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Abstract. Two-dimensional, unitary rational conformal field theory is studied 
from the point of view of the representation theory of chiral algebras. Chiral 
algebras are equipped with a family of co-multiplications which serve to define 
tensor product representations. Chiral vertices arise as Clebsch-Gordan 
operators from tensor product representations to irreducible subrepresen- 
tations ofa chiral algebra. The algebra ofchiral vertices is studied and shown to 
give rise to representations of the braid groups determined by Yang-Baxter 
(braid) matrices. Chiral fusion is analyzed. It is shown that the braid- and fusion 
matrices determine invariants of knots and links. Connections between the 
representation theories of chiral algebras and of quantum groups are sketched. 
Finally, it is shown how the local fields of a conformal field theory can be 
reconstructed from the chiral vertices of two chiral algebras. 

1. Introduction 

In their seminal paper [19], Belavin, Polyakov and Zamolodchikov pointed out 
that the existence of infinite-dimensional symmetries in two dimensional con- 
formal field theory has far-reaching consequences. In subsequent developments 
Friedan, Qiu and Shenker, and Goddard, Kent and Olive, [20] proved crucial 
results on the representation theory of Virasoro algebras. These can be applied to 
yield a partial classification of all unitary conformal field theories on S 2 with 
central charge c < 1. More precisely, Ref. [20] determines the permissible set of 
conformal dimensions and the values of c, but not the operator algebras. In an 
attempt at a classification of the c > 1 theories, various groups [21 ] have proposed 
some discrete series related to chiral algebras which are (supersymmetric) 
extensions of the Virasoro algebra. In this paper, we suggest a classification of all 
unitary, rational, local conformal field theories on the plane in terms of the 
representation theory of chiral algebras, and associated linear representations of 
the braid groups on S 2. 

The present paper is the continuation of [1], where it was shown, that under 
suitable assumptions (which are typical for rational CFT) a given local, Mfbius- 
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covariant quantum field theory on the plane can be continued analytically to ~2 
that the field operators ~b(z, ~), decompose into sums of products of holomorphic 
chiral vertices, ~o(z), and of their antiholomorphic counterparts. Moreover, the 
chiral vertices obey a braid algebra when being continued analytically; i.e., the 
analytic continuation of the product q~a(Z) ~ob(w) along a path, 7, exchanging z and w 
in positive orientation is given by ~y((tga(Z)(pb(W))= ~. R~aabtpc(z)tpa(w). The matrices 

c,d 
R determine linear representations of the braid groups on n strings, B,, where 
n=2,3 , . . . .  

Here, we start by formulating elements of the representation theory of chiral 
algebras, which allow for a purely representation theoretic construction of the 
holomorphic and antiholomorphic chiral sectors of rational conformal field 
theories on S 2. Postulating the existence of the R-matrix implies algebraic relations 
for its matrix elements; in particular, the conformal dimensions (mod. Z) are 
determined by R. In this representation theoretic approach, the existence of a 
chiral operator-product algebra is almost evident, and the corresponding 
structure constants are determined by R. Upon combining left and right sectors 
into a local CFT on S 2, the locality (or, the crossing symmetry) requirement entails 
an algebraic equation for the structure constants of the operator-product algebra, 
an equation which involves the structure constants and R and /~, (the braid 
matrices of antiholomorphic vertices). In this way, the R and/~ matrices determine 
completely the structure of local, unitary, rational conformal field theories on S 2. 
Similar considerations apply to non-unitary theories. 

Apart from partially encoding rational conformal theories, the R matrices 
associated with a chiral algebra can be used to construct invariants of oriented 
links [12, 13]. Furthermore, we conjecture that there is a correspondence between 
chiral algebras and quantum groups [22, 13], such that the R-matrices of a chiral 
algebra generate the commutant of tensor product representations of a corre- 
sponding quantum group, where the deformation parameter, q, of the quantum 
group is a root of unity. 

Ideas similar to the ones presented in this paper have been developed, in ref. 
[5]. 

This paper is organized as follows. (Holomorphic) chiral algebras, equipped 
with an unusual tensor product on representation spaces, are discussed in the next 
section. The integers Nij k, familiar from the theory of rational CFT, receive a 
representation theoretic interpretation, since they become the multiplicities in the 
tensor product decomposition. This decomposition into irreducible represen- 
tations of the chiral algebra gives rise to Clebsch-Gordan coefficients, which in turn 
are used, in Sect. 3, to construct the chiral vertex operators q~(z). We assume that 
the structure of the chiral algebra is compatible with the existence of R-matrices 
describing the analytic continuation of products of chiral vertices. Examples of 
known chiral algebras together with their R-matrices are given. In Chap. 4, all 
those algebraic relations for the R-matrices are derived which can be obtained by 
considering the analytic continuation of products of chiral vertex operators, 
assuming the chiral field theory to be defined on S 2. In Sect. 5, the existence of 
chiral fusion (i.e. of the chiral OPE) on the vacuum, plus a compatibility 
assumption, lead to the existence of chiral fusion in general. The fusion constants 
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are calculated in terms of R-matrix elements. A combination of braid and fusion 
operations on chiral vertices then leads to new identities which ate obeyed by R. In 
Sect. 6, some of them are employed to compute explicitly the spectral decompo- 
sition of the monodromy matrices, R 2, and this result allows for a rigorous proof of 
Vafa's [4] lemma, which states that in a rational CFT the conformal dimensions, h, 
are rational numbers. Chapter 7 contains a brief description of how the R-matrices 
can be used to construct link-invariants. The second part of Chap. 7 is devoted to 
describing the Vertex-SOS transformation of the R-matrices and thus to suggest a 
general connection between the representation theory of chiral algebras and the 
one of quantum groups. In Chap. 8 we describe how to combine a holomorphic 
and an antiholomorphic chiral field theory into a rational, local CFT on S 2. The 
locality equation, which determines the operator-product expansion coefficients, 
C, in terms of R and/ ] ,  is derived, and the symmetries of C are computed. It is 
shown how, in simple circumstances, one can easily determine C, once one knows 
R and /~. Some concluding remarks are collected in Sect. 9. In particular, we 
suggest a way of reconstructing conformal blocks from the R-matrices of a 
quantum group by solving a generalized Riemann-Hilbert problem. 

While we were working on the problems discussed in this paper we received 
very interesting preprints by Moore and Seiberg 1,5], Rehren and Schroer 1-24] and 
others where similar problems are addressed. We thank these colleagues for 
keeping us informed about their work by sending us their preprints. We have also 
been informed by I.G. Frenkel about his forthcoming book with Lepowsky and 
Meurman which is likely to contain ideas and results that overlap with ours. 
Gervais has pointed out to us that braid matrices also appear in his work with 
Neveu 1-25]. 

We hope the presentation of our results in this paper will still be useful. 

2. Chiral Sectors I: Representations of the Chiral Algebra 

We begin by summarizing some elements of the representation theoretic approach 
to conformal field theory as sketched in Sect. 5 of Ref. 1,1]. The presentation in this 
and the following chapters is restricted to the holomorphic chiral sector, the 
analysis in the case of the antiholomorphic sector being analogous. 

In the Euclidean formulation, an abstract local i chiral algebra ~ is generated 
by Mrbius covariant, holomorphic (unbounded) operator-valued fields lpj(z), 
where z ~ (E, j ~ I. By Mrbius covariance we mean that for each j ~ I there is a real 
number hi, and for each wr  (which maps z~--,w(z)) there exists an 
automorphism % on ~r such that 

zw(A . B)= zw(A ) �9 zw(B) , (2.1) 

( dw'] h, 
%(tv,(z)) = \ d-~z / ~p,(w(z)), (2.2) 

for all A, B s s ~ , j r  

1 Throughout this paper, we restrict our attention to local chiral algebras. In the case of nonlocal 
algebras (cf. [1]), the analysis would be somewhat more cumbersome, but essentially parallels the 
one which we follow here 
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For the sake of clarity and simplicity we will, later on, consider representations 
of ~ on Hilbert ~paces only, thus neglecting the possibility of representing the 
chiral algebra on spaces of indefinite metric. Thus we require that ~ '  is a *-algebra, 
i.e., by assumption, there is an involution * defined on the index set I such that 

0pj(z))*= \ z*J  ~vj. . (2.3) 

Furthermore, zw is supposed to act as a * automorphism, i.e. for all A e ~' ,  

(%(A))* = zw.(a*), (2.4) 

where w. ( 1 ) :  = w ( ~  (notice that if w is given by ( :  bd)~PSL(2,1E),thenw, is 

c.)) 
represented by b* a* . It is easy to see rhat (2.3) and (2.4) imply that h j =  hj~. 

The automorphisms % are assumed to be generated by a field T(z), T* = T, having 
conformal dimension hr = 2, such that the Fourier coefficients L. of T(z) obey the 
following commutation relations for n = - 1 , 0 ,  + 1: 

[L.,tpj(z)]=(z "+l O~z +(n+ 1)hjz")~vj(z), (2.5) 

where, for n ~ Z, 

1 : = dz T(z) z" + x (2.6) 
L. 2~i izl ~ 1 

We assume that the identity operator 1 = t * ,  which is independent of z and 
consequently has h~ = 0, is contained in ~ .  

Requiring that ~ is local means that, for arbitrary (z, z') ~ C2\Dz, D z denoting 
the diagonal {(z, z) ~ ~2}, and for all q, k) ~ I x I, 

~v ,(z) ~p,(z') = tpk(Z') tp ,(Z) . (2.7) 

We wish to point out that the conformal dimensions, h i, must be natural numbers, 
as implied by the M6bius covariance of the fields tpj, (2.5), and their statistics, (2.7), 
under the condition that some representation theoretic requirements (cf. (2.31)) are 
obeyed. 

Thus, the chiral algebra ~ is generated by local currents of spin h = 0, 1, 2, .. . .  
Since ~ '  is an algebra of local currents it makes sense to define the Fourier 
coefficients of tpj(z) by 

1 dzz h~ +"-llpJ(z), (2.8) 

where n ~ Z, and for all j e I. Taking into account that ~ '  is a ,-algebra, (2.3) yields 

0P j,.)* = tpj., _ , .  (2.9) 

Definition. The complex algebra with unit, which is generated by {~pj, n[j E I, n ~ 7Z}, 
and which is spanned by all (formal) polynomials in the generators, is denoted by 
zr 
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Remark. We note  that,  in general, there will be polynomia l  relations on ~r such as 
commuta t ion  relations which characterize infinite-dimensional Lie algebras 
(Virasoro, affine Lie algebras . . . .  ), or  even non-Lie-a lgebra  type relations (e.g. 
Zamolodch ikov ' s  spin-3 algebra [2]). 

We need to discuss the propert ies  of d in some detail. Because T* equals T, we 
get L * = L _ , .  F r o m  the commuta t ion  relations (2.5) we deduce that  L o = L *  
generates rotat ions z ~e i~z ,  a ~ ~ ,  and scale t ransformat ions  z ~--~2z, 2 e R .  Using 
(2.8) and (2.5) it is easily verified that  

[L  o, ~p~,.] = -- rap j , . .  (2.10) 

Thus,  the set of  generators  G = {~pj..Ij e I, n e 2g} is Z-graded,  G = G < u Go u G >, 
where G< = U G., G> = U G., and by definition G,. = U {lPi,,.}. F r o m  its 

ne lq+  - n e N +  j 

generators  the algebra d inherits the equivalent  7,-grading, namely 

~ r  @ ~r (2.11) 
n e Z  

where d ,  is the ~ - span  of  all elements A e d which obey 

EL o, A] = - n . A .  (2.12) 

F o r  n = - 1 ,  0, + 1, (2.5) and (2.8) yield 

EL., ~p.,~] = ( - s + n ( h . -  1))v2.,~+., (2.13) 

and thus if, for some s > I h~ -  1 I, ~P,,~ = 0, then ~p,,~, = 0, Vs' > - I h , -  1 I; and similarly 
for s < - I h , -  11 (assuming h, > 1). 

O n  the linear hull of  G we define a family of  linear deformat ion  maps 
{6dz ~ ~*} as follows: 

6~: spandG)  ~ spandG) ,  

k=l-h~ \ h , + k - - l J  Ip''k" (2.14) 

Of  course, 6~0p,,~):=0, if ~p,,~=0. Fo r  example,  we have 

6 z ( t ) = 0 ,  

~z( L -  1) = L_  1, 

6z(L.) I. >= - 1 = z" + ~L_ x + (n + 1)z"L o + . . .  + L . ,  

lim 6~(~p~, ~)l~ ~ 1 - h~ = ~P~, ~ �9 (2.15) 
z ~ O  

It is impor tan t  to note  tha t  6~ is not a *-endomorphism,  since in general (6~0p~,~))* 

az((~,, 3*). 

Lemma 1. 

a) 

b) 

c) 

d 
[ L _ , ,  6z(~p,, ~)] = -- dzz 6~0p,,,) 

e - Z -  l~z-w) 6w ( . )e + L- i~-  ~)= 6~(. ), 

6z~ 

(2.16) 

(2.17) 

(2.18) 
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Proof 

a) This follows directly from (2.13) and (2.14). 
b) Equation (2.17) is the integrated form of (2.16). 
c) An easy computation. [] 

In the statement as well as during the proof of Lemma 1 we have been careless 
about the allowed range of the points z and w. This is easily repaired, since 6, is 
defined for 0 < [zl < oo. 

These deformation maps are now employed in order to endow ~ with the 
structure resembling that of a Hopf algebra. We introduce a family of comultipli- 
cations {A,: d ~ d |  e IE*}, defined by 

A,(q:,,s) = 6.0p,.s)| 1 + 1 | .... (2.19) 

when acting on generators. It is a basic assumption of this approach to conformal 
field theory that Az can be extended consistently to a morphism of algebras 
(although not a *-morphism). I.e. we assume that 

A z A i :=  ~] A=(Ai), 
i 1 i = 1  

A, ,01 ~P"~' :=  ,=1 A~(~~ (2.20) 

is a definition which is consistent with the relations obeyed by elements o f d .  Here, 
Ai is some monomial in the generators. Clearly, A,(~-A)=0~. Az(A), for ~ E ,  
which follows from the linearity of 6, and from (2.20). It is a fact that (2.20) is 
consistent for all known chiral local algebras of conformal field theory, e.g. 
Virasoro algebras, affine Lie algebras,. . . .  It is important to point out that if there 
is a relation 

~, 2 iAi=c ' t ,  ),i6ff~, CEff~, (2.21) 
i = 1  

obeyed in d ,  then, since A , ( ~ ) = t |  

2iAz(Ai) = c. ~ @ t .  (2.22) 
i = 1  

Therefore, the morphisms A, map d into some subalgebra, A,(A), o f d | 1 6 2  where 
the values of the central extensions of A,(A) equal the values of the central 
extensions in the second factor of ~r174162 

In general, we have not checked and thus assume that 

ker(A.) = 0, Vz ~ ~E*. (2.23) 

It is easy to see that we get the commutative diagram, 

z ~ r  "~r174162 ~ ~,|162174162 

which states that ( d ,  {A.}) is some modification of a Hopf algebra. 
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We remark that (~ ,  A 0), ~ being the algebra generated by {%,~ls > 1 -h ,} ,  is 
indeed a Hopf algebra, which is a triviality in view of (2.15) and (2.20) (extended to 
z=0). 

