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Abstract: We present a rigorous discussion of the analyticity properties of the beta 
function and of the effective potential for the theory of the ground state of a one 
dimensional system of many spinless fermions. We show that their analyticity domain 
as a function of the running couplings is a polydisk with positive radius bounded 
below, uniformly in all the cut offs (infrared and ultraviolet) necessary to give a 
meaning to the formal Schwinger functions. We also prove the vanishing of the scale 
independent part of the beta function showing that this implies the analyticity of 
the effective potential and of the Schwinger functions in terms of the bare coupling. 
Finally we show that the pair Schwinger function has an anomalous long distance 
behaviour. 
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1. Introduction 

In this paper we study a system of interacting one dimensional fermions. The 
Hamiltonian for n spinless particles in a periodic box of length L will be: 

( - A e i  ) 2A E ~3(:g ~ (l .1) H =  \ 2 ~  ~ + - ~ ) '  
i=1 i<j  

where m > 0 is the particles' mass, # is the chemical potential, 2A�9 is the pair 
potential, which we suppose bounded, smooth, even in g and with finite range po  1. 

Physically one defines the Fermi momentum P F2SO that the ground state energy of 
H has the minimum at n = 2PFL/2rc when # = P F / 2 m ,  while the mass of  particles 
is defined by computing the minimum energy increase obtained by adding one particle 
to the ground state. 

Usually one requires that PF has a given value and that the minimum energy 
increase has the form: 

e(Vo ) = (;2 _ p2  ) / 2 m  ' (1.2) 

where/~0 is the smallest k of  the form 2rcsL - l ,  s integer, larger than PF; this, however, 
cannot be imposed on (1.1) as there are not free parameters. 

Hence we shall study: 

H = + c~ ~--" 
\ 2m 

i=1 i=1 

= T + oeT + teN + f7 

- -  - # )  + ten + 2A E 9(:gi - i j )  
i<j  

(1.3) 

and tune a ,  v so that the ground state of  (1.3) has the above two properties. We 
require, given PF, m > 0, that PF and L are so related that 27rL-l (nF § 1/2) = PF 
with n r integer; this implies, in particular, that no particle can have momentum +PF 

71" 
and that f% = PF + ~ .  

It is very useful to write the Hamiltonian H in second quantization, i.e. in terms 
of creation and annihilation operators a +, a~-. Defining: 

r  e+ik'~a ~- (1.4) 

we have: 

k L 

N : Ea;a:  [ e § - = d ~b~be , (1.5) 
, ]  

s L 

fz A f d:~dff�9 ~ + + - - = - y ga~ ~bff eft ,b~ . 
, I  

L x L  

Let us denote E (n) the ground state energy of the system with n particles and let 
us define N = 2n F + 1. 
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By first order perturbation theory it is easy to see that: 

+ u + 2 , ~ - ~ -  E � 9  PF+-~  , 
k : e (k )<O 

- u - 2 A -  L - E �9169  P F - ~  , 
k ; e(k)<~0 

where 27r5(/~) = f d~e-i~e~(Z). 
The conditions that the system has PF as Fermi momentum and ra as mass in the 

presence of interaction can be translated in the conditions: 

E(N+I) - E(N) = •  -]- L ) ,  (1.8) 

which imply, by using ~ PF i ~ - k = �9 --/~) + ~ v (PF -- k) + O(L-2),  that: 

u + 2,~ / d~[O(0) - ~(PF - ~)1 + O(L -1) = 0, 

~(~)<o (1.9) 

P--s - 2.~ f df~�9 - re) + O(L -1) = O. o~ 
m J 

~(Z)<0 

Recursively one can determine the higher order corrections to a,  u, pursuing with 
formal perturbation theory. If one, however, attempts at estimating the remainders one 
meets serious difficulties, unless one is willing to take A so small to be of order much 
smaller than L -1 , say of O(~L -1) for some small 7?. In the latter case one can easily 
check that there are no convergence problems for the perturbation expansions (and in 
fact the first order is dominant), as it is physically obvious. For ~/ small enough and 
L fixed the perturbation theory converges, the ground state is unique and separated 
by a gap of order L- lpF/rn  from the first excited state. 

One possible approach to the theory of low temperature Fermi gases that we 
shall follow, is to study the above perturbation expansions as well as the expansions 
of the other interesting quantities (like the system reduced density matrices or the 
Schwinger functions, see Sect. 2), and to show that they can be resummed so that, 
after resummation, they admit analytic continuation in/~ up to A's of size of order 1 
uniformly in L and/3. 

If this goal is achieved, it is clear that we have constructed objects of interest 
for low temperature physics: they can be interpreted as Gibbs states of the system 
provided they verify the necessary positivity properties. The latter are, essentially, 
automatically verified as we know that for L,/3 > 0 fixed none of the correlation 
functions has a singularity for A, c~, u real (small or large). 

In this paper we study a resummation algorithm, generated by the application of 
the renormalization group methods to the study of the above series. We show that 
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the resummation can be described in terms of stability properties of a well defined 
dynamical system. 

We call beta function the functions defining the dynamical system iteration map 
Bh: the latter operates on a three dimensional set of parameters called the running 
couplings denoted by r_. Each triple r 0 of initial data generates, for h = 0, - 1 ,  - 2 , . . .  
a trajectory r h_l  : V--h q- Bh(r-h,--rh+l,"" ", r-0) which, under the condition that Jr-hi 
remains small, provides a set of parameters in terms of which the relevant dynamical 
quantities (Schwinger functions) can be expanded in a convergent power series. 

The reason we call the above a resummation is because the expansion constructed 
is not in a power series of ~0: if we express r_ h in powers of ~-o it may well be that 
the convergence radius of the expansion shrinks to zero as h --~ - e c .  

Our main results are: 
1) The existence and boundedness and analyticity of the functions Bh (r_h,... , r_O) as 

functions of their arguments (regarded as independent arguments), if they are small 
enough: ]rh] <_ e, for all h <_ O. 
2) We also show that Bh(r_,r_,...,r) =- fib(r) is the sum of two parts flu(r) = 
fl(r) + flh(r) with flh(r) --+ O, for h --+ - o c  and for Irl <_ e, exponentially fast, 
and with fl(r) ("scaling part of the beta function") which we show (in Sect. 7) to be 
zero. 
3) We deduce from 1), 2) an expansion in powers of {rh}h<O, convergent  if Ir__h[ ~ 
for all h <_ O, of the pair (and higher) Schwinger functions. The expansion implies, if 
It_hi <_ E for all h <_ O, that the pair Schwinger function approaches 0 as its argument 

--+ co faster than the free Schwinger function does, and we compute exactly how fast 
(i.e. we compute the anomaly exponent). 

Some support to the validity of the vanishing of fl(r) in 2) above was given in 
[BG, BGM], by reducing it to the proof of a similar conjecture for the Luttinger model. 
In [BGM] the proof of the conjecture was reduced to a property of the Schwinger 
functions which is implied by the results in 3) above, plus the independence of the 
exact solubility of the Luttinger model from the cutoffs necessary to define it. Thus 
we showed that the exact solubility of the latter model would allow us to establish 
a rigorous proof of the conjecture if we know suitable uniformity properties on the 
Luttinger model running constants defined in a way entirely analogous to the one 
followed for our problem, see [BGM]. 

The above scheme of proof is discussed in Sect. 7 and, using the new results 
derived in the previous sections (3-6), it is completed. 

The discussion of 1) requires the solution of two distinct problems. The first is an 
ultraviolet problem, which could be considered trivial. We perform it in detail, but we 
find no unexpected difficulty (Sect. 3). The second problem is the infrared problem. 
From the power counting point of view this is just a renormalizable problem with a 
double singularity (the singular locus of the propagator being reduced to two points). 
Therefore at first sight it looks technically similar to the ultraviolet stability of the 
Gross Neveu model in two dimensions, [FMRS, GK1]. However the infrared problem 
in our case presents new difficulties since it is not asymptotically free. Its solution 
requires the discussion of an anomalous dimension (physically this means that the 
perturbed system has correlations which decay at oc faster than the free ones). To 
establish rigorously the theory of the corresponding anomalous renormalization group 
flow is a major technical difficulty that we meet in this work. 

Other references on rigorous renormalization group and anomalous dimensions 
are [GK2, F, BG1, G, dV]. The first two, however, deal with a deeply different 
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notion; namely the anomaly is not dynamically defined, but it is rather a priori 
supposed to be a part of the free theory, as the free propagator is assumed to have a 
scaling different from the "normal" and one finds that it remains unchanged. The last 
reference, [dV], contains a treatment of an ultraviolet problem with infinite wave 
function renormalization, but the paper does not seem to discuss the anomalous 
scaling of the correlation functions at small distances. In this paper the analogous 
infrared problem (the anomalous scaling at large distances) requires considerable 
supplementary work. 

Interesting technical developments to treat infrared problems with finite wave 
function renormalization, which go quite far beyond the first work on it [GK3], can be 
found in [O']. The main difficulty with a dynamical anomaly is that the wave function 
renormalization is infinite and that this affects the correlations in a rather involved 
way. 

The formalism to deal with a "normal" free propagator and an "anomalous" 
interacting one is set up in [BG1], (see also [G]), following the original work of 
[WF], where the anomaly is a fixed (but "dynamical") constant characteristic of the 
non-trivial point, and following the interpretation of [WF] that Felder provided us 
(private communication). In our case the anomaly is "dynamical," (and the wave 
function renormalization is infinite), but it is a function of the coupling, as we do 
not have one isolated non-trivial fixed point but, instead, a "line of fixed points": this 
causes a few extra difficulties. 

To our knowledge this is the first example of a rigorous theory of the beta 
function of an anomalous renormalization group flow with a rigorous discussion of 
its consequences for the anomalous asymptotic behaviour of the correlation functions; 
and, technically, the correlation functions behaviour represents the major part of this 
work. 

The results of Sect. 7 also imply the existence of a one parameter family of non- 
trivial fixed points of our renormalization group transformation. This can be regarded 
as the origin of the anomalous dimension; however we only allude (Sect. 5) to such 
a corollary as it is not essential for our work. 

In the next section we set up the formalism in a self consistent way trying to 
discuss the rigorous issues growing out of the functional integral representation of 
the Schwinger functions that we plan to use in the rest of the paper. 

It is useful to state our main result in a form independent on the subsidiary concepts 
(like running coupling, beta function, etc.) and based solely on the hamiltonian (1.3) 
and on the standard notion of pair Schwinger function, S(x), of the model (introduced 
formally in the next section); it can be summarized in the following theorem: 

Theorem. Given a pair potential A~(~ - y-), with �9 smooth and with short range Po l, 
one can find analytic functions ~()~), u(A), holomorphic near/~ = 0 and o f  order A, 
such that the one dimensional spinless Fermi gas with hamiltonian: 

EN \2m(A)(-A~* 2m(A)P2 + u(A)) + 2 A Z g ( i "  i - ~ j )  (1.10) 
i=1 i<j  

with re(A) = [1 + c~(A)]-lrn, ra > 0, admits a zero temperature Gibbs state (defined 
as the T --+ 0 limit o f  a T > 0 Gibbs state) with a Euclidean pair Schwinger function 
S ( x  - y)verifying,  for  I x -  YIPo large, the relation: 

s o ( x  - v)  1 
~-'~(* -- y)  ---- (p0{ x _ 7 [ > ( A  ) + A(/~) (Po(X _ y{)l+2v/(A) (1 .1 l )  
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with ~/(A), A(A) anayltic near A = O, z/(A) = O(/~ 2) independent on x, y, A(A) = O(A) 
(uniformly dependent on x, y), and with S O being the pair Schwinger function for the 
free gas with Fermi momentum PF and mass m. 

Note that S o ( x - y  ) tends to zero with oscillations on scale p~ l  and speed Ix-y1-1, 
so that the first term in (1.11) dominates over the second "when non-zero." 

The theorem was proposed by Tomonaga who developed theoretical argument for 
its validity, [T]; on the basis of Tomonaga 's  work Luttinger proposed a model which, 
if Tomonaga 's  ideas were correct, should behave in the same way as the system (1.1) 
that we are considering, [L]. The model differs from (1.1) in two respects: first there 
are two spinless particles, and second the kinetic energy is linear in the momentum. 
Luttinger also gave arguments to suggest that the model might be exactly soluble. 
The model was solved exactly, later, by Mattis and Lieb, proving that indeed it did 
behave as expected on the basis of  its heuristic equivalence to Tomonaga 's  theory of 
the model (1.1), [ML]. 

For higher dimensional many fermions systems a formalism parallel to ours, also 
based on renormaiization group analysis near the Fermi surface has been developed in 
[FT1, FT2, FMR] with emphasis on the BCS theory. In particular a constructive result 
similar to 1), (analyficity of  the beta functional) but stated in a different language has 
been proven in [FMRT] for many fermions in two dimensions. 

2. Functional Integral Representation of Fermionic Correlation Functions 

The Schwinger functions of  a Hamiltonian H like (1.3) are defined by: 

S(:~l, t l ,  c r l , . . .  , i s ,  ts, ~rs) = T r ( e - ( / ~ - q ) u ~ l " " "  Tr e_:~ ue-(tS-l-ts)H~b~'~e-tszr (2.1) 

for/3 > t 1 > t 2 > . . .  > ts > 0, ~b~-, cr = •  being field operators on the Fock space 
of a fermion system confined in a box of size L, with periodic boundary conditions, 
and at temperature/3-1 > 0. 

At fixed/3, L the (2.1) are, by inspection, real analytic in A, a ,  u: their holomorphy 
domain has complex size which, for the time being, is totally out of  control and it 
may shrink to 0 as/3 --~ c~ or L --+ ~ .  

If  we are willing to take A, u, a of  O(~]L -1) with ~1 small, it is not difficult to see 
that we have in fact uniformity in/3 as/3 --+ o<~. The basic reason is that, if A, u, a are 
so small, we see by perturbation theory that the lowest eigenvalues of  H is separated 
by a gap from the next. Hence the limit as /3  --+ c~ is simply expressed in terms of 
the expectation value in the ground state 10}~,,,a (which is also analytic in such small 
/~/:~ oz), as: 

S ( x l , / ~ l , g r l , ' " , x s , t s , g r s )  =A,u,c~ ( 0 1 ~ ; ~ ' ' ' e - ( t s - l - t s ) H ~ ; 1 0 ) A  . . . .  �9 (2.2) 

This is manifestly analytic in A, u, a .  Knowing the above analyticity property we can 
find the expansion coefficients in powers of  A, u, a .  The classical calculation is as 
follows. 

We define the imaginary time fields [see (1.4)] as: 

r = L - I / 2 E  e+i;e•177 tT--• (2.3) ; - -e  yJ~ . 
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Then by using the representation [where V =_ (7 + u N  + aT ,  see (1.3)]: 

( e - t H =  lim e - t T / n  1 - -  , (2.4) 
?z ---+ o o  

we find that the numerator of (2.1) becomes: 

4- f Tr{e-VrV(t',)... V(t'pl ~ 1 ~ 

O- l O- 8 
X f f . JaTl , t~  l . . . f f ) O ~ s , t ~ l + . . . + p s  . . .  V(t;l+...+ps+ 1)}d_~ / , ( 2 . 5 )  

where V(t)  = e tTVe  - t T  and the sum runs over integers p~, p > . . .  while the integral 
is over all the tj' variables with j r Pl, P~ + P2, . . . .  ,Pa -Jr-P2 q- ' �9 q- Ps and 
t / ~ f f  / Pl pl+P2,...,tpl+P2+...+ps are fixed to be t] > t 2 > . . .  > t ,  _> 0, respectively; 
finally the t / variables are constrained to decrease in their index j ,  and the sign :k is 
+ if the number of V factors is even and - otherwise. 

Since the product of  V ' s  is an integral of a sum of products of  ~be~ t operators and 

since the T is a quadratic hamiltonian in the ~b J: operators, Wick 's  theorem holds 
for evaluating T r ( e x p - / 3 T ( . ) ) / T r ( e x p - / 3 T )  (see, for example, [NO]) and therefore 
it will be possible to express the various terms in (2.5) as suitable integrals of sums 
of products of  expressions like: 

g+((, r) = Tre-ZT~b~,er162 - z T  , 
(2.6) 

9 - ( ~  r) = Tre -~Tr  / Tre -~T  , 

if ~ = :g - a7 t, r = t - t '  > 0, which we combine to form a single function: 

9 (~  r )  = ~ 9+(~  r )  if r > 0 (2.7) 
[. - g _ ( - ~ - r )  if ~ - < 0 "  

Then it is easy to see, from Wick's  theorem, that the generic term in (2.5) can be 
expressed graphically as follows. 

One lays down graph elements like: 

X l  

l - x - A  x 

Fig. 1. x2 ~ x x 

symbolizing respectively: 

- A v ( ~  ~ + ~+ : : - 2 ) ~ ' ~  ,V '~  t r  ,% I~ 2!  aC2~ 1~ t 

( ~  + - -  __ _ # a ) r 1 6 2  , 

( a / 2 m ) r  A )~b~,t , 

~+~,~ and %-,e" 

(2.8) 



100 G. Benfatto, G. Gallavotti, A. Procacci, B. Scoppola 

One should then draw n + s such elements so that the first n have a shape of one 
of the first three forms with labels (ffi, ti) attached arbitrarily to the vertices ("free 
labels") and the last s have a shape of the last two forms (representing respectively 
r or ~+,t) and carry "external labels" (xl,  t l ) , . - . ,  (xs, ts). 

Then one considers all Feynman graphs, that is all possible ways of joining together 
lines in pairs so that no unpaired line is left over and so that only lines with consistent 
orientations are allowed to form a pair. 

To each graph we assign a sign cr = • obtained by considering the permutation 
necessary to bring next to each other the pairs of  operators which, in the given graph, 
are paired (one says also contracted), with the ~ -  to the left of  the associated r  
and then setting cr = ( - 1 )  ~ if 7r is the permutation parity. 

To each graph we assign a value which is the integral over the free vertices of  

the product of  the sign factor times the product of  factors 9 (~  ~-) (or of  some of 
its derivatives) for every line with an arrow pointing from (S l , t l )  to (s with 

( =  (22 - 21), ~- = t 2 - t 1, times a factor - - /~V(Xl  --  X2) for every wiggly line joining 
(:~l,t) to (x2, t), times a factor - ( u -  # a )  or - a / 2 m  for every vertex of the type 
with only two lines. 

The propagator function g is given by (2.7) and can be represented as: 

~ - {  e -~(~)  e-(~+~)~(~) < 0) } 
9((, ~-) = L-1  Z e-~k~ X(T > 0) = X(7 (2.9) 

1 + e-~e(k) 1 + e-me(k) - ' 

where X( "condition" ) = 1 if "condition" is verified and X = 0 otherwise. 
This can be written: 

1 ~ e-~(k~176 A (V/~~ ] 
9 =  lim (2. 10) 

h ' - ~  /3L ~ - i k  o + e(fr 
ko,k 

e--iko~=--l,eikL=l 

with the sum running over the k0,/~ verifying e - ikoz = - 1 ,  e - izL = +1;  and A is 
a cutoff function like one of the following: 

A s ( x ) = x ( x <  1), A ( x ) =  1 +  a ]  ' Ao~(x ) = e  -x2 .  (2.11) 

The (2.10) can be proved, in the case of the first regularization A = A ("sharp 

momentum regularization"), by remarking that, if ~- > 0 and /] is fixed in the r.h.s. 
of  (2.10), the sum over k 0 has a limit, for K ~ oc, equal to: 

1 / e -izr 
2---~ ( - i z  + e(k)) (1 + e-iZ~) dz  (2.12) 

with the contour running parallel to the real axis nearer than le(k)[ > emi n m 

and going from - ~  to + ~  if I m z  < 0 and from + ~  to - c ~  if I m z  > 0. Using 
that/3 > r > 0 we easily see that (2.10) implies (2.7). If  7 < 0 (but/3 > 171 so that 
/3 + ~- > 0) we see from (2.10) that the sum has value - 1  times the value when r is 
replaced by /3  + T (because e ~/~k0 = - 1 ) .  Hence for such values of  T the value of g 
is given by - 1  times the value of (2.12) with ~- replaced by/3  + T, and (2.9) follows 
also for T < 0. 
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The cutoff A s can be treated in the same way (if c~ = positive integer as we 
suppose): one finds instead of (2.10) a complex integral that can be, essentially, 
explicitly evaluated and one can therefore estimate easily the difference between 
(2.10) and (2.9) as K ~ oc. 

The gauss• cut-off A m (x) cannot be treated by using complex integrals because 
A has bad behaviour at •  But A ~ ( x )  - A s ( x  ) = O(x 4) as x ~ 0 and this, 
together with the fact that we know that (2.10) holds with the regularization Zla, 
easily implies the validity of (2.10) with the gauss• cut-off as well. 

Therefore we can compute the coefficients of the perturbation theory for the 
Schwinger functions by the above graphical algorithms and by using propagators 
with one of the above cut-offs and then removing it. 

The above discussion suggests the following definition: 

Definition. Suppose that, for A in a small neighbourhood D of the origin in the 
complex plane, and for c~, u suitably chosen as analytic functions of .~ in D, the 
perturbation series for the Schwinger functions can be Shown to admit an analytic 
continuation to the domain D, extending on the real axis to )~'s of O(1), i.e. /3, 
L-independent, and suppose that the limits as /3 ~ oc, L --~ cc of the Schwinger 
functions exist in D. Then we say that the limit as L,/3 ~ oc of the Schwinger 
functions defines a Gibbs state for our system with Fermi momentum PF and particles 
mass m + O(A) if the asymptotic relation (1.11) holds for some r/(,~) and for all 
small enough. 

Note that such a definition would certainly not be adequate for d = 3 (because 
changing the sign of .k destroys the stability of the Hamilton• see [R, Th], and the 
system collapses) and probably not even for d = 2 (although in this case the sign of 
.~ does not affect stability, if A is small enough). Hence, for d > 1, we would replace 
the requirement that D is a neigbbourhood of the origin by the requirement that it is 
a domain in the right half plane. 

This shows that one can conceive a purely perturbative approach to the low 
temperature Fermi systems. One starts with some expressions of the perturbation 
expansion for the Schwinger functions depending on various parameters to be 
eventually sent to ec (e.g. /3 or L or others that will be introduced later). At fixed 
values of the parameters the expansions should be obviously convergent for small 
A, c~, u. Then one proves uniform analyticity in a region D of complex A, where c~, u 
are suitably chosen as a function of A (analytic in the same domain) and thus one 
defines, by removing the cutoffs, a Gibbs state in the above sense. 

As long as other cut-offs, besides /3, L, are removed first, the already remarked 
and obvious analyticity in A, c~, u at fixed/3, L guarantees that the functions obtained 
in this way do have the required positivity property necessary to interpret them as 
Schwinger functions for a Gibbs state (namely the reflection positivity). In fact the 
series expansions for real A, c~, u must coincide with the non-perturbative definitions 
of the same expressions by analyticity and the latter, of course, have the reflection 
positivity property. 

The most convenient representation of the Schwinger functions, for the above 
purposes, is the Euclidean functional integral representations. Such a representation 
is set up with the help of two extra regularization parameters that we call R, U, with 
R < U, and of a family of Grassmannian variables. 

and they bear labels Here the Grassmannian variables will be denoted Ahs, ek 

h C Z, co = • a = •  k = (k0,/~) such that: 

e -ik~ = - 1 ,  e if~L = +1 .  (2.13) 
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They must verify anticommutation rules: 

{A, A '}  = 0 ,  {A, ~} = 0,  {~, ~'} = 0.  (2.14) 

It is most convenient to think of  the A, ~ as concrete objects by using a representation 
on a Hilbert space h. The best Hilbert space is probably the countable tensor product 

OO 

of two dimensional spaces C 2 : h = @ C 2. Then we order (absolutely arbitrarily) the 
j = l  

variables labels, by replacing each of  them with an integer label j = 1 ,2 , . . .  and set 
the jth Grassmannian variable to be: 

where ~r z, c~ + are the usual Pauli matrices. 
Hence the Grassmannian variables can be regarded as a set of  creation operators 

(just creation and no annihilation) on a Fock space. 
The A, e variables are norm 1 operators on h. They will be used to define the 

euclidean field on scale h and the external field g)~ as 

eia(kx--pFwx -) (e--'y--2h~(k) _ e--7--2h+213(k))l/2 

k (2.16) 

e C k 

k 

t 
where x = (:g,t), /~(k) = [k 2 + e(/~)2]po 2, and x(t) = 7r -1/2 f dsexp( - s  e) is 

a regularization of the step function. The motivation of  such a definition will be 
explained in the following sections. 

