, = 12f(i, i , j )  = (3A - Ba2)/16, (4b) 

Ust = 12f(i, j, i) = (C + Daa)/16, (4c) 

U41 = U31, (4d) 
Us, = 24f(i, j, k) = (C - Da:)/16,  (4e) 

where A = l + 3b 2, B = 6(1 + b)b ~, C --- 3(1 - b2), 
D ~ 6(1 - b)b a, and a = exp( -4Xt t /3 )  and b = 
exp(-4Xta/3),  t~ and t2 are branch lengths shown in 
Fig. 1A. Substituting these quanti t ies into equat ion 
(1), one can evaluate the l ikelihood, L(1), of  tree 1 
under specific t~ and tz values. Computa t ion  o f  L(2) 
and L(3) is done in a similar manner .  

I f  we assume Kimura ' s  (1980) two-parameter  
model,  in which transitions and transversions can 
Occur at different rates, the equations that corre- 
Spond to (2a) and (2b) are somewhat  complicated 
(Li 1986; Saitou and Nei 1986). Consequently,  f(i, j, 
k) in equat ion (3) should be modified,  though the 
main structure o f  the formula is the same. There  are 
many other  substi tution models,  such as Takaha ta  
and Kimura ' s  (1981) four-parameter  model ,  the six- 
parameter  model  (Kimura  1981; Gojobor i  et al. 
1982a), and the equal output  model  (Taj ima and 
Nei 1984). It is straightforward to construct  equa- 
tions corresponding to (2) to (4) for  each model  o f  
nucleotide substitution. 

Analytical solution for the m a x i m u m  likelihood 
(ML) value is not  easy, but  the ML value can be 
obtained numerical ly by changing t~ and t,. Note  
that Ujj's are all functions o f v t  --- Xt~ and v2 --- Xt2. 
Therefore,  the M L  value is obtainable by varying 
v~ and v2 numerically.  As will be discussed later, 
the ML solutions o f  v~ and v2 are close to those 
obtained by the unweighted pair-group me tho d  
(UPGMA;  Sokal and Sneath 1963). Therefore,  one 
may use these values as the initial values o f  v~ and 
V 2 . 

Condi t ion for Obtaining the Correct  Tree  
In the following we derive the condi t ion for ob- 

taining the correct  tree for three OTUs ,  assuming 
that tree 1 o f  Fig. IA is the correct  tree. It  will be 
shown that  this condi t ion is identical to that  o f  
U P G M A .  

Let us assume that v~ ( -  M~) and v2 (= M2) are 
the same for all three topologies in Fig. 1A. Then  
these three topologies become identical if  we neglect 
labels of  the OTUs.  Thus,  U ~  =- Ulz = Uts (= Ut)  
and Us~ = U52 = U53 (--- U~). On the other  hand, 
U2~ --- Usa = U4s (= p), and similarly the remaining 
six U~[s are all the same and are designated as q (see 
Table 1). Therefore,  

263 

L(1)---Ulmlprn2qrn3+rn4U5 m5 x C ,  ( S a )  

L(2) = Utrntpm3qrnz+rn4Us m5 • C ,  (513) 
L(3) = w l m t p m 4 q m z + m 3 W 5  m5 x C.  ( 5 c )  

We take the logari thm of  L(j)s (log-likelihoods) for 
computa t ional  convenience.  For  example,  

log L(1) = mllog Ul + m21og p 

+ (ms + m4)log q + mslog Us 
+ const. (6) 

Let  us now compare  the log-likelihood of  tree 1 with 
those o f  trees 2 and 3. We then have  

log L(1) - log L(2) = (m2 - ms) 
. ( log p - log q), (7a) 

log L(1) - log L(3) = (m2 - ma) 

' ( l o g p - l o g q ) .  (7b) 

From equat ions (4b) and (4c), we can see that  

p - q = Ua~ - U3~ = 362(1 + a)(1 - a)/4. (8) 

Since 0 < a < 1 for t~ > 0, p - q > 0 and log p - 
log q in equations (7a) and (7b) is always positive. 
Thus, L(1) > L(2) and L(1) > L(3) i f  

m2 > m3 and m2 > m4. (9) 

Because this is t rue for any set o f h  and t2, the M L  
value for tree 1 must  be larger than those for trees 
2 and 3 i f  inequalities (9) hold. Therefore,  (9) is the 
condit ion to obtain the correct  tree by the M L  meth-  
od. Interestingly, this condi t ion is the same as that 
for U P G M A  (Saitou and Nei 1986). This  means  
that the topology o f  the U P G M A  tree is always iden- 
tical with that  o f  the m a x i m u m  likelihood tree, 
though the branch lengths (vj and va) may  be dif- 
ferent. 

Numerica l  Examples  
Figure 2A is an example  o f  l ikelihood surfaces 

for three topologies. Here,  tree 1 o f  Fig. 1A is as- 
sumed to be the correct  tree, and v~ = 0.04, v2 = 
0.06, Ull = 0.7746, U21 = 0.1145, U31 = U41 = 
0.0498, and Ust = 0.0113 are used. The  m~ values 
were de termined by using pseudorandom numbers ,  
assuming m = 1000. m~'s thus obta ined were mj = 
789, m2 = 98, ms = 59, m 4 = 50, and ms = 4. Since 
m 2 > m s and m~ > m4 in this example,  tree 1 gives 
the highest m a x i m u m  likelihood value. Numer ica l  
evaluat ion o f  the l ikelihood surface gives a maxi-  
m u m  log-likelihood value o f  - 7 5 6 . 3 6  with r162 = 
0.0259 and % = 0.0606. Figure 2A shows the like- 
l ihood surfaces for three trees. These curves repre- 
sent the ML values for given v~ values (an ML value 
was compu ted  by varying v a for a given vt value). 
It is clear that the m a x i m u m  likelihood estimates 
of  v~ for trees 2 and 3 are bo th  zero (in this case, 
the log-likelihood value o f - 7 6 5 . 3 2  was obta ined 
with "~2 = 0.0776). That  is, the trifurcating tree shown 
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in Fig. 1B gives the m a x i m u m  likelihood solution 
for these two erroneous  topologies. This  can be ex- 
plained by considering the branch length estimates 
by a distance method,  as shown below. 

