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Abstract: In an Euclidean space with a conical-type line singularity, we determine 
the Green's function for a charged massive scalar field interacting with a magnetic flux 
framing through the line singularity. We give an integral expression of  the Green's 
function and a local form in the neighbourhood of  the point source, where it is the 
sum of the usual Green's function in Euclidean space and a regular term. As an 
application, we derive the vacuum energy-momentum tensor in the massless case for 
an arbitrary magnetic flux. 

1. Introduction 

We consider an Euclidean space with a conical-type line singularity which is described 
by the metric 

ds 2 = (dz~) 2 + . . -  + (dzr~-2) 2 + d p  2 + B2p2dqo2 (1.1) 

in a coordinate system (x~,p,~),  i = 1 , . . .  , n  - 2, such that p _> 0 and 0 < ~ < 27r, 
the hypersurface ~ = 0 and ~ = 27r being identified. Metric (1.1) is characterized by 
an arbitrary constant B, different from zero, and it is globally Euclidean for B = 1. 

Riemannian metric (1.1) may result from the complexification of  the time coor- 
dinate of  a spacetime by a Wick rotation. In the Einstein theory of  gravitation, this 
spacetime having a conical-type line source represents in three dimensions a point 
mass [1] and in four dimensions a straight cosmic string [2]; the constant /3 being 
determined by 

4G 
/3 = 1 c5-#, (1.2) 

where # is either the mass of  the point mass or the linear mass density of  the cosmic 
string. 
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Presently, attention has been focused on the physical aspects of studying a charged 
scalar field in the presence of a cosmic string which carries an internal magnetic 
flux; once this situation reproduces an Aharonov-Bohm effect generalization. We thus 
consider a charged scalar field ~P(z i, p, ~), with charge e, interacting with a magnetic 
flux ~ running through the axis p = 0 of metric (1.1). In the usual manner [3, 4], the 
electromagnetic component A~, giving this magnetic flux, can be eliminated outside 
the axis p = 0 by a gauge transformation 

~P' (x ~, p, ~) = ei~C~/~'o~p(x ~, p, ~) , 

where r is the quantum flux 27rhc/e. Then, the new scalar field W(x i, p, ~) obeys 
the covariant Laplace equation and satisfies the following requirements: 

k~1(x i, p, ~ + 27r) = e2irc~'/r176 i , p, )9), 

( ~ )  ( ~ )  (1.3) 
g# (x i ,p ,g~+2rc)=e  2ir~e/r g~ (zi,p,g)), 

which permit to determine the solution ~ ' (x  i, p, g)) to the Laplace equation. 
The aim of this paper is to determine the Green's function G~'Z)(x, x0; rn) for the 

covariant Laplace equation in the space described by metric (1.1) 

[ 0 2  02 0 2 1 0  1 02 ]G(n) 
+ + + + 7 + 

_ 1 6 ( , ~ ) ( x ,  x 0 )  ( 1 . 4 )  
B 

subject to requirements (1.3), the conical-type line singularity carrying flux r We 
impose that G~n)(x, x0; m) vanishes when the points x and x 0 are infinitely separated. 
We do not touch the question of whether boundary conditions need to be imposed at 
the conical singularity p = 0 [5, 6]. In the case where the mass m vanishes, Dowker 
[7, 8] has already written this type of Green's function in metric (1.1) as contour 
integrals in the complex plane. Our main contribution is to treat the massive case. 