We define the fields with ultraviolet cut off on scale 7 - u  and infrared on scale 
.y-R as: 

u 

~b[~'u> = Z ~bxh:" (2.17) 
h=R 

The fields ?/;[R,U]a a re  bounded operators on h, because the A ' s  have norm 1. 
r X W  

The fields r and ~ ,  are quasi-particle felds. We also define the particle 
fields simply by: 

= e ya~o 0 , ~ = ~ , ~  . (2.18) 

As a matter of  fact, we shall not introduce the quasi-particle fields and we shall 
introduce the cut-off in a different way, in the ultraviolet region h > 0; therefore the 
particle fields will be defined in terms of suitable Ak h" variables in a different way. 
However, in order to simplify the notation, we nevertheless proceed in a symmetric 
way in the ultraviolet and infrared region; it will be clear that our definitions would 
work also for the representation of  the field used in the following sections. 

The Grassmannian or fermionic functional integral is then defined as a linear 
functional on the operators on h, in the algebra generated by the Grassmannian 



Beta Function and Schwinger Functions for Many Fermions System 103 

variables. The integration rule is simply the Wick rule based on the following 
"propagator": 

J ~ h - A h t +  d P  (2.19) 2~k~ .g'JLktcdl~ ~- ~hht~kkl~r 

while all the integrals of  A + A  + and A - A -  vanish. This means that the integral of  
an arbitrary monomial  in the A + and A -  is obtained as a sum over the pairings 
of  the factors into pairs with non-zero propagator of  the product of the propagators 
corresponding to the pairs times a sign -4- equal to the parity of  the permutation 
necessary to bring the considered pairs next to each other. 

The above rule is just a linear functional and we may have problems in the 
integration of expressions which are not finite linear combination of products of  
A: but of course this is precisely the kind of operation that we shall wish to do. 

Therefore it is convenient to define a class of  operators on h on which we can 
operate the functional integral "absent-mindedly." It will be the class of  integrable 
operators. 

Definition. An operator O(~,  ~) is said to be integrable if it has the form: 

n,m,w ,www I /=1 j= l 

X [,~12/)Uq- c~ 1 ~ -- + "'" 2m~)VmUffm]~Xl "'" ~ Y n '  (2.20)  

where the O~,,~(. . . )  are the "kernels of  O(~,  ~)" and @+ are quasi-particle operators 
on various scales between two scales _R, U, for all n, and ~ . . .  dJ2, ~ are differential 
operators with constant coefficients (possibly dependent on h, co), and with order 
bounded by some N,  for all n. Furthermore the On, m should be measures (i.e. (5 
functions are allowed) and: 

'O(''')'b ~ n,m~,.tbn-Fmf (~dxgdYi) ( j=1 
x lO~,m(x,y_,_u,_%~,~')I < oo Vb > O. (2.21) 

Then we define [consistently with (2.19), as it is possible to check]: 

) 
n,m,co,J j = l  

x 2 1 2 2 . . .  ~2m d e t [ g ~ ] ( u i  - vj)]~+~ . . .  ~ ,  (2.22) 

U 
where the propagator g[R,uI(x -- y) is ~ g(h)(x -- y), with: 

h=R 

(h) {X ~wcJ 
g"~"/" - Y) -- 13L Z e--i[k(x-y)--PFW(~-ff)] 

k 
e--~y-2h/3(k) _ e--'y--2h+2/3(s 

x X(w'7-hfc). (2.23) 
-ik0 + e(;) 
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Remark. The r.h.s, of (2.22) is a well defined operator, thanks to (2.21), as a 
consequence of the Gramm-Hadamard inequality (see Appendix 2): 

121 "'" ~2m det[g[n'Ul(ui -- vj)][ < B m ~o~ - n,u " (2.24) 

Furthermore the definition is meaningful since the representation (2.20) is unique if 
the kernels: 

~ l  U~2 . . . ~2m On,m (X_, y, U, V, CO, CO t ) (2.25) 

are antisymmetric in the permutation between themselves of the (ui,co~), of the 
(vi,co~), of the x i and of the Yi" 

Several easy theorems follow. For instance, if O is integrable also exp O is 
integrable: this is a key property that overcompensates the fact that the fermionic 
integration is not a positive functional in the sense of measure theory (and makes 
the world of fermionic integration look like a fairy tale compared to that of measure 
theory.) 

Also, if 0 ( r  ~) is integrable and if we write ~[R,U] = r -t-~)2 with ~1 = ~/)[R'u1] 
and g'2 = r then 0(~, 1 -~@2, 99) = ~ Ol (2~1' 99)02(2/32' (/9) and 0 i are integrable; 
moreover: 

f P(d,)O(,,99)= f P(d*,)O,(<,99) f (2.26) 

i.e. "Fubini's theorem" holds. 
The above obvious remarks constitute the theory of non-commutative or fermionic 

Grassmannian integration. 
Its interest lies in the fact that it is easy to see that the coefficients of the 

perturbation expansion of the Schwinger functions are generated by: 

qn,u(g~) = log [ p(d99[R,U])e-V(r f dx(~P+ r  +r ~x ) (2.27) 
J 

via: 

S T ( z I '  0 " 1 ' ' " '  Xn' O'n) = U~oolim ~599+ Ir ~ 5 ~  ~=0" (2.28) 

1:~.---+ - -  ( X 3  

Hence we shall confine ourselves to studying qn,u(99) and reorganizing the expansion 

of S T in powers of .k (with u, c~ also expanded in terms of A) so that the expansion 
have analyticity properties in A uniform in R, U as well as in L,/3. We shall also use 
the expansion to infer the long distance behaviour of sT(x1 ,  ~1, . ."  ,xn,  an) [long 
means O(L)  in space and 0(/3) in time]. 

Remark. qR,u(99) has an expression like (2.20) (with n = 0), whose kernels are the 
functional derivatives appearing in the r.h.s, of (2.28). Furthermore one can define the 
tqn,u(99)lb norm as in (2.21) and it is possible to see [using (2.24) and some standard 
procedure to bound the truncated expectations, see last part of Appendix 3] that is 
norm is finite for b < b 0, with b 0 depending on the strength of the interaction; this is 
sufficient to define qR,u(99) as a bounded operator. 

In order to simplify the notation, in the following sections we shall consider, for 
the propagator, only the limiting case L = /3 = oc, by interpreting the functional 
integrals as a formal tool to represent in a convenient way the expansions of the 
Schwinger functions in powers of ),, c~, u. It will be clear that all our results are valid 



Beta Function and Schwinger Functions for Many Fermions System 105 

also for L,/3 finite and that one can take the limit L,/3 ~ ~ without any further 
problem. 

Moreover we shall change the meaning of the symbol g)~ [see (2.3)], which from 
now on will denote the formal limit R --4 - c ~ ,  U ~ + ~  of  the Grassmannian 
field ~/~[R,g]o defined in (2.18). Then we can write the generating functional of  the " : ' X  

Schwinger functions, in the limit where all the cut off are removed, as: 

q(g)) = log / P(d~)e-V(r162162 , (2.29) 

and we can say that P ( d r  is Grassmannian gaussian measure with propagator: 

f f dk~176176176176 (2.30) 
9(x - y) = P ( d r 1 6 2  + = (2rc)Z - i k  o + e(k =) ' 

where the 0 -  in the exponential means that 9(0, x-) must be interpreted as 

Moreover, if A = L • [ 0 , / 3 ] :  

V(~)  = ;~ f 
AxA 

lim 9(x0, x-). 
xo~O- 

) + + - _ dx dy v (x  - y %b x ~y ~y ~x 

A A 

V(X -- y) -- ~5(X o -- yo)V(i  -- y~), 

where A ----_ 02 is the Laplacian in the space variables. 
A very convenient object which is related to q(qo) is the effective potential defined 

by: 

e_  Veff(~p) 1 f = ~ P ( d ~ ) e  -v(~+~) , (2.32) 

where .A/" is a normalization constant chosen so that V~ff(0) -- 0. 
The relation is, if (gg))- = g �9 g)- and (g~)+ = ~ + ,  f ,  where the �9 denotes 

convolution and g'(x)  -- g ( - x ) ,  the following: 

-Veff(g~o ) q- (~9 +, fig)-) : q(~).  (2.33) 

The above relations are formally trivial if one treats f P (dr  as an ordinary 
integral with respect to a Grassmannian measure proportional to: 

d e + d e  - e -  f [r (Ot+(-- A+p2F)/2m]r dx , (2.34) 

and proceeding to the change of  variables ~b + g~o -= ~. 
The formal argument on the change of variables is meaningless as presented; 

however if one writes the above calculations (i.e. the change of  variables) as relations 
between the power series in the fermion fields defining the fermionic integrals, one 
sees that they are indeed valid. 

Equation (2.33) should allow us, in principle, to reduce the study of  the Schwinger 
functions to that of the effective potential. However, because of the anomalous large 
distance behaviour, this is not so simple, in the sense that it is not possible to use 
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directly (2.33), see [BGM]. In any event, the analysis of the effective potential will 
play an essential role; therefore, in the following three sections, we shall analyze 
the integral in the r.h.s, of (2.32) by an iterative procedure, based on the scale 
decomposition (2.17) of  the field. This will allow us to define the effective potential 
on scale . / -h ,  whose properties will be used in Sect. 6 to study the pair Schwinger 
function, by an expansion that will take the place of the relation (2.33). The same 
technique could be used also to study the other Schwinger functions, but we shall not 
do it explicitly. 

3. Ultraviolet Limit for the Effective Potential 

In this section we shall begin the analysis of  the effective potential defined in 
Eq. (2.32), by studying the ultraviolet problem. 

We start by decomposing 9(x)  in its u.v. (ultraviolet) and its i.r. (infrared) part: 

with 

g(x) = gu...(x) + gi.~.(x) (3.1) 

J 'dkodf~ 1 - e - ( k o 2 + e ( k ) 2 ) p 0 2  e_i(ko(xo+O-)+~ ) (3.2) 
9u'v(X) = (270 2 - i k  o + e(flc) 

where p o  1 is the range of the potential, see (1.1) and (3.24) below. 
It is easy to see that: 

9(x)  = O(xo)e 2m e 2,o - ~--~e 2,~ , (3.3) 

- -PF 

where O(xo) is the step function. Hence we can write: 

gu.,,. (x) = G(x)  + R(x)  

with: 

(3.4) 

G(x)  = h(xDh(xo)O(xo)e 2m e 2xo , (3.5) 

R ( x )  = [1 - h(:g)h(xo)]gu.v.(X ) - h(~)h(xo)gi.r.(X) 

~2_ 2 

- h ( ~ h ( x ~  a ~ e , (3.6) 

- -PF 

where h(t),  t E R 1, is a smooth function of compact support such that h(t)  = 1, if 
Itl < 1, and h(t)  = 0, if It I _> % 7 being any number greater than 1, fixed once and 
for all. 

It is easy to show that R ( x )  is a smooth function on R 2, such that, for suitable 
A,t~: 

[R(x)l _< A e  -~lxl . (3.7) 

Equations (3.1), (3.4), and (2.32) imply that: 

e -Veff(~p) _ ..~(o) f j ] / .  J P(i-r')(d@i'r'))e -r176162 , (3.8) 
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where 

e_ V(0)@) ~/-(0) f e (0) = j/-~(o) p(R)(dr  - v  (r (3.9) 

It is worth remarking that: 

lim 
N----r ~ 

ON(t) = Z f ( T i t ) '  ( 3 . 1 2 )  

i=1 

f ( t )  = [h(t /7)  - h(t)]O(t) (3.13) 

is a smooth function with support on [1,72]. The function 0N(t ) has the claimed 
support properties and: 

O(t)h(t) = lim ON(t). (3.14) 
N---*o,o 

GN(X) = G(x) ,  for all x c R 2 , 

because in the discontinuity point z 0 = 0, by definition, 

G(O, x 1) = lim G(xo, x l )  = 0 = GN(O , Xl). 
x0--+0-  

Two other consequences immediately follow from (3.15): 
1) in (3.10) we can suppose that the potential (2.31) is Wick ordered w.r.t. G N, since 
only products of fields at coinciding times appear in it; 
2) all Feynman graphs with closed fermion loops in the perturbative expansion of 
V(~ vanish; furthermore, because of the ~(x 0 - Y 0 )  in (2.31), also the loops 
containing some lines v(x  - y) are forbidden, if the directions of the fermionic lines 
are compatible. 

(3.15) 

where: 

and 
e_V(O)@) _ 1 / S/.(o ) P(a)(d~)e-V(r  (3.10) 

with ./U'(~ ~(~ defined so that V(~ = 12@(0) = 0, and P(ir')(d~P), P(n)(dr  
P(C)(d~) are the Grassmannian integrations with propagator gi.r. (x), R(x), and G(x), 
respectively. 

In order to give a meaning to (3.10), we now introduce an u.v. cutoff by replacing 
G with: 

GN(X ) = ON(Xo)h(x~)e 2m e 2x0 , (3.11) 

where ON(t) is a smooth function with support in the interval [7 -N,  7] and N is a 
large positive integer. 

Note that the cut-off is different from that introduced in Sect. 2, which has allowed 
us to present in a symmetric way the ultraviolet and the infrared problems. However, 
one can check that the results of this section do not depend on the choice of the 
cut-off; in fact, one could add the new cut-off to the previous one, parametrized by 
U, and note that all bounds are uniform in U. Furthermore, in this section we shall 
use only the particle field representation of the Grassmannian integrations, see (2.18). 

It is convenient to define more precisely ON(t) in the following way: 

N 



108 G. Benfatto, G. Gallavotti, A. Procacci, B. Scoppola 

Then we define: 

1/ 
V<~ = lim l o g - -  P(<-N)(dr162176 (3.16) 

N---,oo jU'(~ 

where P(<-N)(dr is the Grassmannian integration with propagator G N. 
We want to prove that the limit exists and that it is an analytic function of  

z = (~, u, a )  in a neighbourhood of  z = 0, in the sense that the kernels O n of the 
operator O = V(~ defined as in (2.20) (without the sum over co, a/) ,  are analytic 
functions verifying, in their holomorphy domain, bounds like (2.21). We shall also 
prove that V(~ has some "exponential decay" properties (i.e., its kernels decay 
exponentially fast as the arguments separate to co). The extension of  these results to 
9(~ will be trivial. More precisely we shall prove the following theorem: 

The o rem 1. There exist r > 0 and D > 0 such that 9(~ can be written,for [z[ < r 
if z = (a,  u, A), in the following way: 

f ) + + - -  f ) + -  
9(0)(r = )~ dx dy v(x - y r162 Cy Cx + 2)~ dx dy v(x - y)R(x - y r162 

+(u -47vAO(O)R(O) ) /dxr162162162  

/ dz dy r 17V2 (z , x - y) + 

+ ~ ~ f dxa...dz2nr162162162 
n = l  nl ,n2 

n 1 +n2=2n 

• ACx2n_n2+ 1 . . .  Ar W~ln2(z, x 1 . . .  X2n), (3.17) 

where the kernels Wnln2 are products of suitable delta functions by smooth functions, 
which are analytic in z if Iz] < 6, and satisfy, uniformly in N, the following estimate: 

f dxl.., dx2nlWntn2(Z, Xl... x2n)le2 d(~ ...X2n ) 

<_ JAI (DIz[) max{2'n-1} , (3.18) 

while 17~2(z , x) singles out some "special" contributions (see discussion after (3.40) 
below) and satisfies (uniformly in N): 

dx IW2(z,x)l ]xle 2 Jxr < (Diz l )2 ,  (3.19) 

dx Hf2(Z, X) = O. (3.20) 

The r.h.s, of (3.18) is summable in n, for Izl small enough and we shall take this 
property as definition of analyticity round z = 0 for a function of the field of the 
general form (3.17), see also Sect. 2, (2.20), (2.21). 

We shall study the integral in (3.16) by decomposing the Grassmannian integration 
P(<-g)(dr in the product of  the independent integrations P(h)(d@h)), h = 
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k k +  

VC 

h~ 

< 

Fig. 2. 

n 

+ 1  

1 , . . . ,  N, with propagator: 

( Ch(X ) = f(~hxo)h(s 2m \2__~oXo j e 2~o = 7h/2Ch(' f fhxo,  ")/h/2x-*), 

where Ch(x) is a smooth function such that, for suitable A and ?~: 

]C'h(X)] < Ae -~l~l , Vh > 1, 

and t~ can be taken to be the same as in (3.7). In fact, by (3.12) 

N 

(3.21) 

(3.22) 

so that: 

e -V(~ - JV'(k) f P(<-k)(dr162 (3.26) jr j 

An essential role in our analysis will be played by the tree expansion (see [G]), 
with which we assume that the reader is familiar. We start with some definitions and 
notations. 
1) Let us consider ~he family of all trees which can be constructed by joining a point 
r, the root, with an ordered set of n > I points, the endpoints of the unlabeled tree 
(see Fig. 2). Two unlabeled trees that can be superposed by a suitable continuous 

h = l  

We shall assume that A is chosen so that also the following bound is satisfied: 

I~( s - Y-)I < Ae-P~ (3.24) 

for a suitable P0; we shall call po 1 the range of the potential ~7, see (1.1). 
We shall integrate iteratively the fields r in (3.16), by studying the properties 

of the effective potential on scale ,y-k, defined by: 

V(k)(~) = lim log 1 / N ~  . ~  P(k+l)(dr P(N)(dr 

• e - V ( ~ p ( k + I ) + ' ' ' r  (3.25) 

GN(X) = E Ch(X)" (3.23) 
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deformation, so that the endpoints with the same index coincide, will be said to have 
the same topological  structure and they will be regarded as equivalent. 

The unlabeled trees are partially ordered from the root to the endpoints in the 
natural way (we shall use the symbol < to denote the order); n will be called the 
order of the unlabeled tree. 

We shall consider also the labeled tree (which in general will be simply called trees 
in the following); they are defined by associating some labels with the unlabeled trees, 
as explained in the following items. We shall denote . ~  the set of labeled trees of  
order n. 
2) Given ~- E .~-~, we associate with each endpoint one of the three terms of (2.31), 
which we denote r~ ,  c~ being a suitable label, and which we represent pictorially by 
the following graph elements: 

Fig. 3. 

X 

y 

x --/k x 

We shall say that the three different graph elements are of  type 4, 2, U, respectively, 
and we shall call space vertices the corresponding integration variables (a more 
appropriate name would be "space inverse-temperature vertices," but this is too long). 
3) We introduce a family of  vertical lines, labeled by a f requency  index h, which 
takes all the integer values between k and N + 1; the vertical lines are ordered from 
left to right as the frequency index increases. Furthermore the root of  the labeled tree 
must belong to the line with index k, the endpoints must belong to the line index 
N + 1 and, finally, any branch point must belong to a vertical line with index larger 
than k and smaller than N + 1. 

We call non-trivial vertices of ~- its branch points (this set is empty if n = 1 and, 
in this case, there is only one unlabeled tree); we call trivial vertices the points where 
the branches connecting two non-trivial vertices intersect the family of  vertical lines; 
finally, we call vertices the trivial or non-trivial vertices and the endpoints (see the 
dots in Fig. 2). Note that there are no vertices on the endbranches of the tree except 
the endpoints. 

Given a vertex v, we denote h v the frequency index of  the vertical line contain- 
ing it; note that: 

h~, < h v ,  if v p < v .  

The first vertex of  the tree (having frequency index k + l) will be denoted v 0. Given 
a trivial or non-trivial vertex v, s v will denote the number of  lines branching from v 
(then s v = l, if v is a trivial vertex). 
4) We can associate to the endpoints 4n 4 + 2n  2 § 2n~ = n r fields, if the number of 

/ .  different graph elements associated with the tree is, respectively, n4, n2, n 2, we shall 
attach a label f = 1 , . . . ,  n~_ to each field to distinguish them. 
5) We shall denote x2i_l, x2i, i = l , . . . ,  n 4, the 2n 4 space vertices associated with 
the n 4 graphs elements of type 4 and Xzn4+ j ,  j = 1 , . . . ,  n - n 4, those associated with 
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the graph elements of type 2 and U; __z will be the set of alI space vertices. We shall 
use also the notation xj = (tj, ~j) for the time and space components of xj. 

Note that each xj is associated with a pair of fields ~?~+ and ~- j  or ~ +  and Ar 

and, conversely, to every field of label f ,  representing a line of a graph element, 
corresponds a point x(f), representing the vertex of the graph element from which it 

emerges, and a label or f,  allowing to distinguish the three possibilities ~ + ,  ~zj,  and 

Ar 
6) Finally, we denote E h and ~ T  the expectation and the truncated expectation, 
respectively, with respect to the Grassmannian integration P(h)(d@h)). 

As it is explained in [G], we can express the contribution to the effective potential 
on scale 7 -~ of order n in the z variables, say V(k)(N, n, ~(<k) + ~), in the following 
way (setting ~ ---- 0 for simplicity of notation): 

V(k)(N, n, r = Z V(k)(N' 7-, r (3.27) 

where: 

[. V(k)(N, ~_, r 1 l - i  [~h~ + 1 - (<N) = - -  . . .  8~v(V,~(~b- ))1. (3.28) 
8v] i=1 

The tree definition and the corresponding combinatorial weights in (3.28) are adopted 
from [FG], rather than from [GN, GI. 

By remark 1) after (3.15), the last expectations in the r.h.s, of (3.28) have the only 
effect of lowering the cutoff of the field to h i = hvi if v i is the top non-trivial vertex 

out of which emerge the line representing l)~ (@_<N)) (this is in fact one of the main 
properties of the Wick ordering); therefore we can write: 

V(k)(N, % r = 1 H l~i(r " (3.29) 
8v! i=1 

This is a symbolic notation; the ~ T  operations have to be thought of as performed 
hierarchically starting from the higher non-trivial vertices and going down along the 
tree toward the root. 

We need to find a more explicit expression for the r.h.s, of (3.29). We begin by 
proving that V(k)(N, n, ~(_<k)) can be also written in the following way: 

n, r = f dx(Pvo) y~ ~ W(k)(N, T, P~o, x(~v~ (3.30) V(k)(N, 
~-c,~ P~o 

where: 

(-~o) W(k)(N, "i-, Pvo, x(P~~ = V(~)(N' % Pvo' x)d(x\x  ). (3.31) 

Pro is a non-empty subset of Iv0 = { 1 , . . . ,  n~.}, the field labels associated with the 
tree endpoints reachable from v 0 (i.e. all of them); the sum ~ is the sum over such 

Pv 0 
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subsets and z_(Pv0 ) is the set of space vertices from which the fields labeled by P~0 
emerge. Finally: 

~r/(</c) 
r = 1-I r (3.32) 

f C P v  0 

and the kernels V(k)(.) in (3.31) are suitably chosen. Note that in (3.32) there is no 
Wick order: it is in fact convenient to work without it. 

It is convenient to think of I~o as an ordered set and of P~0 as an ordered subset: in 
this way it will be easier to keep track of the sign changes due to the anticommutation 
relations between the Grassmannian variables. 