In the above example,  the number  o f  nucleotide 
differences (n~j) for OTUs  i and j are n~  = m3 + 
m4 + ms = 113, n,v = m2 + m4 -b m5 = 152, and 
ne~ = m2 + m3 + m5 = 161. The  Jukes-Cantor  dis- 
tance (djj) between O T U s  i and j is given by 

dij = _3/4 l o g ( 1 _  4/ __~), (10) 

where m (= 1000) is the total number  ofnucleot ides  
compared.  Therefore,  we have d,a = 0.1225, d,v = 
0.1699, and d~  = 0.1812. I f  we use U P G M A ,  tree 
1 is chosen, and branch length estimates become 
~'~= (d~ + d~)/4 - d J 2  = 0.0265 and r = 
d J 2  = 0.0613. These are close to the ML estimates. 
The log-likelihood corresponding to these estimates 
is - 7 5 6 . 3 8 ,  which is again very  close to the maxi-  
m u m  log-likelihood value. When tree 2 is consid- 
ered, however,  we have to cluster OTUs  a and 3' 
first. I f  we use a me thod  o f  estimating branch lengths 
similar to that o f U P G M A ,  ~'2 = d~ /2  = 0.0850 and 
vt = (d~e + d~0/4 - ~z = - 0 . 0 0 9 1  are obtained. 
Apparent ly  because the estimate for v~ becomes neg- 
ative by the distance method,  the tr ifurcation (v~ = 
0) gives the best fit for tree 2 when the ML me thod  
is used. The same thing can be shown for tree 3. 

Under  a certain condit ion,  however,  two of  the 
three possible trees may  have positive v~ estimates. 
Let  us assume m 2 > m3 i> ma. We then have 

d~ < d,~ < d#~. (11) 

Under  this condit ion,  tree 1 of  Fig. 1A is chosen 
with a posit ive estimate for vt either by U P G M A  
or by the ML method.  Let us further assume that 

d , ,  < (d,e + da,)/2. (12) 

In this case, the distance me thod  gives a positive 
estimate o f  Vl when tree 2 is considered, and the 
M L value for tree 2 is higher than that for the tri- 
furcating tree. An example is given in Fig. 2B, where 
the case o f m  = 100, m~ = 40, mE = 20, m3 = 15, 
m4 = 5, and m5 = 20 is considered. Therefore,  we 
have d~  = 0.5716, d,~ = 0.6872, and de~ = 0.9913. 
Since m2 > m~ > m4, tree 1 o f  Fig. 1A gives the 
highest log-ML value ( -  151.00 with r = 0.1362 
and ~2 = 0.2947), which is higher than that for the 
trifurcating tree (log-likelihood = - 152.90 with "~ = 
0 and 92 = 0.3799). However ,  tree 2 also has an M L  
value (log-likelihood = - 1 5 2 . 7 7  with r = 0.0355 
and ~2 = 0.3566) higher than that  for the trifurcating 
tree. U P G M A  chooses tree 1 with ~ = 0.1338 and 
~2 = 0.2858. But i f  we cluster O T U s  a and 3" (tree 
2), we have ~'~ = 0.0471 and ~r 2 "~- 0.3436. Thus,  the 

estimate for v~ is positive. This  corresponds to the 
case where the M L  value for tree 2 is higher than 
that for the trifurcating tree. For  tree 3, however,  r 1 
by the distance me thod  is negative, and the ML 
value decreases as the absolute value of  v~ increases 
(see Fig. 2B). 

Four O T U s  

Likel ihood Funct ion 
When there are four OTUs,  the situation be- 

comes much more  complicated.  The number  o f  pos- 
sible bifurcating trees is now 15, and 3 o f  them (trees 
3a, 3b, and 3c) are shown in Fig. 3. We have to 
consider 15 nucleotide configurations (see Table 2), 
and the l ikelihood function varies with tree topol-  
ogy. For  example,  the l ikelihood function for tree 
3a is given by 

15 

L(3a) = I I  u i  mi, (13) 
i=~ 

where U i is the probabil i ty of  having the i-th nu- 
cleotide configuration and m, is the observed num-  
ber o f  the i-th configuration. Ui is computed  in a 
manner  similar to the case o f  three O T U s  by using 
a function below. 

f(i, j, k, 1) = ~ gxPxt(tt+t2+t3) 
x 

y~ {Pxy(t l)Pyk(t2 + t3)Pyz(t2) 

[Pzi(ta)P,~j(t3)] t, (14) 
z ) 

where i, j, k, and 1 are the nucleotides observed in 
O TU s  a, ~, y, and 8, respectively, and x, y, and z 
are the nucleotides at the three ancestral nodes (see 
tree 3a o f  Fig. 3). gx is the probabil i ty o f  having 
nucleotide x at this site. We assume that  the nu- 
cleotide frequencies in D N A  sequences are at equi- 
l ibrium, so that  g~ = 0.25 for all four nucleotides. 
Thus, for example,  U~ for tree 3a o f  Fig. 3 becomes 
4f(i, i, i, i). 

Condi t ion for Obtaining the Correct  Tree  
Compar ison  o f  trees 3a to 3c is similar to the case 

o f  three O TU s  discussed in the previous section. 
Although the ML me thod  and U P G M A  m ay  no 
longer give the same topology, these two methods  
are expected to give similar results. Table 2 presents 
the 15 nucleotide configurations. I f  we use the same 
v~, v2, and v3 (vi - Mi, where ~ is the rate o f  nu- 
cleotide substitution) values for trees 3a, 3b, and 3c 
o f  Fig. 3, the probabil i ty o f  obtaining 15 configu- 
rations can be described by 11 probabili t ies (see 
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Two examples o f  l ikel ihood surfaces for three topologies in Fig. 1 A. A The case o f  m, 
= 4.  B T h e  c a s e  o f  m ,  = 4 0 ,  m s  = 2 0 ,  m 3  = 15,  m 4  = 5, a n d  m s  = 2 0 .  