From the point of view of two-dimensional unitary conformal field theory we 
are interested in irreducible, unitary, positive-energy representations, Qk, of ~1 on 
separable Hilbert spaces oVgk. More precisely, Qk is supposed to obey the following 
requirements: 

(a) 0k is unitary, i.e. Ok(A*)=(Ok(A))*, for all A e d .  
(b) 0k is covariant, i.e. Ok(Zw(A))= Uk(W)Ok(A)Uk(W )- 1, where the representation, 
Uk(W ), of the M6bius transformation is supposed to be defined on some 0k(d)- 
invariant domain which is dense in ~k, if W is sufficiently close to the identity in 
PSL(2, ff~). 
(c) positive-energy: Rotations through an angle a are represented by a unitary 
operator Uk(a)=exp(iLkoa), where Lko=Ok(Lo) is an (unbounded) selfadjoint, 
positive-semidefinite operator on ~ .  
(d) The spectrum of L o on ~ ,  speck(Lo), is pure point. 

Remark. It would have been sufficient to demand (d) and to replace (c) with a milder 
version, in which one postulates that L~ be bounded from below [1]. 

As a rule, we will refrain from worrying much about domain problems. Such 
problems are likely to occur, since the representation Ok will in general be a 
*-morphism from d into unbounded operators on 3~k. We thus assume that all the 
operators considered, as well as products of them, make sense and have a dense 
domain of definition. 

A vector v ~ ~ ,  v ~: O, is said to be d- invar iant  (or, for simplicity, just invariant), 
iff 

Ok(z*r v = 0, Vn > 0. (2.24) 

The postulates (c) and (d) then imply that a vector in ~k is invariant if and only if it 
is a lowest weight vector for L k. It is easy to verify this statement, having in mind 
that each nonzero vector in ~k is a cyclic vector (because Ok is an irreducible 
representation on a Hilbert space). We define 

H k : = inf speCk(Lo). (2.25) 

Part (d) and the locality of ~ tell us that 

speCk(Lo) C {Hk + N}. (2.26) 

Let L be a finite index set, where k ~ L means that Ok is an irreducible, unitary, 
positive-energy representation of ~r on some separable Hilbert space ~ .  We 
assume that {Jgklk c L} is closed under |  in the sense that for all j e L, k ~ L, 

Nijk 

@ ~ ' - "  �9 �9 ~ ( ' ) .  (2.27) 
z i~L  r  

This requires some explanation. First of all, the tensor product ~ | ~ is defined 
z 

to be the standard tensor product of Hilbert spaces, but with a non-standard 
action of the chiral algebra on it. Namely, the label z indicates that the tensor 
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product space is subjected to A,(~r and, correspondingly, the right-hand side of 
(2.27) stands for the decomposition of ~ |  into irreducible components for 
A,(~r The integers Nij k =0,1, 2,... count the finite multiplicity of ~ in ~ |  
and, a priori, Nii k might depend on z. However, we will show that the integers N~j k 
do not depend on z, but it is convenient to postpone the proof a bit. Finally, " ~ "  in 
(2.27) indicates that ~ | ~k may contain subspaces carrying non-decomposable 

z 

representations which are not included on the right-hand side, [12]. 
If follows from a remark made earlier (cf. (2.22)) that if (2.27) holds, then, if 

~ d stands for any central element ~ in ~r and if Qr,(~ e) = t -  L~m, (2.27) implies 
~k = ~ ) ,  Vi, ct. 

Examples. Important examples for a chiral algebra and index sets L, which satisfy 
(2.27), are: ~ = Virasoro algebra, and L labels the unitary representations with 

6 
central charge c=1 m(m+l) '  i.e. L-L(m),  m=3,4  . . . . .  ,~r  and L(k) 

contains precisely those unitary representations of d whose spin, j, obeys 
O<2j<k.  

In analogy to (2.27), a n-fold tensor product ~/1|174174162 will be 
considered as a representation space for dC~r174174162  by embedding ~r 
canonically by 

(1| .b.Q..~IQ1 | | ... |174 ( I |  
n 2 n S 3  

in ~ ~r We indicate this by writing J/t~q | ~ |  | ~ .  
1 Z l  Z2 2 n -  1 

Let ~e be an index set L which fulfills one more postulate: There is precisely one 
index, say 1, in La, such that ~f~ contains a M6bius invariant vector; and 

this vector is unique (up to normalization, of course). (2.28) 

We normalize this vector such that it has norm I, and call it f2. Because of the 
commutation relations of the M6bius generators 

1 1 __ [L,, Lm] - (n - m) L~ + ~, (2.29) 

for n, m = -- 1, 0, + 1, and because L ~_ ~ = (L~)*, we conclude that L~I2 =0. Since L~ 
is supposed to be positive semidefinite, and since the eigenspace corresponding to 
inf spec~(Lo)- 0 is 1-dimensional, the remarks which follow (2.24) show that t2 is 
the unique invariant vector in ~ .  

Assume that f2 is separating for ~ ,  i.e., for all z~:w, 

(f2, ~p~,(w)~p~(z)O) = 0  ,~ ~p, =0 .  (2.30) 

CoroHary. 

h r e N ,  for all r e I .  (2.31) 

Proof. By the assumption above, the function (t2, ~pr.(w)~p~(z)f2) exists, and it is 
determined fully by scale and translation covariance. It is proportional to 
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(W--g)-2hr, and the locality condition (2.7) implies that hr e Z. Finally, the vector 
~pr(0)g2 ~ ~vfl has conformal weight h = hr (by (2.5)), and the non-negativity of L~ 
leads to (2.31). []  

For  the purpose of developing a general theory of rational conformal field 
theories, it is advantageous to impose some further "regularity" conditions on the 
vacuum 12 and on the chiral algebra. We summarize the whole structure in the 

Definition. A pair (~r La), consisting of a local, Mrbius  covariant *-algebra and an 
index set f f  is called rational, if 

(a) d o is generated by Go; and lp,,o12=0, if h~e0.  (2.32) 

(b) ~ is a finite index set, such that (2.27), (2.28), and (2.30) hold true. (2.33) 

(c) Adjointness: For each k e~LP 3! j, j e &e, such that N lkj=[=O. 

We write j =  k*, and impose Nlkk,= 1. (2.34) 

(d) Selection rules: For all j e  La, j ,  1 : Njj I > 1. 

Furthermore, if, for i *  1, Nil I ~0,  then H i ~ N .  (2.35) 

Remarks. 

1. The property (2.30) of 12 implies, that ~0r(z)=const. ~, iffh,=0. 

Proof. Lo0Pr(0)12)=0 means that we can rescale ~p, such that ~p,(0)12 = 12. The two- 
point function (12, 0p~,(z)-1)0p,(w)-1)12) is independent of z and w, since h ,= 0. 
But for w--*0, it simply vanishes, thus it is identically zero, and (2.30) yields the 
claim. []  

Therefore, (2.32) takes into account all nontrivial generators lp,(z). 

2. We will show later on that, in fact, the mapping *, which is introduced in (2.34), 
is an involution on ~e, and ~ ~ 1 = 1". 
3. The associativity of the tensor product ~vf i | ~m | ~ entails the equation - 

N~jkNkm I = Y, N~k,zNk,j,. Towards the end of the next chapter we will require 
k k '  

that, among others, ~ | ~ - - -  ~ | ~(fj, which certainly means that Nok = N~kj. 
z z 

Taken together, we then have ~ NijkNkz ~ = ~ Nitk,Nk,jm, which will have some 
important consequences, k k' 
4. Notice that if ~ is inequivalent to ~fj, for i* j ,  then the selection rule N~j~ > 1 (j 
=4= 1) is automatically fulfilled (c.f. also the proof of Lemma 4). 

Examples. The most studied and well known prototypes for rational pairs (~r La) 
are again: d = Virasoro algebra, ~e = L~(m); d = sa~(2), ~ = ~e(k). 

The multiplicities Nqk have become quite popular in the large group of people 
who work on the classification and analysis of rational conformal field theory (c.f., 
e.g., [3-5]), although their proper definition remained somewhat murky. Ideas 
similar to ours have been developed in the last reference of [5]. 
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3. Chiral Sectors II: Construction of Chiral Vertices 

Consider a rational pair ( d ,  ~) .  The tensor product decomposition (2.27) gives 
rise to projections Pi~k(Z), and their matrix elements, the Clebsch-Gordan 
coefficients of ~r provide a means for the definition of the holomorphic chiral 
vertex operators. 

We define P~jk(1) to be the unique projection, a =  1 . . . .  , Nijk, 

P~jk(1) : ~ | ~gk--~ ~ (~) ~ ~ ,  (3.1) 
1 

which satisfies 

AP~k(1 ) = P~k(1)A I(A), (3.2) 

for all A ~ ~ .  Here and in the sequel we will often use somewhat sloppy notation in 
equations such as (3.2), which, in principle, should be written as q~(A) P~jk(1) 
= P~jk(1) (Oj(~ Ok) A I(A). 

Proposition 2. 

a) P~jk(Z ) = P~jk(1 ) (e L - l(z - 1 ) ~ t ) ,  (3 .3)  

for  z in some neighbourhood, q/~(1), of  1; e < 1. 

b) d r  (3.4) dz Nijk(Z) = O, z e 

C) P~ ) iS, in general, unbounded. 

Proof  

a) Since A~ is a morphism, it is enough to verify (3.3) if A, acts on a generator ~p,.~. 
Referring to (2.17), we have, by (3.2), 

Oi(tPr, s)P~jk(1) (Oj| ( eL - '(~- 1)| t) 
= P~jk( 1 ) (0~ | qk) (A 10Pr, ~)) ( eL -l(z - l) | 1) 

= P~jk(1) (Oj(~Qk) (3 l(tpr, s ) (~ t  "4- t@lpr" s)(e L- ,(z- 1)| ) 
= ~jk(1)  (Q~| ( eL- ,tz - 1 ) |  ) (e-L_ ,t~ - 1 ) |  

�9 (,~ l(~v,, 3 |  + 1 | (e L- , tz-  1 ) |  ) 

: P~jk(j) (Qj(~k)* ( eL- ,(z- 1 ) ~  1) Az0pr,~)" 

Thus, P~jk(Z): =- P~jk(1)(e L- '(~ - 1)| maps ~fj | ~k--~ 5~j | ~ k - - ~  (~), because ~ j  
z 1 

is irreducible; and it is nonzero iffP~jk(1 ) is nonzero, and it commutes with the 
action of d .  
b) The relation (3.3) implies that in a neighbourhood of 1 Nijk(Z) is constant. 
However, there is nothing special about z = 1, and a relation analogous to (3.3) 
holds in the vicinity of every w e (~*. This gives (3.4). 
c) For example, since L_ 1 is not bounded, (3.3) shows that in general P~jk(Z) is not 
bounded either. [] 
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Definition. On some domain dense in ~ | ~k, assumed to be independent of 
z 

zeq/~(1), we define the chiral vertex operators, q~i~k(Z, 4), 4 ~ ,  Zeq/~(1), 
= 1, ..., Nijk, 

qh~k(Z, 4) : ~k~r  (3.5) 

to be the linear operators which are given by 

<~i, ~O~jk(Z, ~)4k> :~- <4i, g~jk(Z) 4~4k> , (3.6) 

where ~i E ~f~l, and ~k ~ ~k- 
The results of Sect. 2 lead to 

Proposition 3. 

a) [~P .... q~i~k( z, O] = q~k( z, 6zOP,,2)~). (3.7) 
d 

b) [L_ 1, (Pijk( Z, ~)] ~--" dzz ~Oijk(Z' ~)" (3.8) 

c) Qj(Lo)4=hr ~ [Lo, qhSk(Z,~)]= z ~ + h ~  qhik(Z, 4). (3.9) 

d) o,(L,)~ = t$,,o, he" ~, for n > 0  

{ .+~ d 
=~ [L,,tp,~k(Z,~)]= ~z dz +z"(n+ l)hg)qg~Jk(Z'O" (3.10) 

Nijk 
e) ~, a~. q)ijk(Z, -)=0 ~ a~=0, Va. (3.11) 

~ t = l  

Proof. 

a) By definition, ~0~, ,q~k(Z, r = ~ ,  ,P~jk(z) (4 | 4k), for z e q/,(1), and 4 | ~k in some 
dense domain of ~ |  Therefore, this equals Pi~k(Z)(6~(~p,,2)4 | 4k + ~ | 
which in turn gives q~i~k(Z, 6~(~P~,~)r + q~i~k(Z, 4)~P,.~r 

b) Consider: ~ <~i, q~jk( z, ~)4k> -- (4~ ~, P~jk(1) (e r- ~ -  ~ |  1) (4| 

= <4~ ~, P~[jk(Z) (L_ ~ |  4k)>, which, by (3.7), is identical to <4~, [L_ ~, q~jk(Z, 4)] ~R>- 
C) .If 4 is an eigenstate of L o with eigenvalue h~, then ~,(Lo)4=zL_~4+Lo4 
=zL_ ~ +h~. ~ gives, by application of (3.7) and (3.8) the announced result. 
d) In this case, ~ is a so-called primary state, and since ~(L,)~=z~+~L_~4 
+ z"(n + 1)Lo~, (3.10) follows easily, q~i~k(Z, ~) is a primary field. 
e) Assume that the contrary was true, i.e. that there is a nontrivial linear 
combination of qh~k'S, N~jk > 1, such that their sum vanishes. Then there is a 
nontrivial linear combination, with 

Nijk 
0 =  ~, a~<~l~),P~jk(Z)(~@~k)> , 

for all 41 ~, 4, ~k- This, however, means that P~jk(Z)=0, Vet, contradicting the 
assumption that N~ k +- O. [] 

We have thus learned that infinitesimally, i.e. for z ~ q/~(1), the chiral vertices are 
scaling fields, i.e. they are translation and, if 4 is chosen appropriately, scale 
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covariant. We now define q~k(Z, 4), for z ~ ~*, by analytic continuation. This can be 
done easily, and in a manner which gives a z-independent domain of definition. For  
z e~ (1 ) ,  and (i, 4, and r eigenstates of Lo, we have, by (3.9), 

< ~, ~Oi~k(Z, ~)(k) = zH'-H~-m'Z" ( ~i, ~0~k(1, ~)~k), (3.12) 

where the integer n depends on 4, ~, ~k- Thus, formula (3.12) permits a 
(multivalued) extension of (r ~O~k(Z, 4)~k) from q/~(1) to ~2". And, by linearity, this 
defines a (multivalued) analytic continuation of ~O~jk(Z, ~) to IE*, which preserves 
(3.7)-(3.11). 