We will give an integral expression of the G(~'~)(x, x0; m) and also a local form in 

the neighbourhood of the point source in which G~}(x, x0; m) is the sum of the usual 
Green's function and a regular term. We anticipate and we mention that this local 
form is valid when the points x and x 0 belong to the subset of the space defined by 

71" 71- 
- -  - 2rr  < cp - r < 2rr  - - -  ( 1 . 5 )  
B B 

in the case B > 1/2 in which we restrict ourselves. 
Metric (1.1) is locally flat but its geometry is non-trivial [9]. So, some interesting 

quantum effects may occur such as vacuum polarization of the energy-momentum 
tensor [10-12], within the quantum field theory in curved spacetime [13]. There is 
the advantage of working in the Euclidean approach [14], where in the free case 
the fundamental quantity is the Euclidean Green's function. As an application of our 
results, we evaluate the vacuum expectation values of the energy-momentum tensor 
in four dimensions either for the massless or the massive scalar field. This calculus 
is straightforward and consists in taking the coincidence limit x = :c o of the regular 
term and its derivatives in the local form of the Euclidean Green's function. 

The plan of the work is as follows. In Sect. 2, we give the recurrence relation 
between the Green's functions. In Sect. 3, we determine the integral expression of 
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G~)(:c, :Co; m). We can then derive in Sect. 4 the integral expression of G~)(:c, :Co; m). 

In Sect. 5, we find a local expression of G~)(z, :co; m). We deduce in Sect. 6 a local 

expression of G(~)(z, z0; ra). In Sect. 7, as an application for n = 4, we obtain the 
asymptotic form of the vacuum energy- momentum tensor at large distance; in the 
massless case, we give the explicit expression of this tensor. We add in Sect. 8 some 
concluding remarks. 

2. Preliminaries 

Metric (1.1) takes the Euclidean form in cylindical coordinates when we perform the 
change of coordinate 

0 = Bg). (2.1) 

We can determine the Green's function in the subset of the Euclidean space covered 
by the coordinate system (:ci, p, O) with 0 < 0 < 2~rB. Equation (1.4) becomes the 
usual Laplace equation 

(A - m2)G~, '~) = -(5(~)(z, :co), (2.2) 

where 0~  '~) is defined by 

':, p, o) = p, o / B )  (2.3) 

for 0 _< 0 < 27rB. In order to ensure requirements (1.3), we impose the following 
boundary conditions on the hypersurfaces 0 = 0 and 0 = 2roB, 

O~n)(:c~ P, 27rB) = e2i~c~/v>~ ~, p, 0), 
( 0 0~))(:ci,p,2rcB) = e 2irrq~/~hO/ O "~(n)~" ),:c ,p, 0). (2.4) 

It is to be remarked that we can only consider a positive flux ~ since the negative 
case is obtained by taking the complex conjugate. Futhermore, only the fractional 
part of ~/~0,  denoted 7, occurs in boundary conditions (2.4). Therefore, the Green's 
function is noted G~'~) for 0 _< 3' < 1. The case 7 = 0 corresponds to the ordinary 

1 Green's function. The case 7 = ~ describes a twisted scalar field around the axis 

p = 0, [11] and references therein. 
The important thing to notice is that a recurrence relation between the Green's 

functions can be easily proved 

~(~) ~i - 0;m) G. r (a. ,...,:cn 2, p, 
O 0  

_-- 12~r / --'r~(n-i),~('el"" ., :c,~-3 p, 0; V/m 2 + A 2) cos[A(:c ~-2 - :c~ 2)]dk (2.5) 

- - O O  

for n >_ 3, by making use of the identity 

OO 

(5(Zn--2 n--2 1 / -- :C0 ) : ~ COS[/~(:Cn--2 -- :C~-2)] d/~" 

- - O O  
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Recurrence relation (2.5) conserves boundary conditions (2.4). In consequence, the 
first problem is to find O~ ). After this determination, we return to coordinate qv to 
get the Green's function G~)(Z, Zo;m) and then we can determine all the Green's 

functions G(z~)(x, x0; m). 