If 7- has no non-trivial vertex, (3.30) is trivial; hence we can proceed by induction, 
by assuming that (3.30) is true for all subtrees of ~- branching from v 0 (if S~o = 1, 
there is only one subtree). By using (3.29), we can write: 

-(<k) R V(k)(N' 7-' P~o' ~)r - (~0) 
Po 0 

8v 0 
1 

: Svo' Z ))- 
" P 1 , . . . , P  Sw j = l  

v 0 v0 u 

X ~s ~(--<k+l)(<0v 0 )), (3.33) 

where: 
1) Tj, j = 1 , . . . ,  S~o, are the s~0 subtrees with root in v 0, whose frequency index is 
k + l ;  
2) nj is the degree of the tree Tj, (with ~ nj = n) ;  

d 

3) P g  is a non-empty subset of the set I ~  of the n,.j fields in 5 ;  

4) v~,..., Vo v~ are the vertices immediately following v 0 in the tree. 
Now we use the identity: 

@(<k+l)(p) = E (- ])//@(k+l)(p\o)~(<k+l)(Q), (3.34) 
Qc_p 

where H is the parity of the permutation necessary to pass from the ordered subset P 
to the ordered subset obtained by writing first Q followed by P\Q; and P\Q denotes 
the complement of Q in P. We can write: 

8v 0 
1 

( 3 . 33 ) -  E H(V(k+I)(N'TJ'P~'z--J )) 
5Vo!  P I , . . . , P  S w  j = l  

Vo v O " 

Q v  I , , . . , Q  sv  0 
o v 0 

• 6(k+~)(Pjo \Q.jo))5(-<k)(Pv0), (3.35) 

where P~o = [-J Q-~ is the set of fields which are not contracted and Q~ c P~ .  
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The latter relation proves our assumption (3.30) with: 

1 8vo 
v(k)(N, T, Pro , ~) -- E I-[(v(k+l)(x, Tj, P j ,  xj)) 

Sv0[ Pvl ..... Pvov0 j = l  

x ELl(@(k+l)(pv~ \Qvl ) ,  - . . ,  @(k+l)(Pv0~0 \Qvo~O)), (3.36) 

where Qv~ = Pv~ N Pro" 
By using the expression (3.36) iteratively it is easy to find the general expression 

for V(N, r, Pro, x): one has simply to write explicitly V(J)(N, "cj, Pg,  xj) and so on, 

reaching finally the endpoints of the tree. This yields: 

n not e.p. 

v not e.p. 8v ! 

t n4 / 
X (--O~)n2(--/]) n2 II[--~V(X2i_l -- X2i)] , 

i=1 

(3.37) 

where: 
1) v l , . . . ,  v ~ are the vertices immediately following v; 
2) If  v is a trivial or non-trivial vertex Pv = U QvJ and QvJ = Pv n Pvi, then Pv 

J 
is a subset of the set I v of n~w) fields in r(v); if v is an endpoint of  the tree, Pv 
coincides with the set of  fields appearing in the corresponding graph element. 

If  we expanded the expectations in (3.37) by Wick 's  theorem, we could represent 
the r.h.s, as a sum of Feynman graphs in the usual way [see, however, comments after 
(3.44) below]. Such graphs have internal lines with propagator Ch~ (and we shall 
say that they have frequency by), if they are generated in v by the operation ~ ;  

the external lines are associated with the fields appearing in ~(-<k)(P~0 ). Furthermore, 
if ~ is the set of all Feynman graphs associated to r ,  given g E .~ ,  it is natural 
to associate a subgraph gv to the vertex v; the internal lines of  gv are the lines 
generated in all vertices > v, while the external lines are those associated with the 
fields appearing in ~(-<h~-l)(Pv). 

If  we insert (3.37) in (3.31), we obtain a rather explicit expression for the kernel 
W (k). It is an expression that we shall use to prove that the effective potential is 
an analytic function of z - (A, a ,  u) around z = 0 (in the sense of the theorem 
that we are proving), uniformly in N,  and that it decays exponentially on scale ~/-k, 
as the distance between the space vertices _x(R~0 ) goes to infinity. This will be the 
interpretation of the following ultraviolet bound stating that, for all N, n, % Pro: 

/ dx(FVo)xdx("~o )) IW(k)(N, r, Pv0, x(Pv~ e~ a(k)(Pv~ <- (CIzl)nlAI , (3.38) 
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--A --A --A 

Xl X2 Xn-- 1 Xn 

--A --A 

Fig. 4. X 1 X 2 X n _  1 X n 

where (here and always in the following) C denotes a suitable positive constant and 
is the minimum between ~ and P0 [see (3.24), (3.7), (3.22)]; furthermore d(k)(Pvo) 

and X~(y(Pv0 )) are defined in the following way. 

Let T be the set of  all connected tree graphs joining the m(Pvo) = ]x(P'vo)l space 
"~ /~(i) vertices; if h E T, we call bO),., b(~(~v0 )-1) its bonds and _j , j = 0, l, the two 

components of b (i) (0 is the index of the time component); then: 

m( P~ o) - I 

d(k)(P~o) =- min ~ (7alb(oi) t + Ib~i)l). (3.39) 
bET 

/=1 

Let < *  C < be the family of trees satisfying one of  the following two conditions: 
a) the graph elements associated with the endpoints of r are all of  type 2' and, as a 
consequence, ~( <-k)( P~o ) = Txl~/J+( <-k) A~/'-( x ,7  , 
b) there are (n - 1) graph elements of  type 2', while the other one is of  type 2 and 

~b+(<k)~/~-(<k) its ~ -  line is an external line, so that ~(-<k)(P~0) = ~ -  ~xn �9 
We define: 

{ ~k[ t ,~-  t l l +  "yk/2[~n-  :~11 i f ' r E < *  )(,r(X (PRO)) = (3.40) 
- otherwise 

Note that, if r E :Cs the corresponding graph expansion of  

V(k)(N, ~-, {h~}, Pv0,-x) 
contains only chains connecting x 1 to x n, see Fig. 4. 

It is easy to see that their contribution has a singularity, as Ix1 - x  n [ --~ 0, whose L 1 
norm is logarithmically divergent when N --+ oc; the Xr factor in (3.38) is introduced 
to deal with the singularity, (see below). 

The contribution to the effective potential of  such trees can be easily summed; the 
result can be expressed in terms of  the same two Feynman graphs of  Fig. 4, where 

N 
now the lines represent the full propagator ~ C h. Let us consider, for example, 

h=k+l  
the chain of  item a) for k = 0; it is easy to see, by explicit calculation, that such 
graphs behave, when Ix I - x~[ is small, in the limit N --+ co, as: 

( t  n - - t l )  n - 2  o n - 1  _m(~l  gn) 2 \ ~ ( 7 - ~ t ~ )  1/2 
(n - 2)! Otn_ ~ e 2(t~-q) m (3.41) 

which is not L 1. 
The origin of this singularity can be easily understood. Suppose, in fact, that 

there is an infrared cutoff on scale l, so that the full propagator coincides with G(x). 
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Hence the contribution of  the chain to the two points Schwinger function S2(x - if) 
is obtained by substituting the two external lines with the full propagators G(x - xn) 
and G(x 1 - y) and one finds that the leading contribution for Ix - Yl --~ 0 behaves as: 

oznLg(~_tt)(tS--tl) n On m(~ ~2 ( ITb ) 1/2 
n! Ot ~ e ~ ~ (3.42) 

The latter expression can be summed over n and we get a function with the same 
behaviour of  G(x - y) with the substitution m ~ m/ (1  + ct); this result should have 
been expected, since the term proportional to ct in the interaction could be absorbed 
in the free Grassmannian integration producing exactly such a change in the bare 
mass of the particles. 

The proof of  Eq. (3.38) will make use of the fermionic nature of  the fields and of  
the explicit  form of the propagator defined in Sect. 2. We shall need the following 
results for the fermionic expectations: 

1 
8 5  I c ' ~ h T ( ~ ( h ) ( i ~  " " ' ' @ ( h ) ( P s ) ) l  

h 5hEip~l E I P j l l  
4" ~ IP) I 4 - -  Z (~--tc'd(Th)(P1 ..... Ps) 

-< 3' J 7 J C~ s! , (3.43) 
T 

where IPI = Ipel+ INN1 is the number of elements in P ,  IPl[ is the number of fields. 
~;,('), IP2I is the number of  fields A ~ ( ' ) .  Furthermore T is an anchored tree graph 
between the clusters of  space vertices from which the fields labeled by P1, .  �9 �9 P~ 
emerge; this means that T is a set of lines connecting two points in different clusters, 
which becomes a tree graph if one identifies all the points in the same cluster. If  
b ~ , . . . ,  b e are the lines belonging to T we define: 

h j d~Z)(Pl...P~) = E (  7 Ib0l + 7h/21b{l ) . (3.44) 
j = l  

Note that, if s = 1, the sum over T is void and must be understood as a trivial 
factor 1. 

The proof of  the bounds (3.43) is in Appendix 2; here we want to stress the absence 
of  factorials in the number of fields, which is essentially l inked to the fact that we do 
not expand 1.h.s. in Feynman graphs. 

With the aid of (3.43) we can bound (3.37) as follows: 

'V(k)(N'~-'{h~}'P~~ <<- { I I  E P~ 

v not e.p. 

• 1-I 
v not e.p. j 

v n o t e . p .  8 v ! Tv 
n4  

x H IAv(x2i-, - x2i)l, (3.45) 
i = 1  
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where Qij  = p~ r3 P~j, i = 1,2 and j = 1 , . . . , s  v. 
Now we have to integrate the expression (3.45) multiplied by the weight 

e ~ d(k)(Pvo) 

It is clear that in the r.h.s, of  (3.45) z__ appears only in the last line; therefore we have 
to evaluate the expression: 

f {  H 1 Z e--~d(ThW)(Px ..... Pvsv)} 
vnote.p. By! Tv 
n4 ta 

x l/Iav(z2 _, - x2i)le - (3.46)  
i = l  

Here we have to use the properties of  v(x - y): in fact a global tree graph (on all 
the scales) requires in general also the v ' s  to insure the connection. The property of  
v that we need is [see (3.24) and (2.31)]: 

IAv(x - y)[ < IAIAe-P~ - t ') ,  (3.47) 

where x = (t, xD, y = (t', YD. 
The latter inequality and a standard estimation of the integral [see Appendix 3, 

(A3.18)-(A3.20)], allow to bound (3.46) by: 

ChiN] I I  , . 3  hv(sv_l)[,,~ln4 . (3.48) 

V_~V 0 

By (3.48) and (3.45) we have 

f dxIV(k)(N' % P~o' x)[e~ d(k)(P'~ )AI - 

-- v not e.p. 

] X H [7 w j 3~/--3hv(sv--1). l, (3.49) 
v not e.p. 

and we note that: 

and: 

1-I-y J 
v not e.p. 

1 [6nv +4nv+2nv _ i pv l_51p  v [] 
= [7 ~ 7 ~ (3.50) 

v not e.p. 

3 3 

v not e.p. v not e.p. 
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Therefore we can rewrite the last factor of 3.49) as: 

l liP21+sIR 21+2n4v+4n2v --6]] ,.y--k/412n4+4n2+lPlo 1+St P201-6] 
I X  "7-~ 

v not e.p. 

, (3.52) 

2 I 
where n v is the number of endpoints which follow v in the tree, while n 4, n~, n v are 
the numbers of  endpoints of  type 4, 2, 2' which follow v. 

Let us observe now that: 

EIpll + 51P~I + 2n4 + 4n2 - 6] > 0 (3.53) 

(hence > 1), except in the following cases, that we discuss separately. 
4 = 2, [p2[ 2 = O. 1) IP2l -= 2, nv = %  

The only possibly Feynman graphs associated with % are, in this case: 

Fig. 5. Z 
where the dots on the inner lines and on the external outgoing lines represent insertions 
of  type 2' graph elements. However, their contribution is exactly zero by Remark 2) 
after (3.15), which is valid also for Feynman graphs with propagators of  different 
frequencies. 

4 = 1, IP~I  2 _ 0 .  2) IP~1= 2, % = % 
This is the case of  the graphs: 

Fig. 6. 

which vanish for the same reason of case 1). 
4__  2 _ 0 "  3 )  I p l l  = 1, IP~ l  = a, ~ v  - ~v 

This is the case of  the trees, whose graph elements are all of  type U, so that only 
the chains of  Fig. 7 are allowed. 

If  v 7~ v 0, one of  the two lines external with respect to v is internal to the non- 
trivial vertex v '  preceding v. To be definite, let us suppose that this is the case for the 
line emerging from x,~ (the other case can be treated in the same way); then all terms 

- A  - A  - -A 

Fig. 7. Xl X2 Xm--1 Xm 
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contributing to the expansion in Feynman graphs of  W ( k ) ( N ,  r, Pro, x(P'~ contain a 
factor of  the type: 

f d x 2 . . ,  d x ~  A~z Ch~ (x 1 - x2) . . .  A x ~  C h~  - ~ ( x ~ _  1 - x ~ )  

(Ay)eCh~ , (x  m - y) , (3.54) 

w h e r e p = 0 o r ~ =  1. 
Let us suppose first that all the lines have the same frequency, that is h i = h v, 

for i = 1 , . . . ,  m - 1. Then, since f d x m A C h ( X m _  1 - xm)  = 0, we can substitute in 
(3.54) Ch ' (x,~ -- y) with: 

Chv,(X m -- y) -- C h , , ( X m _  1 -- y) 

l 

= (Xm -- X m -  1) J dtOCh v, ( xm  - Y - t (x .~  - x .~_  1)), (3.55) 

l *  

o 

and it is easy to see that such a substitution allows us to improve the bound by a 
factor ~/-(hv--hv' )/2. 

If  the lines have different frequencies, i.e. if there are other non-trivial vertices 
following v, we have to apply the previous argument iteratively starting from the 
higher vertices. The only change is that some covariance in (3.54) is substituted by 
its gradient calculated at an interpolated point as in the r.h.s, of  (3.55); it is easy to 
see that the improvement for each non-trivial vertex is always the same, i.e. 7 -1/2 
raised to a power equal to the difference between the frequency of  the vertex and that 
of  the preceding non-trivial one. Furthermore, there is at most a factor Ix - xtl for 
each line connecting x and x '  and each covariance must be interpolated at most two 
times; so no dangerous factorials appear. 

Of course, in order to improve the bound, we have to expand in Feynman graphs 
the subtree starting in the vertex v and extract the propagator Chv ' (x,~ -- y) from the 

truncated expectation associated with v'. One could be afraid that this destroys the 
good combinatorial properties of  (3.43), but this is not the case. In fact the subtree 
starting from v belongs to .Tin* and it is easy to see that its expansion in Feynman 
graphs contains exactly s v ! terms, which is compensated by making use of  the 1/sv!  
factors of (3.37); so there is no combinatorial problem here. The problem of the 
extraction of  Caw , (x,~ - y) from the truncated expectation is not really present, since 

each term contributing to the r.h.s, of  (3.43) has a factor equal to one of the external 
propagators of v [see the proof of  (3.43) in Appendix 2]. 

We have still to consider the case v = v o, but now r C Js  and we can use the 
factor X~.(z_(Ro0 )) in (3.38) to improve the bound by a factor ,y-(h~-k)/2. 

4 = 0 ,  2 = 1 .  4) IP,~[ = 2, IP2[ = O, n v n v 
This is the case of  the tree with an arbitrary number of  type 2 ~ graph elements 

and one of  type 2. The same considerations of Case 3) apply, so that again we can 
improve the bound by a factor ~/--(hv-hvt)/2. 

We can summarize the discussion above, by saying that the last line of (3.49) can 
be replaced by expression: 

1 k 

v not e.p. 
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where x(D v > 0) is the characteristic function of  the set {D~ > 0} (it reminds us 
that the graphs of  items 1 and 2 are not allowed) and 

D.  = IP~I + 51p21 + 2n 4 + 4n 2 - 6 + 2~lP~l,1~lP~l,l~5~4 06n~,O 

+ 2~lP~l,2~lPZvl,O~n4,0~n 2 , 1 �9 (3.57) 

The above discussion shows the essentially trivial renormalizability of  this model. 
In fact, since the number of  unlabeled trees with n endpoints can be bounded by 
24n, in order to prove the bound (3.38) it is sufficient to control the multiple sums in 
(3.49) and the sum over the labeled trees with a fixed topological structure. This can 

1 

be easily done by using the factors ~/- 3 U~ of  (3.56). 
We first observe that, given an unlabeled tree ~, there are only 3 ~ corresponding 

families of labeled trees differing for the choice of  the graph elements associated with 
the endpoints; hence it is sufficient to consider only one of  such families, say .~ .  
Threes 7- C g -  can be distinguished by fixing the frequency indices of  the non-trivial 
vertices, which we shall denote ~. We can write: 

v n o t  e .p .  v .p. 

where ~t is the non-trivial vertex immediately preceding ~ or the root, if there is no 
such vertex. 

The sum over the set ~ of  the first factor in the r.h.s, of  (3.58) can be bounded 
in a trivial way by a factor C ~. Furthermore, by (3.57), if D~ > 0: 

D~ > max{l ,  I P ~ I -  2} > IPv__ll (3.59) 
- - 3 

Hence, in order to complete the proof of (3.38), it is sufficient to prove that: 

H ~ 7 -  ~4 = S(P~o, "r, n) < C ~ , (3.60) 
v n o t  e .p .  Pv 

where the sums over the sets Po are constrained by the condition that P~ = ~ Q~3 
J 

with QvJ a subset, possibly empty, of  P~j; furthermore Po is a fixed set with four or 
two elements, if v is an endpoint, and we have eliminated the constraint that P~0 is 
a fixed subset of  the fields associated with the tree graph elements. 

The latter estimate, evident for large 7, can be proved in the general case 7 > 1 
in the following way. We note that: 

P v  

S(Pvo , T, n) ~ I X  Z 7 24 Cv ' (3.61) 
v n o t  e .p .  Pv 

where C~ counts the number of  ways of  choosing a subset Pv with p~ elements, 
satisfying the constraints; hence it can be easily bounded by a binomial coefficient 
and we obtain: 

S(P~o , r , n ) <  1-I Z T -  ~ P~J . (3.62) 
v n o t  e .p .  Pv \ Pv 
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Set ~ = 71/24 and let us denote with ~ a path from the root of  the tree to an endpoint 
and with l ( ~ )  the number of  vertices lying on ~ .  It is easy to show, by simply 
performing the sums in (3.62) one after the other starting from v 0, that: 

(3.63) 

The bound (3.38) implies that we can sum, for ]z] small enough, say ]z] < c, and 
uniformly in N,  the terms in the effective potential, which have the same dependence 
on the field (i.e. that have the same set of  labels {cry, f E Pv0})" In fact, we have still 
to bound only the sum of all trees of  order n satisfying that condition: as mentioned 
above this gives simply another factor < 24n, as the trees are "topological trees," see 
item 1) after Fig. 2. 

We can now integrate also the field fluctuations associated with the regular part 
R(x) of the u.v. covariance, see (3.4) and (3.9). The regularity of  the propagator R 
makes this a trivial repetition of, say, the last integration lowering the u.v. cut-off 
from h = 1 to h = 0 and we do not have to perform it in detail. 

The bounds of this section imply that 9"(~ can be written, for I z] < e, as in 
(3.17) and that a similar expression is valid for the effective potential on scale 7 -k .  
Furthermore the kernel 17V2(z , x) singles out the contributions coming from the trees 
in c4/-~ * [see discussion after (3.40)] and therefore satisfies (uniformly in N)  the bound 
(3.19) and Eq. (3.20). 

From the considerations of Sect. 2 it is almost obvious that the effective potentials 
can be given by the expression (3.17) for Iz] < O(L-I"7-N). The results just derived 
show that in fact the analyticity in z of  the kernels for the effective potentials can be 
extended to ]z I < c for some c > 0 and of  order O(1) and have a uniform exponential 
decay (A, N-independent): see (3.18), (3.19). 

This means that we can sum the coefficients of  given order in z and that their sum 
admits good exponential bounds. 

Note that this is not sufficient to guarantee the integrability in the sense of  Sect. 2 
of  exp ~'(0)(~(i.r.) + ~) with respect to the i.r. part of  the Grassmannian fields for 

Izl < 
We shall proceed by imagining that we have a u.v. cut-off N and perform the 

integrations down to the infrared cut-off R: and we shall see that it is possible to 
perform a resummation of perturbation theory permitting us to express the effective 
potentials as uniformly convergent power series in a sequence of  constants _r h, called 
the running couplings, which are themselves expressed as sums of  series in the initial 
couplings z. The series for the running couplings will have very small L, N,  R 
dependent radii of  convergence. But they will be related by a map permitting us 
to express their values at scale h in terms of  the values at the preceding scales 
h - 1 , . . . ,  0. We shall show that the relation is expressed by an analytic function, 
the beta functional, of the preceding couplings with a radius of  convergence which is 
uniform in N, R, L. Thus if by some other means, see Sect. 7, one can be sure that the 
beta functional generates a sequence _r h, h = 0, - 1 , . . . ,  of  running couplings which 
stay small uniformly in the index h, then one will have shown the possibility of  a 
resummation of the perturbation series for the full effective potential kernels, which 
is uniform in R, N,  L and a theory of  the ground state will have been constructed (up 
to the technicalities analyzed in Sect. 6). 
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In the next section we begin the discussion on the beta functional and its analyticity 
properties. 

4. The Effective Potential in the Infrared Region. Failure of Normal Scaling 

In this section we shall begin the analysis of the infrared problem, that is of  the 
possibility of giving a meaning to the integration in (3.8) of the infrared fluctuations 
of  the field, associated with the propagator: 

f dkod~: e -ik~ 
gi'r'(X) -- g(<-O)(x) ---- (271") 2 --ik 0 + e(k) e-[k2+e(k)2]p~ " (4.1) 

Note that the Fourier transform of 9(<~ has a linear divergence on the 

Fermi surface k o = O, k = :~PF, which cannot be treated by a naive multiscale 
decomposition as the one used for the u.v. problem, because of  the presence of the 
built-in scale PF. It is possible, however, to rewrite the problem in terms of quasi- 
particle fields in the way presented in [BG], that we briefly summarize here. 

We write the particle field dY (<~ of covariance g(<-~ as a sum of independent 
~ - X  - -  

quasi-particle fields: 
if)o-(<0) ~io-PFWC~/.o'(<0) 

x -  = E (4.2) 'q/~, ~- , 
w=~l 

and, as usual, the fields ~/,~(<0) essentially describing the fluctuations around the two 
points of  the Fermi surface, are decomposed as sums of independent fields in the 
following way: 

0 
~o(_<o) 

~o,x = E ~2(~),, (4.3) 
h=--oo  

where ~ ( x  h) has covariance: 

~/--2h+2 

g(~h)(x) = e ipF~~ da (27c)2 
~,--2h 

--2 2 ~2 • e-ik 'x(iko + e(k))e-C~po [ko+e(k) ]X(W,7-hk). (4.4) 

t 
Here x(t) = 7c - 1 / 2  f ds e x p ( - s  2) is a regularization of the step function. 

In Appendix 1 we show (see also [BG], Appendix A) that, for any integer m _> 0: 

h ( l+m)  --n~/hlx[ IOm g(~h)(x)l <_ C~'y e (4.5) 

for some suitable constants C,~ and ~, independent of  h. 
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In the following we shall use also the definitions: 

h 

~ ( < h )  E 7/)~ 7/)o-(~h) E ~icrPFW~"/'~ w~x ~ "rw~x ~ "r~ ~ ~ ~ x  " 
k = - - c ~  c o = •  

(4.6) 

In order to evaluate Veff(~), by (3.8) and (3.9), we should study the functional 
integral 

/ P(d~ <-~ -~(~162 <-~ +~) . (4.7) 

However, the analysis of this integral is more delicate in comparison to the analogous 
ultraviolet problem, because of the anomalous scaling. Therefore we split the problem 
into the simpler problem of defining the running couplings and into that of evaluating 
the effective potential. The first problem already emerges from the study of the integral 
(4.7) for ~ = 0, i.e. from the study of the normalization constant in (3.8); this analysis 
will be performed in this section and in the following one. The second problem will 
be faced up in Sect. 6 indirectly, through the analysis of the Schwinger functions, 
which are the physically relevant quantities. 