(~r ~e) is a rational pair. This enables us to relate vectors in ~ to chiral 
vertices, as z~0 .  

Lemma 4. 

a) 

b) 

c) 

Nil I = 6jl .  (3.13) 

Nij 1 = c~ij. (3.14) 

lim (q~j~l(z, r vj~l. 4, (3.15) 
z-+0 

where vii 1 is a normalization constant, vjj~ ~: 0. 

Proof. 

a) Clearly, Az(L,)(f2| for n=0 ,  +1.  Thus, ~ |  contains a M6bius 
invariant state, and this is compatible with (2.27) and (2.28), iffN~ 1 ~ --> 1. (2.34) gives 
N1 ~ ~ = 1, meaning that 1 -- 1". Next, suppose that q ~  l(Z) ~= 0. Thus there are Lo- 
eigenstates v j, vj =invariant vector in ~ ,  and 4, r such that (v i, q~  ~(z, 0 ~ ' )  4=0. ~' 
can be reached from Q by a polynomial in the generators, and since q~l ~(z, 4) is 
linear in 4, this nonvanishing matrix element can be written as 

(U j, ~ 1 1 (  Z, ~ ) ~ t )  ~ ~ pi(z ) (vj~i), ~ 1 1 (  Z, ~(i)) ~r~) �9 
i 

Here, for each i, pi(z) is a polynomial in z, z-  1, and vl~i ) and ~(i) are invariant vectors 
in ~ and some eigenvectors of Lo in g l ,  respectively. Since L_ lf2= L+ ~vAi)= 0, 
(v;(i), q~l~(Z, ~(i)) f2) is independent ofz. But this matrix element is proportional to 
zHj- hr therefore it is zero, or H i = hr 0. Since at least one of these matrix elements 
must, by hypothesis, be nonzero, Hj=her for some i. Thus, His hi, and the 
selection rule (2.35) yields Njlx =0,  i f j ~  1. 
b) Let vj be an invariant vector in ~vfj. As z~0 ,  we have Az0p~,~) (vj|174 
if we remember (2.32), for s__> 0. We conclude that the selection rule ~ C ~ | ~1  is 
natural. 
Now consider the decomposition of ~ | ~1  | ~1. Assume that ~ | ~1  

M z w z 
= O) ~tm), M > l, where multiplicities can appear. The associativity ofthe tensor 

m=l  
product means that 

~ |  ~el| ~ = ~ |  ~ 
M M N 

= .  ~t%,), bu t a l so  = ~ ( ~ / ( m ) |  (~ ~k(n). 
m=l  m=l  \ w ]  n = l  
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Therefore N = M; thus, for each m, ~f~tm) | W~ = W,,'. Since 
w 

j ~ {i(m)} : ~ | W1 = ~ , ,  but, since ~ | 9ffl D Jgj, we finally find, for allj  and all z: 
w w 

~ | ~ ,  =Jgj .  (3.16) 

c) By (3.14), there is only one field ~oul(z, 0 : N u l  - 1. Let {~]n ~ l'q, a = 1, 2, 3 ... .  } 
be a basis of vectors in the eigenspace of Qj(Lo) with eigenvalue H i +  n. Since 
lira (6.(~O,,s))=~o .... for s > l - h , ,  and because h , > l  (apart from the identity 
z--~ O 

operator), and ~o,, o~ = 0, for h, > 1, we get 

lim {Lo(~Oijl(z, ~])Q)} = (Hi + n). ~ojj~(0, ~ ) ~ ;  
z--~0 

and if A ~  = y~ (A)~b,, for A e ~r (which, by (2.32), is generated by {~o,, o}), we have 
b 

lim {A@u~(z, ~)~2)} = y~ (A)~ou~(0, ~b)~. 
z ~ O  b 

Thus, the vector ~pjj~(O, ~ ) ~  transforms under d o precisely as ~ ,  and therefore is 
proportional to it (because ~ o  acts irreducibly on span~{~}). ~ojjx(O, ~) is linear in 
~, so the constant of proportionality does not depend on 4. Last, if this constant 
were zero, lim (~j, (pj~(z, ~)~2)=0, for all ~, ~, which contradicts Njj~ = 1. [] 

In order to get rid of the normalization constants vjj~, we consider a specific 
"gauge", i .e.  we change the normalization of ~pjjl, such that 

vjj~ = 1. (3.17) 

Lelnma 5. q)~xi(z, f2) is a primary field. It  commutes with the action of  ~ ,  if  h,< 1, 
V~,. 4= T. 

Proof. 
[~ .... tp~(z ,~) ]=0 ,  Vs, if hr (3.18) 

d 
This follows from (2.32). Also, ~z z ~p)~(z,s []  

We wish to generalize this behaviour of tP~xi(z, ~) for the cases where there are 
higher spin currents. We then assume 

6~(~o~,s)~=0, for all r,s.  (3.19) 

We will see later on that " - �9 q~jxi-6~j ~ojl~, i.e. Njl~=6 u. Equation (3.18), or, more 
generally, the requirement (3.19) entail 

~p~j(z, f2) = v~j- P~, (3.20) 

where the constant vj~j is readily gauged to 1, and Pj  is the orthogonal projection 
from the chiral Hilbert space 

ovfse :=  ~ ~ (3.21) 
i e ~  

onto Jg~. 
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We introduce the conformal blocks, i.e. the n-point  correlat ion functions of  the 
ho lomorph ic  chiral vertices: 

Jl, �9 �9 .,Jn ~tl an Bio . . . . .  in( (~, ~, Z) : =  (~'~, q) io j , i , (Z1 ,  ~ 1 ) " "  (Pin- , jn in(Zn,  ~n)~r~>, (3 .22)  

z = (z 1 . . . . .  z,), ~ = (~ 1 . . . . .  r at = (~ ~ . . . . .  0Q, and clearly i o = i, = 1. In (3.22), we take 
~tk Izxl > Iz2[ > . . .  > Iz,I, and the vertices ~oi~_ ~ ( Z k ,  ~k) are defined on - ~r < argzk < ~r 

by analytic cont inuat ion  from 1 to Zk. In order  to simplify our  arguments,  one 
might  assume that  

(Pijk(1, ~). 2 -L~ (3.23) 

is a bounded operator ,  for 2 > 1. Under  this condi t ion  the ho lomorph ic  conformal  
blocks "exist" as single-valued analytic functions on 

K ,  > : {z~ C"llz~l > ... > Iz, I, - rc < argzj  < ~r}. (3.24) 

We used quota t ion  marks  since, again, domain  problems, which affect ~, are not  
dealt  with. The  s tatement  is r igorously true at least when all ~k, 1 --__ k-__ n, are finite 
linear combinat ions  of eigenvectors of  L o (supposed to be in the domain  of 

~t k definition of ~o~_ ~j~i~). 
Unde r  certain condit ions we can prove that  the conformal  blocks are linearly 

independent  analytic functions. The  next  lemmas are meant  to prepare  the 
grounds  for Propos i t ion  9, where this fact is stated with more  precision. 

Lemma 6. For each vector ~k ~" ~ k  there is at least one vector ~j e ~f/, ~j = ~j(i, ~), 
which fulfills 

P~jk(1) (~j|  ~k) # O, (3.25) 

if P~jk(1) # O. 

Proof. Assume that  the cont ra ry  were true. Then  there exist s o m e  ~k • ~ k  and (~, i), 
such that  PTjk(1) # 0, and Pi]k(1) (~)| ~k) = 0, for all ~). But then, Pi~k(1) (~)| 
---- tpr,~(P~jk(1) (~)| ~k))-- P~k(1) (6 I(~V~,~) ~)| ~k) = 0, thus P~jk(1) (~)| ~ )  = 0, for  all 
~,, ~). This contradicts  the assumption that  P~jk(1)# 0. [ ]  

It will be proved  in Sect. 4 that  N~j~ = 1. Let  us accept this for the moment .  
Then  we may  d rop  the index ~ from ~0]jj~. We have 

Lemma 7. 

a) Let vj, be an invariant vector in ~ . .  Then there is ~ ,  such that 
<~, q, ljj41, ~j)% > # o. 
b) Assume, that qh jj~(z, O and r j ~ l  (w, tl) are quasi-primary, and 
([2, tp 1 jj4z, ~) tpj~j~ 1 (w, q) [2> # O. Then Hj = Hi. + n, n e 7Z. 
c) I f  vi e ~ is invariant and ~ given, there is ~ ~ ~ j  and Vk ~ ~k, Vk invariant, with 

<Vi, tP~jk(1, ~)Vk> =1=0. 

The  p roof  is easy and will not  be repor ted  here. Next,  we prove the following easy 
lemma. 
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Lemma 8. There is a sequence ~, such that 

~tk if  j, i, ot are given, and t#i~_ , ~  4: O, Vk. 

Proof. Suppose the lemma is false. Then 0-- (~ ,  tp~,i,(Zl, ~ 0 . . .  tpi._ ~" a.~ (z,, ~,)A~ >, 
where A is any polynomial in ~o .... s<O, and for all ~. []  

Corollary. For f ixed j, there is ~ with 

~ - for some k. (3.26) B~(0t, ~, z) - 0 ~ tpi ~_ ~j~i~ - 0, 

Combining the previous results we conclude the following proposition. 

Proposition9. Assume, that NOR ~ {O, I }, and that the selection rules (2.35) are 
augmented by the requirement, that Nij k#O =~ Nvjk=O, if  (H i - H i ,  ) E7Z. Then, 
keeping j fixed, and if ~ is as in (3.26), all (not a priori vanishing) conformal blocks 
Bi(~, z) are nonzero and linearly independent analytic functions. 

Proof The remaining part of the proof has been established in Ref. [1]. []  

Remark. As (3.12) dearly shows, for general NUk, Proposition 9 is false. 
A different kind of linear independence applies to products of chiral vertices. 

This is what we are going to discuss next. 
We take it for granted, that on K,  > all the products q~jli,(z~, ")... q~i~. "_ ,j,i. (z,, .), 

i, j, and 0t arbitrary, are densely defined multilinear, operator-valued holomorphic 
functions. In particular, this is assumed to hold for their vacuum expectation 
values. 

Proposition l0. Keeping j, i o, i, and n fixed, the nonzero products 
{ (pi~o~li,(zx, . )...q)i~"_ ,j,i,(z,, .)} are linearly independent. Equivalently, for given k, 

z a..,. z)=O )'a.., =0, p ~B~(I~,., z)=O. or, (3.27) 

Proof As usual, the proof is formal in the sense that domain problems are 
neglected. In the case of the two-point block we have, by (3.15), 
aj.. <f2, q~ljj~(z,~)r V(r This implies aj~=0. The 3-point block gives 
Y, a,.  (s q)ljj~(z, ~)(P~*k,(W, ~')~"> = 0, V(~, ~', ~"). Since q)~kl(W, ~')~" ~" P~"kl(w) 

~' |  v p, defined by (~'@~"), we can always prepare a linear combination ~ b~- ,u ~u - 
/z 

P~kt(V p) = 6~, ~. P~k~(V~). Because ~ ~ closure {P]~u(vP)lany v~}, and since 

0 = E b~ E a,(Q, q)~js~(z, ~ )~u(w,  ~'~)~> 
# a 

= as" <Q, tp,j,i,(z, ~)P]',kt(V~)>, V(~, vt~), 

we get (3.27). 
For  (n >4)-point blocks, the proof is analogous. []  

In principle, scale and translation covariance permit us to continue analyti- 
cally the n-point blocks B~(0t, ~, z) from K. > to M,, M,  = {z ~ C"lz = (zl .....  z,) and zi 
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z j, for i #j}. The resulting functions are single-valued on the universal covering, 
M,, of Mn, but in general multi-valued on Mn [1]. In order to describe more 
precisely this analytic continuation we address the 4-point blocks. They are 
translation-invariant and, for suitable arguments ~, also scale-covariant multi- 
linear functionals on ~ ,  | | ~4" Since they are linearly independent (by (3.27)), 
we might impose the constraint that they form a basis in the linear space of all 
quadrilinear, translation and scale covariant functionals on ~ 1 | 1 7 4  This 
constraint is rather powerful, and it allows for a proof of formula (3.28) below. 
However, this completeness assumption is considerably stronger than assuming 
directly the validity of Eq. (3.28). Because (3.28) is what we really aim at we assume: 

As an operator equation on some domain dense in ~,Wj| ~ | m, and for z # w, 
the analytic continuation along the paths ~ 5, d s ,  of the product (P~jk(Z, ")(p~klra(W," ) 
is given by 

~ls(qg~jk(Z, ~j)qT~tm(W, ~))= • R 5(ijlm)~'-~(qg~,k,(Z, ~l)~O~,jm(W, ~j ) ) ,  (3.28) 
~',6, k" 

for all ~j, 41- The paths 75 are depicted in Fig. 1. 

Fig. 1 7+ 7-  

The braid matrices R +(ijlm) and R-(ijlm) are e-number matrices, independent of 
~j and ft. 

It is evident from Proposition 10, that the matrices R 5 (ijlm) may be considered 
as linear mappings from a linear space W~j,~ into W~jt, , which have, respectively, the 

dimensions Z Nilk" Nk,j, and Z Nijk" Nklm. 
k" k 

We finish this chapter with a definition. 

Definition. A triple (d ,  La, ~) is called rational, if 

a) (d ,  ~ )  is rational. 
b) O obeys (3.19). 
c) The R5(ijlm) matrices, indicated by R, satisfy (3.28). 

Examples. The only fully worked out example of a rational triple is the unitary 
discrete series: d = Virasoro algebra, La = ~e(m). The explicit calculation of the 
R 5_matrices was performed by a Coulomb gas representation of the minimal 
models [6]. Another example is the Sak(2 ) current algebra [7-9]. In Ref. [9], the 
existence of the R-matrices has been proved, and the spin-l/2 R-matrices 
R(. 1/2 1/2-) have been computed. 

4. Chiral Sectors IH: Braid Group on S 2 

The aim of the present section is to derive some of the consequences of Eq. (3.28), 
i.e. of the existence of the braid matrices, which stem exclusively from considering 
the analytic continuation of n-point blocks. In particular, the multiplicities Nijk 
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will be shown to form a set of commuting matrices, and a relation between the 
conformal dimensions Hi and the braid matrices will emerge. 

Upon requiring that the n-point blocks are defined over S z, we will see that the 
braid matrices obey a very peculiar relation, which, at this stage of the 
development, might seem to be independent, and not already implied by (3.28). 