3. Integral Expression of G(2)(x, Xo; m) 

In the Euclidean space covered by coordinates (p, 0) with 0 < 0 < 27rB, the Green's 
function 0 ~  ) obeys Eq. (2.2) which reduces to 

( 02 1 0  1 02 )G.~ P0, + + Oo), (3.1) 

and it must verify boundary conditions (2.4). 
The usual Green's function of equation (3.1) is 

1 
27c K0(mr2) ' 

where r 2 is the Euclidean distance between the two points (p, 0) and (P0, 00) 

r2 = ip2  + p2 _ 2ppo cos(0 - 00) , 

and K u denotes the modified Bessel functions of the second kind. Of course, it does 
not satisfy boundary conditions (2.4). To do this, we write down the usual Green's 
function as an integral [15] 

OO 

1 / Ku,(mp)Ki~,(mpo)e~,e_~,lO_Ooldu. (3.2) K0(m 2) = 

Now the set of homogeneous solutions to Eq. (3.1) is formed with functions 
K~,(mp)e "~ and Ku,(mp)e -~'~ l,, real, therefore the general solution to Eq. (3.1) 
can be written 

OO 

1 f K e 27r2 K~(mp)  ~,(rnPo ) U~,(O)du, (3.3) 
d 

- - O O  

where U~,(O) has the form 

g~(o) = e -~1~ 001 + Cl(u)e~O + C2(u)e-,O. (3.4) 

We choose the coefficients Cl(U) and C2(u) in order to satisfy boundary conditions 
(2.4) which can be written 

U~(27rB) = e2i'~'~U~(0), 

0 U (3.5) ( O u ~ ) ( 2 7 r B )  = e2"~'Y(~ , ) ( 0 ) .  
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Inserting (3.4) into (3.5), we find easily 

e - u O o -  rcuB+irc7 

C1(//) = e~ruB_iqr~ / _ e-TruB+iTr7 
(3.6) 

euOo-- Tru B--iTr"/ 

C2(z~ ) = e~rz, B+irc ~ _ e-rct, B-irco' , 

and the function U,,(O) has the expression 

e 2i~'r sinh(u I 0 - 0 o I) - sinh(u I 0 - 0 o I -2reuB) 
Uu(O) = cosh(27ruB) - cos(27r'~) (3.7) 

For 7 = 0 and/3  = 1, expression (3.7) reduces to 

cosh(u I 0 -  001 -re/e) U~(O) = ( 3 . 8 )  
sinh(rcu) 

which gives integral expression (3.2) of the usual Green's function. A more practical 
form of integral (3.3) is obtained by using the fact that U~,(O) = -U_ , (0 ) ;  we thus 
have 

O(r2) = 1 
7c ~ Ki,(rnp)Ki~(rnPo ) sinh(reu)U~,(O)du. (3.9) 

- - o o  

Taking into account the asymptotic behaviour of K i , ( m  p) for large p, we see that 
0 ~  ) given by integral (3.9) vanishes when (p, 0) and (P0, 00) are infinitely separated. 

The single unique Green's function ~ / s a t i s f y i n g  the prescribed boundary conditions 
is thereby established. 

A more convenient form for G ~  is obtained by using the following integral 
expression of the product of two Bessel functions which is proved in the paper of 
Garnir [16] 

sinh(Tcu)Ki~,(mp)K~(mp o) 
o o  

= -~ [m(2ppo)l/2(coshu - cosh ~2) 1/2] sin(uu)du 

~2 

with the positive quantity ~ defined by 

cosh ~2 -- - -  p2 + ~2 ~ (3.10) 
2pp o ' 

and in which J~ is the Bessel function. Insertion of this identity into (3.9) gives 

~(2) -- 27rl / duJo[m(2ppo)l/Z(cosh u - cosh ~2) 1/2] 

g2 
o o  

x / U~,(O) sin(uu)du. (3.11) 

0 
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The final result is obtained by finding the Fourier sine transform of the function U~,(O) 
given by (3.7). To this end, we use the formula [15] 

O G  

f sin(au) sinh(bu) 
cosh(cu) + cos d du 

o 
sin[b(Tr - d)/c] sinh[a(rr + d)/c] - sin[b(~r § d)/c] sinh[a(~r - d)/c] 