Setting r = r to simplify the notation, we represent the potential ~(0)(r see 
(3.17), in terms of quasi-particle fields and we obtain: 

~(0)(r = ~ f dx dy E eiPF[(col-w2)x§ r  V(X -- + -- -~ix ~2x Y)r162 
d 

C~ ." "co4 

+ u Jf dx E eipY(~l--~2)er @- VWl X rco2 X 
Wl ~r 

+ O~ / dx  E ~iPF(Wl-~2)~)+1xi/3w2Y~2~)22x 
COl ~ ~d 2 

- ~ E  E E f r i l l  " .. dx2n eipFs247 
n = l  n l , n 2  col --.con 

~1+~2 =2~ co~ .... r 
+ + -- _ 

X CWlX 1 . . .  Cr162 .. .r 2 

X ~Wn_n2+l~i r x^ , , ' ' "  $~2n~lnCWnX2n 
n ~2+1 n - - n 2 + l  zn--n2~ 

X ~Ynln2(Z , x 1 . . .  X2n), ( 4 . 8 )  

where/3 = pF/m, the covariant derivative ~ is a differential operator acting only 
on the space coordinate, defined by: 

2 ~  = O~ + iwO2 (4.9) 
2pF 

and the contribution of the third line in (3.17) has been included in the last term [see 
discussion related to (4.38) and (4.39) below]. 
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The 2~ -  operator satisfies the following identity, which will play an important 
role in the following: 

f dxr162 

= Z f dx e ipF(wl-w2)~/'+(~h)if~w ~Z-~/'-(<-h) j ,FWlX ~, 2~W2 ~`02 x . (4.10) 
`01 ,w2 

It is now very natural to define the effective potential on scale 7 -h, for h < 0, as 
in (3.25), through the expression: 

C_~(h)(~(_<h)) = ./r / p(d~/ ) (h+l ) )  . . .  f P(d@~ -~(~162176 . (4.11) 

We shall see in the following that this is not the correct definition, because of  the 
anomalous scaling properties of the model. However we proceed for the moment with 
this definition in order to show where and why the problem arises. 

As explained in [BG], we can isolate the relevant part of  the effective potential 
by introducing a localization operator _US which acts linearly on the monomials in the 
fields of the form ~ ~ x i  and is zero on all monomials of degree _> 6. Its action on 

i 
the monomials of  degree 2 and 4 is generated by linearity from: 

<~ + + - - 1 [~/~+ ~/,+ ~/,- 1/3~4Xl (ffd`01X 1 ~W2X2 ~`03X3 ffdCOaX4 ) = "~ r`01X 1 r`02X 1 "r`03X 1 

+ + - - ] (4 .12)  + ~`01X2ffd`02X2~`03X2~dUC4X2 
<_~ + -- + + -- 

(~)`01Xl ~w2X2 ) = ~`01Xl ~)~2Xl + (X 2 - -  Xl)~`01XI~`02~J`02X 1 ' 

where [see (4.9)]: 
2,0 =_ ( O t , ~ ) .  (4.13) 

We used in the second line of  (4.12) the covariant derivative (4.9) instead of  the 
normal space derivative, which could perhaps look more natural, for a reason which 
will be explained later [see remark following (4.30) below]; in any event our choice 
(4.12) differs from the other one only by an irrelevant term. 

If  . ~  = 1 - ~ ,  we have also: 

+ + - _ 
(~/~w l Xl ~`02 X2 ~`03 X3 ~)w4 X4 ) 

1 [  + + -- -- + + 
~- 5 ~WlxlO21`02 @`03x3 @u;4x4 -~- @`01Xl ~`02xlD31w3 ~ ) L x 4  

+ + - _ 
+ CWlXl % 2 x l  r Dalw4] 

1 rD+ ~/,+ o/,- r 4 + ~/'+ ~/'+ D -  ~/'- ~- ~ t 12`02~`02x2 ~/-~3x3 WWlX2Y~`02x2 32`03w`04x 4 

+ + - - (4.14) -~- ~w 1 X2 ~)`02 X22/)`03 X2 D42w4 ] '  

where 
1 

Djiwj = Cwjxy -- Cwjxi = (Xj -- Xi) dr r 

o 
X j i ( r  ) = x i + r ( x j  --  x i )  , 0 ~ (Or, 0 s  

(4.15) 
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and for the quadratic term in the fields we have: 

,~(r ) - -  i(a')2 ,Sff 'a/'+ 0 2M'- 2p r (:~2 - l ] ' # W l X  ' : ~ r  1 

1 r 

2+ff%/xl (4.16) @ ( X  2 - -  X l )  dr ds  02r 

0 0 
where 1r 

- -  x i ) 2 j f  d r  ds  02_~2x21(8)~. : r  2 - r  1 - ( x  2 - Xl)O~)~2Xl.  ( 4 . 1 7 )  (X2 
0 0 

We plan to evaluate iteratively the integrals in the r.h.s, of  (4.11), by rewriting at 
each step 17 (h) in the form 5~17 (h) + .~,(h).  This implies that we have to consider 
the action of  ~ also on other monomials  of second and fourth order, besides those 
appearing in (4.8). We shall give now the complete list of  the monomials  that one 
has to take into account, for which the action of  S does not give zero, together with 
the result of  the application of  S and Jf~, deduced from (4.12) by linearity. 

In the case of  the fourth order monomials  there is only one more term on which 
+ 0 + -- -- ~ is not trivial, in principle; it is the one of the form ez~w, exz~2r162 This 

term can only appear if x~ is an interpolated point, see (4.15), so that we really need 
the following equation: 

c/~ + n + - - 

1 + + - - + + - - ] ( 4 . 1 8 )  

By the anticommutation properties of  the field, the r.h.s, can be different from zero 
only if w 1 = - w  2, w 3 = - w  4. However,  in this case, the integration on the x-  
variables cancels it, because the monomial  in the 1.h.s. appears multiplied by a 
translation invariant function of the x-variables; furthermore the oscillating factor 
(3 ipF(wls is also translation invariant, if  W 1 ----- - - 0 3 2 ,  W 3 = - - 0 3 4 .  

Hence, for our purpose: 

5f~b + &b + ~/~- ~b- = 0 (4.19) = - T X l e d l  TCC2W2"rX3CO3TX4r 

and we do not have to consider any other localization operation on the fourth order 
monomials,  besides that of  (4.12). 

In the case of  the second order monomials,  we have to consider the following 
localization operations: 

+ ~ - 
~ ( r  ~2%~2) = 

Z ( r 1 6 2  : 

Z ( O r  +Wl x 1 t r  x 2 ) : 

~ ( 0 r  + x, O e L x , )  = 1 1 2 2 

'//)~ l 5c 1 r 2/3oj2 X 1 

+ ~ - 

+ (x2 - X l , ) 0 ( r  , ~ - r  
! l z z 1 

O(2/)+WlXlt~W2r 

(4.20) 
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and the corresponding fi;~ operations: 

| +/ 
0 

ic~ ~b+ 02~b - 
~ ( ~ C ~ + l  Xl O ~ X 2 1 )  "~- - -  2p F -~1Xl ~ercO2~l  

1 

+ (x z, - x~)r t) j dr O0"(~S2~z,t(~), 
0 

1 

a~ + _ _ )0r f (4.21) . ~ ( 0 ~ , ~ ,  ~2x2 )  = (x2 xl' a dr Oz~2~Zl,(~ ) 
0 

iw__~2 i+ 02~ - 
2pF # J ~ l X l  f ~'//dtveXll 

- -  ( X  2 - -  ZI,)O~+.x t~w-~)~.~x, l i Z z [ 

- -  ( X  2 - -  XU)ff)+~,x t O ~ w - r  

where the symbol xj, is used to stress that xj, is a point on the segment connecting 
xj and some other point. 

In the r.h.s, of the last three of equations (4.20), some new local terms appear with 
+ respect to the second relation in the r.h.s, of  (4.12). However, the field 0 ~ b ~ ,  in 

the 1.h.s. of  (4.20) can appear only through a field D ~  by interpolation, see (4.15). 
Hence one has really to consider the following localization operations: 

cj~tD+ ,/,- a + - + - 
~' ,  12Wl ~yX3~2 ! = ~da:lWl//dXl~, 2 - -  ?~X2cOl~dx2w2 

- (x 3 - xe)~b+~o, ~'752~x;~,2, (4.22) 

~ ( D 1 2 w l ~ w 2 ~ ) z 3 r  ) ---~ ~ x l w t  ~2~2XlW2 2 1 2 2 2 '  

And we can conclude that, as a result of  the localization operation on the effective 
potential, we get, for each scale, the following local monomials: 

+ --  _ _ + -- 
+ 0 - , G %j, , (4 .23)  

multiplied by some constants, the running coupling constants of the model, that we 
shall indicate, respectively, with )~h, "Yhuh, ~ ,  ~h" 

At first sight, the running coupling constants depend on the ~z variables; however, 
we shall see that they are actually co-independent. 
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The fourth order local part must have the form: 

J dx (4.24) 

and recalling the anticommutation properties of fermions, we can write: 

)'h 
Ah(~l, ~2, w3, ~4) = - - ~ -  wlw35~1,-~2~3,-~4 �9 (4.25) 

Hence we can rewrite the quartic relevant part in the simpler way: 

/ dx~+(<h)~+(<h)r - I x  -IY +1; �9 (4.26) 
/~h  

Let us now investigate the w-dependence of the running coupling constants 
associated with the quadratic terms in the effective potential on scale .~-h. By the 
linearity of f~f, we can calculate the local part in a different way. First we can do all the 
integrations in (4.11) without introducing the quasi-particle field representation; then 
we represent the effective potential in terms of the quasi-particle fields and finally we 
apply the localization operator. After the first step, the quadratic part of the effective 
potential on scale . y - h  expressed in terms of particle fields, looks as follows: 

9-[2] (h) = f dx dy Vh(X -- y ) r 1 6 2  

+ f dx  dy Wh(X -- y)@+(x)e(iO~7)r (4.27) 

where v h and w h are rotation invariant kernels (this means, in one dimension, that 
they are even functions in the spatial coordinate); such property follows from the fact 
that the free propagator of the theory and the interaction are indeed rotation invariant. 

We represent now ~[2] (h) in terms of quasi-particle fields: 

, ~ # ! 

+ d x d y w h ( x  _ ~,~,~,pF(~x-,~ ~)o1,+ ~, . ,  cz-~i,- ] (4.28) 

Hence the second order local part has the form: 

~ - ' f -  ~p~(~-~')~+ , . -  
~ [ 2 ]  (h)  : ~/ 12 h a x e  W~xWJx 

J--,,,,,,,d J 

q_O!h W " ! ~ t 
~OCO l 

+ Ch ~ f dx eW'('-")'~+xOt~,x, (4.29) 
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where, if 2 is the spatial part of  the two dimensional space-time vector z and z 0 is 
its time component: 

P 
h / �9 / ~  v h = dz Vh(Z)dVF~ ~, 

d 

~h = dze*PF~ ~(--Zo)Vh(Z)" 

(4.30) 

The latter definitions immediately imply that u h, a h, and ~h are independent of the 
co's, as a consequence of  the rotation invariance of the theory. 

The previous observation has another consequence, which will play an important 
role in the following analysis. The structure of  (4.22) is, in fact, not suitable for the 
dimensional bounds that we want to discuss: the r.h.s, of (4.22) is written as a sum of 
terms which do not vanish when z 1 = z 2 ,  i.e. we loose track of  the fact that the 1.h.s. 
of  (4.22) vanishes for z 1 = z 2, a property which is manifest in the 1.h.s. through the 
field D + �9 this is disappointing because the property of vanishing of the 1.h.s. must 12co I , 

be used to regularize the vertex where the field D+2~ appeared at a previous scale, 

along the iterative construction of  17 (h). 
As a consequence we cannot have good bounds for the contributions to uh, C~h, ~h, 

coming from the individual terms in the r.h.s, of  (4.22). However, if col = 032, it 
is easy to see that the contributions arising from the second and the third of (4.22) 
cancel out, because of  the translation invariance of  the theory, by an argument similar 
to that used in the remark following (4.18) and leading to the "effective validity" of 
(4.19) (see also [BG], Sect. 11). In the first of  (4.22) the translation invariance implies 

+ ~ -- 
that, if % = co2 = co, the r.h.s, can be replaced by (x 1 - zz)~Xl~ ~_~bxl~o, and in this 
way the needed (z 1 - z2) factor is explicitly exhibited. 

To summarize, if col = 032 = 03, w e  c a n  replace (4.22) with: 

S(D+2~o_~ga~-3co) ---- ~(D+2coD~o) = O. 
(4.31) 

The previous properties are not valid anymore, if % ~ co2; hence there would 
be a serious problem, if we had to bound the contributions to the effective potential 
associated with the local terms in the r.h.s, of  (4.22) for all col, co2. But this is not 
the case, since we know a priori that Uh, ah, (h are independent of COl, co2 and we 
are not interested in the single contributions building the running coupling constants 
expansions, but only in their sums. Hence we can choose to compute the running 
coupling constants via their expansions valid for col = co2, which does not give any 
trouble, as we shall see. 

Before starting the inductive evaluation of  (4.11), we write: 

17(~176 ) = ~lP(~176 ) + ,,~V(~176 ) . (4.32) 
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It is easy to see that: 

~17(~ b-<(~ = Ao / '*'~ ~+lx~176176176176176176176 ~-lx ~+lx 

-~- V 0 / dX E eiPF(Cvl-w2)s Ix -r co2x 
COl o.~ 2 

+ O~ 0 f dx E eiPF(C~ Iv w2"w2x 
OJlr 2 

+ 40 f d2c ~ e ipF(wl -w2)~q/,T(~o)O~Wl x t'~w2x~/'-(<~ ( 4 . 3 3 )  

~-Ol& 2 

for suitably chosen Ao, to, % ,  40, and: 
O<3 

~1)(~176 = E E / dx-17Vo(z'x)Mo (~<-(~ (4.34) 
n = l  QEIn 

Here I~ is the finite set of  different monomials of  the form: 

,+)(/I Me(~b) = e ~ , (4.35) 
\ i = 1  z \ j = l  

where ~b + has to be chosen between the fields [see (4.21)]: 

1 

iPFWZ1/;+ " " f dr Off)+~zx21(r) e -<wx, eZPFWX2 (4.36) 

0 

and ~ -  has to be chosen between the fields: 

2pp J - z - ~ x l  , 

1 

�9 - f  e -~pF~z2 dr ~co 0r (T) , 
0 

1 

�9 - f  e -~pr~2 dr 0r 

0 

1 r 

e-ipFw~2 / dr / ds O2r ) . 
o o 

(4.37) 

Moreover, in (4.34) x represents the set of  points appearing as labels of  the fields in 
the monomial M o. 

Remark. The running couplings A 0, u 0, a 0, and 40 are in fact convergent series of  the 
bare couplings z = (A, u, c~), uniformly in the u.v. cutoff N.  This follows from (3.18) 
for the contributions coming from 17d~1~2, with n I + n 2 = 2 or 4, but there is, at first 

sight, a problem for the contributions to u 0, %, and 4o, coming from 17( 2. However 
we can use here (3.20), which implies, for example, that the contribution of I?V 2 to 
% is: 

-2m / dx eipF~lTV2(x) = 2rl~ / dx [1- e/PPaT]l~2(x), (4.38) 
J J 
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which can be bounded by: 

f dx I•1117VR(X)I, (4.39) 2mpF 

a finite bound uniformly in N by (3.19). 
It is also important to stress that, by (3.18) and (3.19), the kernels of (4.34) are 

convergent series of  z, which satisfy for Izl small enough the bound: 

f dz_lWo(z,__z)le ~ d(~ _< IAI (Clz l )  max{l'n- 1} (4.40) 

and the power on the r.h.s, can be really 1 only in the case of  the term coming from 
the action of ~ on the first term of  (4.8). 

The first order in the bare constants gives: 

A 0 = 2A . l  dJ~(:g) [1 - cos(2pF2")] , 

= u + 2A f d:g~(~) [eipF~R(O, Z) -- R(0)], (4.41) Uo 

ct o = c~ + 2% -~ d~(~)R(O, ~ i e  ivFe , (o = O. 

We can now start the inductive evaluation of  (4.11), by applying at each step the 
localization operator to the effective potential. We will obtain for ~ V  (h) a formula like 
(4.33), with A 0, u 0, c~ 0, (0 replaced by (Ah, @uh, ah, ~h); and (Ah, Uh, Cth, ~h) ~ rh 
will be called the running coupling constants of frequency h. The r h can be expressed 
as a series of  the running coupling constants of  frequencies k _> h +  1, i.e. rh+ 1 . . .  %. 
We could show that this series, called the beta functional, is convergent if all the 
running coupling constants rh+l,. . .  ,r  o stay bounded within a certain radius of 
convergence, and we could show as well that the irrelevant part of  the effective 
potential can be written as a convergent series of r h + l , . . . ,  r 0 (for a general discussion 
on the beta-functional see for example [G]). 

Of course, in order to use this result, we would also have to prove that the running 
constants really do stay bounded, at least if the bare constants are small enough. 
However, if we try to pursue this program, we immediately find a difficulty. In fact, 
if we calculate the beta functional at second order, we find ([BG, G]): 

"~h--1 = ~h , 

OZh_ 1 : OL h n t- ~ A 2 ~  ~- o ( y h )  , (4 .42)  

= + + 

with fit 7~ 0. 
The latter equations imply that, at the second order, A h neither does increase nor 

does decrease; so we need the third order to decide what happens to A h. However, 
even if we suppose that the third order for A h, once calculated, will imply that A h 
goes to zero when h --+ - o c ,  the best that we can hope to find for its behaviour is 
clearly a rate ~ .  Looking at second order equations for ct h and r this implies 
that c~ h and ~h go to infinity at least as ~ 1/]hl, i.e. we get out of the established 

h 
domain of convergence of the beta functional in a finite number of steps. 
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From the mathematical point of view this is a big trouble, because it makes it 
impossible to construct a perturbation theory for the model; from the physical point 
of view this means, as it is well known, that the expectation of the number of particles 
with fixed momentum, in the one dimensional Fermi gas, has a singularity, at the Fermi 
momenta •  of a different kind with respect to the free case, where it is simply 
discontinuous. 

Hence we need to introduce a different type of scaling, allowing us to study the 
nature of the singularity on the Fermi surface via a consistent perturbation theory. 

5. The Effective Potential in the Infrared Region. 
Running Couplings and Anomalous Scaling. 
The Ground State Energy 

A new and more general scaling approach is based on a representation of the field 
~b (-<~ alternative to the one described by (4.2)-(4.4). 

In fact there are many ways to represent the Grassmannian integration P(d~ (<-~ 
0 

with ~(<0) = ~ @h), each parametrized by an arbitrary sequence Z o = 
h=-- ~<3 

1, Z_I ,  Z-2, . . .  of non-zero numbers. 
1 

Denote Pzh(d~) the Grassmannian integrationl with propagator --Zh g(<h)_ and 

Pzt(d~) the integration with propagator ~ s  ~(h), where ~0 (~ = g (~ and ~0 (h) will 

be fixed below. 
The 0(-1) will be fixed, given the sequence Z h, starting from the following obvious 

identities: 

Pzo ( d e  (-<~ = PZo (cl~(~ (d~ <-(- ~)) 
= PZo(&b (~ [Pzo(dr <-( I))e--(Z--I--Zo)(~(<<----1)+,Tr ] 

X e +(Z I - Z o ) ( ~ ( ~ - I ) + ' T ~ ( ~ - I ) - ) + t '  I[A[~ (5.1) 

where T is the differential operator 0 t + e(iOi) and t~l is a normalization constant 
such that the term in square brackets is a normalized Grassmannian integration with 
propagator: 

[&(g(<--l))--I _}_ (Z_I _ & ) Z ] - I  , (5.2) 

and, according to Sect. 4: 

g(<-h)(k) - -  Ch(k) - i  Ch(k ) : (~ ~'-2h(k2+e(~c)g)pO2 = e 3'-2h/3(/~) , (5.3) 

- i k 0  + e(~) ' 

with/3(k) being defined here. Therefore the normalization constant is: 

t', -- / d2k(577 )  log (1 + Z-1-Z~163 (5.4) 

and, finally, from (5.2) we define ~(-~) as: 

[ZoC_l(]g) Jr-Z~o] - I  [Z IC 2(k)] -1 1 
-iko +e(kl) = -iko + e(kl) + ~ 1- ~ (5.5) 
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where, if z = ( Z  1 - Zo)/Zo: 

~(-l)(k ) = g(-1)(k) + r(-~)(k), 
g(_ l ) (k )=  e -72~(k) _e-~4~(k) 

- i k o + e ( k  1) 

r ( - l ) (k)  = 

Hence (5.1) becomes: 

e-~'2/~(k)(1 - -  e -@/3(k ) )  Z 

- i k  o + e(kO 1 + Z e  - ~ 2 / 3 ( k )  " 

P(dr (<-~ = Pzo (dr176 (dr 

= Dzo(dr176 Z , (dr 1 (de  (-<-2)) 

X e ( Z - I  --Zo) ( r  ]A[ 

By iteration we define z h = (Z h - Zh+l)/Zh+l and ~(h) as: 

[Zh+lCh(k) + ZhZh+l] -1 
- i k  o + e(kl) 

so that we must take: 

~(h)(k) = ~7(h)(k) + r(h)@), 

r(h)(k) = e--7-2h~(k)(1 _ e--7-2h/3(k)) 

- i k  0 + e(k t) 

arriving at the representation, valid for all k < - l :  

Pzo(d@<-~ ( h  ~ P&(d~(h)) ) 

w i t h  ~(-<P) = 

1 + ~ g(h)(k), 

Z h 

[ZhCh_l(k)] -1 

- i k  o + e(k 1) 

1 + Zh C-7-2h/3(k) 

0 --( 1F-[ &h( 
h = k + l  

--1 

X ( h=l~k+l e(Zh--Zh+l)(~(~h)'T@<-h))+t'~'Al ) pzk+l (d~(~k)) 

P 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

(5. ~ o) 
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We recover the decomposition of  Sect. 4 by setting Z h -- 1. 
The freedom in the choice of  the sequence Z h can be used to cancel terms 

proportional to (r Tr arising in the calculation of  the effective potential. 
We define the anomalous effective potentials V (h) via: 

0 

f I-[ ht=h+l 
v ( O )  ( /.~_.~ ~h(~O))  + V  ~ o ' ~  -- 1 t t [(Zh ~ _Zh,+i ) (r162 ))+t~, IAI] 

X e ht=h 

where V(~162 (-<~ =- 1?(~162176 so that: 

J p(d@<_O))eV(~162176 

= S Pzh+l(d~(<--h))e--(Zh--Zh+l)(r 

(5.11) 

= f Pzh(dr162 . (5.12) 

In the following the sequence Z h can and will be chosen so that .~V  (h) contains 
no term proportional to f(~/~(<_h), Ot@<_h)). And we shall apply the above ideas to 
study the ground state energy per unit volume. To understand in detail the mechanism 
behind the recursive definition of  Z h we perform in detail the analysis of  Z_ 1. 

Let us consider the first step of  our construction, i.e. the integration of  the field of 
frequency h = 0. If  we put Z 0 = 1, we can write the partition function: 

eEIAI = i Pz~ (d@<--l))Pz~ (d@~176162176 +r 

= i Pz~162 ' (5.13) 

where the Grassmannian integration can be thought of in terms of  quasi-particle fields 
as well as of particle fields. 