To begin with, we prove 

L e m m a  11. 
R + (ijlm) R - (iljm) = 1 [w,j,,~, (4.1) 

R - (ijlm) R + (iljm) = 1 I rv,j,m- (4.2) 

Proof. The general method to prove relations such as (4.1) consists of performing 
the analytic continuation of n-point blocks (or monomials in vertex operators) 
from (zl .. . . .  z , ) - z  to (z,(1) . . . . .  Z,(n)) = Z ", where a is an element of the symmetric 
group on n letters, S,. The analytic continuation is performed along two different, 
but isotopic paths in M.. There is an isomorphism between such paths in M. on 
one hand, and braids with n strings on IF, 2 [10] on the other hand. Namely, two 
paths in M. are isotopic if and only if the same is true for the corresponding braids. 
Usually, we will talk about paths, but will picture them as "coloured" braids. 

The linear independence of the products ~O~jk(Z,. ) q:kZm(W,'), Z ~ W, (cf. 3.27), and 
the fact that the paths Yl and ?2 in Fig. 2 are isotopic to the trivial path yield 

d ~ ? ,  (~Oijk(Z , �9 ) ~Oflklm(W, �9 )) = (R + (ijlm) R - (iljm))k'~'~ ~ . qg~] k,,(z, . ) tp~k ,,,re(w," ) 
f ".2_ o~ 

- -  ~ O i j k ( Z  , �9 ) (Dflklra(W, " ) ,  

",,., 

Z W Z W 

path braid path braid 
p 

Fig. 2 71 72 

which is fulfilled iff (4.1) is obeyed. 
Similarly, dr2 leads to the remaining half of Lemma 11. [] 

Next, since R+( i j lm)R- ( i l jm)=  1 and R§  1, we get 

dim (W~jtm) = dim(W/urn); (4.3) 

and (4.2) follows from (4.1), and vice-versa. 
We now introduce a graphical notation of equations, such as (4.1) and (4.2), in 

terms of"coloured" braids. To this end we identify ~o* k with the string of Fig. 3, and 
in this language there is a 1 - 1  correspondence between (4.1), (4.2) and the 
Reidemeister moves of Fig. 4, 

Fig. 3 ~Oij~ ~ i l k 
J 
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We define the matrices Nj  by 

J k " - - - .  
i J 

( N j ) i k  : ~ N i j  k , 

__ Skk" 

G. Felder, J. Fr6hlich, and G. Keller 

(4.4) 

k m 

Fig. 4 j I 

and their "transposed" Nj are given by 

P r o p o s i t i o n  12.  

a) 

b) 

c) 

d) 

Proof  

= 5kk" 

(bl i ) ik=(N j)k*i*. 

N i j l  = r 

[Nj, Nt] = 0 .  

N~jk = N~kj, N,aj = 6,j. 

N j  = Ni" 

k m 

j I 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

a) We just recalled Eq. (3.14), for completeness. 
b) This is the master relation. It follows from (4.3): 

NjN,  = ~. Ni jkNk l , n  - - - -  dim(W~j~,) = dim(W~om) = ~ N i t k , N k , j r  a = NtNj .  (4.10) 
k k' 

c) Consider (4.10), and put m = 1. Using (4.6) we get Nij k = Nik j ;  put k = 1, and we 
have (4.8). In particular, we see that since NIj~, = N1j~j, (j*)* =j,  and thus * : ~ e ~  
is an involution. 
d) Consider (4.10), and put i=  1. We get Nljj~Nj,lm=Nlu,Nl,jm. By assumption 
(2.34), N l j j ~ = N l u , =  1, for a l l j  and l, thus 

Nj,  tr n = Nt,j~. (4.11) 

We have now Nij k = N j,~, k, since , 2 =  1, and therefore Nijk = Nk*ji*. [] 

With regard to the matrices N j, the simplest case is the one in which all Nj are 
matrices over the set {0, 1 }. Recently, matrices over the natural numbers have been 
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classified in [11]. There is an A - D - E  classification of all matrices over {0, 1 } with 
euclidean operator norm smaller than 2. Indeed, these norms must equal 

cos( )q= 3 . . . . .  

Example. Assume thatj* =j,  for allj  e ~q~. Also, [~l = n, i.e. 1, 2 . . . .  , n e ~qL We know 
from (4.8) that N~ =diag( l  . . . . .  1) is the n x n unit matrix. We suppose that the 
representation o~ 2 obeys su(2) spin{ selection rules, i.e. 

N 2 = 

/0 1 0 ... \ 

1 0 1 0 ... 

0 1 0 1 0 ... 

0 1 0 1 : 

: "- 1 

... 0 1 0 

(4.12) 

Thus, [[N21I=2cos ~ , and its eigenvalues are 2 j=2cos  

j = 1,..., n. The components of the eigenvector v i are Vik = sin k. ~ - ~  . The 

matrices N1, . . . ,N,  are symmetric and commute, thus can be diagonalized 
simultaneously. Therefore, all 

( , ~ . . .  

and since we know that (Nl)xj = 6u, and because also the orthogonal transforma- 
tion which makes all N~ simultaneously diagonal is known, we can calculate the 
eigenvalues 2~! ), and thus get N t, Vl. We obtain 

( ~l~ ~ 
s i n \ n + l J  l = l , . . . , n ,  ,~) = 

s in (  k ~ l  ) ' k = l  . . . . .  n. 

From this result the selection rules of one half of the chiral sector in the minimal 
models, or those of stY,_ 1(2), follows: 

min{i+j -  1,2n+ X - i - j }  
~ |  = @ ~fk- (4.13) 

k=li-jl+ l 

If Nijke {0, 1}, then some braid matrices can easily be calculated by hand. 
Suppose, that qguk(Z, ")4:0. Then (~i, q~ijk( z, ~j)q~kkl(O, ~k)t2) 4=0, for some vectors 
r e ~vt~, Cj e ~,v~j, and ~k e ~k, which are eigenstates o fL  o. This matrix element equals 
(cf. (3.12)) z n ' -n j -H" ,  z". (~i,q~ijk(1, ~j)~k), and thus, analytically continuing in 
anti-clockwise orientation z ~ 0  and 0 ~ z  along ?, we get 

d ) , ( <  ~i, ~Oijk(Z, ~ j) ~k>) = g + ( ijk 1)~ . ( ~, (p~kJ(Z, ~k) ~ j> 

= R+(ijkl )~ " zn ' -nJ-n"z"  " <r tP,kj(1, ~k)r 

" ( z  e~) ' ' - ' ~ -  '~ +"<r ~o~j~(l, r 
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We can always rescale the chiral vertex ~OOk, o r  ~Oikj, such that for the above triple of 
vectors ~i, ~s, ~k 

( ~i, CPikj(1, ~k) ~ j )  = (-- 1) n ( ~Z, qgijk(1, C S) ~k) " (4.14) 

In this gauge, we have 

Lemma 13. 

a) R • (ijll)~ = e • i~n, - nj - H,). (4.15) 

b) R+-(ijlm)~m=l, i f  Nijm=~O. (4.16) 

Proof. 

a) We notice that the existence of a matrix R(ijlm) implies that (4.14) must remain 
true for any other triple of vectors which are eigenstates of L0 and for which the 
matrix element is nonzero. 
b) (4.16) is obviously correct for any Nijk, since 

q~mlm(Z, f 2 ) - - t  (cf. (3.20)), i.e. 

R •  [] (4.17) 

The proof of Lemma 13 parallels the one of 

Lemma 13'. 
a) ~. R • )[~R +-(iljl )~' = 6~, . e +- 2rci(ni - Hj -H,), (4.1 5') 

# 

b) R •  = 6~,p. (4.16') 

We notice that (4.15') does not depend on a specific normalization of the vertices. 
The conformal blocks transform, for ~ which are quasiprimary vectors, 

covariantly under the action of the M6bius group, which is the automorphism 
group of S 2. It is thus natural that we wish to interpret the theory under 
consideration as a theory, which is defined over the 2-sphere. In other words, S 2 is 
identified with ~ w  { ~ } by some conformal mapping f :  S 2 ~ ~k. )  ((X) }, and we think 
of a n-point block Bi(ot,~,z), z=(zz ....  ,z,), as a function on S 2, symbolized by 
(n + 1) punctures f-Z(zl) ,  ..., f - l ( z , ) ,  f - 1 ( ~ ) ,  f - 1 ( ~ )  must be included because 
although the n-point block can be continued analytically to M,,  the point at 
infinity is, in general, not a point of holomorphy for the conformal blocks. The 
analytic continuation of the conformal blocks, which is determined by R• 
must be consistent with the geometry of the surface on which the analytic 
continuation is performed. It will become handy to define the phases 

D ~ j k  . =  e T- 2 n i ( H , - H j -  H k ) .  (4.18) 

Proposition 14. The braid matrices satisfy 

a) g + (ijlm) R - (iljm) = t lw,j,,,. (4.19) 

b) The Yang-Baxter-equation (YBE): 

+ " k'at'fl '  + t .  m ' f l " 7 ' "  + �9 r k " o t " f l " '  ~, R (tjlm)k~p R (kjnp)ma,r R (tlnm)k,~,p,, 
k ' ,  ot' , f l '  , f l "  

+ k ' l l ' ) , '  + . .  I k"o~"fl '" + i , .  m ' f l ' " ~ "  = ~ g (klnp)ma~ R (zJnk)k~p, g (kjlp)k,a,, ~, . (4.20) 
k ' , v ' , # ' , # "  
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c) The theory is defined o v e r  S 2, iff 

R+(ijlm)k'~P'D~,jmR+(iljm)kk;'ff~,P"= (~kk,,SctoV,Sflfl,, "DiS k . (4.21) 
k'ct'fl" 

Proof. 

a) Equation (4.19) is Lemma 11. 
b) The YBE expresses the associativity of analytic continuation: the paths 71 and 
72 in Fig. 5 are isotopic. The linear independence of (the nonvanishing) products 
(~ijk(Z, ")~flklm(W, ")(~mnp(U, "), or, rather, of ~" ~t (Pink"( Z, " )q~k;;~m'(W, ")tp~;~p(U, "), finally 
gives (4.20). 

�9 , ,~ ' "  .. , ~ m "  

i " ~ 

. / ' k '% 1 
j I n j I n 

Fig. 5 3'1 3/2 

c) When we consider n-point blocks on the sphere, we have to impose the 
consistency condition that the paths 7 and 7' in Fig. 6 (path picture) and Fig. 7 
(braid picture) are isotopic, where x ~ = f - 1 ( z  j) and x~ =f-1(oo).  

Fig. 6 

Fig.  7 

Z 1 Z2 Zn 

_ _ 2  .y 

oo Z 1 Z 2 

7' 

Z n 

J 
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Without loss of generality we may evaluate the analytic continuation of n-point 
blocks whose arguments ~ are eigenstates of Lo (since these form a basis in 
~ 1 | 1 7 4  and we are allowed to assume that e.g. [z1[>[22]> ... >[z,[. The 
analytic continuation of the n-point blocks in zx, along y', is performed by letting 

1 
zl ~ ~ ,  replacing zl = - -  wl ~ w l  e-  2~i, and going back to the original position of 

W I '  

Z 1 �9 

Starting with n=2,  we obtain a special case of (4.21): 

R + ( l j * j l  )~*R + ( l j j * I  ) ~ , =  D~j j , , ,  (4.22) 

which follows also from (4.15'). 
Next, the 3-point block yields 

R + ( j * i k l ) ~ R + ( j * k i l ) k ~ = D - ~ u .  �9 Y. - .. ,.~ _ .. , ~  R ( l jzk) ,~, t jR (ltjk),,,. (4.23) 
a 

With the help of (4.15') we find 

--  . .  i ' a t  - -  . .  ,'*fl' _ _  + Y, R ( l j z k ) j ,  t jR  (1 q k ~ ,  - 6tj p, �9 Dkj~i , ,  (4.24) 
~t 

again a special case of Eq. (4.21). 
Let us pause for a moment. If Ni j  k ~. {0, 1}, then we can partially fix the 

normalization of the vertices by demanding (4.14). However, (4.14) does not fix all 
the normalizations completely; and Eq. (4.24) suggests - and in fact we could have 
verified it directly along with the computation of (4.15) - that (4.14) leaves us the 
freedom to gauge the chiral vertices, such that (4.15) is true and also 

R • ( l j lm)Ij~ = e + i~(n,,  - n j * -  ~I~*). (4.25) 

Finally, the consistency equation which derives from the 4-point block can be 
brought to a simple form, upon using (4.23). Namely, we get 

h m )  k'~'fl" 
k'oe'fl'fl" 

Combining (4.26) with (4.15') gives precisely (4.21). 
Simple algebra shows that (4.26) is responsible for the fact that there is no new 

relation stemming from the n-point blocks, for n > 5. [] 

Define generators 22, ~1 . . . .  , z,_ 1, which act on the n-point blocks as follows. 
F o r i = l ,  . , n - l ,  

z i ( B  : ( ' ,  ", Z ) ) :  = , 5~ r  ~(B : ( . , . ,  z)), (4.27) 

where d~,,,+ 1 stands for the analytic continuation along the path 7~,~+ 1, which by 
definition interchanges z~ and z~+ 1 in anticlockwise orientation, and which keeps 
fixed z l  . . . . .  z~_ 1., Zi + 2 . . . . .  Z n. Thus, in a more formal notation, zi is represented by a 
braid matrix: 

z i : l |  ... | |174 1| ... |  (4.28) 
i - ~ l  n f - - I  
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Similarly, 

z-/- 1 = 1 (~) ... (~ 1 |  1 | 1 |  | 1. (4.29) 
i Z 1  n - i V 1  

The generator z 2 is defined to be the diagonal matrix 

z2(( I2, ~P lii.(z 1, �9 )... f2>): = D ~-,. �9 <f2, ~Pl,.(zl, �9 )... I2>; (4.30) 

or, more formally, 

z 2 = D - | 1 7 4  |  (4.31) 
n - ~ l  

In this writing, we can reformulate (4.19)-(4.21) as follows. 

Proposition 15. The chiral f ield theory is defined o v e r  S 2, /ff the braid matrices 
provide us with a linear representation o f  the modified braid groups/~.+ 1($2), which 
are defined by the generators z 2, zl,  z 2 . . . .  , z ._ 1, and the relations: 

a) the usual braid relations on E2: 

zizj = z~zi, [ i - j l  > 2 

"~i'~i+ 1T'i = "Ci+ I T'iTi+ 1 (4.32) 

b) the extra relations f rom S 2: 

2 __ 2 ZoZj-  ZjZo, j > 2 

"~ 1"~'2 " ' "  r n  -- 2(~7n -- 1)  2 "/Tn - 2 " ' "  ~'2 "~ 1 = "C2" (4.33) 

Let us remind the reader once more that the very existence of the braid matrices 
R • (ijlm) implies that they obey (4.32), but that, so far, (4.33) looks like an additional 
constraint imposed upon them. 