= 7 1 "  

c sin d[cosh(27ra/c) - cos(2~rb/c)] 

with the conditions of  validity: a > 0, [ b [< c and [ d 1< 7r. Also, the present proof 
excludes the case 7 = 0. However the final expression will give the known result in 
the limit where y goes to zero. For 0 < ~, < 1, we obtain 

0<3 

(0) sin(uu)dv = 2B[cosh(u / B )  - cos((0 - Oo) / B )  ] 
o 

• {e i(~176176 sinh[u(1 - 7 ) / B ]  + e -i(~176176 sinh[u~//B]}. (3.12) 

We now return to express G~)(x,  x0; m), in the case m # 0, where the coordinate 
is related to 0 by (2.1); it has the integral expression 

O<3 

1 f 47rB Jo[m(2ppo)l/a(cosh u - cosh~2)~/219~2)(u , qo - qDo)du , 
r 

(3.13) 

where ~2 is given by (3.10) and the function g(~2)(u, ~) is deduced from (3.12) 

9~2)(u ' r  = e ir sinh[u(1 - 7)/t3] + e -ir sinh[uT/B] (3.14) 
cosh(u/  B )  - cos g? 

Having determined the integral expression (3.13), we check that G~)(X, Xo;m ) 
satisfies requirements (1.3). Setting 7 = 0 in (3.13), we find again the ordinary 
Green's function due to Garnir [16]. 

4. Integral Expression of G(~)(x, Xo; m) 

We are now in a position to determine the G~n)(x, x0; m), n _> 3, with the aid of  
recurrence relation (2.5). 

For the first step n = 3, taking into accoun~ expression (3.13), we have to know 
the Fourier cosine transform [15] 

f Jo[A(m + A2)1/2] cos[A(x 1 _ x~)]dA 

OO 

= { 02c~ - (x~ - xl)2)~/2] / (A2 - (xl - x~)2)1/2 A > x I _ x 1 

A < x  ~ - x ~  " 
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We thus have 

1 7 c~176176 - c~ 
G~) = 4rc2B(Zppo)'/2 j ~ - - -  c-~sh ~3)TZ/2 

~3 

• g(.r2)(u, 99 - 990)du, (4.1) 

where the positive quantity ~3 is defined by 

c~  = ,0 2 _~ p2 jr_ (x l  _ x l )2  
, ( 4 . 2 )  

2pPo 

g(v2)(u, ~) being given by (3.14). We may take the limit m = 0 in integral expression 

(4.1) to obtain the Green's function D(~3)(:c, Xo), 

D~ ) _ 1 .~  1 ~2~. 
-- 4~rZB(2ppo)l/2 (cosh ~t - cosh  ~3) 1/2 g~ /u'  99 -- 990)du " (4.3) 

~3 

For the second step ~ = 4, we first integrate by parts integral (4.1) 

G(3) _ 1 7 sin[m(2pPo )l/2(c~ u - cosh  ~3 )1/2] 
27r2(2ppo)l/2 J m 

~3 

• 9~3)(u, 99 - 99o)du, (4.4) 

where the function 9(~3)(*L, ~b) has the expression 

9(~3)(u, ~b) = (% ~b) . (4.5) 

With the aid of the Fourier cosine transform (The Fourier inverse is given in [15]) 

y sin[A(m2 + .~2)1/2] 
(m 2 H- )~2)1/2 COS['~(X2 -- x2)]d/~ 

- - O O  

f rCJo[rn(A 2 - (x 2 - x2) x/z] A > x 2 -- x 2 
/ 0 A < x 2 - x02 ' 

we perform the ;k-integration in (2.5) and we obtain the integral expression 

O<9 

Jo[m(2ppo)U2(coshu - cosh ~4)V2 ] 

