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S“mmary. 58 Ribosomal RNA sequences have
Proven to be useful tools in the study of evolutionary
relati_OHShips among species. However, in reviewing
Previously published trees constructed from align-
rr?ems of metazoan 5S RNAs, we noticed several
IsCrepancies with classical evolutionary views. One
Such discrepancy concerned the phylum Arthropo-
4, where a crustacean, Artemia salina, seemed to
© evolutionarily very remote from four insects. The
ca}‘s{e of this phenomenon was studied by deter-
Mining the 5§ RNA sequences of additional arthro-
Pods, viz, Limulus polyphemus, Eurypelma califor-
"ica, Lasiodora erythrocythara, Areneus diadematus,
aphniq magna, Ligia oceanica, Homarus gam-
m?" us, Cancer pagurus, Spirobolus sp., Locusta
Migratoria, and Tenebrio molitor. A tree was then
SOnstructed from a dissimilarity matrix by a clus-
tenng method known as weighted pair grouping.
ralt)ph_(‘.ation of a correction for unequal evolutionary
€S Improved the apparent evolutionary position
: ﬂ.\e arthropods and of some other metazoan
clgecles. However, neither the uncorrected nor the
CO"eCted tree permitted a completely acceptable re-
Ostruction of metazoan evolution. We presume
}gat this phenomenon is due to random deviations
the evolutionary rate of 5S RNA.
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Introduction

The 58S ribosomal RNA sequences of about 350
organisms have been published (Erdmann and Wol-
ters 1986). After alignment of these primary struc-
tures, one can construct phylogenetic trees. These
phenograms have proven useful in the study of evo-
lutionary relationships among species (De Wachter
et al. 1985 and references cited therein; Vanden-
berghe et al. 1985; Willekens et al. 1986a,b). How-
ever, in the Metazoa, several discrepancies between
the resulting trees and paleontological, morpholog-
ical, and embryological views have been noticed
(Huysmans et al. 1983). The most striking discrep-
ancy manifests itself in the phylum Arthropoda. A
crustacean, Artemia salina, appears to be evolu-
tionarily very remote from four insects, viz. Acyr-
thosiphon magnoliae, Phylosamia cynthia-ricini,
Bombyx mori and Drosophila melanogaster. In-
deed, Artemia salina seems to branch off before the
divergence of vertebrates and invertebrates.

This phenomenon can be explained in several
ways: Possibly, 5S rRNA is too small a molecule to
allow reliable reconstruction of the evolutionary re-
lationships among species, the relative standard de-
viation of the number of mutations accumulated
per unit of time being too large. This could result
in a tree showing false relationships among species.
Another possibility is that the apparent evolution-
ary gap within the arthropods is due to an artefact
of the clustering procedure. In this case, inclusion
of additional arthropod sequences might alter the
clustering order and consequently improve the to-
pology of the tree. A third possibility is that the
apparent evolutionary gap between Artemia salina
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and insects reflects a biological phenomenon such
as more rapid accumulation of mutations in crus-
taceans than in insects. Species with fast evolution-
ary clocks seem to branch off early in evolutionary-
tree reconstructions. The apparent evolutionary dis-
tance between Artemia salina and insects also might
be related to a polyphyletic origin of the arthropods.
Certain paleontologists advocate a monophyletic
origin of arthropods, i.e., that all arthropods have
descended from a hypothetical ancestor that itself
was an arthropod (Waterlot 1953). Other authors
advocate a polyphyletic origin for the arthropods,
i.e., that features that are typical of this phylum were
acquired independently in different evolutionary
lines arising from segmented worms. According to
Manton (1969) and Stermer (1977), at least three
such groups can be distinguished. The first group
consists of the Myriapoda, Onychophora, and In-
secta. The second group is represented by the Chelic-
erata (Merostomata and Arachnida) and the extinct
Trilobita. The Crustacea form the third group.