ML 

1 L" -151 

. 0 0  . 1 0  o20 

e/ 

= 7 8 9 ,  m :  = 98 ,  m 3  = 59 ,  m 4  = 5 0 ,  

Table 2), and the differences o f  log-likelihood among 
these three trees can be written as 

L(3a) - L(3b) 
= ( m  3 - -  m a ) ( l o g  a - -  l o g  b )  

+ (m6 -- mT)(log c - log d) 
+ (m9 - m,0)(log e - log f)  
+ ( m u  - m~3)(log g - log h), (15a) 

L(3a) - L(3c) 
= (m3 - ms)(log a - log b) 

+ (m6 - ms)(log c - log d) 
+ (m9 - mtt)(log e - log f) 
+ (mj2 - m~4)(log g - log h), (15b) 

where L(i) is the likelihood for tree i. As in the case 
of  log p - log q for three OTUs,  it can be shown 
that log a - log b, log c - log d, log e - log f, and 
log g - log h are all positive. Therefore, L(3a) > 
L(3b) and L(3a) > L(3c) if 

m3 > m 4  and m3 > ms, 
ma > m 7  and m6 > ms, 

m9 > m~o and m 9 > m l t ,  

m12 > mL3 and m,2 > ml4. (16) 

U P G M A  also chooses tree 3a when these inequal- 
ities hold, because the condit ion o f  obtaining tree 
3a from three trees (3a, 3b, and 3c) by U P G M A  is 

m 3 -1- m 6 + m 9 + m l 2  

> m4 + m 7  q-  m l o  + m ~ 3  a n d  

m s + m6 + m9 + m~2 
> m s  + ms + m~l + m14. (17) 

Unless the amoun t  o f  D N A  divergence is large, 

m3 . . . . .  and m8 (two nucleotides are observed at 
these configurations) are usually larger than m 9 . . . . .  

and ml4 (three nucleotides are observed at these 
configurations). Similarly, probabilities a, b, c, and 
d are usually larger than e, f, g, and h. Therefore, 
inequality (I 6) can be approximated by 

m 3 > m 4 and m 3 > m 5, 
m6 > m7 and m6 > ms, (18) 

and inequality (17) by 

m 3 d- m6 > m4 + m7 and 
m3 + m6 > m5 + ms. (19) 

Thus we expect that  the topology est imated by the 
ML method  is similar to that obtained by U P G M A ,  
as in the case o f  three OTUs.  We note that the 
branch length estimates o f  U P G M A  are least squares 
estimates under  the assumpt ion  of  rate constancy 
for a given tree (Chakraborty 1977). 

Algori thm for Finding the M L  Tree 
There are two levels o f  null or consensus trees 

for the case o f  four OTUs.  One is for quadrifurcat ion 
(level I of  Fig. 3) and the other  is for one trifurcation 
and one bifurcation (level II  o f  Fig. 3). The number  
o f  null trees is 1 for level I, but  10 for level II. Three 
o f  these 10 trees at level II  are shown in Fig. 3. Each 
tree at level II  produces three bifurcating trees (level 
III) when the trifurcation is resolved (e.g., trees 3a, 
3b, and 3c from tree 2a). Therefore, one tree at level 
I II  is related to two trees at level II. For  example, 
tree 3a is related to trees 2a and 2b in Fig. 3. 
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Level I 
a /3 r 

l I 
I 

T r e e  1 

Level II 

a B r 6 a B r 8 r $ a 

T r e e  2a  T r e e  2b T r e e  2e 

a B r 8 a r # 5 B r a 

i j k l 

T r e e  3a T r e e  3b T r e e  3e  

Fig. 3. Three levels o f  rooted trees for four O T U s  

T a b l e  2. Fifteen nucleot ide  configurat ions for the case o f  four 
O T U s  

Nucleot ide  configurat ion a Probabi l i ty  
for tree b 

Obs. 

No. a ~ 3' t~ no. 3a 3b 3c 

1 A A A A m~ U~ U~ U~ 

2 A A A B m 2 U2 U2 U2 
3 A A B A m3 a b b 
4 A B A A m.  b a b 

5 B A A A m~ b b a 
6 A A B B m6 c d d 
7 A B A B m7 d c d 
8 A B B A m8 d d c 

9 A A B C m 9 e f f 
10 A B A C m~0 f e f 
I I  B A A C m~t f f e 
12 B C A A m~2 g h h 

13 B A C A m~3 h g h 
14 A B C A ml4 h h g 

15 A B C D m~5 U~5 Ul5 Ui5 

a,/~, % and 6 are O T U s  of  Fig. 3, and  A, B, C, and  D are different 
nucleot ides  

b See Fig. 3 for the des ignat ion  of  tree topologies  

The two trees (2a and  2b) related to tree 3a at 
level I I I  can be used as null trees to test the signif- 
icance of  tj and  t2 o f  tree 3a, respectively.  I f  t~ is 
not  significantly greater than  zero, we assume that  
tree 2a is the correct one, and  proceed to test the 
significance of  t2 with tree 1 as the null tree. In 
general, there are n - 1 levels o f  trees with n OTUs ,  
and  we can successively test the significance o f  in- 
terior branches  o f  a tree. 