~4 

• 9(~3)(u, 99 - 990)du, (4.6) 

where the positive quantity ~4 is defined by 

p~ + p~ + ( ~  _ ~1)~ + (~; _ ~o~)~ 
cosh ~4 = (4.7) 

2pPo 



304 M . E . X .  Guimar~es, B. Linet 

When the mass m goes to zero, as J0(0) = 1, we obtain D~)(x ,  Xo) in terms of 
elementary functions as follows: 

D(4 ) = e i(~-~~ sinh[~4(1 - "/) /B] + e -i(~-~0)O-7) sinh[~47/B ] 

8vr2Bppo sinh ~4[cosh(~4/B) - cos(g) - g~0)] 
(4.8) 

In four dimensions, we can compare with the results already known within the 
framework of the straight cosmic strings. For 3' = 0 and ~, = 1/2 (twisted field), 
integrals (4.6) reduce respectively to the ones of Linet [12, 17]. In the case B = 1 
(Euclidean space), expression (4.8) of D(~4)(x, x0) has been found by Bordag [18] for 
an arbitrary magnetic flux % 

It is clear that we can continue to apply recurrence relation (2.5) to determine 
G(vn)(z, z0; m).  We define the positive quantity {n by 

/9 2 -1- /9 2 -~ (X 1 -- x l )  2 q - . . .  -}- (X n - 2  -- X~--2) 2 
cosh {n = (4.9) 

2pPo 

For even dimension, we have 

 2p, 1[ 1 ]pl[ 1] 1 
G'r 4rTB rc(2pP0)l / 2 (2ppo)l/2 

OO 

• / Jo[m(2ppo)U2(cosh u - c o s h  ~2p)l /2]g(2P)(u ,  qo - g )o )du ,  (4.10) 

(2p 

where we have the recurrence relation (p > 2) 

g ( 2 P ) ( u ' ~ )  = du [ s inhu  vq' t,*, ,~ j  �9 (4.11) 

When m = 0, it should be noted that all Green's  functions D(72p)(x , xo) f o r p  > 2 can 
be expressed in closed form. 

For odd dimensions, we have 

"Y 47rB -n-(2pPo) 1/2 (2ppo)1/2 j 

cos[m(2ppo)l/2(cosh u - c o s h  ~2p+1) 1/2] 

~2p+l 

~(2p+l)t'~ /~ • y,,/ ~ , Y -- qoo)du, (4.12) 

where we have the relation 

g(2p+ 1 ) (u  "r , , ~b) = g~zP)(u, r  (4.13) 
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5. Local Form of  G ( z ) ( x ,  Xo; m )  

As mentioned in the introduction, the local form of G~)(x, Xo; rn) is defined for point 
x close enough to point :c 0. We work in the coordinate system (p, 0) in which the 
domain of validity of this local form will be 

7 r -  27rB < 0 -  0 o < 2 7 r B -  7r (5.1) 

in the case /3  > 1/2 in which we restrict ourselves. Restriction (5.1) is equivalent to 
(1.5). 

We start from expression (3.9) of  G~). We use another integral expression of the 
product of  two Bessel functions [19] 

O<3 

Ke. (mp)K~.(mp o) = f K o [mP~(u)] cos(,,u)& 
0 

with 

R2(u ) = Ip2  + p2 + 2ppo cosh u .  (5.2) 

Hence, G~) can be rewritten under the form 

o ~  o ~  

/ - 7r ~ Ko[mR2(u)]du sinhTruU,(0) c o s u u d u .  

0 0 

(5.3) 

The Fourier cosine transform appearing in (5.3) can be recast in the form 

o o  

f sinh(Tru)U, (0) cos(uu)du 
0 

oo 

1 / cos(uu)du 
2 cosh(27ruB) - cos(27rT) 

0 

x {e 2~7 cosh(u I 0 - 0 o I +Tru) - cosh(u ] 0 - 0 o t - 27 ruB  + 7r.) 