We note that, if Z o had been different from 1, ~ ( - i )  would have changed only 
because the external lines (of the generic graph contributing to it) would represent 

~/,(<-D. X/~0g?(x <--1) instead of , ~  , in fact, in the internal lines, the factor 1/Z o coming 

from the propagator is compensated by the factor (X~0)  2 coming from the fields 
which are contracted in that line. 

We now split l) (-1), as a functional of the quasi-particle field, into its quadratic 
relevant part plus the rest. Such splitting is a quasi-particle invariant one in the sense 
that the two parts of  the splitting of  lF(-1) can be expressed independently in terms 
of particle fields. 

Hence we write: 

= z0 i 9(-1)(x/~0r ~iPF(W--wf )~f ~/,+(<_-- l)~/,--(<_ -1) 
u , ,~  ~ L i t, Sc, CO x ~ 's~ I X 

~ d c J  

a~l,+(<__l)ifqj~- i-(<-l) z~D+(<-l)O ,,/,-(_<-l)~ + ~ x  - ~o '~ '~-  + ~wZ- t~o 'x  J + t - l l A I  

+ _.@[quadratic part of  I7 (-1)] 

+ ( ~  + ~ )  [higher than quadratic part of  1)'(-1)]. (5.14) 
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The constant part t 11AI of 1) (-1) is introduced here explicitly as we wish to compute 
the ground state energy density E.  The constants n, a, and z are (of course, as Z 0 = 1) 
the old running coupling constants of  frequency h = - 1 ,  i.e. u_ 1, a I, and ~-1. In 
terms of particle fields, (5.14) can be written: 

?(-1)(x/~0r (-<-1)) = z o / d z  [w/,+(<--1),/, . ~  - 

+ a~b +( <--1) e( i O - x  e )7/)-(<- 1 ) . r x  - ~- ~'~x~q/'+(<--1)~vt~x'd'-(<- 1 ) _  ~_ ~ _ l lA1 ] 
+ [all the other terms expressed in terms of particle fields]. (5.15) 

Let us remark that, by (5.15), (5.11): 

/ pzo (d@o))Pzo (d@<--1))e-V(~162 (<-~ 

= ff Pzo(d@<--1)) e-p(-~)(V~r 

_- J]/'--I f dr162 Zvf2~_~r ) 

-~ f Pz-I (d~)(-<-2))Pz_ l (d~(-  l))e- v(- 1)( zVF~_ 1 r 1)), (5. 16) 

where .A/" is a (formal) normalization factor, and provided Z_I ,  V (-1) are defined 
appropriately, and precisely as: 

Z_  1 = Zo(1 + z) ,  

V ( - ' ) (  Z ~  -1r  = . l  dx [Z0(a - z)r162 + Zone+C;] 
(5.17) 

+ (t_~ + t'_~)LA( 

+ [all the other terms as in (5.15)] 

The above identities define Z_  1 and the anomalous effective potential V (-1) in 
terms of particle fields. Here we see that the property that the effective potential can 
be expressed in terms of particle fields holds; this is a "symmetry property," of great 
importance in the following, and we shall refer to it by saying that our definition of 
anomalous scaling preserves the quasi-particle invafiance of the theory. 

We can write r.h.s, of  (5.16) as: 

/Pz_~(dr 1 (d~)(-1))e-v(-1)(Zv/-~7~l[~b(-<-2)+~'(-l)]) 

= / Pz_ l (d@-<-2))e -g(-2)(zvf2~-~r (5.18) 

and the r.h.s, has the same structure of  the 1.h.s. in (5.13), (5.16) so that we are in a 
position to repeat the procedure. 

Remark. If  we rewrite the anomalous effective potential V (-1) (which, from now on, 
will be called simply the "effective potential," dropping the adjective anomalous) in 
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terms of quasi-particle fields and we call V (-1)[2n] the part of V (-1) which contains 
the monomials of order 2n, we get: 

03CO ! 
- z ) r  + - 

\ Z _ I / ]  

-~-~V(-I)[2](~ZN~~ ~/) ) ~-~V(-1)[4]( ~_~ 2/) ) 

+ E V ( - I ) [ 2 n ] ( ~ - I ~ )  (5.19) 

which, by (5.19), are given by the equations: 

7 -20  , = (t_ 1 +t '_~) ,  

Z~ (a - z), 

Zo ~--1/2--1 = ~--1 Tt, 
x l = Z 2 1  

- Z 2 1  

with z, n, l, a and t 1, tt--1 convergent series of the bare constants. 
We repeat step by step for all single scale integrations the procedure followed in 

going from (5.13) to (5.18). We define: 

e-'r163162 = f JPZh+, (d~b(h+l))e--V(h+l)[ ffs162162 ' (5.21) 

where ~b (h) is the field of propagator o(h)/z h defined above. 
And we write also the analogous of Eqs. (5.14) and (5.15) (we shall call nh, ah, 

Z h, Ij,, the coefficients of the local terms) and we define the (anomalous) effective 
potential of frequency h, with running coupling constants A h, u h, ~h, as in (5.16), 
that is: 

f p (do/,(<--h)'~e--v(h)( z~/-2~+lr 
Zh§ l ",. W ) 

= / Pzh (d@h))Pzt, (dr162 (5.22) 

where, as in (5.17) and (5.20), we have [setting the z introduced in ( 5 . 1 7 )  z = z _ l ] :  

Z h = Zh+l(1 + Zh) , (5.23) 

(5.20) 

where the constant 1 in front of the quartic relevant term is of course the old A_ 1 
(because Z 0 = 1). Hence we have only four relevant terms, including the vacuum 
terms ( t  1 + t~_l) in V(-~)(~b), and therefore only four running coupling constants 
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and 

2h Zh+l nh , 5 h Zh+l Z2+1 1 h (5.24) 7 Oh t h + t ~  ~ -- = , 7 Uh Zh Zh (ah--Zh) ,  A h - -  Z 2 

with 
' J d2tg ( Zh- Zh+l ) .  (5.25) t h = ~ log 1 + e -'Y-2t~(k2+e(Lz)2)po2 

Zh+l 

The calculation of the integral in the r.h.s, of (5.21) is done by using the quasi- 
particle representation of the fields; hence we define, as in (4.2): 

r = Z -ei~PF~ed/'(h)T~ox �9 (5.26) 
c~=J:l 

In Appendix 1 we show that the field ~b(] 0 has a propagator 9~h)(x)/Zh satisfying, for 
any integer m _> 0, the hound: 

h(l+m) --~'7h[xl 10"~O~')(x)l _< c.~7 e (5.27) 

for some suitable constants C,~ and n, independent of h, if IZh] is sufficiently small, 
for example: 

1 Izhl _< 5 (5.28) 

In other words, the fields ~(~] are, really, on scale 7 -h.  
We can describe the structure of V h in terms of a tree expansion, similar to that 

used for the u.v. problem. By (5.21), we can write: 

~?(h)( zx/g77h,~ ~(-< h)) 
s 1 ~.I /~T+l[l/-(h+l)t" ~ / ~ / , ( < h + l ) ~  lT(h+l)t" 7/-~'-"--~ (5.29) 

n=l 

where we used the symbol E T to denote the truncated expectation with respect to the 
field of covariance {7(h)/Zh . 

We can obtain V (h) from Q(h) with the following obvious modification of the S 
operation: 

/ V V 7  ) " ) 
where o~*17 (h) differs from ,~(h) only because it does not contain anymore the 
addend proportional to ~ + 0 t ~ - ;  moreover the coefficients of the other four relevant 
terms are written as in the left- hand sides of Eqs. (5.24). 

The tree expansion of V (k) is produced by iteration of (5.29) and (5.30), starting 
from (4.32)-(4.34), as in the u.v. case. However we need to change the definition of 
the trees, which was devised in Sect. 3 in connection with Eq. (3.28); in fact the latter 
is no longer valid, mainly because of the localization procedure. But we shall still 
call . ~  the family of labeled trees with n endpoints (see Sect. 3, Fig. 2) and we shall 
use the definitions of Sect. 3, when there is no difference of meaning in the notation; 
the differences are stressed in the following items. 
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rv01 
Fig. 8. k k + 1 h .  0 +1 

1) The frequency index of the vertical lines (see Fig. 2 in Sect. 3 and compare it with 
Fig. 8) takes all the integer values between k and + 1, analogously to what happens 
in the u.v. case, but the endpoints do not necessarily belong to the line with index 
+ 1. Moreover also the intersections of  the vertical lines with the endbranches have 
to be considered as trivial vertices. 
2) To each endpoint we associate either one of  the four different local relevant terms, 
and in such a case we shall say that the endpoint is of type u, 5, A, z9 (the latter, 
however, can be associated only with the trivial tree) respectively, or one of the 
irrelevant terms of (4.34), and we shall call the endpoint of type M e, see (4.35). Note 
that there is an infinite number of  choices for M o, because after the u.v. integration 
the potential will contain monomials of  any order in the field; the monomials MQ will 
thus be called monomials generated by the u.v. integration. 

If  the endpoint is of  type u, 5, or ~ and n > 2, there is no trivial vertex between the 
endpoint and the non-trivial vertex v immediately preceding it on the tree; this implies 
that the endpoint belongs to the vertical line with frequency index h v + 1. Moreover, 
h v is equal to the frequency index of the running coupling constant associated with 
the endpoint. 

If  the endpoint is of  type u, 5, ~ or 0 and n = 1, there is only the vertex v 0 on 
the tree, besides the endpoint, and the frequency index of  the corresponding running 
coupling constant is equal to hv0 = hk+ 1. 

If  the endpoint is of  type M e, it must belong to the vertical line of frequency index 
+1. 
3) As in Sect. 3, we associate with each tree a set _x_ of  space vertices and a set of field 
variables (called simply fields in the following), that is all the integration variables 
and all the field variables appearing in the terms associated with the endpoints. We 
shall still attach a label f = 1 , . . . ,  n ,  to each field to distinguish them. Analogously 
we define _z v for the subtree starting from the vertex v. Furthermore, as in the u.v. 
case, the tree selects a class of  graphs with lines of  different frequencies and such 
graphs can be collected into families; such families are characterized by the choice 
of  the external lines in all the subgraphs related to the tree vertices. 

There is however an important difference, which is a consequence of  the localiza- 
tion procedure; we shall have to describe the effect of  the Jg  operator on all trivial 
or non-trivial vertices of the tree ~-, and we have to specify if the tree contributes to 
the relevant part of the effective potential or to the irrelevant one. 
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If  the tree contributes to the irrelevant part, we shall associate a label r v with each 
trivial or non-trivial vertex. The label % depends on the set of external lines in the 
subgraph related to the vertex; it specifies one of  the monomials  which are produced 
by the ~ operation at the corresponding frequency [see (4.21)] and note that there 
is only one choice when the subgraph associated to the vertex has more than four 
external lines). 

If  the tree contributes to the relevant local part, we associate a label % in the 
same way to all vertices, except v 0, which will carry a label L = L0, L1, L2, L3, if  
the graph contributes to the running coupling constant Ok, Ak, uk, re ,  respectively. 

We stress that the total number of choices for all the labels {%} is of  order C ~ ,  
if m is the number of non-trivial vertices [as one sees from (4.21)]. 
4) The Grassmannian field variables can be those appearing in the lists (4.36), (4.37) 
or similar ones (see also next item); it will be important the remark that at most 
two derivatives can act on each single field. We shall use a label u to distinguish 
the different possibilities. The field variables depend also on the label a J, but in the 
following we shall not indicate such dependence, as it will not play any role in the 
rest of  this section. 
5) A Grassmannian field variable can depend upon more than one space vertex x, 
if it is involved in one or more . ~  operations associated with the tree (of course as 
long as it remains an external field with respect to the graph associated to the tree 
vertices); in particular this can happen at an endpoint, if it belongs to a term of type 
M e, see (4.34). Furthermore, the label u changes each time an .1~ ~ operation acts in a 
non-trivial way on the field, together with the set of space points on which it depends, 
see (4.14), (4.16), (4.21). Such sets of points are uniquely determined, once the set of 
indices {%} is fixed. In all cases the sets contain a special point, namely the space 
vertex from which the field emerged before the first application of the . ~  operation, 
or the localization point, if the field is associated with an external line of the total 
graph and the tree contributes to the local part; the special point also appears in the 
factor e ~ p F ~ e  included in the definition of the field variables (4.36) and (4.37). In 
agreement with the above remarks we shall use for the fields the notation: 

~ %  (5.31) 
X X  v 

where u~ is the label in the vertex v and x~ C x~ is the set of space vertices from 
which the field depends, besides x (and the set x~ can be empty). 

We can now proceed in a way very similar to the ultraviolet case, with some 
natural changes due to the anomalous scaling procedure and to the different propagaors 
involed. We write 

o ~  

V(k)(r = ~ ~ V(k)(,T, r (5.32) 
n=l "r C.:Tn 

and 

v~k)(~, z~/%~<k)) = f dx_~ ~ ~(Zk)~ I% I~(<~)(Pvo)V~k)(~_ ' P~0, x-~0) (5.33) 
P.o 

where, in the integral over the space-time coordinates, also the sum over the ~z's is 
included and the dependence of V (k) on the ~ ' s  is not explicit ly indicated; furthermore 
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P~0 is a subset of  Iv0 = { 1 , . . . ,  n~} and 

- x(f)(Xlvo )(f) " 

f c P.  o 

(5.34) 

Note that the 1.h.s. of  (5.34) is not completely identified by the set P~0' but we 
shall use it all of  the same for sake of  simplicity. 

If  P~o is empty, i.e. if we consider a vacuum contribution, the corresponding 

contribution to V (k) will be written as a constant times IAI. 
In order to simplify further the notation, we shall suppose, from now on, that there 

is no endpoint of  type M e. It will be clear that the following analysis extends to the 
general case without any difficulty. This is equivalent to setting at the beginning the 
u.v. cut-off at h = 0. 

If  n = 1 (i.e. if the tree has only one line) and the endpoint is of  type O, A, u or 
6, there is only one contribution to the sums in the r.h.s, of (5.33) and 

V(k)(r' P~o' x) = "y2k Ok, Ak, @vk ,  6 k (5.35) 

respectively. 
If n > 2 and T~...'rS~o are the subtrees starting from v o (the first vertex above 

the root) the definitions are such that 

V(H)(T ' Z1/2~(<H) ) ~- (~fl, 1 ~ T  r v ( k + l ) ( ~ l  Z1/2  ,d,(Sk+l)~ 
I J J k + l t V  ~," ~ k + i ~  / ~ ' '  ")] 1 

8vo �9 
(5.36) 

where the symbols Eh, E~h denote the expectations with respect to a measure with 

covariance Z- l ( ]  (h) (we reserved the symbols ~h, ~h for the expectations with respect h 
to the measure with covariance o(h)) and (~ is equal to .:~*, if the tree contributes to 
the local part of  the potential, or .~, if it contributes to the non-local irrelevant part. 

The relations (5.33) and (5.36) imply that 

8 v 0 

= f I-[ V(k)(T, Z k ,~ , 
Pvl,...,PvovO i=l 

• (Zk+l) ~ ~ r P ~ [  1 ~ T  roy.(<~+l),r~ , 
8v0! . ~ k + l t q J -  t~%~j,...,~(-<k+~)(Po,0)]. ( 5 . 3 7 )  

We write now, as in the u.v. case, 

~(<k+l)(pv! ) = ~ ~?(<k+l)(O ~?/k+~)(p \ 0  
I ,I  

Q~g 
(5.38) 

By using the relations 

= ' ~ ;  [~ ( P 1 ) , ' " , ~ h ( P s ) ] ,  (5.39) 



Beta Function and Schwinger Functions for Many Fermions System 

(5.37) can be rewritten as 

139 

V(k)(,r, Z1/2 ~ot <-k)) 
P 1 , . . . , P  Sv.. Q v l , . . . , Q  sv  0 i = l  

v 0 v0 o 0 v 0 

1 
• ( Z k + l )  ~ I Pv~ 

1 <,.T -@+1) 
X - -  c~f/~+l [ r  (P.~\Q~), . . . ,  " 7 ' ( k + l ) ' ~  st/aVo v ~o \ Q ~ 0 ) ]  

8vo  ] 0 

Sv 0 

(5.40) 

where Q ~  c P,o~ and Pro = [,.J Qv 6 represents the external lines of the subgraph 
i 

associated with %. 
The situation is now slightly different if compared with the u.v. case, because the 

propagator associated with E h contains the factor Z~ -1. 
We can rewrite (5.40) as 

Pvo 
8v 0 

• ~ <vo - Co )~~ IIv(~+l)(<,P~;,*-v~) 
P l , . . . , P  Sv^ i = l  

v 0 Vo U 

1 ~ T  [s  1 . , ,  
• *~o~ ~+' ~ ' ~~ ' v>+~) (P~176176176  (5.41) 

where (~0 - ~o~:' - )ev~ is the factor, depending on the space vertices, which is produced 

by the . 2  operation and is selected by the label %o; 2vo is a positive integer less or 

equal to 2 and ({~o - ~'~o )e~~ must be interpreted, if 2~0 = 2, as a tensor of  rank two. 

Note that ~(-<~)(P~o) has in general a different meaning in (5.40) and in (5.41), as 
a consequence of the ('~ operation [see also the remark after (5.34)]. 

From (5.41) we get a recurrence relation for V(k)(r, P~o' X~o)' 

( Z k + l )  ~ IP~~ ' ~v 
V(k~(r' P~o'*-~o) = ~ (Co - ~o) o 

8v 0 

P 1 , ' " , P  Sv~ i=1  
v 0 VO 0 

l ~9~T roZ(k+l)~ r~ ~ (5.42) 
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By iterating (5.42) and using (5.35), we can write the following closed expression: 

( P v }  v not e.p. Ik Zhv -1 (~v -- ~lv)2v 

1 ~ [ ~ ( h ~ ) ( p ~ , \ Q ~ , ) , .  "(h~) x - -  . . ,  ~ ( P ~  \ Q ~ ) ]  
By! 

• II II II (5.43) 
iESk iESu iES6 

where S a denotes the set of endpoints of type a (recall that we are supposing there 
is no endpoint of type Me) and h i is the frequency of the non-trivial vertex which 
precedes the endpoint i. 

The symbol ~ denotes the sum over all the compatible choices of the subsets 
{P~} 

P~ in all the non-trivial vertices of the tree, except v0; such subsets are constrained by 
the same inclusion relations of the ultraviolet case. Hence the following constraints 
must hold: 

Q~ C P~, P~ = U Q~," (5.44) 

As in the u.v. case, we now define the kernels 

W(k)(7-, P~o, x(P~~ = f d(x\x(Pv~ )V(k)(~" P~,o' x_) 
J 

so that 

(5.45) 

v(k)( ~-, z~/% (-<k)) = Y~ f dz- (P~~ W(k)O-, Pvo, x-(P~~ 
Pvo 

1 
Z2 IP~015(<k)(p~0) " (5.46) 

Here x (v~0) is the set of points on which the monomial ~(<-k)(P~o) depends (recall 

that there can be more than one point for each field). In particular x(~O0 ) is a single 
point (or an empty set), if the tree contributes to a local (or vacuum) term, and in that 
case W (k) is a constant, (by translation invariance), whose value is used to calculate 
the running coupling constants of frequency k. 

Let us now suppose that we know all the constants Ah, Uh, ~Sh, Zh, V~ h, with h > k. 
In order to get from (5.46) the values of the kernels, we must first calculate Z k. It is 
easy to see, by using (5.23) and (5.29), that we can write 

Zk - - 1 +  z k = 1 +  ~ Z I7V2(~ )0-) '  (5.47) 
Zk+l n=2  7-G~n 

where Vg2(,kt)('r) is obtained by applying the ~ operator to the monomials with 
two external lines associated with the tree and then summing the coefficients of 
~+(<~)~ ~/,-(<_k) divided by Zk+ 1. 
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We can now calculate the new coupling constants and we get, Vk _< - 1 ,  

(Zk+l/2 [ 1 
n=2 rC.~,rvo=L 1 

(Sk = 2/r (Sk+I-FZ Z W~5 )(T) ' 
n=2 r~.~n,rvo=L 3 

oo (5.48) 

L/k= Zk+l [")/L"h+ 1 -}- "Y-- s Z Z ~/V2( P2 (T)] ' 
(~ ' s  n=2.rC.Tn,rvo=L2 

~9 k = 2 "Y ~)k+l + .y-2k W(ok)(r) , 
n=2 r E,-Tn,rv0 =L 0 

where the constants W~ (k) are defined in an obvious way through (5.45), taking into 
account the remark about the independence of co of the r.c.c., allowing us to restrict to 
consider only the terms with two external lines having the same co label. Furthermore 
A0, u 0 and (50 = a 0 are defined as in Sect. 4 [see (4.41) for their first order values in 
the bare constants]. 

Let us define 

rh = (/~h, (Sh,/Jh)' ffk = max I%t (5.49) 
h>k 

where the r h can take also complex values; then we can formulate the main result of 
this section: 

Theorem 2. There exists a constant g > O, such that, if 

and, for some c 2 > O, 

Ck+ 1 ~ • (5.50) 

Z-~-~-I ~ C c292 , (5.51) sup 
k<h Z,h_ll 

then, for a suitable P, > O, 

f d-x(p~~ Z IW(k)(r'Pvo '*-(p~~ < .y-kD(P%)(VCk)nlA[ , (5.52) 
rC.~ 

where d(Pvo ) is the length of the shortest tree graph connecting the set of points x(Pvo ) 

and D(Pvo) is the "scaling dimension" of the monomial ~(<-k)(P~o), defined by 

D(Pv0 ) = - 2 +  Z (�89 + m f ) ,  (5.53) 
f c P~ o 

with my being the order of the derivative operator applied to the field of label f . 
Our proof will also imply that, see (5.47), 

Z I I ~  )(r)l -< (Cck)~" (5.54) 
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Remarks. 1) It is easy to see that (5.52) and (5.54) imply that the series in the r.h.s, of  
(5.47) and (5.48) are convergent, uniformly in k, if (5.50) holds. Hence the condition 
(5.51) is satisfied for any k, for a suitable c 2, if g is small enough and (5.50) stays 
valid. However it is not obvious at all that it is possible to choose g so that the condition 
(5.50) is satisfied for all k. In order to get this result, one has to choose in a suitable 
way the constant u of  (2.31) and one has to compare the beta functional with that 
of the exactly soluble Luttinger model, as suggested in [BG, BGM], see Sect. 1. The 
problem will be discussed in detail in Sect. 7 below (and solved). 
2) It is important to keep in mind that (5.45) and the bound (5.58) below allow us 
to get a version of the bound (5.52) without the integration, i.e. in the form 

0 

R o,  P o))l (5.55) 
T~,Tn h=k 

which is valid if the points belonging to x(P'o ) are pairwise at a distance greater than 
po  1, say [in order to avoid the trivial ultraviolet divergences due to the irrelevant 
terms present on scale 1, see (4.34)]. 

Hence the dimensionless potential, i.e. the kernels obtained from those of V (k) by 

multiplying them by "~ kD(pvO)-2k(lx(PvO I-l) and by replacing their ;g's arguments by 
7 - k s  [we do not need to apply also a wave function renormalization, because the Z h 
factors were already extracted from the definition of the kernels, see (5.46)], verify 

Wd(k) (~('Pv~ "~kD(Pvo)--2k([x(PVO)l--l) E W(k)(T' Pro' 7 -kx(~~ ' 
imless ~, ~ p 

(5.56) 

IWJ m),e.,s(Sv0))J < ' 

and the bound can be improved by replacing c k with c~ = ~ "y-O(h-~)[rt~ [ for some 
h>k 

> 0 (so that if r k -~ 0 the dimensionless potential tends to zero: a situation 
k - - ~ -  oc 

not arising in our problem but which can arise in asymptotically free theories). 
3) The discussion of Sect. 7 will imply that the dimensionless potentials have a 
well defined limit as k -+ - o c ,  which can be interpreted as an exact fixed point 
of the renormalization group transformations that we consider, if regarded as a 
transformation of  the dimensionless potentials. However the Schwinger functions are 
related to the non-rescaled potential, see (2.33). The latter also has a limit as k -+ oc, 
but this cannot be seen directly from the discussion in this section, because of  the 
divergence of Z h, which will be also proved in Sect. 7. Hence we cannot use (2.33) 
to study the Schwinger functions; in the next section we shall solve this problem by 
developing a more refined tree expansion, based on the application of the method 
of this section directly to the Schwinger functions. The structure of  the effective 
potential on all scales found in this section will play an essential role, especially 
through the bound (5.68), in getting the "right" bounds on the asymptotic behaviour 
of  the Schwinger functions. 