In the above,  we implici t ly assumed  that  the tree 
topology (one at level III)  is known. However ,  the 
reverse process (descending f rom level I) m a y  be 
used to find the final topology. This  a lgor i thm is 
reminiscent  o f  the neighbor- joining m e t h o d  (Saitou 
and  Nei 1987). Let us explain the procedure  by  using 
Fig. 3. First the M L  value for the tree at level I (tree 
1) is computed .  The  M L  values for all 10 trees at 
level II  are then c o m p u t e d  and they are com pa re d  
with each other. We choose the tree with the highest 
M L  value a m o n g  these 10 trees. Suppose it is tree 
2a. We then compu te  the M L  values for trees 3a, 
3b, and  3c, and the tree with. the highest M L  value 
is chosen as the final tree. 

The  rat ionale for this a lgor i thm is as follows. Sup- 
pose that  tree 3a is the final solution with the highest 
condit ional  M L  value. Trees 2a and 2b are then 
expected to have  higher M L  values than that  o f  tree 
1 or than those of  other  trees at level II. Though  it 
is difficult to p rove  this s ta tement  analytically, nu-  
merical  computa t ions  (not shown) do give the ex- 
pected pattern.  Interestingly, seven topologies that  

are not  shown in Fig. 3 a lmos t  always have  lower 
M L  values than  that  o f  tree I. This  p roper ty  is s im- 
ilar to that  o f  the case of  three O T U s .  Note  that  tree 
2c m a y  have  a higher M L  value than that  o f  tree 1. 
Interestingly, this tree and  tree 2b become  the same 
unrooted  tree i f  we ignore the root.  In any case, 
ei ther tree 2a or 2b m a y  show the highest condit ional  
M L  value, depending on the obse rved  data. The  
compar i sons  at level I I I  are then restricted to trees 
3a, 3b, and 3c. In this way, we m a y  be able to find 
the tree with the highest condit ional M L  value. When  
the n u m b e r  o f  O T U s  is large, this a lgor i thm requires 
much  less computa t iona l  t ime c o m p a r e d  with the 
ordinary  a lgor i thm in which as m a n y  bifurcating 
trees as possible are examined.  

Unrooted Trees 

The procedure  o f  the M L  m e t h o d  for unroo ted  trees 
is somewhat  different f rom that  for roo ted  trees, in 
which constancy o f  evolu t ionary  rate is assumed.  
Following Felsenstein (1981), we assume  that  the 
rate of  nucleotide subst i tut ion varies f rom branch  
to branch,  so that  we need one p a r a m e t e r  for each 
branch  (vi - Xiti, where Xi and ti are the values o f  
and  t f o r  the i-th branch,  respectively).  The  n u m b e r  
of  pa ramete rs  to be es t imated  for n O T U s  is n - 1 
for bifurcating rooted trees, bu t  we need 2n - 3 
pa ramete r s  for bifurcat ing unroo ted  trees. Because 
there is only one topology for the case o f  three OTUs ,  
we start  f rom the case for four  OTUs .  



Four OTUs 

Likelihood Function 
There are three possible unrooted trees for the 

case o f  four OTUs (see Fig. 4A), and we have to 
consider 15 nucleotide configurations as in the case 
of  rooted trees. The likelihood function of  tree j (j = 
i, 2, and 3) o f  Fig. 4A is 

15 

L(j) = 1"I Uij mi, (20) 
i=l 

where Uij is the probability for the i-th nucleotide 
configuration for the j- th tree and mi is the observed 
number  o f  the i-th nucleotide configuration (see Ta- 
ble 2). These Uij's are computed in the same way as 

case o f  rooted trees. For example, the 
for tree 1 of  Fig. 4A (U~ - U . )  are 

those for the 
probabilities 
given by 

Ul = 4h(i, i, i, i), 

U 2 =  12h(i, i, i, j), (i v~j) 
U 3 =  12h(i, i, j, i), ( i : ~ j )  
U 4 =  12h(i, j, i, i), (i ~ j )  
U s =  12h(j, i, i, i), (i 4: j )  
U 6 =  12h(i, i, j, j), ( i ~ : j )  
U 7 =  12h(i, j, i, j), ( i §  
U s =  12h(i, j, j, i), ( iv~j )  
U 9 = 2 4 h ( i , i , j , k ) ,  (i :~j  v~ k) 

U r n =  24h(i, j, i, k), (i :~j  v~ k) 
Uzl = 24h(j, i, i, k), (i :~j  4: k) 

U~2= 24h(j, k, i, i), (i :~j  4: k) 
U ~ a = 2 4 h ( j , i , k , i ) ,  (i ~ j  § k) 

U ~ 4 = 2 4 h ( i , j , k , i ) ,  ( i ~ j  :~ k) 

U t s = 2 4 h ( i , j , k ,  1), (i §  4: k :/: 1) 

where 

h(i, j, k, 1) = ~ g, 
x 

�9 {Pxk(Vs)Pxt (V4)  

(21) 

(22) 

Here, i, j, k, and 1 are the nucleotides at OTUs 1, 
2, 3, and 4 of  tree 1 of  Fig. 4A, respectively, and 
the interior node (nucleotide x) that connects OTUs 
3 and 4 is assumed to be the ancestor. In general, 
however, any point can become the ancestral one. 
This is the so-called pulley principle (Felsenstein 
1981). gx is the probability of  having nucleotide x 
at a site, and we assume it to be 0.25 for all four 
nucleotides as before, vi (i = 1, 2, 3, and 4) is the 
branch length between OTU i and its nearest interior 
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node (either x or y), and v5 is the length o f  the 
interior branch. 