Sometimes, symmetries may relate {~Pijk} and {tPkj~i}, and this entails a set of 
symmetries of the braid matrices. First, recall that ~ NukNkt m = ~ Nitk,Nk,jm. Put 

k k '  

m "* =j  , l = i, and we have ~ N~jkNkj~, ~ = ~, N,k,Nk,jj~. For any i and j  the right-hand 
k k '  

side is nonzero (since k' = 1 gives a nonvanishing contribution), and thus there is at 
least one k with Nij k :I: 0 and Nkj~i :~ O. Assume that for all (i,j, k) Nij k = Nkj. i (which 

\ 
means, in particular, that ~ Niik,Nk,jj~ = sum of squares). Assume that there is an 

/ 
antilinear, z-dependent map C(z):~C~j~J~j~, and a normalization of the chiral 
vertices such, that 

(q~k(Z, ~))* =tp~,j~, ( 1 ,  C(z )~ ) .  (4.34) 

Clearly, C(z) must satisfy 

C ( Z )  (~z(~)r ,  s )  : ~ l / z * (~Dr ,  -- s)  C ( Z ) .  (4.35) 
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For Virasoro algebras and ~r = ~ ,  at least the leading terms of C(z) are easily 
calculated: 

C(z) = z* - 2HJvj. ( ,  v j )  + . . . .  (4.36) 

where vj is the primary vector in ~ .  

Lemma 16. Under  the hypothesis  (4.34), the braid matrices exhibi t  the symmetr ies  

(R  + (ijlm)~'~P')* = R -  ( m l * j * i ) ~  ~' . (4.37) 

We know already, and we have actually used several times, that the chiral 
vertices are gauge dependent. I.e., we can rescale 

" �9 " (4.38) (Dijk I-"~ "~ijk ~Oijk , 

where '~i~k ~ (~. So far, we have chosen a specific gauge only for ejj~ and tpjt j (cf. 
Sect. 3), i fN i j  k is arbitrary; and in the case Niik E {0, 1}, we can choose a gauge also 
for tPij k, such that (4.15) and (4.25) hold true. 

It is easy to check 

Lemma 17. The  braid relations (4.19)-(4.21) are gauge invariant under 

R • ( i j lm)~a'~ - ,  2i~k" 2~ktm . g • (ijlm)k'~ ~' . (4.39) 

Remark .  Lemma 17 then says that (4.19)-(4.21) do not depend on the normali- 
zation chosen for some vertices; as should be clear already from the derivation of 
these formulae. 

5. Chiral Sectors IV: Chiral Fusion 

The main purpose of this chapter is to show that the chiral vertices qh~k(Z, ") and 
q~gim(W, -) can be fused. A common interpretation of this fusion is that it represents a 
short-distance expansion of the product ~Oi~k(Z, .)q~gt,,(W, .), as z ~ w .  This short- 
distance expansion is a Laurent series in ( z -  w) around z = w, and the coefficients 
are operator-valued functions which are evaluated at some point close to z and w, 
e.g. at z, or w, or �89 It turns out to be most convenient to choose �89  
because this allows a treatment which is manifestly symmetric in z and w. 

As usual, the operator product expansion should be valid whenever inserted 
into a correlation function, and thus it is natural to expect that the radius of 
convergence of this infinite series is no larger than the minimum of all distances 2 

z i - -  z + w  T '  where the points zi, i =  3,.. . ,n, denote the locations of the (n -2 )  

remaining chiral vertex operators in the n-point block. Chiral fusion may also be 
interpreted as a decomposition of the tensor product ~ |  subject to the 
restrictions that ~ C ~ t |  and ~ C ~ r 1 7 4  and also -~f~C ~|162 and 

First, we will study the chiral fusion on the vacuum ~2. Afterwards, the general 
case will be analyzed. 
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Consider the vector tpi~k(Z, �9 )(Pkk 1( w, ") ~ in ~Vf.~. Since the vacuum is translation 

invariant, it equals e L- ,-  ~Okk x - - ~ , .  O. Inserting a com- 

plete orthonormal set of vectors, q~, of og~i, and using the normalization (3.17), we 
get chiral fusion on the vacuum 

~PiSk(z, ")~Pkk,(W,-)f2= ~ ~p,,, (Z + 2 , ~l~) 0 

/ ,, {z-w 

- [ , p , l ( z ,  w;  a ; . ,  -)] O .  (5.1)  

As announced, (5.1) is a power series in (z -w) ,  with �89 + w) fixed. 
Next, we wish to investigate the operator product ~pi~k(Z, .)q~gIm(W, "). We do this 

by computing tp~jk(z, .) tp~kZm(W, ") ~m, where ~m is an arbitrary vector in ~m. By (3.17), 
tpmml(0,~m)t2=~. The idea is, now, to "shift" the pair tp~k(Z, ")(P~k,m(W, ") in 
q~k(Z, ")~PPklm(W, ")tPmml(O, ~m)t2 to the right, in order to make it act on the vacuum 
O; we may then employ the chiral fusion (5.1). Commuting back through 
(Pmm~(O, ~m) we will have obtained chiral fusion in its general, symmetric form. 

Note that 
--1 r 

~ ;  d ~ 7 ( q ) i j k ( Z ,  " )~O~klm(W, ")(Pmml(O, ~m)~'~) 

= tP,Sk(Z," ) tPkPim(W, ") ~Pm,~, (0, ~,~) f2, (5.2) 

where 7 is any path. We apply (5.2) for a path 7 as indicated in Fig. 8 or in Fig. 9. 

i 1 

Fig. 8 j I m Fig. 9 

i 1 

j I m 

We discuss in detail the analytic continuation in the case where 7 is given by Fig. 8; 
the case of Fig. 9 is similar. Using (5.1) and the summation convention, we have 

+ ll~" + " k ' a ' t W  a' . . .  = R  (klml)maR (qml)k~a, qgi~k'(Z, ~m) [q~*'k'l(W, 0, fl , ", ")]O. (5.3) 

In writing Eq. (5.3) we have assumed, implicitly, that the short-distance expansion 

in (5.3)makes sense for z -  2 > 2 "  Furthermore, it is a fundamental assumption 

that 

the fused vector ~' . . . .  qhm,'( z, ~m)[~0k'k'l(W, 0, fl , . ,  ")] f2 can be continued analytically 
along any path z ~--~r w ~--~d(w), 0 ~-~r as long as [ d ( z ) - � 8 9  ~r 
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> I d ( w ) - � 8 9  ~r Moreover, in these cases the analytic continuation of 
this vector is given by the analytic continuation of (w 0 < ( w ) ( w ) /  

~q'mk'(Z, 4,,), q~k'k'X ~ ,  qk' and q~, ~0~,j~ ~-, .  qhzt -- ~-," Q �9 (5.4) 

Therefore, the analytic continuation of this vector can again be calculated with the 
help of braid matrices. This can be understood as follows. The analytic 
continuation 
~ _ ,  along ? - ~ is split up into a sequence of paths whose union is isotopic to 

- 1 :])- 1 = ~1 k.)~2k.)~3 (see Fig. 10). dv,(w ) = y and d r , (0  ) = x, such that Iz[ > lyl and 
y = - x ,  which is always possible since Izl > 0. 

o X  
Y x 

, J "  y 
W 

/ t ~ �9 

'}'1 72 

y" 

o 0  

Fig. 10 73 

Also, dr2 has to obey the restriction that d~2(x) does not circle around ~r 
because otherwise ?-x would not be isotopic to ~lk..)~2k.)~3. We 1 , have ~(x + y') = z, 
and in the end we get 

d~-,(~O~'mk,(z, ~m) [~ok,~,,(w, 0;/~";., -)] a) 
. . . . .  ,, if,, =R (,mk 1)~,~, [q',~,m(Z,~" W; ., ")]q'mm,(0, ~m)a, (5.5) 

if�89 wl < �89 + w[. For  this range of z and w, and upon defining the fusion matrix 

F~ara"  R+(klml)~' R+(ijml)~]~"R-(imrl)m~,, (5.6) ijklmr : : 

the combination of (5.2), (5.3), and (5.6) yields 

~o,~(z, ")q6m(W, ")~m: Z ~P"  ~ "fl"; FUklm r [q)irm(Z, W, ", ")] era" (5.7) 
r, ),, f l "  

We remind the reader of the fact that the fusion process could have been performed 
by the use of the path in Fig. 9, too. This would amount  to exchanging all " - "  by 
" + "  and vice-versa, in (5.8). We collect our results in 

Proposition 18. Chiral vertex operators can be fused; i.e. 

q~i~k(Z,')cPgtm(W,') = E ~avP"r, ,r  t~w; f f , ;  --ijklmr LWirml,~, " ,  " ) ] ,  ( 5 . 8 )  
r ,  ,/, f l "  

whenever inserted into a n-point block. 
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The fusion matrices, F, are determined by the braid matrices, 

i j k l m r :  ~ R (klml)maR ( l j m l ) k ~ # ,  R (tmrl),~, (5.9) 
~t',fl t 

- lv - "" r#B"  + " m~, = R (klml)maR (tjml)k~ R (tmrl),,. (5.10) 
/t,V 

We introduce a graphical notation, in order to accommodate braiding and 
fusion in one picture. The fusion of q~jk(Z,') and q~Pk~m(W, ") is symbolized in Fig. 11, 
neatly reflecting the symmetry in z and w. On the other hand, the contents of (5.9) 
and (5.10) is displayed in Fig. 12. 

We define the restricted group of gauge transformations to be the group of all 
rescal ings ~ O i j k ~ " ~ i ~ k ' q ~ i ~ k ,  which obey 

2 j j l= l ,  Vj~ ~e. (5.11) 

Thus, the normalization (3.17) is preserved by the restricted gauge transforma- 
tions. During the calculation of (5.8) we have always employed the gauge (3.17), 
and so we obtain 

Lemma 19. 

a) Under a restricted gauge transformation the fusion matrix transforms as 

l~'~lL'~ ~.12~1~1~ "~ijk " 2 k l m  (5.12) 
- -  i j k  lmr �9 " - - i j k lmr  "~-~irm-'~ff-~r j l  " 

b) I f  (3.17) is not imposed, formulae (5.9) and (5.10) are supplemented by Vul and Vrr 1 
in such a way that (5.12) holds true for an arbitrary gauge transformation. 
c) Taken together, Eqs. (5.9) and (5.10) imply (4.21); i.e. the chiral field theory is 
automatically defined over the two-sphere. 

F 

Fig. 11 j I 

Fig. 12 

r m r m 

r 

1 = I r 1 

j I m j I m 

i m 

j i 

m 

m 
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It is remarkable that the existence of braid matrices, plus the compatibility 
assumption (5.4), mean that the theory is really defined over S 2. 

Apart from the pure braid relations of Chap. 4, new relations for the braid 
matrices can be derived by examining the consequences of chiral fusion. Such 
relations are obtained by considering the effect of the combined action of R 
(analytic continuation) and F (chiral fusion) on products of holomorphic chiral 
vertices, always keeping in mind the domain of validity of the short distance 
expansion. 

Proposition 20. 

a) The R matrices obey 
1~ +- { ; ; I ~ k ' = ' p "  K, '~'P'~' Iz _ +- �9 "IZ cLllYo 

~ ,  z x  ~j~H,Jko~ fl - - i l k ' j r a r - -  ~ ,  R (rJlJ~oFoklm ,. (5.13) 
k'et'fl" O 

b) In the notation (5.19), the braid matrices satisfy 

y, ~Ar• ~: ~=aru (5.14) 
"~" I,~J~"~Ik~fl l i j k ' l m r - -  O r j l  " a i j k l r n r "  

k'ct'fl" 
C) 2 • m'Itv • "" ' k '6'O QvT"P'" __ D •  R (klnp)m#r R (qnm)kat# Fk'jm'lpr-- ~ (5.15) ~t~ t~H,Flrat~3, X i j k l m r .  

n:',/~, V,Q t~ 

Proof. It may be helpful to first write down the explicit form of [q~,,(z, w; fl";., -)]. 
We have 

�9 (r/~, q~,~ ( ~ ,  -) ~0m (~@~, .) f2). (5.16) 

a) Consider the analytic continuation of the product q)~k(Z, ")~O~tm(W, ") along the 
path ~ in Fig. 13. For z and w sufficiently close together, we may either fuse the two 
fields before or after the analytic continuation, and the two expressions thus 
obtained must agree. The first alternative gives 

z % . . _ . . ~  
Fig. 13 

~(~,j~(z,.)~,.(w,.))=~ ~ _,j~,= 2 ~ .  ~ 
,,r,~" \ 2 ' / ( z_w)  w_z)o) 

while the second alternative yields 

~,(~o~j~(z,.) q~,.,(w..)) = 2 . .  , ,J , , , , ,~  ~,,~.j.~ 
k ' ,  ~' ,  fl ' ,  ?', s, v 

l . .  z_w w_z o) 
A little thought shows that (5.17)=(5.18) iff the relation (5.13) is fulfilled. 
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In our pictorial language of fused braids, the equality (5.17)=(5.18), or its 
algebraic counterpart (5.13), have a very simple representation at least if 
N~jk~ {0, 1}. This is shown in Fig. 14, where we have chosen the gauge (4.14). 

Fig. 14 

,( 
J 
i 

r 

m =_+(Drjl) 1/2 I~m 
I j I 

b) Let us iterate once the analytic continuation which led to (5.17) and (5.18). We 
obtain again a gauge independent algebraic equation, which is necessary and 
sufficient. Denoting by M• "p" the monodromy matrix 

we find 

M+-(ijlm)['~'~ ''~''= ~, R+ (ijlm)~tr R+ (iljm)[:~, ~'', (5.19) 
k ' c g ~ '  

y, AAr + tm..,~k"~,"tv'~o,"~"'r~, _ n -  ~=t~. (5.20) 
�9 ,A t~d~ , ,~ tka f l  a i j k , , l m  r - -  L i r j l ~ i j k l m r .  

k "  ="  fl '" 

c) The proof of (5.15) parallels the one of Proposition 18. Anyway, we will offer 
some comments. Choose points z, w, u which are sufficiently close together, and 
which obey [z -  w[ < [z -  u + w -  z[, [w-  u[ < [w-  z + u -  zl. We wish to compute the 
braid-fusion relation which is depicted in Fig. 15. 

Fig. 15 

n r n r 

j I n j I n 

On the one hand, we first fuse q~jk(Z,.)tpk~lm(W, .), and choose a path 7 = Y'wT" as 
in Fig. 16 in order to continue analytically the power series [q~,m(Z,W; 
fl", �9 -)] ~o~,p(u, .). 