+ e -2~'Y cosh(u l 0 -  Ool-Tru ) -cosh(u l 0 -  Ool+2~ruB- 7ru) 
- 2[cos(27rT) - cosh(27ruB)l cosh(u I 0 - 00 I -Tru)} (5.4) 

by using the addition properties of  the hyperbolic functions. The last line in (5.4) 
gives the usual Green's  function since in this case U,(O) is given by (3.8). The other 
terms can be integrated with the aid of  the formula [15] 

cos(au)cosh(bu) dr' 
cosh(cr,) + cos d 

0 

cos[b(rc - d)/c] cosh[a(Tr + d)/c] - cos[b(rc + d/e] cosh[a(rc - d)/c] 
e sin d[cosh(27ra/c) - cos(27rb/c)] 
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with the conditions of validity: I b ]< c, 0 < d < 7r and a > 0. Restriction (5.1) 
results from the first condition of validity. We suppose 0 - 00 > 0. From the first line 
in (5.4), we get after some manipulations 

i e ~(~176 cosh[u(1 - 7 ) / B ]  - e -i(~176 cosh[uT/B] 

2B cosh(u/B)  - cos[(0 - 00 + 7r)/B] 

From the second line in (5.4), we get after some manipulations 

i e i (~176 cosh[u(1 - 7 ) / B ]  - e -i(~176176 cosh[u'y/B] 

2B cosh(u/B)  - cos[(0 - 00 - ~r)/B] 

The case 0 - 00 < 0 is obtained from this result by putting - ( 0  - 0o) in the place of  
0 - 0 o and by taking the complex conjugate. 

We now turn to express G(72)(x , x0; m) in the subset of the space defined by (1.5) 

for B > 1/2. Combining the two previous expressions, we have thereby 

OO 

1 
a ~  ) = (m?~2) + ~ [mR2(u)IF(B ~)(u, ~ - ~o)du, 

o 
(5.5) 

where the function F~)(u,  ~) is 

�9 e i(r cosh[u(1 - 7 ) / B ]  - e -i(r cosh[uT/B] 
G~>(~,  ~,) = ~  

cosh(u/B)  - cos( r  + 7r/B) 

�9 e i ( r  cosh[u(1 - 7 ) / B ]  - e -~(~- 'VB)O-7) cosh[uT/B] 
c o s h ( u / B )  - c o s ( r  - 7c/B) (5.6) 

In the limit 7 = 0, F(B7)(u, ~) given by (5.6) reduces to the the following function 
FB(u , ~) already known from Gamir  [16] and also Oberhettinger [20] 

sin(~b + ~/B) 
F B ( u '  r  = -- c o s h ( u / B )  - cos(r + ~ / B )  

+ 
sin(r  - 7c/B) 

cosh(u/B)  - cos( r  - 7r/B) " 

In this case, we mention that the propagator (heat kernel) has been determined by 
Deser and Jackiw [21]. 

6. Local Form of G ~  ~) (x,  too; m )  

The application of recurrence relation (2.5) between the G(~)(x, x0; m) is easy since 

the function F(J)(u, ~) does not depend on the mass m.  We have only to know the 
usual Green 's  function in Euclidean space 

i $D, n/2-1 
t(n/2_l(mrn) (27r)n/2 rn/2-1 
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where r n is the Euclidean distance between the two points z and x 0. We find in the 
subset of  the space defined by (1.5) f o r / 3  > 1/2, 

1 m n/2-1 
C(n) -- Kn/2_i (mrn)  

(2re)n/2 r~/2-1 

ran~2-1 
K'V2-1[mR~(u)] F~'r)(u, ~ - ~o)du (6.1) 

+ (2r r )n /2+lB ~ [ Rn ( ~ ) ] n /2 - 1  
0 

with 

Rn(U ) = i ( X  1 __ xl)2  -J_ . . . q_ (xn--2 __ X~-2)2 _]_ ,0 2 _t_ fi2 _~_ 2ppo cosh u .  (6.2) 