Computat ional  Procedure 
We first compute  the M L  value for the quadri- 

furcating tree (Fig. 4B), assuming v5 = 0. This tree 
corresponds to the tree at level I. Branch length 
estimates obtained by the neighbor-joining method  
(Saitou and Nei 1987) may  be used as the initial 
values of  vi's (i = 1, 2, 3, and 4). That  is, 

4 
= dij - dj , ( 2 3 )  

jffil j<k  

It can be shown that  9i's in equation (23) give the 
Ieast squares estimate for the quadrifurcating tree 
of  Fig. 4B (see Saitou and Nei 1987). After the max- 
imum likelihood solution is numerically deter- 
mined for the quadrifurcating tree, three trees in 
Fig. 4A are examined if  a positive v5 value can 
increase the ML value. An example of  the compu- 
tation is shown in Fig. 5. This is a result based on 
one replication of  simulation. The parameters used 
arev j  = 0.1, v2 = 0.4, v3 = 0.2, v4 = 0.3, v5 = 0.05, 
and 500 nucleotides are compared.  The Jukes-Can- 
tot  model of  nucleotide substitution is used both 
for generating sequence data and for the ML esti- 
mation. Using tree 1 as the model  tree, the following 
15 mi values are obtained for i = 1 . . . . .  and 15: 
196, 67, 40, 77, 22, 12, 5, 8, 11, 21, 10, 12, 3, 15, 
and 1. Tree 1 has the highest M L  value (log-likeli- 
hood is - 1004.2) when "r = 0.026 (see Fig. 5). The 
estimates of  other branch lengths are (q = 0.110, 
~2 = 0.361, v3 = 0.188, and (~4 = 0.303. On the other 
hand, the same topology is obtained when we use 
the neighbor-joining method,  with ('t = 0.101, r = 
0.366, "~3 = 0.179, "~4 = 0.316, and % = 0.033, which 
are close to the estimates obtained by the ML meth- 
od. The corresponding log-likelihood value for these 
estimates is - 1004.5, slightly lower than that o f  the 
M L  estimate. 

The m a x i m u m  likelihood value for the other two 
unrooted trees is obtained for the case with no in- 
terior branch (the starlike tree in Fig. 4B). This sit- 
uation is similar to that of  Fig. 2 for the case of  
rooted, three OTUs. As shown in the previous sec- 
tion, however, other tree topologies may have M L  
values with a positive Vs value. 

Five OTUs 

Likelihood Function 
As in the case of  rooted trees for four OTUs,  there 

are 15 unrooted trees for five OTUs. The number  
of  possible nucleotide configurations is now 51 (Sai- 
t0u and Nei 1986), and the likelihood function for 
a tree is 
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A 
1 4 1 4 1 3 >--< >--< 
2 3 3 2 4 2 

T r e e  1 Tree 2 T r e e  3 

B 
1 4 

X 
2 3 

Fig. 4. A Three possible topologies for an unrooted tree o f  four 
OTUs.  B Starlike tree for four OTUs.  

51 

L = I I  u i  mi, (24) 
i = l  

where Ui is the probabil i ty  for observing the i-th 
nucleotide configuration and m~ is the observed 
number  o f  the i-th configuration. U~'s are deter- 
mined in the same way as that for the case o f  four 
O TU s  by using the following probability: 

h(i, j, k, 1, m) = ~ gx 
x 

, , ] / ,  
(25) 

where i, j, k, 1, and m are nucleotides at O T U s  1, 
. . . .  5, respectively, and x, y, and z are nucleotides 
at three interior nodes (see Fig. 6). gx = 0.25 as 
before. 

Algorithm for Finding the ML Tree 
As in the case o f  rooted  trees, we first compute  

the M L  estimate for the starlike tree (level I o f  Fig. 
7) by setting the lengths o f  two interior branches to 
zero. The initial values for vi's are computed  f rom 
the distance matr ix  as 

V i =  ~ dij - 3/4 Z djk . 
j = l  j < k  

(26) 

Ten different trees are then considered, and the ML 
value for each topology is computed.  These trees 
have one tr ifurcation and one bifurcation, and they 
correspond to level II trees (among them, three trees 
are shown in Fig. 7). The  ML estimates o f  %'s (i = 
1 . . . . .  5) for the starlike tree are used as the initial 
values. F rom each tree at level II, three trees are 
produced if  the tr ifurcation is resolved (level liD. 

ML 

-I 005- 
Quadrifur--~ ~ ~  
cation 

I 

~ - 1 0 1 0 ,  
Tree 2 

g 

- 1 0 1 5  

.00 .02 .04 .06 .08 .I0 

Fig. 5. An example o f  l ikelihood surfaces for three unrooted 
trees o f  four OTUs  

For example,  trees 3a, 3b, and 3c are produced from 
tree 2a in Fig. 7. The  ML estimates o f  six branch 
lengths for the case o f  level II, which is chosen by 
the criterion o f  the highest ML value, are used as 
the initial values for the computa t ion  o f  the ML 
est imation for a tree at level IlL In this case, the 
seven-dimensional  l ikelihood surface is numerical ly  
examined for three possible trees. This  new algo- 
r i thm can be extended to any n u m b er  o f  OTUs,  as 
in the case for rooted trees. 

Numerica l  Examples 
Brown et al. (1982) de te rmined  sequences o f  895 

nucleotides o f  a port ion ofmi tochondr ia l  D N A  from 
five homino id  species (humans,  chimpanzees,  go- 
rillas, orangutans, and gibbons). We used these data 
as the example  for constructing an unrooted tree o f  
five O TU s  by the m a x i m u m  likelihood me thod  de- 
veloped above.  Out  o f  51 possible configurations, 
28 configurations were observed in Brown et al.'s 
(1982) data, and they are listed in Table 3. 

The  estimates of  vi's obta ined by the distance 
me thod  for the level I tree (tree a o f  Fig. 8) are 
0.0522, 0.0617, 0.0653, 0.1144, and 0.1694 for the 
branch leading to humans ,  chimpanzees,  gorillas, 
orangutans, and gibbons, respectively. Correspond-  
ing branch length estimates by the M L  method  are 
0.0470, 0.0617, 0.0719, 0.1373, and 0.1694, re- 
spectively. The m a x i m u m  log-likelihood value is 
- 1 4 0 9 .  Among  10 trees at level II, tree b, which 
clusters orangutans and gibbons, is selected because 
this tree has the highest log-likelihood value ( -  13 5 9). 