To test these hypotheses we determined the 5S
RNA sequences of 11 more arthropods of various
classes. Phylogenetic trees containing these addi-
tional sequences were then constructed in several
ways.

Materials and Methods
Materials

The horseshoe crab, Limulus polyphemus (class Merostomata),
and the bird spider Eurypelma californica were obtained from
the Carolina Biological Supply Company (Burlington, NC, USA).
Another bird spider, Lasiodora erythrocythara, was kindly do-
nated by Dr. S. Loser (Lobbecke Museum und Aquarium Na-
turkundliches Heimat Museum, Diisseldorf, FRG). The spider
Areneus diadematus was collected in the field. The crustacean
species Daphnia magna, Homarus gammarus, and Cancer pa-
gurus were bought in a fish and aquarium shop. Ligia oceanica
was collected in the tidal zone of the seashore at Wimereux
(France). A Diplopoda species, identified tentatively as Spiro-
bolus sp., was also supplied by Dr. Loser. The insect species
Tenebrio molitor and Locusta migratoria were obtained from the
Antwerp Zoo (Belgium).

Methods

Isolation and Sequencing of 55 RNA. The extraction of nucleic
acids from homogenized whole tissue or, in the case of C. pagurus
and H. gammarus, muscle tissue was done according to Bartnik
et al. (1981). The purification of 58 RNA was done as described
previously (Fang et al. 1982). After 3'-terminal labeling of the
molecule with [5'-3?P]pCp the sequence was determined by par-
tial chemical degradation (Peattic 1979), The 5'-terminal nu-
cleotide was identified as a nucleoside bisphosphate after total
alkaline hydrolysis of unlabeled 58 RNA and high-pressure liquid
chromatography (Vandenberghe and De Wachter 1982).

Construction of Phylogenetic Trees. The phylogenetic trees were
constructed by a weighted pairwise grouping method using arith-
metic averages (WPGMA), starting from a dissimilarity matrix
(Sneath and Sokal 1973). The dissimilarity values (D;) were cal-
culated and corrected for multiple and back mutations as de-
scribed previously (Willekens et al. 1986b). Figure 3 represents
such a tree. Because the evolutionary rate is not constant in
different organisms, dissimilarities, corrected for multiple hits
and back mutations, can be over- or underestimated. A correciion
for unequal evolutionary rates can be introduced as follows: First,
organisms are divided into two groups, with n, and n, members.
The latter group is a reference group. The mean dissimilarity m;
between organism i of the first group and all n, organisms of the
reference group is calculated as follows:

1 &
m; = — E Dij (1)
n; jm
Next the average m of all m; values is calculated:
1 & i
ms=—— D; 2
NNy oy e Y

The dissimilarity between organism i and the reference group
differs from the mean dissimilarity by
d=m, - m 3
The corrected dissimilarity D’ ,5 between species A and B is then
calculated as
D'ppg = Dap — da — dy O]

The reference group can be reduced to a single reference organism
if desired. The initial division into two groups can be done by
clustering or arbitrarily.

Results and Discussion
Primary Structure

The 58 RNA sequences of 16 arthropods, including
the 11 sequences determined in the present work,
are aligned in Fig. 1. Length heterogeneity at the 3’
terminus was detected for several of the newly se-
quenced 5S RNAs by polyacrylamide gel electro-
phoresis of labeled 58S RNA. In such cases the se-
quence of each component was determined
separately.