It is important to remark that, also if the wave function renormalization constants 
were finite, we could not hope to use directly (2.33) to estimate the asymptotic 
behaviour of the Schwinger functions. We could only obtain a convergent expansion 
for their values at fixed distances. 
4) The following general statement, ultimately relying on (5.52) and the latter 
improvement (5.68), can be also derived from the estimates of Sects. 5 and 6: the 
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dimensionless effective potential v (-~176 governs the corrections to the free asymptotic dimless 
behaviour at large distances of  the Schwinger functions (by "free" we mean here that 
the Schwinger functions can be evaluated from the pair Schwinger functions via the 
Wick rule, to leading order in the arguments distance), while the dimensional effective 
potential Wef t [ fo rmal ly  equal to lim v(h)(x/2~h.)] describes the correlations on 

[ h-~--oc 

all scales. Hence the vanishing of V ( - ~ )  has the physical meaning of trivial, i.e. free, dimless 
asymptotic behaviour. The v ( ~ )  is quite independent from the initial potential, it is dimless 
universal; while Vef f is, of course, explicitly dependent on the initial potential. 

The proof of (5.52) is based on the following estimates of the truncated and 
simple expectations, which are very similar to those used in the u.v. case, and which 
are proved in Appendix 2: 

2 
h E (2J+ l)l P j  1 

_ _  . _ _  ~ /  i j = O  

1 ~ T / d r ( P ) e - ~ ' r h d , ( P ,  ..... P~) 
x s~ " 

, (5.57) 

where 
1) PJ  denotes the subset of  P related to the fields containing a derivative operator 
of  order j .  
2) r (P) is the set of  interpolation parameters, appearing in the definition of some of 
the fields in P ,  see (4.36) and (4.37); 
3) T is an anchored tree graph between the clusters of space vertices (depending on 
_r (P)) from which the fields labeled by P t , -  �9 �9 P~ emerge; this means that T is a set 
of lines connecting pairs of points in different clusters, and T becomes a tree graph 
if one identifies all the points in the same cluster; d~(P1, . . . ,  t:)8) is the sum of the 
lengths of the lines in T. 

Hence, after some algebra, we can bound (5.43) as 

Pv(~)(~,<0,-~vo)l <- ~ 1-[ zh~Zh~_l ~IP~ICZ I~J-lPoP 
{ Pv } v not e.p. 

j~-0 (2j+1)~/(IPJi I-- IQJi r) 
• J(7-, Pv0, Xvo) �9 

(5.58) 

where Q{ is defined analogously to P J  and 

J(~-,P~o,-~o ) =  1-I (~-~;)~'~ 
v not e.p. 

1 
(5.59) 
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if 

In Appendix 3 we prove also that 

d2g vo J(r, P~o' X-~o )e~'rk d(Pvo) 

< I AI I-I C~(I~{I-IQCD -2h.(,~-1)-h~e~ -- 7 

v not e.p. 

, (5.60) 

I n(1 - 7 - 1 ) .  (5 ,61)  ~ < ~  

Note that in the bound (5.60) we took into account also the sum over the ~ ' s ,  giving 
at worst an extra factor 24n. 

The bounds (5.58) and (5.60) imply that 

I ]1 f dX--voe~"r~d(I%~ 

Zhv 1 ip. iq_D(Pv)c ~ IPr -IBvl 

{ Pv } v not e.p. 

• ( ic17& ' ,kh~ [ ) ( ielJs ~ ]Uhi 0 ( i~s6 ]'hi 0 . (5.62, 

Remarking that, if v 7 k v o, D(Pv) > 0 (the .~  operation was defined so as to 
obtain this result, see [BG]); furthermore, we have 

I IPvl. (5.63) D(Pv) >_ -~ 

1 Then, by using also (5.51), we find, if ~ c2 g2 < 1 / 6  - 1 /8 ,  

7kD(-PVo) / dX--voe n'rk d(P~~ P~o' Xvo)l 

-< (Cck)~ Z H 7-11g~1' (5.64) 

{e~} ~>~o 
v not e.p. 

and this shows that the leading terms in the estimate are given by the contributions 
from the trees without trivial vertices (note that such trees are "concentrated" !aear the 
infrared scales in the sense that all their frequencies are between k + 1 and k + n: this 
happened also in the u.v. case of Sect. 3 but for a somewhat different mechanism). 

We can now proceed as in the ultraviolet case and show that actually 

l lP~r C n ' 
E E E 7 - ~  -< (5.65) 

rG '~n  { P v }  v not e.p. 

ending the proof of the bound (5.52) and of the above theorem. 

Remarks. 1) The bounds (5.64) can be easily converted into bounds on the functional 
derivatives 

6 h ~ v(h)(~/~h~) = V/~v~h+ ) (~-~h~) ,  (5.66) 
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where, by (5.32), (5.33), and (5.46), 

oo 

h, f Z 
n = l  ~-E,~ Po 0 fEPv+o 

1 
• Zg (IPv01-1)Ore f ~ (x f  - x)~(<-h)(Pvo \ f ) ,  (5.67) 

P ~  being the set of field labels associated with fields of type @+ or 0 r  + in ~(<h)(P,0). 
The functional derivative will be used in next section to study the Schwinger 

functions and we should get in trouble with the representation (5.67), unless there 
are no terms with mf  > 0 in the r.h.s. Of course the definitions used so far do not 
imply such a property; however we could easily change them so that the field of label 
f selected in (5.67) always appears [in ~(-<h)(Pv0)] exactly in the form ~+, without 
any derivative acting on it. This is achieved by considering the path ,Y on the tree 
joining the root to the top vertex v f, whose graph element contains the selected field 
of label f ,  and undoing all the ~ operations, acting in the vertices of.5 p and involving 
subgraphs with four external lines. Then we recombine the various terms by using a 
new localization operation consisting in choosing as localization point always x (i.e. 
we do not use the localization prescription of Sect. 4 in which the two r fields in 
a four external line subgraph are treated symmetrically: this means eliminating the 
factor 1/2 in (4.12) and keeping only one of the two addends in the first line of (4.12), 
and precisely the first if x I --- x or the second if x 2 = x). The new prescription does 
not affect the running coupling constants, by symmetry reasons, as the two terms in 
(4.12) produce the same contributions to the running couplings. 

It will be useful in the following section to have a bound of the kernels of (5.67) 
~V (h) + analogous to (5.52). We consider the contribution to / 5 ~  coming from a 

monomial containing ]PJ+I fields of type OJ@, j = O, 1, 2, and look for the part 
of degree 9 in the running coupling constants. We immediately get the bound: 

f dx( .0 x ( ' v o )  _ vo' -- ) (~(X f X)eg~hd(Pvo ) 

1 _ h  
(Cc)9~hh, . ) / -  ~ h 2 h ~  / 2 3~. (2j§ I/~j+l . (5.68) 

Note the factor ~ h 7  -~/2 to be associated with the field selected by the functional 
derivative. 
2) Note that the above arguments do not hold for the functional derivatives with 
respect to ~x .  The reason is simply that fields 0 " ~ x ,  m > 0, arise also in the .~  
and 5-~f* operations on second order monomials. 

Of course, however, the role of ~+ and @ is symmetric. This means that the 
same bounds hold for the functional derivatives of V (h) with respect to @v ! 

A way to check explicitly the latter (obvious) statement would be to do once more 
the whole theory so far developed, by exchanging the role of ~+ and ~ - .  Hence one 
would start by writing the kinetic part with the laplacian operating on the ~+ field 
and so on, and in particular the localization operations would have to be defined by 
localizing over the points corresponding to the ~ -  fields. 
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6. The  Two Point  Schwinger  F u n c t i o n  

As discussed in Sect. 2, in order to study the Schwinger functions (our results are 
summarized in the theorem at the end of this section), one has to calculate ~ff(~) ,  
which is related to the effective potential ~(0) by the relation (recall that Z o = 1), 

e_Veff(~ ) 1 f / 9  (~t./,(<O)'~o--V-(~ Zo(~b(-<0)+9~)] = .~//--= j l  z0,,,v. - , , .  x / ~  . (6.1) 

By using (4.7) and the formal change of variables ~ + ~ ---+ ~ (to be correctly 
interpreted as in Sect. 2), one can easily check that 

e_Veff(qo)- 1 f - A/~ Pzo (d~(~~ 

• e_~(o)(~O)_(~+,Cog-l-)+(r t~ )+(~+Uog-J~b-) (6.2) 

where ~ = ,~b (<~ C o is the convolution operator defined by (5.3) and 9 -1 is the 
differential operator 0, + e(iO•). 

By using (2.33), we find 

q(~) = (~+, (~ - C0)g~-)  + q(-<~ (6.3) 

with the functional q(_<0)(~) defined by 

eq(~0)(~o) = .~/--=1/pzo(d~b(<_o))e_fAo)(,/~)+(,~+,~ )+(~+,~ ) . (6.4) 

Equation (6.3) implies a simple relation between the two point Schwinger function 
S ( x  y) and S(-<~ y) 2 (<o) + - - - = ~ q ( ~ ) / g ~ x  8~y  I~=o, that is, in terms of Fourier 
transforms, 

S(k) 1 -- e[k2+e(k')2lpo 2 
= @ S(-<~ 2[k02+e(/r (6.5) 

- i k  o + e ( k , )  

which means that, if we are interested in the infrared behaviour of  the theory [i.e. 
k o, e(/]) small), it is sufficient to study q(-<~ as we shall do in the following. 
We could study directly q(~), by the same technique discussed below, obtaining in 
this way information also on the ultraviolet behaviour of the two point Schwinger 
function; we would find results in agreement with the discussion of Sect. 3. 

In order to study S(-<~ we shall use a tree expansion similar to that used in 
Sect. 5, by suitably taking into account the new terms, linear in the external field ~, 
which are added in (6.4) to the effective potential 17 (~ 

The expansion is generated inductively, as in Sect. 5, by integrating step by step 
the fields of  decreasing frequency index. We shall suppose again, for simplicity, that 
only the local terms are present in l)  (~ The first step will be the integration of the 
field of  frequency index h = 0 in (6.4); we obtain the identity 

1 .0(0 ) K2(_1) 1 0(0) S(<_1)  1 ~(0) + * �9 + - (6.6) 
: Zo 70 7o ' 

where �9 denotes convolution, /42(1) is Z 0 times the kernel of  ~( -1) (~)  [i.e. 

it is the kernel of  ~(  l)(~oo~b ) as a functional of ~b] and S(<-I)(x - y)  = 

~52q(-<-~)(~)/@)+@)~-I~=0, with q(-<-l)(qo) defined by 

eq(_<-I)(~)_ l f Pz ~(dr e - v v  ~ ) ( ~ r 1 6 2  .///,, (6.7) 
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Here P z  l(d~ 2) is an abbreviation for P z _ l ( d @  <- 2))PZ_l(d~)(-1) ), see (5.18), and: 

l~(--1)(~ '  ~)) = (@+, Q 0 ~ - )  mr- (~-- '  Q0@ ) - )  

Jr- [~+ * G-I * ~ o V ' ( :  1)t ] ( ~ 0 @ )  

Jr- [ ~ 0 0 ~ : l ) t  * G_s  �9 ~9 ] (~00~/ ) )  

_ ~ f f (  ~)" * a _ l  * ~ - ] ( x / - ~ 0 r  + [ p + * G  1"~'0"_>2 

x + w~-~)(~, ~ ) ,  (6.8) 

where 

1 ~(0) 
Q o =  1, G 1 =Z00 * O 0 ,  (6.9) 

and we used for T~,(_4_l)' a definition analogous to (5.66) and IF_>([ 1)'' represents, the 

terms of the second functional derivative of  Q(-l)  with two or more external legs; 
moreover I~(R-1)(~, .(J) represents the terms which do not contribute to S ( < - I ) ( x -  y) 
[because either they are of  order ~p3 or they contain a factor (~+)2 or (cp-)2]. 

In order to use the bounds on the functional derivative, that we found at the end 
of Sect. 5, we have to write (6.8) in terms of V (-1) instead of 17 (-1). Therefore we 
localize l)  (-1) and then we extract the local terms proportional to [0 t + e(iOe)]. 

The terms proportional to [0 t + e(iOe)] can be conveniently added to the terms 
(~+, Q0~p ) and (g+, Q 0 ~ - ) ,  so obtaining the following representation of (6.8): 

l~(-1)(~o,@) = ( ~ + , Q  l q O - ) + ( ~ + , Q _ l @  - )  

+[~+,G 1, Z~_lV~(71)'](~_I~) 

+ [ ~ V : :  -1)' ] (~-1r  
_ ~ 7  fT( 1)" +[~+*G 1"~o~>2 *G i*~-](~00~) 

x + w~ ~)(~, r (6.10) 

where 

Q--] = QO -- Z IZo[O~ Jr- ~( iOj)]G I ~ Qo - Z - l w o  * Qo ,  

w o = [0 t + e(iO2)]~ (~ . 
(6.11) 

Note that no localization operation is performed on 17 (-1)" . 
The construction can be iterated and, at each step, we get new contributions to 

the two point Schwinger function, as in (6.6). We build in this way an expansion for 
S(<-~ - y) of  the following type: 

0 h--1 oc 

s  0)(x y)= E Z Z Z (.,2) 
h=--oc k=--oc n=0 TE .~-h,kTn 
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r V 0 

Fig. 9. k h 0 + 1  

where the family of  labeled trees .r can be described as in Sect. 5, with the 
following modifications (see Fig. 9). 
1) There are n + 2 endpoints, n _> 0, and two of them, denoted v x and Vy in the 
figure, represent the following functions: 

dx ~+ Qh * ~-Z- + Gh * ~ (v (h ) (v /~h~) )  

(6.13) 

f .  [.,(<h)+ 0 ] aY ['q;y- * Qh + ~ (V(h)(V/~h~)) * Gh ~o;, 

where the following recursive relations for the convolution operators Qh, Gh, hold: 

Qh-1 ---- Qh -- Zh-lZh[Ot j- e(iOe)] Gh j- ~h * Qh 

0 
~ Z_A 

= Oh - Zh-1 Zj w3 * o j '  Oo = 1, 
�9 = (6.14) 

1 os(h ) 0 Ch_l=G+  a0=o 
j=h Zj 

w h = [0 t + e(iOe)]~ (h) . 

2) The two special endpoints of  item 1) belong to the vertical line with frequency 
index h + 1 and are attached at the same tree vertex Vxy bearing a frequency label h. 
This implies that h is the scale at which the lines ~+ and ~o~ become connected by 
graph lines. 
3) There are no external lines in the root of the tree. 
4) There are no . ~  labels associated with the tree vertices v belonging to the line tW 
joining the root to Vxv. 

In the quasi-particel representation (which is used for the bounds) the renormalized 
propagator Gh(X ) can be written as 

0 

1 "~(J) rx~ (6.15) 

w j = h + l  
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where .0~)~o(x), has a definition similar to that of  .0~)(x), see (5.9) and (4.4), that is 

~](h) . eiPFCOC~ f dk Q,~(x) = ~ e-ik'~o(h)(k)Qh(k)X(wT-hfl~). (6.16) 

In Appendix 1 we show that O~)~(x) satisfies a bound like (5.27): 

~(h) ]gQ,~(x)l _< CThe-~'@lxl (6.17) 

for any t~ ~ < t~, provided the z h verify [Zh] <_ Ce 2 for all h, with e small enough 
(i.e., by the bounds of Sect. 5, provided the running couplings r h verify Irh[ < e for 
e small enough). 

Hence, for the purpose of  establishing bounds in x space, we could replace Qh by 
1. It is possible to prove that a similar property is valid in k space, but we shall not 
give the details. 

Equation (6.17) easily implies that, for any ~ < t% 

f dx e ~hlxl IGh,~(x) I < C' ~/-h 
_ Z h  (6.18) 

We want to show that 

h - 1  

Z Z 
k =  -- oo ,.r C,_~nh , k 

h h 
ISh,k,,-(x -- Y)I < (Ce)  n ~'~ e-~'~ rx-ul .  

- -  Z h  
(6.19) 

We shall treat explicitly only the bound of  the contributions to the values of  the tree 
in Fig. 9, coming from the second terms in (6.13) only; the other three possibilities 
can be (more easily) treated along the same lines. For such contributions we can write 

Sh,k,,.(X -- y) = ~ / dx o dy o Gh,~(x -- XO)S,h,k,T(X o -- Yo)Gh,~,(yo -- y). (6.20) 

By (6.18), it is sufficient to show that 

h - 1  

Z E 
k = - e c  . r c . ~ h , k  

ISh,k,~-(Xo -- YO)I <-- (Ce)nZh@ he-n@lx~176 . (6.21) 

Note that, if we are interested in the contribution of  order m in the running coupling 
constants, we have to pick out of  (6.13) the terms of order n•  = 0, 1 , . . .  and consider 
trees with n = ra - n+ - n_ .  

The remarks at the end of Sect. 5 and the bound (5.68) play a key role. In order 
to prove (6.21) we have to consider the contributions to the functional derivatives 
6v(h)/5~+ ~ and 5 v ( h ) / 6 ~  ~ coming from the monomials containing IPd~l fields of  

0J~-type and of degree n+  in the running coupling constants. In this way we expand 
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Sh,<~(x0 -- Y0) in a sum of term, that we can bound proceeding as in Sect. 5. We 
obtain: 

1 ----h 3~(2j+1 ) t~J+Vx I 
[(Ce)  n+ ~ h h 7 - -  ] h72h7 2 ] 

)< [ (Cc)  n -  ~ h h , T  - 1  h,.)/2h~ - h  3~. (2j+1) [PvJ~-I] 

v.e.p. 

<J (6.22) 
v not e.p. \Zh~ - I j  7 

where the first two factors arise from the bound (5.68) and 52(v ) = 1 if the end point 
of the tree represents a chemical potential running coupling Uh@. The extra factor 
[7 zh] in square brackets is there because there is no integration on Y0 but we count 
s~ - 1 space integrations for all vertices, while there are really only S~x v - 2 for 

v = %v (recall that h ~  v = h in our notations). 
From (6.22), after a power counting computation, we get: 

(ce)n+n++ n Zh,T3he-~hlxo-Yol 

-- E [PJ( ( ~@ +rl) 
• I - I  ,y-D(Pu)-WlR~r H y j , (6.23) 

v not e.p. vE.Y' 
v~7 

where we have written ,~-2~7, with 

2rl = lira inf log Z h (6.24) 

instead of  the correct value Zh~ Z ~ _  l (asymptotic to it), to simplify the notations, 
and D(Po) is defined in Sect. 5, (5.53). 

The bound (6.23) implies (6.21) by the same arguments used in Sect. 5. The 
conclusion is that: 

Theorem 3. The pair Schwinger function can be written in the form 

0 
1 (g(h) 

ZTh + @(h)), (6.25) 
h=-oo 

where c is supposed to be small enough and to be a bound on the running couplings 
on all scales; and 

IO(h)( x - y)l <- B @  e-g~*qx-vr , (6.26) 

B < 0 being a suitable constant, independent on e. Furthermore, under the same 
conditions, S(x - y) is analytic in the running couplings with a domain independent 
o n x - y .  

An immediate corollary of the theorem is that the pair Schwinger function decays, 
for Ix - Yl --+ oc, as Ix - y1-1-2~, with ~7 defined by (6.24), if the sequence in the 
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r.h.s, is convergent, as the analysis of  the following section implies. Furthermore, by 
explicit calculation it is easy to prove that .r/= cA2_~ + O(c3), with c > 0. In Sect. 7 
we shall also prove that the running couplings are analytic functions of  A 0 near 0; 
hence since the analysis of  Sect. 3 implies that A 0 is analytic in A, we have, using 
(4.41): 

r / =  c[2A(�9 - �9 2 + O(C3). (6.27) 

7. The Vanishing of the Beta Function and Completion of the Theory 
of Spinless Fermi Systems 

It remains to prove that there is a small e such that [Ahl , 16hl, luh[ < c, Vh, if the 
initial coupling constant A is small enough and the parameters c~ and u [see (1.3)] are 
suitably chosen. This was conjectured in [BG] on t he  basis of  heuristic arguments; 
some further heuristic arguments for the proof of such a statement were presented 
also in [BGM]. Here we want to reduce the proof to some technical lemma, which 
we think are easy consequences of  the analysis of Sect. 5, of  the results of [GS], 
and of  some properties of  the exact solution of the Luttinger model (see [ML] and 
[BGM]). A more detailed proof will probably be published elsewhere as it would 
make this paper too long, but we think that it is not really necessary as all the steps 
are clearly outlined below referring to the estimates of  the previous sections, and no 
further information is needed. 

A direct proof of the boundedness of the running coupling constants might also 
be possible, by using the symmetry properties of  the propagators (see [S, DM] for 
a heuristic discussion), but we met serious obstacles in trying to do it, although we 
succeeded in proving the key property (7.6) below (i.e. the van i sh ing  o f  the beta  

f u n c t i o n  in the scaling limit) to fourth order and to see several cancellations to all 
orders. 

Let us call #h = (Ah, 6h); by eliminating the Z h constants from the r.h.s, of  
Eqs. (5.48) through (5.47) and using the theorem and the remark following them in 
Sect. 5, it is possible to prove that we can rewrite the beta functional as 

# h  1 ~- ]~h -~- B h ' P ( # h ,  l l h ,  [~h%l , /~h+l, �9 �9 �9 ,/~0, /J0), 
(7.1) 

l lh- -1  = ~/lYh q-  B h ' ~  ( p h ,  lCh , P h + l  , / I h + l  , " " " , /~O, /YO) , 

where the B h are analytic in #h' ,  uh', h '  _> h, if ]#h'l, I~'h'l < e, for a suitable small 

The property "y > 1 can be used to show that the above relation is equivalent to 

~, h 
#t~-1 = #h + . ~  (#h , .  �9 �9 #0; G ) ,  (7.2) 
uh-1  = Vuh + " ~ ( # ~ ,  " " , #0; u~) 

with .~/d h analytic for ]Yh' I < e, h t _> h, and luh[ < e. See Appendix 4 for the proof. 
By direct calculation one checks also that: 

~, h 2 ~ t h  h ~A/th~ 
. ~ z ~ ; ( # h , . . . , [ g O ; l l h ) : l l h / ~ h . ~ / ~  ( ] ~ h , . . . , ~ 0 ; / / h ) - ~  .Y3" t # h , . . . , ~ 0 ; / / h )  (7.3) 

with I~'~J~h[ _< C, I .~ 'h l  < Ce 2 for a suitable C and for e small enough, see ]BGM]. 
The relations (7.2), (7.3), given any infinite sequence #h with I#hl < e, imply that 

there is a unique ~0 such that luh] < e and u h -+ 0 as h -+ - o c ,  and u 0 is analytic 
in the running constants #h for I#hl < e; moreover the convergence to 0 will be at 
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the rate u h = 0(9 ,h) (see [BG]). This is a version of the existence of an unstable 
manifold theorem. 

Furthermore, since the analysis of  Sect�9 3 implies that u 0 is an analytic function 
of .~, c~, u, this value of  u 0 is obtained, given c~ and A, by a unique choice of  u. 