We now restrict the search o f  tree topology at 
level III to the three trees in which orangutans and 
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1 5 

?%, 
4 2 

T r e e  2c 

gibbons are clusterd. Tree el,  which clusters chim- 
Panzees and gorillas, is selected because it has the 
highest log-likelihood value ( -  1346) among the three 
trees. The maximum parsimony method chooses 
the same topology (Brown et al. 1982). The other 
two trees showed ML values of  -1347 (tree c2; 
humans and chimpanzees are clustered) and - 1354 
(tree c3; humans and gorillas are clustered). If  we 
apply UPGMA, tree c2 is chosen (Nei et al. 1985). 
Fitch and Margoliash's (1967) method and the dis- 
tanee Wagner method (Farris 1972) also choose tree 
c2 (Nei 1987, pp. 298-308); so do the transformed 
distance method (Farris 1977; Klotz and Blanken 
1981; Li 1981) and the neighbor-joining method 
(Saitou and Nei 1987). The ML value for this tree 
is very close to the highest one (tree c 1). Estimates 
of branch lengths for tree c2 are similar to those 
obtained by Fitch and Margoliash's (1967) method 
(see Nei 1987, p. 301). Note that Fitch and Mar- 
goliash's method gives the least squares estimate for 
a tree of five OTUs (N. Saitou, unpublished result). 
Hasegawa et al. (1985) applied J. Felsenstein's pro- 
gram [program DNAML in PHYLIP, based on Fel- 
senstein (1981)] to Brown et al.'s (1982) data, and 
they found the highest ML value for tree c2. This 
occurred probably because they discarded transi- 
tional changes, and two other sequences (bovine and 
mouse) were included in their analysis. 

Efficiency of the Maximum Likelihood Method  

In this paper I studied the mathematical properties 
of the maximum likelihood method to some extent. 
However, the efficiency of a tree-making method 
can only be studied by simulation. Therefore, I pre- 
sent some results of computer simulations in which 
the ML method for unrooted trees is compared with 
other tree-making methods. 

For trees of four OTUs, the efficiency of the ML 
method was compared with that of two othcr tree- 

L ~ v e l  

i 5 1 5 

2 3 4 2 4 3 

1 4 

?v-( 
2 5 3 

T r e e  3a  T r e e  3b T r e e  3e 

Fig .  7. T h r e e  leve ls  o f  u n r o o t e d  t rees  for  f ive O T U s  

making methods. One is the maximum parsimony 
method (Eck and Dayhoff 1966; Fitch 1977). Note 
that the compatibility method (Le Quesne 1969) and 
the maximum parsimony method are identical for 
four OTUs (Saitou and Nei 1986). The other tree- 
making method used is a distance method. Saitou 
and Nei (1986) showed that the condition to obtain 
the correct tree for four OTUs is the same for the 
distance Wagner method (Farris 1972), modified 
Farris methods (Tateno et al. 1982; Faith 1985), 
and transformed distance methods (Farris 1977; 
Klotz and Blanken 1981; Li 1981). The same con- 
dition also holds for neighborliness methods (Sat- 
tath and Tversky 1977; Fitch 1981) and the neigh- 
bor-joining method (Saitou and Nei 1987). For tree 
1 of  Fig. 4A, this condition is given by 

d12 q- d34 < d13 d- d24 , 
d12 + d34 < dla q- d23- (27) 

Both the proportion of  different nucleotides and the 
Jukes-Cantor distances are used for d 0. 

Table 4 shows the result when the model tree A 
of Fig. 9 is used. This model tree is the same as that 
of Fig. 3A of Saitou and Nei ( 1986). A constant rate 
of evolution is assumed in this model tree. Five 
hundred nucleotides were compared and 100 rep- 
lications were obtained. For the distance method, 
the results for the proportion of different nucleotides 
are shown, since they performed slightly better than 
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Table 3. Observed nucleotide configurations of hominoid mi- 
tochondrial DNA data 

No. of 
nucleo- 

Configuration" tides 

No. Hu  Ch Go  Or  Gi observed 

1 A A A A A 613 
2 B A A A A 16 
3 A B A A A 19 
4 A A B A A 22 
5 A A A B A 54 
6 A A A A B 64 
7 A A A B B 29 
8 A A B B B i0  
9 A A B A B 8 

10 A A B B A 7 
11 A B A A B 4 
12 A B A B A 2 
13 B A B A A 5 
14 A B B A A 10 
15 A B B A B 2 
16 B A A A B 4 
17 A A A B C 2 
18 A A B A C 3 
19 A B A A C 6 
20 A B A C A 1 
21 B A A A C 3 
22 B A A C A 1 
23 A A C B B 3 
24 A B A B C 2 
25 A B A C B 2 
26 A B B A C 1 
27 A B B C A 1 
28 A A B C D 1 

Sum: 895 

" Hu, human; Ch, chimpanzee; Go, gorilla; Or, orangutan; Gi, 
gibbon�9 A, B, C, and D are different nucleotides. Data from 
Brown et al. (1982) 

those for the Jukes-Cantor distance (see also Saitou 
and Nei 1987). Following Saitou and Nei (1986), 
both the one-parameter model (Jukes and Cantor 
1969) and the two-parameter model (Kimura 1980) 
were considered. For the latter model, transitions 
were assumed to occur 10 times more often than 
transversions. The percentages of  obtaining the true 
tree for the maximum parsimony (MP) method and 
the distance method (OD) are comparable to the 
result of Saitou and Nei (1986). Compared to these 
two methods, the ML method is not so efficient in 
obtaining the correct topology when the one-param- 
eter model is used. This difference in efficiency is 
mainly attributable to pattern 2, in which only the 
ML method failed to reconstruct the correct topol- 
ogy [see Table 4(a)]. On the other hand, all three 
methods give similar results when the two-param- 
eter model is used. 