Secondary Structure

The boxes superimposed upon the sequences aligned
in Fig. 1 enclose double-stranded areas of the sec-
ondary-structure models described in recent 5S RNA
sequence compilations (Erdmann et al. 1985; Erd-
mann and Wolters 1986). The 58S RNAs of the Che-
licerata (the spiders A. diadematus, E. californica,
and L. erythrocythara, and the Merostomata species
L. polyphemus) apparently have a structure in helix
E different from that found in the other arthropod
58 RNAs. The two structural types are exemplified
by models for the 58 RNA of L. migratoria (Fig.
2a) and A. diadematus (Fig. 2b). As demonstrated
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in this paper are preceded by species names printed in lower-case letters. The other sequences are from

Fig. 1. Alignment of 16 arthropod 58 RNA sequences. The sequences reported
papers cited in Erdmann and Wolters (1986). The sequence of L. erythrocythara

t reported separately. Boxes A and A’, B and B, etc.,

; hence it is no

dentical to that of E. californica;

is i
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bases possibly forming odd base pairs

s

dicated by nested boxes:

other than GC, AU, and GU) are in parentheses. Length heterogeneity is indicated by terminal residues printed in lower-case letters

superimposed upon the sequences enclose double-stranded areas of the secondary-structure models (cf. Fig. 2). Bulges are in

(pai
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Fig. 2a,b. Secondary structures of 58S rRNAs of the insect Lo-
custa migratoria (a) and the spider Areneus diadematus (b). He-
lices are labeled A-E; loops are labeled M (multibranched), I,
and I, (internal), and H, and H, (hairpin). Odd base pairs are
indicated by a lozenge. As in other metazoan 5SS RNAs, three
different folding schemes for helix E, labeled 2, 3, and 4 in ac-
cordance with De Wachter et al. (1984), can be considered. For-
mation of base pairs according to the lines drawn in loops I, and
I, would result in alternative secondary structures for these areas
also. The possibility of secondary-structure switches in 5S RNAs
has been discussed by De Wachter et al. (1984)

previously (De Wachter et al. 1984) it is actually
possible to consider three structural forms for helix
E of metazoan 5S RNA. The differences between
the Chelicerata 5S RNAs and other arthropod 58S
RNAs is most apparent if helix E is assumed to
adopt form 2 or 3. If helix E is fitted into form 4,
the difference is restricted to the position of the odd
base pair (AC or AA) within the helix.

Other structural variations are observed in the 5S
RNAs of A. salina and L. oceanica, where helix A
is shortened by 1 bp; in C. pagurus, where helix D

loses one base pair at the expense of internal loop
I,; and in L. polyphemus, where helix C is shortened
by 1 bp at the expense of hairpin loop H,.

Molecular Evolution

Figure 3 shows a phylogenetic tree constructed with-
out correction for unequal evolutionary rates from
77 metazoan 5S RNA sequences as described in
Methods. The tree, which comprises 15 arthropod
sequences, shows hardly any improvement in to-
pology over a previously published tree (Huysmans
et al. 1983) that contained only five arthropod se-
quences. Branchiopoda (D. magna and A. salina)
still seem to diverge very early and seem to be more
related to Halocynthia roretzi (phylum Chordata)
than to other invertebrates. Also, L. polyphemus
seems evolutionarily very remote from other ar-
thropods, branching off before their divergence from
most other invertebrates. Classical evolutionary data
(Stermer 1977) pointing to a common origin for all
crustaceans are not reflected in the tree of Fig. 3.
Although Branchiopoda, Malacostraca (L. oceanica,
C. pagurus, and H. gammarus) and Arachnida each
form subclusters, the different arthropod classes are
interwoven within the insect cluster, which itself
does not show any apparent order. The early di-
vergence of crustaceans seen in the previously pub-
lished tree based on only five arthropod sequences
(Huysmans et al. 1983) cannot be ascribed to a poly-
phyletic origin of arthropods. Had such an origin
occurred, the species belonging to the three evolu-
tionary lines proposed by Stermer (1977) and Man-
ton (1969), viz. Chelicerata, Crustacea, and Myria-
poda plus Insecta, should have formed three ho-
mogeneous clusters in the tree of Fig. 3, which result
is not observed.