Fig. 16 

z w ~ ' ~  " y  

y' 

z.'- L u.jy 

~t t �9 
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We get 

r,$,~'" 
k',~',~" 

~oi .~ , ( z ,  " ) ~' �9 [~Ok,,p(W, U; ", ")]. (5.21) 

On the other hand, if we continue analytically before fusing, we have, because 
the product ~o'q~P~o r is analytic at all non-coincidence points, and because ~ clearly 
is isotopic to y'" in Fig. 17, 

Z �9 

w C " - " . u  + 
w U o  

Fig. 17 
7'"  

~t + m'#v + .�9 t k'6'O 
d~(~Oi jk (Z  , ")~Oflklm(W, ")(#~np(~t, " ) ) :  ~ R (klnp)mpr R (qnm)ko t l t  

m', I~. V, ~" 
o ,k ' ,~ ' , f l" , r  

l~OVT'O'" rr~J' (~ 7' �9 " �9 [ e k , r p ( w ,  U,  f l  , " ,  --k , jm,lprWink,~, ,  ") ")]. (5.22) 
A comparison of (5.21) and (5.22) gives (5.15), as a necessary and sufficient 
condition. []  

The analysis of the associativity of chiral fusion appears to be less rewarding�9 
What is not difficult is to realize, that the associativity constrains the possible 

4-point blocks. This is briefly explained now. In the domain ] z -  wl < I w -  u + z -  ul, 
Iw-ul  < I w - z  + u - z l  it is legitimate to perform the fusion processes which are 
sketched in Fig. 18. 

Fig. 18 

S S 

j I n j l n 

It is useful to note that chiral fusion can be described in various equivalent 
ways. Skipping all "superfluous" indices, we have e.g. q~(z, .)~o(w, .)f2= ~ ~o(w, qN) 

N 

Q/N, ~o(z -- w,.) q~(0, .) Q);  and assuming compatibility of chiral fusion (in this form) 
with analytic continuation we arrive at 

~o(z, .)q~(w, . )= ~ F ~ q~(w, qN) (tiN, qg(Z--W, ")q~(O, . )0) .  
N 

The F-matrix here is exactly the same as the F-matrix in the symmetric fusion; it is 
given by (5.9). It appears to be most economic to discuss the associativity of chiral 
fusion in this "asymmetric" presentation�9 
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It is easily checked that asymmetric fusion gives 

~o,~(z, .)q,~,,.(w, .)~o~.~(u,-)= v v ~  ~ . . . .  , . . .N~  Z.~ ~k lmnpr t  ijkrpsWisp~ ~,  tls ) 

N v �9 (qs, r z - u,. ) ~o~z,(w -- u,. ) ~0n, 1 (0,")t2 ) ,  (5.23) 

__ ~ l~*tBaQ K'aye'v" e' - -  /~ a ijklmaa iamnp b q)ibp(U, nNb) <l~N, v" N �9 ~Obo.(W--U,~lo)~..l(O, . ) f 2 )  

�9 (rl~, ~o~jt(z-- w,.)~0ttl(0,.)t2>. (5,24) 

Therefore, (5.23)=(5.24) for each e=e' ,  s = b ,  and N ~/b ----- r/s separately. Since 
V' N = R (sanl),v,~Os,a(U-W,.)q~aal(O,q~), and if q~ is an tPs~,(O, qa)qO,,x(U--W,') • + ~', ~,, 

invariant vector Is, we find (in a sloppy notation) 

E Fu,n.vrFijkrps (~s, 9s~r( z -- U,') rp~rzn(W -- U,') ~Onn 1(0, ' ) t2)  
r , y , ~  

- ~o~.~(u- w, . ) q ~ j z ( z -  w, ")q~.dO, . ) 0 ) .  
- -  f ijklmaFiamnpsR (sanl) .  ( ~ ,  ~" 

a ,v" ,Q 

Thus, the associativity connects the 4-point blocks (~ ,q~ , j , (x , . )q~l . (y , . )  
q~..~(0, .)f2) and ( ~ ,  qg~.o(O, . )gajl(X, . )~ou~(y, . ) f2).  

We have found a set of algebraic equations which are satisfied by the braid 
matrices. We are interested in finding out whether they are interrelated and 
whether they are complete. By definition they would be complete if any combined 
action of R and F on any n-point block does not give new, independent algebraic 
relations. 

With regard to the first problem, a heuristic argument involving braids 
suggests to compare the YBE to Eq. (5.13). Indeed, it is an easy exercise in algebra 
to check, that if we project the YBE, (4.20), from the right to the vacuum, i.e. setting 
p : = 1 in (4.20), and if we apply the definition of the fusion matrix, (5.9), we obtain 
precisely Eq. (5.13). Next, it is also evident that (4.2) follows from (4.1). We have 
already shown that the extra braid relation on S 2, (4.21), is a consequence of the 
existence of chiral fusion (5.9), (5.10). Last, (5.14) is just the square of (5.13), by using 
(4.15'); and the R--version of (5.13)-(5.15) follows easily from the R +-version by 
taking inverses. 

We have thus obtained 

Lemma 21. The braid and fusion relations fol low algebraically f rom 

a) R+i+lRi-i+l=t. 
b) o+ R + + o+ o+  o+  a ' - i , i+l  i + l , i + 2 R i , i + l = ~ H + l , i + 2 ~ t ' ~ i , i + l J t ~ , i + l , i + 2  �9 
c) + R + + R i ,  i + l F i ,  i + l = F i + l , i + 2  i , i + l R i + l , i + 2  �9 

(The notation is as in Proposition 15, and the writing of the fusion matrix has been 
adjusted to that succinct notation.) 

Let us turn our attention to the question of completeness. There is a 1 - 1 
correspondence between the combined action of analytic continuation and fusion 
on a n-point block and its representation in terms of a (fused) coloured braid. If two 
such actions are isotopic they result in an equation relating braid and fusion 
matrices. Isotopy means that one (fused) braid can be deformed such as to yield the 
other braid. The deformation process can be broken down into (generalized) 
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Reidemeister-moves. These basic constituents of any deformation are displayed in 
Figs. 18, 19. However, we recognize immediately that, apart from the associativity 
of chiral fusion (Fig. 19a), all moves are already encoded by the equations of 
Lemma 21. We get 

Fig. 18 

Fig. 19a 

, e t c  

Proposition 22. 

a) The equations in Lemma 21, and 
b) the associativity equation for chiral fusion are complete, in the sense that no 
other consistency relations are generated by the combined action of analytic 
continuation and chiral fusion on n-point blocks. 

This result has also been proven in ref. [5]. 
We wish to point out that, in general, the consistency relation stemming from 

two isotopic coloured braids can be written down immediately, using the rule that 

j I "~> R+(ijlm)~'~ #' 

r 

( ~ m  p ~ "  (5.25) i ~ ~ i j k l m r "  

j i 

The braid-fusion relation (5.15) has important applications in a theory where 
there is an index, say 2, e ~e, such that for allj e ~ there is a m > 2 with ~ C  ~ m .  
Then the knowledge of all R(. 2n-) and R(... 1) seems to be sufficient to compute 
the whole set of braid matrices. Actually, we claim that it is enough to know 
R(. 22 .), R(...1), in order for a cleverly chosen fusion scheme to provide us with all 
the braid matrices. This conjecture has been verified explicitly for the case of the 
minimal models in [6]. 
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6. Chiral Sectors V: Spectrum of the Braid Matrices 

For a given set of indices ijlm we define the vectors v(ijlm) "~v with components 
� 9  r~V v(lJlm)k~p by 

�9 " r t t v  . _ _  ~ # ~ t v  v(tJlm)k~p .-- Fijktm,. (6.1) 

The number of these vectors is Z Ni,m "N,jl, which, by (4.7) and (4.8), equals 
r 

N,mrN~jt = ~k NijkNkZm--dim(Wijlm). Using definition (5.9) of the F-matrices and 

the fact that the braid matrices are invertible, it is not hard to verify that the vectors 
v(ijlm) ~ are linearly independent. Now consider Eq. (5.14)�9 It reads, e.g. for " +  ", 

M + ((jim) v(ijlm) ~v = DTjt" v(ijlm) ~ , (6�9 

thus yielding an eigenvalue equation for the monodromy matrices M + and M - .  
Since M+(ijlm) is a dim(Wijl,) x dim(W/jim ) square matrix, we get 

Lemma 23. The monodromy matrix M+(ijlm) has the spectral decomposition 

M+(ijlm) = ~, Pr. D~,, (6�9 
r 

where P, projects onto the (Nim~" N~j~)-dimensional eigenspace corresponding to the 
eigenvalue D~j t. The fusion vectors v(ijlm) "~ span the image of  Pr. 

This result has important applications. Consider Eq. (4.21): 
+ " k ' e t ' , 8 "  - -  + " �9 k " o t " [ 3 " '  - -  R (tylm)k~a Dk,jmR (tljm)k,~, ~, - - (~kk , ,~t , , t~#p, , 'Di j  k . (6.4) 

k ' r z ' f l '  

Since we know the spectral decomposition of M § one way to extract explicit 
information from (6�9 and (6.4) is to take the determinant of Eq. (6.4). We obtain 

det(M + (ijlm)). I-I (D~m)  N a s N s j ' :  l~  (Dijp) NIjpNp'm. 
s p 

Taking into account (6.3), this can be rewritten as an equation among the 
conformal dimensions, Hq, as follows: 

H~(No,N,t m + N i t r N r j  m d- NimrNrj l )  
r 

= ( H i + H j + H , + H . ) . ( ~ N i j k N k , . ) + n ,  (6.5) 

where n ~ 7Z is an arbitrary integer. 
Considering the determinant of Eq. (6.4) is inspired by Ref. [4], and, indeed, the 

resulting equation (6.5) coincides with Eq. (7) of Ref. 1-4] ! In other words, we 
simply need to repeat the steps in Ref. 1-4] in order to prove that all conformal 
dimensions, Hq, are rational numbers. Anyhow, for the convenience of the reader 
we will review the proof  of this statement. We introduce some notation: 
dijlm : = d i m ( W i f l m )  , d i :  = diii, i. Equation (4.6)-(4.9) mean that dijlm = diljm = dimjl , and 
di > 1. In equation (6.5) we put i = j  = m, and i* = I. In the known models of rational 
conformal field theory one finds always that H~ = H~,. At present we do not know 
whether this is already implied by the property of a triple ( d ,  s ~)  to be rational. 
So let us assume that H~ = H~,, u From (6.5) we get 

4. d i �9 H i - -  ~r Hr(2Ni i rNr i i*  d- Ni i . tpNri i )  = 0 mod 1, 
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which is a matrix equation 

~/_H =-0 mod I ,  

where the matrix ~ has matrix elements 

dlkk = 4. dk-- 3NkkkNkkk, >= 1, 

~ / k r  = - -  2 N k k r N r k k *  - -  N k k * r N r k k ,  if r =~ k, 

and where _H--(H1, ..., H,) is the vector of the conformal dimensions associated 
with ~1  . . . .  , ~r e ~e, n=l~el. 

It follows that 

because 

I ~ 1 >  E I~krl, (6.6) 
r * k  

4d k > 2d k + dkk*kk ~-- 3dk . 

It has been observed in Ref. [4] that property (6.6) of sg implies, that Jr  cannot 
have a trivial eigenvalue, thus Jg  is invertible. Since Jg  has integral entries, s g -  1 is 
a matrix over Q, therefore ~r 1(_0 mod 1) = _H yields 

Proposition 24. Let ( d ,  s ~, ~ )  be a rational triple. I f  

Hi=Hi . , foral l  i E . ~ ,  then H ~ Q .  (6.7) 

It would be interesting to explore the full power of Eq. (6.5). In particular, there 
must be a strong relation between the possible set of conformal dimensions and the 
fusion rules N~i k. 

An immediate consequence of Proposit ion 24 is: 

Corollary. All monodromies M+-(ijlm) have the property that 

M+-(ijlm)"= ~lw,j~,,, (6.8) 

for some n E N.  

7. Some Relations with Link Invariants and Quantum Groups 

7.1. Link Invariants. In this subsection we intend to indicate briefly how the 
structural equations which connect the R and F matrices of the holomorphic chiral 
sector of a conformal field theory can be used for the purpose of constructing link 
invariants. A more detailed presentation appears in [12]. Motivated by the 
representation theory of quantum groups, a similar approach has been proposed 
in [13]. 

A (n-component) link in R a consists of n non-intersecting and non- 
selfintersecting closed curves in R 3. If n =  1, it is called a knot. Two links are 
equivalent iff they can be deformed continously into each other. We can fix a plane 
in R 3 and project the links onto it. Two links are equivalent iff their projections are 
equivalent, and the continuous deformations (transferred to the projections) can 
be viewed as a sequence of those moves which are shown in Fig. 21. These moves 
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obviously have much in common with the generalized Reidemeister moves on a 
(fused) braid. A link invariant is a functional on the set of links, depending only on 
the equivalence classes of links. 

Fig za -- f 

, etc 

For  more information on the theory of knots and links the reader is referred to 
Refs. [10, 14]. 

We construct a functional, I(L, O,j),j ~ ~q~, on the set, L, of oriented links in R3 
which possess the orientation O. (A link is oriented, if each of its strings is so; when 
drawing pictures, the orientation is indicated by arrows.) The invariant I(L, O,j) is 
defined relative to a fixed projection plane, S, in ~3,  a fixed, distinguished 
direction, ~, on S, and an index i6 L,e. The corresponding quantity I(L, O,j; S, ~,, i) 
can be shown to be independent of S, ~, and i, and because this functional depends 
but on the equivalence class of the projected oriented links, what is thus obtained is 
an invariant of oriented links. 

We choose a plane, S, in ~3 and a unit vector ~'~ S which determines the fixed 
direction. The projection, Ls, of an oriented link, L, on S obtains a marking as 
follows: a point on L s is marked by �9 if the tangent vector to L s at this point is 
orthogonal to ~" (see Fig. 22). Such a marked graph is similar to a vacuum to 
vacuum Feynman diagram, where ~ and ~ denote pair 
annihilation and creation, respectively. 
Purely for reasons of notational simplicity let us consider a chiral field theory with 
the properties 

a) Ni j  k ~ {0, 1 }, 
b) Vil i=  1, 

c) j= j* ,  V j ~  q~. (7.1) 

Part b) implies that R-+( �9 1-.)=R:~( .- 1 . )=4 .  
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Fig. 22 

Next, the braid-fusion relation R+(ijlm)kk,Fk,lilk,1 =R:r(k'ljk)i,,, gmlklml , which 
can be deduced from (5.15), shows that if for some l, k', i the fusion matrix element 
Fk,litk, 1 -----0, then, for all k, j, m, R ~- (k'ljk)im Fmlktml -----0. In particular, F m m = 0. This, 
however, would mean that ~ a.(~pm(z, ~.)~Oln(Z-1,X,))--0, for all z, where the 

n 

coefficients a, represent any linear combination of vectors ~,, Z, such that 
Y, a.(~Prn(�89 4n) ~Pul(--1, Xn)E2) = 0  for all r *  1. Therefore, From cannot possibly 
n 

vanish, and we see that 

d) the numbers fk,lilk, 1 a r e  nonzero (if they are defined at all). (7.2) 

Now, the link invariant I(L, O , j ) -  I(L, O,j; S, E,, i) is constructed as described in 
the sequel. 

Take the marked diagram Ls, and transform it into a marked, coloured graph 
by assigning the index j to its lines, arbitrary labels kt, kz e Ae, to its bounded 
surfaces and the index i to its unique unbounded surface (cf. Fig. 23). 