From the results shown in Table 4, it is possible 
to consider the relationship between the three tree- 
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Fig, 8, Three steps to obtain the maximum likelihood tree (cl)  
for Brown et al.'s (1982) data. H, humans', C, chimpanzees, G, 
gorillas; O, orangutans; B, gibbons. Branch lengths are not pro- 
portional to evolutionary distances. 

Table 4. Comparison of three tree-making methods on the 
probability of obtaining the correct tree of Fig. 9A 

(a) One-parameter model (b) Two-parameter model 

Pattern Obs. Pattern Obs.  
no. M P  O D  M L  no. no. M P  O D  M L  no. 

1 T T T 58 1 T T T 56 
2 T T F 9 2 T T F 1 
3 T F T 2 3 T F T 1 
4 F T T 3 4 F T T 0 
5 T F F 1 5 T F F 0 
6 F T F 6 6 F T F 4 
7 F F T 3 7 F F T 4 
8 F F F 18 8 F F F 34 

% t r u e  70 76 66 % t r u e  58 61 61 

MP,  the maximum parsimony method; OD, distance method 
using the nucleotide difference; ML, the maximum likelihood 
method; T, the true tree is obtained; F, a false tree is obtained 

making methods in terms of  their efficiency in re- 
constructing correct topologies, as follows. Patterns 
2 and 7 suggest the closeness between the maximum 
parsimony method (MP) and the distance method 
(OD), because only the ML method failed (pattern 
2) or succeeded (pattern 7) in reconstructing the 
correct topology among three methods. Similarly, 
patterns 3 and 6 suggest the closeness between the 
MP method and the ML method, and patterns 4 
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Fig. 9. Two model trees (A and B) used for simulations. Branch 
lengths are not proportional to evolutionary distances. 

and 5 for the distance me thod  (OD) and the ML 
method.  I f  we compare  the frequencies o f  observing 
these three types, patterns 4 and 5 were less frequent 
than others. This suggests that the ML me thod  is 
more close to the ma x imum parsimony method  than 
to the distance method.  Note  also that  the M L  meth-  
od chose the same topology as that found by the 
m a x i m u m  pars imony me thod  when they were ap- 
plied to Brown et al.'s (1982) data (see Numerica l  
Examples). 

Felsenstein (1978) showed that  under  a certain 
condition, the m a x i m u m  pars imony or compat i -  
bility me thod  is posit ively misleading for finding 
the correct topology for the case o f  four OTUs.  Fig- 
ure 9B shows such an example  in which branch 
lengths o f  pairing OTUs  are drastically different (vt = 
v4 -- 1.0, v2 = v3 = v5 = 0.1) and the constancy o f  
evolut ionary rate no longer holds. Assuming the 
one-parameter  model,  the probabilit ies o f  observing 
the three phylogenetically informat ive  configura- 
tions o f  nucleotides are computed,  and these are 
0.0292 for [i, i, j , j ] ,  0.0159 for [i,j, i , j] ,  and 0.0773 
for [i, j, j, i]. Here i and j are different nucleotides, 
and [A, B, C, D] represents the nucleotide config- 
uration for OTUs  1, 2, 3, and 4, respectively. Since 
the second configuration has the highest probability,  
we expect to obtain an erroneous tree (OTUs 1 and 
4 are clustered) by applying the m a x i m u m  parsi- 
mony  or compatibi l i ty  method.  

Assuming the tree o f  Fig. 9B as the model  tree, 
a computer  simulation was done as before, and the 
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m a x i m u m  pars imony (MP) me thod  and the dis- 
tance me thod  for the propor t ion  o f  different nu- 
cleotides (OD) and for the Jukes-Cantor  distances 
(ED) are compared  with the M L  m e th o d  (see Table  
5). Five hundred  nucleotides were compared  and 
100 replications were obta ined assuming the one- 
parameter  model.  As expected, the MP  me thod  al- 
ways chose the tree in which O T U s  1 and 4 are 
clustered, instead o f  the correct  tree in which O T U s  
1 and 2 are clustered. Interestingly, the distance 
me thod  also chose the same erroneous  tree as in the 
m a x i m u m  pars imony me thod  in all cases when the 
propor t ions  o f  different nucleotides (OD) were used. 
When  the Jukes-Cantor  correct ion (ED) was made,  
however,  the distance m e th o d  produced the correct  
tree with a frequency o f  74%. This  clear-cut differ- 
ence between two distances occurred apparent ly  be- 
cause the former  (OD) is metr ic  and behaves like 
the m a x i m u m  pars imony score, whereas the expec- 
tat ion o f  the Jukes-Cantor  distance (ED) is propor-  
tional to the branch lengths o f  the model  tree. 

The M L  me thod  chose the correct  tree with a 
frequency o f  only 43%. The  quadrifurcat ion often 
gave the highest l ikelihood. Although there are six 
cases in which only the M L  m e th o d  chose the true 
tree (pattern 3), cases in which only the distance 
me thod  with the corrected distance (ED) ou tnum-  
bered this (pattern 2). However ,  the estimates o f  
branch lengths by the ML me thod  were often close 
to the true values when the true phylogeny was ob- 
tained, while the distance m e th o d  somet imes  gave 
negative estimates o f  branch lengths (data not  
shown). Therefore,  the M L  me thod  may  be useful 
for estimating the branch lengths when the topology 
is known. Hasegawa and Yano (1984) did a similar 
study, and they also found that the ML me thod  can 
obtain the correct topology even when the maxi- 
m u m  pars imony me thod  is posit ively misleading, 
though they did not  consider any distance method.  