In [BG] it was shown that 5h_ 1 = 5 h + O(,k~6h); hence, if A n stays hounded away 
from zero, as h ~ - o c ,  one can apply the previous arguments to show that also ~50 
can be chosen so that 6 h ~ 0, as h --+ - o c ;  this choice would fix also the value of  
a. However, the following analysis shows that this choice is not necessary to control 
the flow of  #h, while of  course the choice of u 0 is essntial. 

Remark. The previous considerations imply that we can consider the running cou- 
plings as functions of /z  ~ (•, c~). If we also take into account the results of  Sect. 3, 
we can claim that there is a small c o, such that, iffor all # with I#l <- ~o (so that #0 
is well defined as an analytic function of  # and l/z01 < ~) it happens that I#h'l <- c 
for h p > h, then #h', h~ --> h - 1, is holomorphic in #, for I#l --- e0. 

We want to show that the running couplings stay really bounded (and analytic in 
p) for all h < 0, if I#l -< g < e0. In order to do that, we shall need the following 
function: 

lim ~- h - .'J/J~ ~(#  # , . . . ,  #; 0) ~ . ~  (fi), (7.4) 
h---~-c~ 

where ~/:yh is the beta function of Luttinger model, defined in a way entirely 

analogous to the above ~ .  ~ h Such a definition is rather delicate in the part concerning 
the ultraviolet cut-off (i.e. in the part corresponding to the contents of Sect. 3) but it 
has been discussed in detail in [GS]. The part concerning the infrared cut-off requires 
an analysis identical to the one just carried out (this was pointed out in [BG, BGM]); 
such analysis and the fact that u h = O(7 h) also imply that: 

~h 
"~; (~h, ~ h + l ' " ' ' ,  ]Z0; l/h) = "A/~::~(~h' ~ h + l , " ' ' ,  ~t0; 0) 

hRh( . . . ,  ~-'ff i Ph,~th+l~ ['to;l/h)' (7.5) 

where i = #, l/ and R h has the same structure and satisfies the same bounds as 
.~h. This essentially follows from the observation that the single scale propagator 
g(h)(x) [see (4.4)] differs from the analogous Luttinger model propagator [obtained 

by linearizing e(]~) around ]~ = wpF] by terms of  order 7 h, and exponentially decaying 
in 7hlxl (see [BG]). 

Furthermore the function .S/3~,~(#h,... ~ #0; 0) vanishes because of the special 
symmetries of the Luttinger model, see [BGM], i.e. in such case the unstable manifold 
is the plane u = 0. 

The main point of  our analysis will be the proof that, in the Luttinger model (with 
l/ = 0, see above), the running couplings stay bounded for all h < 0, if # is small 
enough. From this property we shall deduce the strong property: 

~ s ( P )  = 0,  for all small t5. (7.6) 

The latter equality will, in turn, be used to prove that the running couplings are 
bounded also in our model. 

We start by remarking that the Luttinger model is exactly soluble, even if the 
particles are constrained in a finite space box of  size L, with periodic boundary 
conditions, [ML]. Furthermore the analysis of  the previous sections and the results of 
[GS] could be applied to the model in finite volume without any uniformity problem, 
and we would get bounds uniform in L. By some refinement of  our techniques, we 
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can also prove a "continuous L-dependence" of the running couplings in the following 
sense. 

Let #(h c) be the running couplings for the model in finite volume, while /z h still 
denotes the infinite volume running couplings and let e be the radius of convergence 
of the beta function, independent of L; and we define L h =-- ~/-hpo1. 

L e m m a  1. I f  tz h, is defined and I[.Zh, ] ~ g ~_~ e / 2 , f o r  h I > h, then there exists n o > 0 
(Lh-n) h I such that also #h' is defined for  >_ h and for  any positive integer n > no," 

furthermore 
(Lh-n) , h I I ~  , - #h'l <-- bo g2e-~n >_ h (7.7) 

for  some positive constants b o and ~;. 

It is very easy to prove this statement at any order of perturbation theory (in the 
running couplings), by using the exponential decay of  the single scale covariances 
(which makes very slightly dependent on L, for L large, the integrals involved in the 
definition of the beta function) and the remark that 9~  ,L) - 90  ) is of order 1/L.  It 
is also easy to see that the completion of  the proof rests on a "good" bound of the 
difference between the finite and infinite volume expectations of a generic monomial 
~(h)(p).  In Appendix 2 we show that this "good" bound can be indeed obtained in a 
simple way. 

Another key remark is that the finite volume acts as an infrared cut-off, so that 
the running couplings #(h L) "stop" flowing after the scale corresponding to L has been 
reached. This property can be formalized in the following lemma. 

L e m m a  2. There exists e I <_ e, such that, for  any f ixed h, i f  p(h Lh) is defined and 
(Lh) h I (Lh) #h' < g < el for  >_ h, then #h' is defined also for  all h I < h; and the limit 

(Lh) (Lh) does exist and #-o~ = lim #h' 
ht-..+_oo 

(Lh)-- /~ (2c~) I #h < bl g2 (7.8) 

for  some constant b 1. 

We do not give a formal proof of such a statement, quite obvious from the 

discussion of the preceding sections. In fact, once the scale 3,-h'p0 -1 becomes larger 
than the size L h of the container, the space integrations yield a factor proportional to 

.y-h rather than "7-h'; hence the beta function vanishes exponentially fast as ~/-(h-h'), 
when h / < h, h / --+ - o c .  

Note that we are setting a cut-off only on the spatial part o f  the variables, while no 
cut-off is imposed on the time part (as we must, since the Luttinger model is exactly 
soluble only with no cut-off on the time variables). Setting a cut-off also on the time 

part would lead to an even faster approach to zero of the beta function (~  ~/-2(h-h')), 
but we could not compare the results with any exact calculation. 

The last important remark is that it is possible to calculate #(L~), by using the 
explicit expressions of the Schwinger functions in the version of the Luttinger model 
studied in [BGM] (which is slightly different from the model solved in [ML], but it 
is more suitable for the comparison with the model studied in this paper). 

In fact, in the presence of an infrared cut-off, Z(h r) is not divergent for h ~ - o c ;  
hence it is possible to define the non-anomalous effective potential through a relation 
similar to (2.33), by introducing an external field depending on a~ (the Luttinger 
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model is defined directly in terms of the quasi particle fields). The analysis of  [BGM] 
immediately implies that we can write, if the spatial momenta  are translated so that 
PF = 0 ,  

/ + -  Veff(~) = const + E d x d y V 2 ( x  - y , w ) 9 % x g ~ v  
co 

f l  dx  I dx 2 dx3 dx4174 (x 1, x2, x3, x4 + ) 

X ~9;1,.Cl ~+.lx2~D~lx3~.9+lx4 Jr-O(~6). (7.9)  

Furthermore, it is possible to see that 

L 
, , / /  

(L> z ( L  ) -- 1 -- d 2  dx  o iw:gs L V2(x , w ) ,  
( 1 + 6  ~ )  _ 

o 
L 

1 l r f f 5o0 (7.10) (L) 2 z ( L L  : d:g dxo(iwcgs L + xOCL)V2(x , w ) ,  
( 1 +  5 _ ~ )  _ 

o 
1 1 

/ dx dx 3 dx 4 74(0 , x, x3, (1 + (~(L)_o~,~4 (z(LL)2 ~(L).._oc = a X4)CLCIL 

( ~ , )  --1 71"2~ 7TX 7"C(3~3 - -  : r4 )  
where s L = \ ~ /  sin -~- and c L cos - L '  c~ = cos L 

By (2.33) V 2 and V 4 are simply related to the two point and four point Schwinger 
functions, which are explicitly known, see [BGM], Eqs. (2.4), (2.5), and (2.9); hence 
]~(L) -oo can be calculated and one can check, by a cumbersome analysis of the explicit 
expressions in terms of elementary functions of the integrands in (7.10), that (using 
the definitions of  [BGM]): 

L e m m a  3. There exist c o, such that, i f  I#[ <- ~o." 

�9 ( L )  I/~_Oo -- p( < b2[Pl 2 for all L > 0 (7.11) 

f o r  some constant b 2 and 

D =  ~v(O),c~+ ~ ( o )  . (7.12) 

Let us now suppose that, given g < c/2,  there exists h 0 > - o o ,  such that 

g 
(#hi -< ~ < [#~01 < g,  h > h o . (7.13) 

Note that if IPh' I -< g -< e, h / > h, then the bounds of Sect�9 5 imply that 

j/2/;2 _ .  (L) h ~h'+ll  --< bg2, for all h ~ > h ,  (7.14) 

for some positive b, independent of L. 
- 1 We start with a small /z, say IpJ -< c < ~ g and remark that /z h, stays close 
(Lho--n) hi _ (Lho--n) 

to the finite volume running couplings #h'  for > ho:[#h'  - #h' I <-- 
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1 bog2e - ~  <_ g g (see Lemma 1), having fixed once and for all n to be such that the 
second inequality holds. 

(Lho-n) (Lho-n) 
But we know that p h  0 is close to  Ph0_  n by 2bg2n [by (7.14)] (the factor 2 

(Lho-n) ]%! 
takes into account the small growth of Phi for < h0); the latter is close to 

(Lho-n) 
# _ ~  by bl g2, (by Lemma 2); and the latter is close to /2 by b2g 2 by Lemma 3. 

1 Hence Ph0 is close to /5 by b2 g2 + bl g2 + 2bg2n + g g. It is now sufficient to choose 
g small enough to conclude that 

1 
]Pho] -< g g  (7.15) 

in contradiction with (7.13). 

Remark. The above formal proof has a simple meaning. If, starting with I#t < g <- g/4, 
it is nevertheless ]#hol > �89 g -> 2g, this means that the running couplings can start 
arbitrarily small and reach size O(1) [actually o(g), as in this argument g has to be 
regarded fixed] in finitely many steps. 

However the value that they reach is (Lemma 1) close to the value that they would 
reach in the theory with cut off at scale Lho (Lemma 2). But by the exact solution, we 
know that such a value is still of  O(g), hence it cannot be of  size O(1) (i.e. > g/2), 
and this is a contradiction. 

The previous considerations can be summarized in the following theorem. 

T h e o r e m  4. In the infinite volume Luttinger model, for any h <_ O, the running 
coupling Ph is a well defined analytic function of #, if I#l <- g, for a suitable g, 
and." 

IPh - /21 -< C)zl 2- (7.16) 

We are now ready to prove (7.6). 
We can write: 

h ~zh 
�9 ~ ~ ( ~ h  ~ h + l ,  �9 , ~0; 0) . . . .  , '"  ' ~  ~ ( ~ h  ~ h  ~ h ; 0 ) "  

0 

+ ~ D h ' k ( # h , # h + l ,  " ' , # 0 ) ,  (7.17) 
k=h+l  

where 

h,k h 
D ( P h ~ P h + l ~ "  ",/s " , P 0 ; 0 )  �9 " ~ ;  -c/S(Ph " ' ' / ~ h '  Pk ,  P k + l ,  " " " 

~ h  
- ' ~ / ] ~ , , ~ ( # h , ' "  , P h , P h , P k + l , ' ' '  ,P0;0) �9 (7.18) 

From the analysis of Sect. 5, it is not difficult to deduce that: 

h "~;, ,~(Ph,  /s " " " ~ Ph ; O) = ~J'~e(/~h) + 0 ( 7  h) (7 .19)  

if, of course, IPh] --< g for all h < 0. The function . ~ ( p )  is holomorphic near p ---- 0 

(IPl -< c). 
Let us suppose that (7.6) is not true; hence there exists r > 2 such that 

O( '  ~-+1) b 7. # 0 (7.20) 2~//(#h ) = br# h + l~h , 

and in fact, by explicit calculation, one verifies that r > 3, see for instance [BG or 
BGM] for this (well known) fact. 
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We want to show that this is in contradiction with Theorem 4 above and the 
structure of  the beta function. 

In fact, by Theorem 4, if I#l -< g, 

r 

#h = # + S-" ~(h). n ~n t~ + O(lzr+l), (7.21) 
n = 2  

and for each fixed n the sequence, labeled by h < O, Sc(h)l is a bounded sequence. - -  L n J h < 0  

Hence, if we insert the power expansions (7.21) in the t~rst equation of (7.2) and 
in Eq. (7.17) and use (7.19), (7.20), we can write 

r 0 r 

( h - l )  n ~ ( h ) ,  n cn # = E ~ n  t~ + br# r + E v-"--h,k n L a i n  # + O ( @ ) ,  (7.22) 
n=2 n=2 k = h + l  n=3 

where ~ h k .  n d n' I~ represents the Taylor expansion of  D h'k up to order r. 
n = 3  

The coefficients dhn 'k can be bounded by recalling the analysis of  Sect. 5. We see 
that for all complex #%, IPl < g, it is D h'k = (/.t h - / , z k ) D  h'k because P h'k is at least 
of first order in #h -- #k; it is also of third order in #, because #h -- #k is of order 

1 (k-h) 
#2. So that for some constant b 3 it is IDh'kl <_ g3b3v -~  , where the exponential 
decay in k - h is due to the tree estimates of  Sect. 5 and this can be used to get 
bounds on the coefficients dmn 'k of  the Taylor expansion of  D h,k in # via Cauchy's  
theorem. It also follows that the coefficients dhn 'k depend only on 6,~ ~ C(m h) - c~  ) 

n - - 1  

w i t h 2 < m < n  1 and are ~ ~hk _ _ -- 6mdnLm, so that 
m=2 

k - - h  

Idnh,kl _< dn 7 2 sup Ic~ ) - c~)l (7.23) 
2 < r e < n - 1  

with d n than can be taken g3b3g-nn. 
Hence, if we define d 2 = 0, by (7.22) and (7.23), if 2 < n < r - 1 it is 

0 k - - h  

Ic~-i) - c~)l <- dn E "7 2 sup Ic~ ) - c~)l + 0(@) (7.24) 
k:h+l 2<rn<n--1  

which easily implies that, if n < r - 1, c n =-- lim c~  ) does exist and 
h ----~ - -  o ~  

{~) - %1 -< ~0h (7.25) 

for some constant b, depending on r, and 0 < 0 < 1/2. In fact, (7.25) is trivial for 
n = 2; for n > 2 it can be proved by induction, noting that Ic~ ) - c~)l does not 
appear in the r.h.s, of  (7.24). 

Finally, we have 

0 

c(h--1) _(h)  + b,. + Z dh'k + 0 ( @ )  (7.26) 

k = h + l  

which would imply that {c(h)}h<O is a diverging sequence, in contradiction with the 
remark following (7.21), if the hypothesis (7.20) were verified; this easily follows by 
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0 
noting that, by (7.23) and (7.25), ~ d~ ,k is small of  order ,/Oh. Hence (7.6) is 
proved, k=h+l 

Remark. The idea behind the above argument is simply the following. The recursion 
relation is essentially local or with short memory: i.e. (7.2) is essentially a memoryless 
dynamical system because (7.23) shows that the memory,  i.e. the number of scales h'  
above h at which one must know #h' in order to compute P h - I  is essentially finite 
[by the exponential decay factor in (7.23)]. On the other hand a dynamical system 
without memory of the form Ph-I = Ph + B(Ph) with B analytic and vanishing at 
least to second order cannot have trajectories bounded by a constant g for all small 
enough initial data unless B - 0. 

We can now come back to our model; from now on /z h will again denote the 
corresponding running couplings. 

We note that, by (7.5), (7.6), (7.18), and (7.19): 

0 

J@h(ph, P h + l , ' ' ' ,  ]~0; l/h) = ~ Dh'k(Ph, ~ h + l , ' ' ' ,  #0) q- O('ffh)" (7.27) 
k=h+l 

Furthermore, the analysis of  Sect. 5 implies that, if I#kl < g < e, k > h, and g is 
small enough: 

hl  j~ -- _ _  ID ( ~ h , , ~ h , + l , . . . , # 0 ) l  --< bg~/ 

which implies that, for all h ~ > h: 

0 

I]~ht 1 -- ,htl  ~ b~ Z 5 - - - -  
k=ht+l 

k - h  I 

2 I#k - / z h ' ] ,  h '  > h ,  (7.28) 

k - h  ! 

2 [ P k  - -  P h  ! [ + O ( " ~ h ' ~ )  �9 (7.29) 

By induction on h ~, it is easy to prove that IlZh, l - p h t l  ~ [9"~ Oht, for any positive 0 

smaller than 1/2 and a suitably chosen b, independent of  h ~ > h. 
Hence it follows that, if I#l -< g, with Y small enough, the sequence #h, h _ 0, is 

well defined and: 
# _ ~  = lim #h (7.30) 

h---*-- ec 

does exist as an analytic function of #, for I#1 -< g, if u is suitably chosen (as an 
analytic function of #). Furthermore we can choose a (as a holomorphic function of 
), near A = 0), so that 5 _ ~  = 0, if we want to impose that the Fourier transform of 

the pair Schwinger function behaves as [k 2 + e(k)2]2~[-iko + e(~)] -1 near the Fermi 
surface (see [BG, BGM]). Hence our theory of the one dimensional spinless Fermi 
systems is complete, and it can be summarized in the theorem of Sect. 1. 

Appendix 1: Bounds on the Free Propagators 

In this appendix we want to prove the bounds (4.5), (5.27), and (6.17) on the single 
scale quasi-particle covafiances. 

We consider first 9~)(x);  if x = (t, s we have: 

g~)(t, s (h)(t w ~  (AI.1) = g + l ~  ~ 
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hence it is sufficient to consider the case c~ = + 1. We write: 

.,/2 
# 

9~_l) ( X) (A1.2) 

1 

where ~ = @ x  and 

dl~ e_ik.~_o~b(k)(iko + /~(fC))X(f~ + _hpF) (11.3) 0h(~,r = ~ 

where b(k) = (k~ +/32~(k)2)po1, 

g(/~) = k 1 + k2--~/ ' (A1.4) 

The k o integration can be explicitly performed and we get, if ~ = (~0, 0 ,  

2 2 

e 4,~ [ dk e -i;(-'~z2p;:fc:(l+j~)2 
9h(a,  ~) -- 47r3/2V# ~ J 

• [2~--~0 + / 3 f ~ ( l + c f ~ ) ] X ( f c + l ) ,  (11.5) 

where e =- @/(2pF). 
The integrand in the r.h.s, of  (A1.5) is an analytic function of fc in all the complex 

plane; hence we can shift the integration path in the imaginary direction, by putting 
k =- p + iq, with q a fixed real number, having the same sign of (. It is now very 
easy to show, by using the fact that c~ > 1, that 

[gh( ct, ~)l <-- c(q) e-lql I~l, (A1.6) 

where c(q) is a suitable constant, independent of  h. 
The estimate (A1.6) and Eq. (A1.2) immediately imply the bound (4.5), for m = 0. 

The bound on the derivatives of the covariance is obtained by a straightforward 
extension of  the previous arguments. 

Let us now come to the bound (5.27); by (5.9), we have to prove that a bound 
like (A1.6) is valid for the function 

f f  dk e_ik z h fh(ct, ~) = ~ r +/3g(k)) 1 + Zh e-v(k) X(s + 7 - h p F )  (A1.7) 

for 1 < c~ < 2 .  
There are two differences with respect to the previous case. The first one is that 

we cannot explicitly perform the k 0 integration; we can solve this problem by shifting 
also the k o integration path. The second difference is that the integrand is not analytic 

in all the complex plane, as a function of k 0 and/],  because of the factor Zh 
1 + Zh e-b(k)' 

which has an infinite number of  poles. However,  if z h is sufficiently small, for example 
IZhl <_ 1/2, it is easy to see that we can find a strip around the real axis in both 
variables, so that the integrand is bounded and fast decreasing at infinity. Hence we 
can prove a bound like (11.6), for Iql small enough, say Iql = t~. 

Finally, we shall prove the bound (6.17). 
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Fig. 10. x o  X l  X p _  1 ~ x 

The recursive relation defining Qh, in the first line of (6.14), can be easily 
solved; the solution can be graphically represented as a sum of chains of single 
scale propagators, separated by operators zj Zj+ 1 [0~ + e(iOe]. If we insert the solution 

in (6.16), we get the following representation of S ~) (see Fig. 10): Q , w  

1 ~(h) ( x -  1 
gQ, o Xo) = - Xo) 

Ihl 

} 2  fd l 
p--I  h o - - h < h l < . . . < h p < _ O  k l . . . k  p col . , .w p 

h i l < _ k i < h i  

where 

e- ik 'z ( - - iko + e(;))o(h)(k)x(wy-h~). (A1.9) 

By the same arguments used above it is very easy to prove that 

Iw )(x)l < C"/2he -~')'hlxl . (AI.10) 

Hence, if ~c' < ~ and ]Zhl <_ Ce 2 for all h, we get the bound 

jhj 

p=l h o = h < h l < . . . < h p < _ O  k l . . . k  p Z h p  

h i - l  <_k i<hi  

< C5 -h 1 -~- ~ ( C s 2 )  p ~ - j (1-Ce2)  , (AI . l l )  

p=l j=  

which implies the bound (6.17) for e small enough. 

Appendix 2: The Gramm-Hadamard (and Related) Inequalities 

This appendix is mainly devoted to the proof of the bounds (3.43) and (5.57), involving 
the simple and truncated expectations of monomials in the field variables. We shall 
also study the "good" dependence on the volume of the simple expectation, see the 
remark after Lemma 1 in Sect. 7. 

We shall first study the bounds involving the simple expectations. Then we consider 
a monomial in the fields of frequency h, which, in agreement with the notations of 
Sects. 3 and 5, we denote ~(h)(p). In general ~b(h)(P) has the following structure: 

@(h)(p) _-- oIqll~b+(h) oIq,~l~+(h)oIq~+lL~/,--(h) 01q2,d@-(h) (A2.1) 
w x  1 " " " x m  Y X m +  1 " " " x2~.v~ 
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where 2m = {PI and 

0 Iqjl "QqJO qj if h < 0,  

0 Iqjl : 0 qj A qf if h > 0,  (A2.2) 

with @, qf  non-negative integers. We shall also denote 

]qJ = Iq, J + ' "  + Jq2ml (A2.3) 

the total number of derivative operations present in the monomial  ~(h)(p). 
Note that, when h < 0, the field variables depend also on the quasiparticle w- 

indices, but we have omitted them for the moment,  to simplify the notation. 
We will prove the following estimate: 

I~h[@(h)(P)]l ~ CtPI'~ a~ IPI~ hlql , (A2.4) 

h 
where a(h) = h, if h < 0, and a(h) = 2 '  if h > 0. The bound (A2.4) immediately 

implies (3.43) and (5.57) in the case of the simple expectation (s = 1). 
By the definition of simple expectation we can write: 

~h [~(h)(/:))]--< Z ( -  1)vr H ~'][olqm+gl@x2~ioIqJl~h ~xj+(h) ], (A2.5) 
( i , j )~  

where the sum is over all the couplings, that is over all the possible ways to join each 
"~b- variable with a ~p+ variable, and ( - 1 )  ~ is the parity of  the permutations which 
bring next to each other the joined variables, with the ~ -  variable on the left. 