Fig. 23 

J i 

i J 

To the building blocks of L s we assign R- and F-matrix elements as listed below: 

J j ' j j 

~(D?j j )  1/2. R + ( l j j m ) k k ,  (7.3) 

J j ' j J 

*--~(D~ij)l/Z R + (ljjm)kk , (7.3') 
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J j ' j J 

~--',(D'~jj) I/2 R - ( l j jm)k  k, (7.4) 

J j J j 

*- ->(D~j j ) l nR- ( l j jm)kk ,  (7.4') 

1 

J J J J J J 

Fljkjz x (7.5) 

-el ~ ,  ~ "r 
I I 

(7.6) 

The rules (7.3)-(7.6) and the properties (7.1)-(7.2), together with the structure 
equations for R and F, make it possible to check the relations (summation over 
internal indices is understood, and E is taken to be ~'): 

J k 

J J 

J J J 

- ,/k 
J 

J i i 

(7.7) 

(7.8) 

(7.9) 

J J J J J J 

(7.10) 
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k �9 &kk'" (7.11) 

(7.12) 

For example, the braid-fusion relation which is relevant to prove (7.8) is Eq. (5.13): 
E R + (ljjl)kk,Fljk,jt 1 = (D ?j j) 1/2 Fljkj t l .  
k' 

The identities (7.7}-(7.12) imply that, for instance, 

i 
I M . J  I k , . . ~  I 

Finally, the link invariant I(L, O,j) is defined by 

I(L, O,j; S, ~,, i): = • H(D1/2R)• • 1, (7.13) 

where in this symbolic notation the right-hand side of (7.13) m~':~ n ~ ~h c sum over all 
possible configurations of internal indices, {kt} , of the product of all D 1/2. R-matrix 
elements (arising from crossings) and of all F-matrix elements (stemming from 
fusion or pair creation). 

As mentioned earlier, it is not difficult to prove that (7.13) does not depend on i, 
and the same can be shown for Eand S. Furthermore, (7.13) is obviously invariant 
under all gauge transformations which respect (7.1). 

7.2. On Vertex-SOS, Quantum Groups, etc. Suppose that we are given a Hopf 
algebra, d ,  with comultiplication A : d ~ d |  and a countable set of 
irreducible representations o f d  on the representation spaces V~, i ~ I. Assume that, 
for given j, k, the multiplicity, Nok, N~i k < ~ ,  of the representation i in the tensor 
product representation j |  is non-zero only for a finite set of indices i. 
Furthermore we assume that there are linear operators Rjk  : Vj| V k-* V k | Vj which 
commute with ~ : A (A)Rjk = RjkA (A). To simplify the notation in the following, we 
assume now that Nijk ~ {0, 1 }. 
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Associated to the tensor product decomposition there are projections (which 
are unique up to a multiplicative constant) Piik : Vj| Vk ~ V~ 2, which are character- 
ized by the commutation property APijk = PijkA (A), for all A ~ d .  This implies that 
PikjRjk = Pijk" Pijk, where #ijk ~ ~" Similar considerations apply to the linear space 
of those projections which-realize the tensor product decomposition Vj| Vt| Vm 

V i. Such projections, denoted by Pijtm, obey APijtm = Pijzm(A | 1)A(A), A e ~r 
Obviously, {P,jkPkzmlk E I} and {P,tk,Pk,~,(Rj,| 1)lk' ~ I} and {P,rmP,jtlr e I} form 
three different bases in the space of projections Pijl~. Therefore, there are linear 
dependences 

PijkPkZm(Rtj| 1) = ~, r(ijlm)kk,Pilk,Pk,im, (7.14) 
k '  

Pi jkPk lm = ~ f i jk lmrPirmPrj l  , (7.15) 
r 

which define the Vertex--+ SOS transformation of the R-matrix: Rtj |  1--+r(ijlm)kk, , 
and the "fusion" of projections in (7.15). Assuming the V~, s~I ,  to be separable 
Hilbert spaces, we can rewrite (7.14) and (7.15) in terms of vertex operators (Pijk 
which are defined by (xi, (tOijk(Xj)-~k~ : = ( X  i, Pijk(Xj| where x~ e V~. We obtain 

qgijk|174 ~ r(ijlm)kk,q~itk,(Xt)~k,jm(Xj), (7.16) 
k' 

qgijk(Xj)~Okt,(Xl) = E fijktm, ~, q~i,m(XNr) (XNr, q~jl(Xj)Xl> , (7.17) 
r Nr 

where {XN~ ~ V~} is an orthonormal basis of V,. It is not hard to check that these r- 
and f-matrices obey the algebraic relations of the R § and F-matrices which were 
derived in Sects. 4 and 5. 

There are known examples of Hopf algebras ~r with universal R-matrix: the 
quantum deformations, Uq(g), of the universal enveloping algebra of affine or 
classical Lie-algebras g [13, 22]. As the deformation parameter, q, approaches the 
rational points on the unit circle, the representation theory for Uq(g) becomes 
rather intricate and in fact has not been solved so far. One expects, however, that a 
careful examination of this problem shows that there are only a finite number of 
(finite-dimensional) irreducible representations. Thus, if q~ = 1, the representation 
theory of rational chiral algebras (as discussed in Sect. 2) is likely to parallel the 
representation theory for Uq(g). In particular, we conjecture that the S~k(n)-WZW 

2 h i  

theory corresponds to Uq(sl(n)), q = e k+~. 
We are thus led to conjecture that there is a 1 - 1 correspondence among chiral 

algebras and quantum groups, the SOS-form of the quantum group R-matrix, 
r(ijlm)kk, , being equal t o  R+(ijlm)kk ,. In particular, the multiplicities Nij k for the 
chiral algebra equal those of some quantum group. 

Let us mention that the Vertex-SOS transformation of quantum group 
R-matrices has been studied also in Ref. [23]. 

In the remainder of this section we show that the above conjecture (on the 
relation between rational conformal field theories and quantum groups) and the 
Vertex-SOS transformation of the quantum group R-matrices permit the cons- 

2 Notice that we do not mean that the tensor product Vi| Vk is completely reducible in terms of V~, 
s ~ l  
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truction of new vertex operators, Vj~,(z,., .), whose commutat ion relations are 
described by the Vertex-version of the R-matrices. 3 

Thus, we assume that for a given RCFTh with vertex operators 4 q~,jk(Z, ") and 
corresponding R-matrices R+(ijlm)kp and multiplicities N~jk~{O, 1} there is a 
quantum group, U~, with vertex operators ~P*jk(" ), with SOS R-matrices r(ijlm)kp 
=R+(ijlm)kp and which has the same N,jk. Assume that we can find coefficients 
Drj'k'=a~ i,j, k, i',j', k' e l ,  such that (cf. (8.10)) , jk  ~ .~t.., 

+ . . . .  f .t ~ ~ i ' j 'k '  k'l'ra" i 'l 'p' p ' j 'm '  R (zjlm)kpR (tjlm)k,p,D~j k Dkl,, --Dit p Dpj m . (7.18) 
k,k '  

We note that (cf. Sect. 8) i f j= j* ,  Vj~I ,  and if there is a gauge such that R+(ijlm)kp 
=R+(mlji)kp, then a solution of (7.18)is given by 

D i ' j ' k ' =  6 i i ,6 j j , (~kk ,  . ( F i j k j i l ) -  1 (7.19) ijk 

We notice also that (7.19) is indeed a solution for the minimal models and for S~k(2 ) 
current-algebra. ~ o~ ~ ~/t~ and x e Vi,, where Vj, is the quantum group represen- 
tation corresponding to ~j, ,  we define 

vjj,(z, ~,x):= E ~'J'~' DUk ~Oijk(Z , ~)  ~l)i,j ,k,(X ) �9 (7.20) 
ii" 
kk' 

Computing the statistics of the vertices V~,, we get (? is a path exchanging z and 
w in positive orientation) 

d~(vjj,(z, . , . )  v~,,(w, . , .))  
i 'j 'k" k'l'ra' + " 

Film" 
pk' 

which, using (7.18), equals 

-- E R + (t . . . . . .  l j  m )p ,k , l~ i , j , k , (  . )~l)k,l ,m, ( . ))Dilpi'l'p'Dpjmfj'm'cpitv(z, -) 9pyre(w, -). 
mm' 
pp'  

Since R + =  r, the Vertex-SOS transformation (7.16) can be applied. This gives 

I'li'l' p' Flp ' j 'm' .~  [.p 
= ~,, ~ 'Up X lp jm W i l l ,  ~', ")~Opjm(W, " ) l P i T p ' @ l ~ p ' j ' r a ' ( R j ' t ' ( "  @ "))" 

ii' 
pp'  
tara" 

The result is written most easily using an orthonormal basis ~ ' |  e Vj,| Vr. We 
find 

d~(V~j,(z, ., eL" ) V~r(W, ., e~)) = F~ (Rj,r),~,~ Vw(z, ", e~') Vjj,(w, ., ~'), (7.21) 
73 

where (er  | d,~ ', Rj, , ,e~' |  -(Rj,v)ra,~ #. 

3 The construction of the operators Vjr is rather similar to the construction of local fields in terms 
of a holomorphic and an antiholomorl~hic chiral field theory 
4 In order to keep the notation as simple as possible we assume here that the multiplicities Nick are 
either zero or one 
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8. Conformal Field Theory of Local Bose Fields over S z 

Suppose that we are given two rational chiral field theories, ( d ,  A~ and 
(~ ,  ~Cp, ~)  for short. We wish to combine them, or rather their chiral vertices, in 
such a way that they provide us with a set of relatively local bose fields over S 2. This 
combination process, called local fusion, is not some a priori and uniquely 
prescribed method, but rather we propose one specific approach which is 
motivated by the holomorphic factorization properties which a conformal field 
theory should exhibit. Let us add that two chiral sectors can successfully be 
subjected to this kind of local fusion iff their braid matrices obey the algebraic 
relation (8.10). For example, if for some j~  A ~ there is n o j s  ~ with (Hj-H~)~Z, 
then this local fusion is impossible. It is an important, but as yet unsolved, problem 
to give explicit criteria which would guarantee that (~ ,  Aa, ~ )  and (~ ,  ~ ,  ~)  can 
be fused. 

Let z and s be independent complex variables, z e II~, ~ C. The chiral vertices, 
q~i~k(Z, "), of the holomorphic chiral sector (~r ~ , ~ ) ,  and those of the anti- 
holomorphic sector ( ~ , . ~ , ~ ) ,  i.e. ~3i(~,-), are combined into local fields, 
according to the Ansatz: 

~ .-:-~k~ # z O~)( z~, "):= Z _ COJ~)~eq'~S~( , " )~(z ,  ")" (8.1) 
i , 7 , k , k ,  fl, fl 

Let us explain the meaning of this definition. First, the fields ~b~(z~, �9 ) - tp~)(z~, .) 
are operator-valued fields on S 2 x S 2, which furnish maps 

~ :  ~ @  ~e.~| jf~| ~e~--,~.~| ~.~.  (8.2) 

The objects C(jfa)~k~ are C-number coefficients which determine the bilinear 
combination of the chiral vertices. The index a on ~b~ is meant to distinguish among 
linearly independent local fields, i.e. we require that 
the fusion coefficients C(jf%), p = 1,..., n, encode fields which satisfy 

,~p~?(ze, .)=0 ~ ,~p=o, Vp. (8.3) 
p = l  

Clearly, the maximal number of linearly independent combinations ~b], for fixed J, 
is finite. 

Finally, postulating bose field locality says that on the Euclidean section of S 2 
x S 2, i.e. at the points (z, s = z*) e S 2 • S 2, the fields ~b] form a set of relatively local 

bose fields. 
It should be stressed that requiring this trivial commutation relation among all 

the fields ~b] does not indicate a limit beyond which one cannot reach using this 
formalism. In fact, any representation of the braid group other than the trivial one 
would have been wonderful, too, apart from the calculational complications which 
we had wanted to evade. 

Let us take a break for a moment and think about the question what the 
"physical" Hilbert space is. By definition, this is the Hilbert space, ~,, which is 
associated to the local conformal field theory ( d |  ~ ,  ~). If the fusion of the chiral 
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sectors is sufficiently uncomplicated then it is easy to describe ~ explicitly. For, 
supposing that 

a) per index J&(j,))  there is at most one local field; 
b) for each field ~b s the fusion coefficients ~(jj-~ and ~j-)~i~ are nonzero; (8.4) 
c) let s be the index set of the local fields, thus here ~ ~ La x ~ .  

If ~(/~[~ # 0, then (i, ~) ~ s and (k, ~?) ~ s 
then the domain of definition (as well as the range) of the local fields is 

r (8.5) 

Clearly, ~((~.~|  ~limlim~bj(z~,r162 ~-eoW3; t2=f2.~| 
[z  0 ~--,0 

= ~ |  Also, ~bs maps o@ into ~ ,  and the two point function 
(t2,~bs.(zL .)~bj(w~, .)t2> is nontrivial. Most notably, two local sectors oW/|  
and ,,~gj | ~ are orthogonal iff there are corresponding, linearly independent fields 
tkl and ~b s which generate them as q~l : owl |  --* ~q~/| ~ ,  ~bs : o~'~ |  ~ |  ~r 
We conclude this discussion by noting that among the examples, where the 
structure (8.4) is present, are the (Ap, -1 ,  A p - 1 )  and (D2Q+ 1, Ap_  0 series of the 
CappellMtzykson-Zuber classification of modular invariant minimal models [15]. 

In general, (8.4) is not fulfilled. The reconstruction of ~ in these cases proceeds 
by an application of Osterwalder-Schrader reconstruction. We choose a basis of 
L0-eigenstates, r in oct], and put ~=  z*. On the space, ~r of finite sequences of 
Schwartz test functions over the unit disk one defines the non-negative inner 
product 

( f ,g>l  := X E J" l~I a2z, f i  d2wjG. , . ( z ,w) ' f~(z )*gv(w)  �9 (8.6) 
n , m  p , v  i = 1  j = l  

W ) = < ~ ) j I ( Z I Z I , ~ N .  jI~-.31"~ .~)3n(.. .)~"~, fll * ~N,I~__~I~I" b ~9II (W I W l '  "~il "~il , ' ' "  CI)~m( " " ")~r'~ >, Here, G~.v(z, _ a, * w, w~ ,'" 
and p--- (#1, ..., #,3, v = (v 1 . . . . .  Vm), where #1 = (J1, ~1, N h, N3,) . . . .  , vl = (11, fit ,  Ni , ,  
Nh),. . . .  The test functions f~,(z)=f~,(z~ . . . .  ,Zn) and g,(w) have support in 
(D0"\diagonal and (D0m\diagonal, D~ =uni t  disk. Finally, f e d r  1 stands for a 
sequence of test functions f =  (f,m, f ~ ,  ...), where apart from a finite number of 
them all the f~r are zero. 