In the massless cases for n > 3, we can take the limit where m goes to zero. 
Taking into account the asymptotic behaviour of  the K , ,  we get 

D~,~ ) _ r ( n / 2 )  1 
2(n - 2)7r n/2 r'~z-2 

(X] 

F(n /2 )  - -  / 1 F(B'r)(u, ~ - CPo)du (6.3) 
+ 4(n 52)~~7-2+1B ~ [Rn(u) ]  n - 2  

0 

where F is the gamma function. 
In 4-dimensional space, we can compare with the results already known within 

the framework of the straight cosmic strings. For 3' = 0 and "y = 1/2 (twisted field), 
local forms (6.1) for n = 4 reduce respectively to the ones of Liner [12, 17]. 

7. Vacuum Energy-Momentmn Tensor (n = 4) 

Within the Euclidean quantum field theory of a complex scalar field in the spacetime 
of a straight cosmic string, the fundamental quantity for a massive scalar field is the 
Euclidean Green's  function G~)(x, x0; m).  We rewrite its expression (6.1) valid for x 
close enough to point x 0 in the particular case n = 4, 

(4) X m / ~ l  (mr4)  
G~ ( , Xo; m )  --  47r2r4 + G;(4)(x,  Xo; m ) ,  (7.1) 

where the regular term G~(4)(z, z0; m)  has the expression 

OO 

G~(4 ) _ 1 - -  [ KI  [mR4(u)] F(s~)(u, c F - ~o)du. (7.2) 
87I-3 B ~ ~4(U) 

0 

The renormalization of expectation values of  the energy-momentum tensor is 
performed by removing the usual Green 's  function in expression (7.1). Since the 
second term and its derivatives are regular in the coincidence limit z = x o, we obtain 
simply for a locally flat spacetime 

(T2} = 2hc[(1 - 2~)V~V ~0 - 2{V~V ~ 

+ ( 2 ~ -  1)(5~(m2 + Vo~V~176 (4) Ix=cco , (7.3) 
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being the coupling parameter, and V ,  (Vu0) denotes the covariant differentiation 
with respect to the coordinate :c" (zt~0). 

In the massive case, the asymptotic form of the vacuum energy-momentum for 
large p can be evaluated. The calculations are simplified by remarking that the 
derivatives ~7~7~~ Ix=x0 and ~7~TV)0G~(4) Ix=x0 can be determined from identity 
(V~V ~ -rrz2)G~ (4) = 0. By keeping only the coefficients containing lip of the Bessel 
functions in the expression of the component (Tf}, we find 

(T~) _~ (4~ - l) - -  

o o  / 1 
m3 3/(1 + / ( 3  (1 + coshz02 F(BT)(u, 0)d~. 

167r3B p 
o 

Taking into account the asymptotic form of K 1 and/(3, we find 

(T~ ~-) ~ (4( - 1) 47r3BV ~ e -'/~mp(l+~~ ~)~- (1 + cosh u) ~ F~7)(zt, 0)d~z 
0 

for mp >> 1. The limit of the integral is performed by using Laplace's method, we 
obtain 

m 2 sin[TrT/B] + sin[Tr(1 - 7 ) / B ]  exp(-2rap) 
(T~) ~ (1 - 4{) 871.213 1 - -  C O S ( X / B )  /9 2 

(7.4) 

Since spacetime (1.1) is globally static, we have (T~) = (Tt t } since t = - iT.  
The asymptotic form of the other components for large p can be also evaluated. 

We have finally 
(T~) ~ (Tt t) diag(1, 1,0, 1) for rrzp >> 1. (7.5) 

For B = 1, Serebriany [4] has found the same form (7.5), likewise Shiraishi and 
Hirenzaki [23] for B 7~ 1 but in the case 7 = 0 and ~ = 1/6. 