It is an easy task to show that (A2.5) may be rewritten as a determinant, up to a 
sign: 

~'h[~(h)(P)] = & det9 (h) , (A2.6) 

where g(h) is the m • m matrix with elements [see (3.22) and (5.22)]: 

(h) ~ olqm+ilolqJ]Ch(Xm+i -- Xj) if h > 0 
(A2.7) i3 --~- ( O]qm+iiolqjl~ ~h (X if h < 0 " aJicojoc~ i" ~n+i -- Xj)  

In order to show (A2.4) we need a good bound of the determinant in (A2.6); we 
shall use the well known Gramm-Hadamard inequality. Let A4 be a square matrix, 
with elements M~f~, and suppose that MaZ can be written as 

~V/~Z = (Aa,  BZ) , (A2.8) 

where A(~ and/3fl  are vectors in a Hilbert space with scalar product (-, .). Then the 
following inequality is satisfied: 

I detBll  <- H IIA~*II I(Bc~H ' (A2.9) 
oz 

where IJ �9 II is the norm induced by the scalar product. 
Hence (A2.4) will be proved, if we show that, both in the ultraviolet and in the 

infrared case, the matrix g (h) can be written as in (A2.8), with: 

[IAil[ ~ cTa(h)/2+hlqm+ilt IIBsI I ~ C"~ a(h)/2+hlqjl . (A2.10) 
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Let us define 
fCh(X) if h > 0  

g(h)(x) = "[ O~)(x) if h < 0 '  (A2.11) 

and note that the Fourier transform 9(h)(x) satisfies, for any n > 0, the following 
bound: 

f f  lklnlg(h)(k)ldZk <_ (A2.12) Cn,.? a(h) +n 

This immediately follows, for h > 0, from the definition (3.21), that is 

Ch(X ) = f (@xo)h(~e  2,~ ~ 2 ~ z 0 )  e 2~0 , (12.13) 

and from the remark that the functions f (x  o) and h ( ~  were chosen as smooth 
functions. For h <_ 0, (A2.12) follows very easily from the expression for the Fourier 
transform of 0~ ~), given in Appendix 1. 

Let us now observe that we can write 

dk e_ik(cc~+i_zj)(_ik)(iq,~+d+lqjl)~(h)(k) olqrn+ilolqJ]g(h)_xm+ i (  -- X j )  = 

x e-ik'(xs-z)-ik')qJlBh_k~ , ( ) ( ) (A2.14) 

where ( - ik)  Iql =_ ( i ko)q t ( - i k )  qe and 

Ah(]r ) = (]~](h)(k)12)3/4~](h)* (k)-I ' 
~h(k ) = (l~(h)(k)12)l/4. (A2.15) 

Hence, if h > 0, we define: 

A~ h)(z) = f (~)2 eik(~'~+i-z)(+ik)rqm+~l "t~ (k)' 
(A2.16) 

B h)(z) -- / I h(k), 

so that, by (A2.12), A~ h) and B~! ~) are L 2 functions, satisfying the relations (A2.8) 
and (A2.10) with respect to the L 2 scalar product. 

If h _< 0, we have to take into account also the w dependence. This is easily done 
by considering, in the tensor product of L2(R 2) and C2: 

A i = A~h)(z) | S ~ ,  

where S~ E C 2 is defined by {(;) if w = +1 

i f  co = - 1  

(A2.17) 

(A2.18) 
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so that 
(s~,s~) = ~ ,  llS~+lt = IIS~l/= 1. (12.19) 

This concludes our discussion for the simple expectations. 
The bounds on the truncated expectations are obtained by using for them the well 

known expansion in terms of  interpolating parameters (see, for example [B]), as in 
[Le]. 

It turns out that the sum of the connected graphs can be written in the following 
way: 

k Pj qj 

j = l  i = 1  i = 1  

• Z 1-I (Vj,j, + Vj,,j) f dP~?(s)e -v(8) , (A2.20) 

where 
1) ~?j,i and flj,i are Grassmannian variables, each associated with the ith field of the jth 
monomial (cluster) of  fields appearing in (A2.20). The fields on scale h will be denoted 
from now on with ~x~i~ and 9(h)(Xj,#,--xj,i) will denote the corresponding covariance; 

pj(qj) are the number of  ~ + ( ~ - )  fields in the jth cluster and ~ pj = ~ qj = n. We 
J a 

are assuming for the sake of simplicity that no derivative fields are present. 
2) ~ is the sum over all the tree graphs between the clusters thought of as points. 

7~ 
qj t qj k 

3) Vj,j, = E E (lj',i'g(h)(xj',i ' -- xj,i)rlj# and V(s) = E Vj,j + E Sjj,Vj,j,. 
i t = l  i = 1  j = l  j~j t  

4) Sjj, is a product of interpolating parameters s n, n = 1 , . . . ,  k - 1, valued in [0, 1], 
j l - - 1  

and the clusters can be ordered in such a way that Sjy, = 1~ s n 0 "~ > j). 
n=j 

5) dP~(s) is a normalized measure, f dP~(s) = 1, which depends on the interpolating 

parameters s n and on 7 ~. 
It is easy to extract from (12.20) the exponential factor appearing in (3.43) and 

(5.57). Let us in fact develop, for a fixed tree graph 7 ~, the product 1-I (VLj, + ~, , j ) ;  
(J,Y) 

we get: 

(Vj , j ! -~ Vjz j ) =  ~ ~ ~j~,i~ji , i i  ...~jtk_l,itk_l?]Jk_l,ik_l 
.! .! (j,y) il,...,ik--1 Zl , . . . ,Zk_  1 

X g(h)(xj~,i ~ Xjl , i l )  g(h)(Xfk_l,ilk_ I 3k--l, k--1 - . . .  - x i ) '  (12.21) 

Recalling the definitions of  Sects. 3 and 5 of anchored tree graph, it is now obvious 
�9 . f  ./ that once 7 ~ and the sets ~ l , . . . , / k - l ,  h , ' ' ' ,  ~k-1 are fixed, an anchored tree graph 

T is also uniquely chosen. We recall that T is a set of  k - 1 difference vectors 
X31,z 1 . t  ./ - -  Xjl,il~ . . . ,  Xak_l,Zk_ 1 . ,  .t -- Xjk_l , ik_ 1 which realize the connection between the 

k clusters of  fields ~b(Pi), . . .  , r  see remarks after (3.43) and (5.57). Thus we 
can rewrite 

Z ~ ~ = ~-'~'. (12.22) 
i t i I T il''"Jk--1 1 ' " "  k - - I  
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Now, using the bounds (3.22) and (5.27), we can also write 

Ig(h)(xjl,i~ -- X j l , i l ) ' "  g(h)(xj~_l , i~_ 1 -- Xjk_l , ik_  1 )1 

~_ ck--l.ya(h)(k--1)e--~dhT(Pi ..... Ps) , (A2.23) 

where dhT(P1,. . . ,  Ps) is defined as in (3.43) or as in (5.57). Hence we can bound 
(A2.20) as 

I ~ T ( ~ ( P 1 ) ,  * ' '  , ~(Pk ) ) l  ~ ck- l~/a(h)(k-- i )  Z e--t~dhT(Pl ..... Ps )  

T 

x H drlj# I-[  dr]J, T rI-T dPT(S)e -y(~) , (A2.24) 
' =  i=1 i = l  

where ~T ~IT - = ~Jl#l~3[,q "''rlJk--l#k--lrb'k--l,r V 
It is now a standard task to prove, using the properties of  the Grassmannian 

variables, that, for a fixed anchored tree graph T,  the integration over the variables 
~Tj#, ~?j# gives 

k Pj qj 

/ II  II II dqj,iq~. _T~.T~-V(s)q ~ = d e t G T ( s ) ,  (A2.25) 

j = l  i=1  i=1 

where Gr(s )  is a (n -- k + 1) x (n -- k + 1) matrix whose elements are G T - j i j t i t  -- 
Sjj,g(h)(xj, , i ,  -- xj, i)  with xj , ,r  - xj ,  i not belonging to the anchored tree graph T. 
Such a determinant can be bounded again using Gramm-Hadamard  inequality. In fact 
GTj, i ,  can be rewritten as a scalar product of two vectors, as in (A2.8), performing 

the tensor product between the Aj i  a n d  Bi~j~ defined as in (A2.16) (taking care of  

the indices) and the vector ej defined as follows [Le]. Let v i c C k be the unit vector 
(vi)j = 5ij; then the ej are defined inductively by 

e 1 = V 1 ej = s j _ l e j _  1 + (1 -- o2 .~1/29, , o5_1] ~ j ,  j = 2 , . . . ,  k - 1, (A2.26) 

which implies that 

Hej II = l ,  (e j ,  e j , )  = 8 j S j + l . . .  8jr_ 1 = S j j ,  , (A2.27) 

where (-, .) denotes the usual scalar product in C k. 
Hence, writing Gji j ,  = (ej @ Aj i  , ej, @ Bj , i , )  and performing the same steps as 

before we obtain the following bound: 

~ IPjl--a(h)(k--1)cl~= 1 IPjI--(k--1) 
_ j=l (A2.28) I detGT(s) l  < .y 

Inserting now (A2.28) in (A2.24) and taking into account item 5) above, we obtain 
the bounds (3.43) and (5.57) for the case that no derivative is acting on the fields. 
The generalization to the case in which also derivative fields are allowed is trivial 
and we left it to the reader. 

Finally we want to show the result claimed in Lemma 1 of  Sect. 7; i.e. we want to 
compare the finite and infinite volume expectations of  a generic monomial  ~(h)(p).  
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A (h'L) BJ h'L) such that We can obviously define in the finite volume the vectors i , 

A(h  L) (h L) (A2.29) ( ~' ,B~' )=~(h'L) 
oi j  �9 

This is done in a way totally analogous to (A2.16), with the integral replaced by a 
sum. The result that now we want to prove is therefore the following: 

I (h) (h) _ d e t ( A  (h'L) t:~(h,L)'~ ~ cIPp a(h) [P[,.~h[q] . 
det(Ai ,Bj  ) ,  ~ , ~ j  z - ~ - - 7  ~ -  (A2.30) 

This is easily achieved using the obvious property: 

--(h) _ C T @ + h l q m + ~ [  - B ~  ]l< c  @+hlv, A~ A~h'L)II <-- T , liB}h) (h,L) , (A2.31) 

and the well known relation: 

det(M + M ' )  = E det,~(M)detm~(M') + det M + det M ' ,  (A2.32) 
m 

where ~ is the sum over the (non-void) minors of the matrix M + M ~, and detm(M ) 
m 

(detmr is the determinant of the minor m (of the complementary m c of m) of 
the corresponding matrix. 

In fact, let us write: 

= A(h,L)  (h L) det(A~h),B~ h)) det(A~ h )+  A~ h'L) i , - B ) ' )  

= det((A~ h) - Ai(h'L) , Bj(h'n)) + (A~ h'n) , B}h))) . (A2.33) 

Using now (A2.32) we have: 

(h) (h) det(Ai , By ) = det(Al h'L), B~ h)) 

+ E detm(A~h) -- s B (h)'j) ae~ tm~ ['A(h'L)i , B(h)'j ) 
m 

+ det(Al h) - "-iA(h'L), B} h)) . (A2.34) 

Using (A2.31) and the Gramm-Hadamard inequality it is now obvious that the second 
crP[ a(h) 

and third addend in the r.h.s, of (A2.34) can be bounded by ~ " ~ -  rPl@ Iql (note 

that the total number of non-void minors is 4 IPI/2 - 2). Repeating the same argument 
(h) for B j  we obtain (A2.30). 

Appendix 3. The Bound (5.60) 

In this section we want to prove the bound (5.60). We can write: 

v not e.p. 

where 

JT(X,r) = ( ~Te-~'~h~lr ( ~ (~v -- (v)~v ). 

(A3.1) 

(A3.2) 
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Here _r is the set of  all interpolation parameters and T is a set of lines obtained 
by choosing one of  the anchored trees T~ in each non-trivial vertex. Moreover, if 
l E T, we denote h t the corresponding frequency index and ~z, rh its endpoints; h z is 
the frequency of the contraction between the two field variables, emerging from the 

space vertices ~z and r h, which gave rise to the factor e -~Tht I~z-ml (see Appendix 2). 
Note that ~l and r h 

a) either coincide with one of  the integration variables _z, and in this case we shall 
say that they are simple space vertices; 
b) or are convex combinations of the integration variables through the interpolation 
parameters, and we shall say that they are interpolated space vertices. 

Note also that T is not in general a tree, if some spflce vertex is an interpolated 
one. However, we can uniquely associate to T a tree T connecting the set z_ of the 
integration variables, by substituting ~l and ~h with the space vertices x t and Yz (which 
can coincide with them), from which the corresponding field variables emerge before 
the application of the . ~  operations [see Sect. 5, item 5 before (5.31)]. There is of  
course a one-to-one correspondence between the lines of T and 7 ~. 

Given a non-trivial vertex v C m, we shall denote S~ the subset of  2P, connecting 
the points in s (recall that _z~ is the set of  integration variables associated to the 
vertex v) and S~ the corresponding subset of  T; of  course: 

S~ = 0 T~. (A3.3) 
n.t. �9 

Finally, we shall say that a line in T is a simple line if it connects two simple 
space vertices, an interpolated line if one of  its endpoints is an interpolated space 
vertex; note that, if the line I E T is a simple line, then it is also true that l C 2P. 

The main point of  this appendix is the proof that 

IJr(x_,r_)]<(IIe-gThzlzz-Ytl)(~v CT-hvzv),  (A3.4) 

where C is a suitable constant and 

< ~ 1 - . (A3.5) 

As in Sect. 5, we shall suppose, for simplicity, that only local terms are associated 
to the endpoints of m. 

We first bound the factors ( ~  - ~ )ev ;  recall that Zv is a positive integer _< 2 and 
that ( ~  - ~ ) ~  denotes the tensor of  rank two, if 2~ = 2. We can write: 

~v = /~ ix i ,  ~tv = P j Y j ,  Xi ,  y j  C X v ,  (A3.6) 
i=1 j=l 

where ,~ and pj  are interpolation parameters, hence they are positive and ~ A i = 
i=1 

j = l  

We have, for any s > 0, 

s E Ixg--Ytl 
--hv 2 ~ I~  - ~;I < sup Ixi - Yjl <- t~3' e ZeSv , (13.7) 

i , j  
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where C~ is a suitable constant and S~ is defined before (A3.3). Since 2 v _< 2, (A3.7) 
implies that 

,--,2 - -hv  2v 1~. - ~;I ev < c ; 7  e ze~ (A3.8) 

We observe now that, given any line 1 E 2r, we can associate to it all the factors 

e ~'vhzlxz-uzl coming from the r.h.s, of  (A3.8), for each non-trivial vertex containing 
2elxt-yzl ~ zh 

that line; the product of  these factors can be bounded by e h_<hZ (the factor 2 
in the exponent comes from the observation that, in each line of  ~- connecting two 
non-trivial vertices, at most two trivial vertices can array a factor 1~ - ~ l  e~ with 
2~ > 0). Hence we have: 

(II ) (A3.9) 

In order to complete the proof of (A3.4), we have to bound the first factor in the 
r.h.s, of  (A3.2). Let us define ed so that 

~ 7  h = 2t~' E ~/h- -p  , 

p--0 

(A3.10) 

that is 

= ~ 1 - . (A3.11) 

Hence we have, for any l E T: 

e -~@ l I(t-~zl = H [e-  '~''Y~ I~z-ml]2. (A3.12) 

h < h  1 

If  the line l c T is a simple line, we associate to it a factor e -~'@zl~z-ml, taken 
from the r.h.s, of (A3.12), whose remaining part will be used as explained below. 
Note that all the lines associated to the higher non-trivial vertices in % different from 
the endpoints, are simple lines. 

Let us now suppose that the line l E T is an interpolated line, but Yz is a simple 

space vertex. We can write ~l = ~ "~iXi ' with x i simple space vertices associated to 
i=1 

some non-trivial vertex v of ~-, having frequency index h v > hi; the set {Xm,... , xr} 
has to contain the special space vertex x l [see the remark before (A3.4)]. We have: 

Jxz - YzI -< Ixz - ~J + I~z - Yzl ~< ~ A i J x ~  - x t l  + f~z - Yzl 
i=l 

-< 1 2 - x z ]  + [~ t -Yzl ,  (A3.13) 

where 2 is defined so that 12 - xt] = sup Ix i - x t l .  
i 
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~ 

V 3  Fig. 11. 

In the tree S~ we can find a unique path 4 connecting :~ to x l. We shall distinguish 
two cases. 
a) 4 is made by lines belonging also to T.  In this case, for any T E 4 ,  since hi  > h z, 

we can extract from the r.h.s, of (A3.12) a factor e -~'Thz I~g-url; then we associate to 

1 all these factors, together with the factor e -~'Thz I~z-yzl coming again from (A3.12), 
applied to the line 1 itself. Hence, by using (A3.13) and the trivial inequality 

12 - xzl <- E Ix[ - Y[I , (A3.14) 

we can bound the overall factor associated to the line 1 by e -'~'Th~lxt-yzl, a s  in the 
case of  the simple lines�9 
b) At  least one line of 4 does not belong to T. In this case, the inequality (A3.14) 
is not useful; however, if we can associate to 4 a subset T z of  S~, such that 

- _< 14[ - 7[I  ( A 3 . 1 5 )  

[6T  l 

the argument of  item a) can be immediately generalized. We shall now prove that this 
is in fact possible. 

Let 0 be the higher non-trivial vertex containing 4 and let v l , . . . ,  v s, 2 < s < s~, 
be the non-trivial vertices or endpoints following 0 in T, which are intersected by 
4 ,  that is such that at least one line of ~ has an endpoint belonging to x ~ ,  for any 

�9 i . 

i = 1 , . . . ,  s; at least one of these vertices has to be different from an endpolnt of T, 
otherwise we would be in the situation of  item a), since all the lines associated to the 
higher non-trivial vertices of  ~- are simple lines�9 The v i are ordered so that, if we fix 
a positive direction in the path 4 ,  going from 2 to x z, v i is crossed by 4 before vj,  
if i < j (see Fig. 11). 

Let [i, i = 1 , . . . ,  s - 1, be the line of  4 going from v i to vi+ 1 and let x i E x ~ ,  

Yi E x_~§ be the endpoints of  [i; we shall denote by ~ ,  r h the corresponding endpoints 

of  the line [i E T, which corresponds to [i. We consider now the path 4 (1), connecting 
:~ to x z, obtained by taking the s - 1 lines 1 i with endpoints ~7i-1 and ~i (we define 
~/0 = x)  and the line with endpoints i s  = xz and z/8_ 1, see Fig. 11. 
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We have 
s - 1  s - -1  s 

[:~ - x t l  -< Z ]z/~ - ~ / i - l t  + Ixz - ~s - l l  ~ Z ( I r l i  - ~il) + Z ( l ~ i  - zli-ll) .  (A3.16) 
i = 1  i = 1  i = 1  

Moreover, Vi = 1 , . . . ,  s, ~i and z] i_1 either coincide or are convex combination of  
space vertices contained in the same cluster Xvi, so that: 

I~i-~]~-11-< sup [ x - y l = 1 2 i - [ l i l .  (A3.17) 
x,yEX_v i 

We can now define inductively the construction of the set T l, satisfying (A3.15). 
We first put in T t the lines I i, i = 1 , . . . ,  s - l, then we consider all vertices v~, such 
that ~ r ~/~-l, and we look for new sets of  lines, contained in S. i ,  whose total length 
is larger than I:~i - Yi]. This can be done by iterating the previous procedure and 
the overall construction will end when all the vertices involved are endpoints of  ~- or 
non-trivial vertices containing only simple lines, for which the construction of item a) 
can be applied; this will happen after a finite number of steps, by the remark above 
about the higher non-trivial vertices. The bounds (A3.16) and (A3.17) immediately 
imply that the set T z satisfy (A3.15). 

The previous construction can be extended without any difficulty to the case 
of a line l, whose endpoints are both interpolated space vertices. In fact the two 
corresponding sets of  interpolated space vertices have to belong to two disjoint vertices 
of 7-. 

To complete the proof of  (A3.4), it is sufficient to observe that, if we apply previous 

construction to all the lines of T, each line contributes a factor e-~%h I~-n~l, for each 
h < h l, at most two times. This follows easily from the properties of 7- and from 
the observation that at most two interpolated lines of  the same frequency may have 
endpoints interpolating not disjoint sets of  space vertices. 

We can now complete also the proof of  the bound (5.60). It is sufficient to show 
that, given e > 0, 

IA-- ~ dx-~0 1-[ V ~ 1-[ e--~'Yhllxl--uzl 
n ' t ' v>-v0  Tv 1CT~v 
v not e.p. 

V 

where T~ is the anchored tree corresponding to T v, v l , . . . ,  v ~' are the non-trivial 
vertices immediately following v, and N ~  = IP~,I - I Q ~ I  is the number of  the 
external lines in v ~. 

If  we fix in an arbitrary way 

in the 1,h.s. of (A3.18) as usual, 

a point in Xvo, we can bound the other integrations 

starting from the endpoints of  7 ~, and we get 

I ~  (C'Y-2hv)sv-1 ~ ITvl' (A3.19) 
3v! n . t . v > v  0 

v not e.p. 

where IT~I is the number of  possible choice for 2r~, which can be bounded in the 
standard way, by observing that the number of  anchored trees with d~ lines branching 
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from the vertex v i can be bounded by: 

(s~, - 2)! , ~ d , . .  , d,~ 
�9 J~vSv �9 

(d 1 - 1 ) ! . . . ( d s ,  - 1)! 

The bound (A3.18) easily follows from (A3.19) and (A3.20). 
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(A3.20) 

A p p e n d i x  4: S impl i f i ed  Be ta  F u n c t i o n a l  

To show that the ratios Z h / Z  h' can be eliminated we remark that they can be computed 
recursively, from (5.47), (5.48), provided (5.51) holds. On the other hand, if we 
suppose that Irhl < 6 for all h > k then it follows from the bounds of  Sect. 5 and 

from (5.54) that IZh+l/Zhl < e c2~2 for h > k. Hence the ratios Zh+I/Z h, regarded as 
recursively defined functions of r h + l , . . .  , r0, are holomorphic in the domain Irjl < 6, 
j > h. It follows that the r.h.s, of  (5.48), as a function of r h, h > k, is holomorphic 
in the domain b rhl < 6. 

In this appendix we prove Eqs. (7.2). Let us consider the second of (7.1) for 
h = - 1 :  

u-1 = 3'u0 + B~ (A4.1) 

with B ~ holomorphic in P0, Uo for Iml, I/y01 < 6, and 

sup IB~ u0) I < b62 (A4.2) 
I~0l,l~,0l<~ 

for some b > 0. 
The image of  the disk I/y0l < 6 under the map/yo ~ 7/yo+B~ will contain 

the disk of  radius r = 76 - b62, which is larger than 6, if 6 _< g = (7 - 1)/b, as we 
shall suppose from now on. 

Hence for all I~'-~l < 6 there is a point/y0 with [/y0l < e such that (A4.1) holds: 
such a point is clearly unique if 6 is small enough. Then (A4.1) can be inverted in 
the form 

/Yo = 7-1/y-1 + C(/Y-1, #o) (A4.3) 

with C(/Y_I, #0) holomorphic if l/Y-1 l, ]P0l < 6 and 

IC(/Y--1, #0)l = 7 -11B0'U(~0,/'/0)1 ~-- b62") ' -1 .  

In fact we see that the analyticity domain in u_ 1 of  C(u_l ,#o)  could be taken as 

large as 671-r with ~ > 0 prefixed and for 6 small enough (depending on ~). 
Let us consider now the equation: 

/2--2 = ")//']--1 -~- B - 2 ' u ( # - l , / Y - l ,  #0, ")/-I/y-1 + C(/Y-1, #0)) �9 (A4.4) 

Equation (A4.4) has the same form as (A4.1) if one sets 

B(/Y-1, # -1 ,  #0) = B - 2 ' u ( # - I , / Y - l ,  #0, 7-1/Y-1 "~ C(/Y-1, ]-to)) 

and B verifies the bound b6 2 and b can be taken to be the same b as in (A4.2), by 
the bounds of  Sect. 5; hence we can proceed inductively. 
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By repeating the argument  we arrive at 

~ h  
Uh-1 = 7uh  + "ff2r (#h ,  #h+l ,  " " " , #0; Uh) (A4.5) 

with ~,~) analytic for I~h,I < ~, h '  _> h, and [Phi < e. And,  by the same substitutions, 
we get also 

# h - 1  = # h  + 3uh(#h ,  #h+l ,  �9 �9 �9 #0; uh) (A4.6) 

with ~ h  analytic for IPh'l < ~, h '  2 h,  and lUh[ < ~. 
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