To investigate whether the apparent distortions
in the tree of Fig. 3 are due to differences in evo-
lutionary rate among species, a tree with a correction
for unequal evolutionary rates was constructed (Fig.
4). The correction was based on using the mesozoan
Dicyema misakiense as the external reference or-
ganism. In this tree, arthropods form a rather ho-
mogeneous cluster. Relatively close associations
appear between members of the Chelicerata (Mer-
ostomata and Arachnida) and between members of
the Crustacea (Branchiopoda and Malacostraca), as
is expected on the basis of classical evolutionary
views. The Insecta, however, do not appear to be
monophyletic, and the arthropod cluster contains
some species belonging to other phyla, namely the
Nemertini and Mollusca. As for the other phyla,
only the evolutionary position of Porifera species is
improved with respect to the uncorrected tree of
Fig. 3. The remaining invertebrates included in the
tree are scattered without any apparent clustering
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a?s 3 _Evolunonary tree of metazoan species, constructed by a weighted pairwise grouping method as described in Methods. Error
namelndxcate the standard error of the dissimilarity value as defined by Willekens et al. (1986b). Symbols following certain species
S are defined as follows: (O), oocyte; (S), somatic; numbers indicate the presence of different 5S RNAs in an organism, or the

ac -
t that different authors reported different sequences

Mo the 15 phyla to which they belong, namely
€80z0a, Porifera, Cnidaria, Nemathelminthes
ansnllaatodg and Rotatoria), Lophophorata (Bryozoa
tyhel I'fflchlopoda), Pog.ogophora, Sipunculida, Pla-
ivalff{lnthes, Nemertini, Mollusca (Cephalop(?da,
chi Via, and Gastropoda), Echiurida, Annelida,
oth Inodermata (Asteroidea, Echinoidea, and Hol-
uridea), Hemichordata, and Chordata.

Comparison of the uncorrected tree (Fig. 3) with
the tree corrected for unequal evolutionary rates (Fig.
4) shows some local improvements of topology in
the latter. As an example, the Branchiopoda and L.
polyphemus occupy positions distant from other ar-
thropods in Fig. 3. This is probably due to high
evolutionary rates in these taxa. Hence a correction
for evolutionary-rate differences shifts these taxa into
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are as defined in Fig. 3

the arthropod cluster in Fig. 4. However, the im-  amolecule the size of 5S RNA are too large to permit
provements thus obtained remain limited and do  accurate reconstitution of the evolutionary record,
not bring about a clustering of Metazoa species that  at least on the time scale of metazoan evolution.
is acceptable in the light of classical evolutionary = Hence it may be necessary to resort to using larger
data. molecules, such as small-ribosomal-subunit RNAS,

The most obvious conclusion from our study is  as molecular clocks for the study of this type of

that random deviations in the evolutionary rate of  problem.
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Saccoglossus kowalevski 2
Asterina pectinifera
Perinereus brevicirris
Mytilus edulis

Solemya velum

Urechis unicinctus
Lingula anatina
Phascolopsis gouldii
Sabellastarte japonica
Lytechinus variegatus
Hemicentrotus pulcherrimus
Spirocoden saltatrix
Nemopsis dofleini
Chrysoara quinguecirrha
kurelia aurita 1

Aurelia aurita 2
Anthopleura japonica
Actinia equina

Haliclona oculata
Halichondria panicea
Hymeniacidon sanguindea
Brachionus plicatilis
Lineus geniculatus
Bugula neritina

Riftia pachyptila
Lalyptogena magnifica
Stichopus oshimae
Octopus vulgaris

Sepia officinalis

111ex illecebrosus
Planocera reticulata
Tenebrio molitor
Emplectonema gracile (S)
Emplectonema gracile (L}
Helix pomatia

Arion rufus
Acyrthosiphon magnoliae
Lrosophila melancgaster
Limulus polyphemus
Areneus diadematus
Eurypelma californica
Philosamia cynthia-ricini
Bombyx mori

Artemia salina

Locusta migratoria
Cancer pagurus

Homarus gammarus

Ligia oceanica
Spiroholus sp.

Daphnia magna
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