Discussion 

Hixson and Brown (1986) sequenced about  900 nu- 
cleotides o f  a small r R N A  gene region for c o m m o n  
chimpanzees,  pygmy chimpanzees,  gorillas, and 
orangutans. We applied our  new algori thm o f  the 
ML method  for unrooted  trees to this data set, in- 
cluding the corresponding h u m an  sequence by An- 
derson et al. (1981). The m a x i m u m  log-likelihood 
value for the star tree was - 6 3 7 . 9 ,  and the clustering 
o f  c o m m o n  and pygmy chimpanzees  was chosen at 
the next  step with the log-likelihood of  - 5 9 1 . 1  out  
o f  10 possibilities. Thus, the search o f  the ML tree 
is restricted to the following three topologies. The  
log-likelihood was - 5 8 6 . 0  for tree 1 (chimpanzees 
and gorillas clustered), - 5 8 4 . 0  for tree 2 (humans  
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Table 5. Comparison of three tree-making methods on the 
probability of obtaining the correct tree of Fig. 9B 

Pattern Obs. 
no. MP OD ML ED no. 

1 F F T T 37 
2 F F F T 37 
3 F F T F 6 
4 F F F F 20 

% true 0 0 43 74 

ML, the maximum likelihood method; MP, the maximum par- 
simony method; OD, distance method using the nucleotide dif- 
ference; ED, distance method using the Jukes-Cantor distance; 
T, the true tree is obtained; F, a false tree is obtained 

and  ch impanzees  clustered), and - 5 8 2 . 9  for tree 3 
(humans  and  gorillas clustered)�9 I f  we consider  the 
branching pat tern  o f  humans ,  chimpanzees ,  and go- 
rillas only, trees 1, 2, and 3 cor respond to trees c l ,  
c2, and c3 o f  Fig. 8, respectively.  In any case, the 
final tree becomes  as given in Fig. 10A, where hu- 
mans  and  gorillas are clustered. In this tree, the root  
is given by assuming that  g ibbons diverged first 
a m o n g  the five species in hom i no i d  evolution�9 
Branch lengths in parentheses  are obta ined  by  av-  
eraging es t imated  (patristic) distances between gib- 
bons  and  the four  remain ing  species. In this case, a 
rough constancy o f  evolu t ionary  rate is assumed.  

When  we apply  other  t ree-making  me thods  to the 
same set o f  data, tree 2 or tree 3 is chosen, depending 
on the m e t h o d  used. U P G M A  and Fi tch-Margo-  
l iash's me thod  choose tree 2, whereas  the trans-  
fo rmed  distance m e t h o d  and the neighbor- joining 
me thod  find tree 3 as the best  tree. Figure 10B shows 
the tree reconstructed by the neighbor-j  oining meth-  
od. Most  o f  the branch length es t imates  are quite 
s imilar  to those o f  the M L  m e t hod  (Fig. 10A). The  
location o f  the root  o f  this tree is ob ta ined  in the 
same  way as in Fig. 10A. On the other  hand,  the 
distance Wagner  m e t h o d  chooses tree 2 when the 
propor t ion  o f  different nucleotides (OD) is used, but 
tree 3 is chosen when  the Jukes -Can to r  distance 
(ED) is used. Finally, the m a x i m u m  pa r s imony  
me thod  finds bo th  trees 2 and 3 as equally parsi-  
mon ious  (Hixson and  Brown 1986). These incon- 
sistent results indicate that  Hixson  and  Brown 's  
(1986) mi tochondr ia l  D N A  data  are not  sufficient 
to de te rmine  the branching  order  a m o n g  humans ,  
chimpanzees ,  and gorillas. This  seems to be consis- 
tent  with the s imulat ion result o f  Saitou and  Nei  
(1986). Interestingly, however ,  tree 1, in which 
ch impanzees  and gorillas are clustered, is never  cho- 
sen by any method ,  and  the log-l ikelihood of  this 
tree is the smallest  a m o n g  the three trees (see above).  
Thus,  the data of  Hixson  and Brown (1986) are not  
favorable  for tree 1, and do not  suppor t  the argu- 
men t  based on a shared one-base  deletion between 
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Fig. 10. Two phylogenetic trees reconstructed from Hixson and 
Brown's (1986) data. Branch lengths are proportional to evolu- 
tionary distances. A Tree obtained by the maximum likelihood 
method (new algorithm). B Tree obtained by the neighbor-joining 
method of Saitou and Nei (1987). 

ch impanzees  and gorillas (Hixson and Brown 1986). 
Because the nucleotide sequences studied are rela- 
t ively short, it is difficult to der ive  a definite con-  
clusion. 

In the present  study, I examined  the statistical 
propert ies  o f  the m a x i m u m  likel ihood me thod  and 
proposed  a new algorithm�9 I also conducted  com-  
puter  s imulat ions  to s tudy the relat ive efficiency o f  
this me thod  c o m p a r e d  with other  t ree -making  
methods .  Although the M L  m e t h o d  was shown not  
to be as efficient as some distance methods ,  this 
conclusion is based on the result for unrooted  trees 
for four OTUs .  To  know the general pe r fo rmance  
o f  the M L  method ,  a more  extensive s tudy is nec- 
essary. I t  should also be noted  that  the present  s tudy 
is conducted by using the one-  and two-pa rame te r  
models  of  nucleotide substi tut ion.  The  actual  pat-  
tern o f  nucleotide subst i tut ion is m u c h  m o r e  com-  
plicated than  those models  and varies  f rom gene to 
gene (Gojobor i  et al. 1982b; Li et al. 1984). I t  is 
therefore impor t an t  to s tudy how robust  each tree- 
making  m e t h o d  is for var ious  pat terns  o f  nucleotide 
substitution�9 Further,  the rate o f  nucleotide substi-  
tut ion is a ssumed  to be equal  for any nucleotide site 
in the usual formula t ion  o f  the m a x i m u m  likelihood 
method,  whereas the rate varies f rom site to site in 
reality. This  rate var ia t ion m a y  be a serious draw-  
back o f  the M L  method.  Clearly, a more  detai led 
s tudy is necessary. 
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