In the massless case, we rewrite expression (6.3) in the particular case n = 4 under 
the form 

1 
D(4)(x, x0) = 47r2r- ~ + D~(4)(x, x0) , (7.6) 

where the regular term D~(4)(x, x0) has the expression 

O(3 

D,(4 ) _ 1 / 1 /W(Bq')(~Z, ~ -- ~0)dz~ (7.7) 
g71-3 B [/~4 ('/~)]2 

0 

By inserting (7.7) into formula (7.3) 
coordinate system (z 1 , z 2, p, ~) under the form 

[ 1 1 ~  (T~) = w4(7) - 5 w2('~) diag(1, 1, 1, -3 )  

1 hc 1 3 
+ 4 @ - ~ )  w2('Y)~ diag (1, 1, - ~ ,  ~ )  , 

with m = 0, we can express (T~) in the 

(7.8) 
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where the derivative ~7~7~D~(4) ]x=x ~ and V~7~0D~(4) ]z:xo having been calculated 

from the identity %7c~Vc~/)~(4) = 0. The quantities w2@) and w4(7) are the following 
integrals oo 

1 
f 1 F(Bz)(u, 0)du, (7.9) 

w2(7) - 8rc3B ~ (1 + cosh u) 
0 

? 1 F(J) (u, 0)&*, (7.10) 
1 

W4(7) -- 871"313 ~ (1 + coshu) 2 
0 

where F(s"/)(u, 0) appearing in (7.9) and (7.10) is deduced from (5.6), 

F(~)(u, 0) = - 2 sin[TrT/B] cosh[u(1 - 7)/B] + sin[Tr(1 - 7)/B] cosh[u7/B] 
cosh(u/B) - cos(Tr/B) 

Integrals of type (7.9) or (7.10) have been studied by Dowker [8, 22]. We get thus 
the explicit expressions 

t 1 1 4 7 -  - (7.11) 
~U2(7) -- 871 "2 3 2B 2 

1 / 1 1  _ 15 2 
W 4 ( 7 ) - - 7 2 0 7 r 2 l  ~ [ 4 ( 7 - ~ )  - ~ 1  

+ 15 [16// ~ [  ~7-- ~ ) 4 - - 8 ( 7 - -  ~)2-1- 7 ] ) ,  (7.12) 

which are only valid for B > 1/2. Incidentally, the coefficient in front of 1/B 4 in 
form (7.12) has been corrected. We can then verify that vacuum energy-momentum 
tensor (7.8) with quantities (7.11) and (7.12) agrees with the result given by Frolov 
and Serebriany [24]. For 7 = 0, we find again the known result [10-12]. For massless 

twisted scalar field (7 = �89 expression (7.8) reduces to the one of Smith [11]. 

8. C o n c l u s i o n  

In metric (1.1), we have determined the Green's function (n) . G.y (z, z o, m) for a massive 
scalar field subject to requirements (1.3), characterized by the fractional part 7 of the 
magnetic flux around the line singularity. We have given integral expression (4.10) in 
even dimension and (4.12) in odd dimension for G~'~)(z, z0; m). In the massless case, 

the Green's function D~2p)(x, Xo) for p > 1 can be expressed in terms of elementary 
functions. For point x close enough to point x 0, we have obtained a local form (5.5) 
for the Green's function G(~)(x, x0; m). It should be emphasized that this local form is 
convenient, for instance, to evaluate the expectation values of the energy-momentum 
tensor in quantum field theory. As an application we have performed explicitly this 
calculation for a massless field. We calculate only with finite quantities which are 
definite integrals and therefore we might perform a numerical analysis in the case of 
a massive scalar field. We have presently derived the asymptotic form of this tensor 
at large distance. It is interesting to point out that this procedure can be applied 
systematically to all dimensions. For exemple, in the three dimensional case, when 
7 = 0 and in the limit where B --+ 1, we can easily see that we obtain again the 
results of Guimarfies and Liner [25] for a massive scalar field. 
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