Denoting by Jffl the space of zero norm vectors in J l ,  one is led to define 

o@ : = (J l /JV'0- .  (8.7) 

There is an action of the chiral algebras ~ r 1 7 4  on ~ ,  defined by 

< f , A |  2 2 A| . I G,,v (z,w).f,(z) gv(w), (8.8) 
n , m  ~ , v  

where Ga| _,,v ,_ ,w)=<q~( . . . ) . . .~ ,  A| In particular, L_lg,(w ) 
= _ ~  0 

~= 1 ~ g,(w); and the vectors g - g~ (with v = (d, ~, N~, N~), and ~ and ~Y, 

invariant vectors) are invariant if g~(w) = 6<2)(w, 0). g~(w). We have not worked out 
all the details, but it is expected that 

~ - - -  @ ( ~  | ~r (8.9) 
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After this digression we resume the discussion of the general properties of a 
local conformal field theory over S 2. We prove 

Proposition 25. Loca l i t y  (a s  bose f i e l d s )  is equivalent  to the fo l lowing  equat ion f o r  
the fu s ion  coef f ic ients:  

~ zpr, ~ .= pn,~_ + .. p~,v . . . . .  ~ ~ "= ~k~- l~ k ~  C(l-['fl)ipuC(ljOOpmv- ~ R (qlm)k~aR (ulm~r~C(jjoOikrC ( fl)kmO" (8.10) 

Proof.  Take euclidean points z, ~=z* and w, # = w * ,  and consider the analytic 
continuation of q~(zg, -)q~(w#, .) along the euclidean path ~ which exchanges z 
and w in anticlockwise orientation (Fig. 24). Requiring bose field locality is 
equivalent 

r. , . . - --- . .~ w z ~.-..---.- ~ 

Fig. 24 YE 

to demand that dr(~b~(z~, .)q~{(w#, -))= (k{(zZ, .)q~(w#, -). Writing out the former 
and latter operator products in terms of chiral vertices we see that (8.10) is the 
necessary and sufficient condition to guarantee locality. []  

If we iterate (8.10) once, we obtain the eigenvalue equation 

v(Jcx, Lfl ,  im) = v(J~, Lfl ,  im) ( M + (ijlm) | h4 - (/-f/-tfi)), (8.11) 

where the vectors v(J~,  Lfl,  ira) have components 

~(Ijot),pu C(ITfl)p,,v . (8.12) v(J~, Lfl,  im)Pp~-  .= zr, r, ~ pf,~ 

We assume henceforth that 

~b~#:O =~ ~ ( / f ~  + 0 .  (8.13) 

(The reverse of (8.13) is, of course, always true.) 
Now putting m =  1, r h = i  in (8.10) reveals that 

8 ( l r B ) ~ C 0 j - ~ i  = E R+(i j l l )~R-(TJ-~C(1~-e)~?C(ITf l ) i i  �9 (8.14) 

In particular, if ~bj 4:0 and ~b~ 4= 0, then ~(ff.)~: = 0 iff ~(I/-.)~] = 0. 
Equation (8.14) has an important application. Namely, it allows us to 

formulate the short-distance expansion among the local fields in a transparent 
way. This is what we are going to show next. 

Take two local fields, q~ and ~b~. Writing them in terms of the chiral 
constituents, and employing chiral fusion, yields 

4~(zz, .)0{(w~, .) 

= ~, C(jjOOikpC(llfl)kmvFijklmrFi3ktrn~. 
imr~,a 
irnr~,e 

[~o~,,(z,w;~, .)] ~ z , �9 ., [ % ~ ( , ~ ; e , . . ) ] .  
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If we now remember the definition of the chiral fusion matrix in terms of the braid 
matrix, i.e. Eq. (5.9), and if we apply (8.14), what we end up with is 

�9 -:" ~ k ~  ~ - -  k ~ v ,  .uv+,a ~"~+p~" _ _  .-:" - a ~ , -  l~4+p ]~ ~)(1]ja)ik ~ C(I lfl)krn+ F i j k l m r F ~ f l -  tmP - -  CO]ja, fffl, rre), . C(rre)im? , (8.15) 
kl tv  

where the structure constant of the operator product expansion (OPE) is given by 

cO-a ,  ir , r .)g = - ' -  e(lr g  CO?a) '"  ~ t  )~+i.~'rfe"' " (8.16) 

The OPE thus has the form, e = e(r, r-), 

~b~(zS, ")r ")= Y. C(]fa, l Yfl, rfe)~ 
r G  

" ~ �9 t l , ,  q ~ o l  - - - 2 - '  " 

(8.17) 

Equation (8.14) also provides us with the symmetry 

COja, lrfl, rge)~ = Y. R + ( i l j l ) ~ R - ( ~ g C ( l Y f l , j f a ,  r~e)~. (8.18) 
O~ 

In order to derive all the symmetries of the OPE coefficients it is quite useful to 
state the assumption 

=> (JJ)x,+ 4=0. (8.19) 

In analogy to (8.14) we thus get 

~ �9 �9 i i  ~ " , T ,  l m , ~  C(l -F ~h~c(j j a)z,,.,+, 
R+tl+*l*m~tVK-tiT*r*ffl~i~Ct;*T*a~iiCtl *y*t~m~ (8.20) = ~  t. j  + jj~ ~ J - rj~, v J n j  t " ~'~im+,, 

? ?  

which links ~(j*f*a)+,~i and ~(l* l-*fl~. Repeating those steps which led to (8.18), 
but now using (8.20) instead of(8.14), gives the remaining symmetry relations of the 
OPE coefficients. For example, 

C O * f  *a*, lr#, r* ~*~*)~ = y__, R + (l j*rl)~+K-(lf* ~7-)-~; + 
?? 

- ' * T *  * i ~  ~ "-:- ~ i  cO 3 a ) , jc( j ja~ 
" - i V *  * - *  * P * I  ~(rre)lr,~(r r e ),,1 

�9 C(rf% llfl, jjct)~. (8.21) 

We summarize our results in 

Proposition 26. On the set of  local f ields there is an operator product expansion, 
written down in (8.17). The OPE coefficients C(Ifa, lYfl, r?e)~ enjoy the symmetries 
(8.18) and (8.21). 
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If we restrict our attention (momentarily) to the casej  = j * , f = f * ,  then it is easy 
to come up with the constraint 

( H  j -  H I ) ~  TZ. (8.23) 

The validity of (8.23) can be verified using (8.10), (8.13), and (8.19). 
The local fields should be independent of normalization of the chiral vertices�9 

The definition (8.1) then implies that under a gauge transformation 

) ) ,  

.) �9 . ) ,  

~ - ~ir, 1 . C(l~JOOik~ , . (8.24) 
i j k  " " r i )~  

The formula (8.16) clearly shows that the OP E  coefficient is gauge variant. 
Notice also that (8.16) was derived in the gauge (3.17). We can easily overcome this 
weakness by multiplying the right-hand side of (8.16) with normalization constants 
of the participating chiral vertices. For  example, C ( l r f l ~  would be turned into 
(C(/Tfl)~ "vm" ~H), and so on. 

The point is now that in simple circumstances the symmetries (8.18) and (8.21), 
combined with (8.10), allow us to compute the OPE  coefficients explicitly. This 
happens if we consider chiral theories with N~j k e {0, 1}, N71 ~ ~ {0, 1}, and if j  =j*, 
Vj e ~e, and j = j* ,  Vj e ~e. We look for a solution of (8.10) which obeys 

a) per index pair (j,}-) there is at most one local field; 
b) given j, at most one f i s  used to construct a local field. (8.25) 

To simplify things we norma l i z e  the local fields by requiring 

(~( f )~]v  x~igi :3)" (C(JJ-~"~ v;Jl v?J i) = 1. (8�9 

(This normalization is equivalent to the conventional normalization of primary 
fields in the case where ~r -~ d = Virasoro algebra. For, in this special case, and if ~; 
and ~) are the normed primary vectors of ~ and ~ ,  respectively, one usually 
requires (f2, ~bji(z~, ~j, r ~bj3{w~, ~;, r f2) = 1. (z - w)- 2Hj(~__ 1~)- 211). If we define 
vx~j:= (t2, ~oa#(1, ~)~j),  this normalization of the local fields leads to (8.26).) 

Rewriting (8.10) by pulling R § to the left-hand side, and setting p =  1, /~=i ,  
gives 

R- ( i i j j ) k  .. ~i ~ " ~ i  - -  "--:~='"~ ~ " ~ ~  " ~ �9 ~(t i -)a C(l'j)~i = R ( t j  t j)~ C(jj)ikC(~i-)k j . 

Upon using the symmetries (8.21) and (8.18), and remembering that (H j - H 3 ) ~  7Z, 
the definition of the OPE  coefficients, (8.16), and the normalization (8.26) yield the 
gauge invariant OPE coefficients 

R -  (iijj) k 
( C ( i ~ f f ,  kk-)) 2 = / ~ _ ( ~  �9 v, (8.27) 

where v stands for a quotient of normalization constants V,~k, VU~ . . . .  , such as to 
render the right-hand side of (8.27) invariant under rescalings of the chiral vertices. 

For  the left-right-symmetric minimal models the structure constants of the 
OPE  have been calculated explicitly by Dotsenko and Fateev [-16] by investigat- 
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ing the monodromy behaviour of the 4-point correlation functions. Later on, 
Eq. (8.27) was used in [6] to rederive these results in a way which, in our 
understanding, is conceptually preferable. 

Using results of Ref. [16], Fateev and Zamolodchikov [18] computed the 
structure constants for the left-right-symmetric St~k(2)-theories. 

In Sect. 7.1, link invariants have been constructed upon using the following 
rules: 

i 

l j ,-~ Fijkji 1 

(Fkjijk 1) - 1 ,  

i 

J J 

J J (8.29) 

i 

Let us explain why (8.29) and (8.28) are equivalent. By definition, the rule (8.29) 
applies to left-right-symmetric theories with Vmxm=l,  j = j * ,  Ni jke{O,  1}, and 
C(i~ f f ,  k ~  = 67i6j/~kC(ii,  jj,  kk), and it is valid in that gauge for the braid matrices 
in which R+(abcd)e I=R+(dcba)e f ,  which, by construction, exists at least for the 
minimal models [6]. In such a left-right-symmetric theory, the fusion coefficients 
~(ii , j j ,  kk) can be interpreted to serve the purpose of projecting o~t~ out of ~,~ | o~g~, 
which is also the purpose of F~jkj~l. This is the representation theoretic motivation 
to iterate the braid-fusion equation (5.15) with r=  1 and v,~.= 1, which yields 

R + (iflm)kpFilpU 1Fpjm; p 1 = R + (iljm)pkFijkjil Fklml k 1"  (8.30) 

Comparing (8.30) with the locality equation (8.10), taking into account the 
symmetry of R, shows that a solution is 

C(ii, jj,  kk) = (FijkjiO- 1 (8.31) 

There does not seem to exist a general method to deduce the value of the central 
extensions of the chiral algebras ~r and ~ ,  once one is given a set of R- and 
/~-matrices which satisfy the polynomial Eqs. (4.19)-(4.21), (5.13)-(5.15) and the 
locality Eq. (8.10). However, if we make the additional assumption that the chiral 

*-~(~(ii, jj, kk ) ) -  1 

~-~ C(kk,  jj, ii) . 

J J (8.28) 

i 

where we assumed Vmlm = 1,j  =j*, and Nijk e {0, 1}. This seems to be in rather sharp 
contrast to the rules which we formulated (for left-right-symmetric minimal 
models) in the second Ref. of [6]: 
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field theories (~r Ze, ~)  and (d ,  ~e, ~)  are consistent also on the torus, then it is 
shown in Ref. [4] that the representation of the mapping class group on the 
characters Trj(q z~ c/24), j ~ LP, relates the conformal dimensions Hi, j ~ s and the 
central extension, c, of the holomorphic Virasoro algebra. In particular, c is a 
rational number, and the method just sketched allows for a determination of c 
mod4. 

If we stick to theories on S 2, then at least if d =Virasoro algebra the 
knowledge of the 4-point block (~i, q)iil(~i, Z) q)ljj*(~j, W)~./'*> is sufficient to compute 
the value of c (r is the unique primary vector in OWk). Indeed, if we write 
(~i '  ~Oiil(~i, Z)~'~> = Vii I : = 1, and if (f2, q~ l j j * ( ~ j ,  w )  ~j. ,> : = w -  2Hi ,  assuming Hj = H j,, 

2H 2 W 2 W 3 
thenthe  above4-point  block equals w - J ( 1 - - c H i H ~ ( ) -  ) + 0 ( ( ~ - ) ) ) .  

Therefore, knowing the leading terms of the expansion of the 4-point block as 
z ~  oo and - ~ < argw < ~ gives immediately the value of c. 

9. Reconstruction of Chirai Field Theories from Quantum Groups 

The logic developed so far is: given suitable representations of a chiral algebra 
whose vertices transform under a linear representation of the braid group when 
being continued analytically, what can be said about the structure of the chiral 
field theory? Specifically, what kind of algebraic relations are obeyed by R, and can 
these relations be deduced from the representation theory of some quantum group 
(via a generalized Vertex-SOS transformation)? 

But we may also reverse our point of view: We assume to be given a family of 
R-matrices which come, for example, from the representation theory of a quantum 
group, satisfying the algebraic equations of Sects. 4 and 5. Does there exist a chiral 
algebra and corresponding chiral vertices which reproduce the given R-matrices? 

The answer, a solution of a generalized Riemann-Hilbert problem, is not 
known in general. However, there are some hints in the mathematical literature 
[17] that trying to solve this problem may not be a completely hopeless task. In 
fact, if the monodromy matrices M +(ijlm) are sufficiently close to the identity then, 
according to Ref. [-17], there is at least one (trivial) flat vector bundle over 
IE"\{zlzi=zj, for some i=~j} whose monodromies are the given M +. Also, the 
connection 1-form f2 can be chosen to be t2 = y, d(log(z i -  z j)). f2ij, where f2 o 

l<i<j~_n 
are z-independent 11~-number matrices. 

Unfortunately, it is not obvious at all whether this candidate theory is 
satisfactory in the sense that the "conformal blocks" (i.e. the solutions to the 
parallel transport equation) have the required conformal properties; plus ad- 
ditional transformation properties which would make them transform under the 
action of a chiral algebra d which could be associated to the given monodromy 
matrices. For example, assume that there is a horizontal section f(z) which 

transf~176176176 l] ( ~ )  

= f(z). If we apply the parallel transport equation on this transformation law we 
find that a) translations and dilatations give no constraints at all, b) infinitesimal 
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special  confo rma l  t r ans fo rma t ions  are  consis tent  wi th  the form of  the connec t ion  
f2 iff, for each i, l < i < n ,  ( ~  f 20"~ f ( z )=-2h i . f ( z ) .  Here  we defined, for  i>j ,  
f2ij : = i2ji" \ j .  i .I 
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