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Summary. The 20 naturally occurring amino acids 
are characterized by 20 variables: PKNr~2, pKcoon, 
pI, molecular weight, substituent van der Waals 
volume, seven J H and 13C nuclear magnetic reso- 
nance shift variables, and eight hydrophobicity-hy- 
drophilicity scales. The 20-dimensional data set is 
reduced to a few new dimensions by principal com- 
ponents analysis. The three first principal compo- 
nents reveal relationships between the properties of  
the amino acids and the genetic code. Thus the ami- 
no acids coded for by adenosine (A), uracil (U), or 
cytosine (C) in their second codon position (corre- 
sponding to U, A, or G in the second anticodon 
position) are grouped in these components. No 
grouping was detected for the amino acids coded 
for by guanine (G) in the second codon position 
(corresponding to C in the second anticodon posi- 
tion). The results show that a relationship exists 
between the physical-chemical properties of the 
amino acids and which of  the A (U), U (A), or C 
(G) nucleotide is used in the second codon (anti- 
codon) position. The amino acids coded for by G 
(C) in the second codon (anticodon) position do not 
participate in this relationship. 

Key words: Principal components analysis -- Pat- 
tern recognition -- Multivariate analysis of  physical 
properties of  amino acids -- Genetic code 

Introduction 

The origin of the genetic code has been a matter of 
much discussion during the past 30 years (see, e.g., 
Woese et al. 1966; Crick 1968; Jukes 1978; Shimizu 

Offprint requests to: M. SjOstrSm 

1982). Theories have been formulated that can be 
divided schematically into four groups: (a) The ge- 
netic code is a frozen accident and there has never 
been a direct interaction between the properties of  
amino acids and their encoding nucleotides. It should 
be possible to construct other genetic codes in which 
the amino acids are coded for by arbitrary combi- 
nations of  the four nucleotides in the three codon 
positions. (b) At an early stage in evolution some 
kind of  interaction between the amino acids and the 
nucleotides took place. A pattern that relates amino 
acids with similar properties to similar codons has 
been conserved as a relic. (c) A mechanism exists 
that relates the chemical and physical properties of  
the amino acids and the nucleotides to each other. 
(d) Evolution has favored a genetic code in which 
similar amino acids are coded for by similar com- 
binations ofnucleotides, which should minimize the 
consequences of  mutations in mRNA [for a review 
of  theory (d) and related theories, see Labouygues 
and Figureau (1982)]. 

At present, theories (b) and (c) seem to be the 
most frequently discussed. In the case of  theory (c) 
Shimizu (1982) has proposed a lock and key mech- 
anism acting at the tRNA. He suggests that a specific 
site in the tRNA forms a lock into which the amino 
acid fits. The site consists of  the three anticodon 
bases plus a discriminating base at the fourth po- 
sition from the 3' end. The evolution proposed by 
theory (d) must have taken place early, since basi- 
cally the same code is used in taxa ranging from 
viruses to vertebrates. For (b), models of  how the 
code evolved have been proposed by Woese, Crick, 
and others. Crick (1968) discussed at length a theory 
in which the code at an early stage could discern 
only similar groups of  amino acids. At a later stage 
the code became more amino acid specific and then 



Table 1, Variables used to characterize the amino acids 

No. Property 

1 Molecular weight 
2 pKcoo8 (COOH on C~) �9 
3 PKN.2 (NHz on Ca)" 
4 pI, pH at isoelectric point b 
5 Substituent van der Waals volume r 
6 ZH NMR for C. -H (cation) d 
7 tH NMR for C.--H (dipolar) d 
8 ~H NMR for C : H  (anion) d 
9 ~3C NMR for C=O e.f 

10 ~3C NMR for C~--H ~,f 
11 13C NMR for C=O in tetrapeptide ~ 
12 ~3C NMR for C.--H in tetrapeptide Cs 
13 Rf for 1-N-(4-nitorbenzofurazono)-amino acids in ethyl 

acetate-pyridine-water~ 
14 Slope of  plot of 1/Rr - ! vs tool% in H20 in paper chro- 

matography" 
15 dG of transfer of amino acid from organic solvent to water ~ 
16 Hydration potential or free energy of transfer from vapor 

phase to waterJ 
17 Rr, salt chromatography k 
18 Log P, P = partition coefficient for amino acids in octanol- 

w a t e r  l 

19 Log D, D = partition coefficient at pH 7.1 for acetylamide 
derivatives of amino acids in octanol-water ~ 

20 dG = RT In 1~ f = fraction of buried to accessible amino 
acids in 22 proteins" 

NMR, nuclear magnetic resonance; Ro rate of  flow; dG, difference 
tn free energy 
References: " Merck Index (1977); b CRC Handbook of Biochem- 
istry (1968); ~ Seydel and Schaper (1979); a Roberts and Jardetzky 
(1970); ~ Horsley et al. (1970); rRosenthal and Fendler (1976); 
g Aboderin (1971); h Woese et al. (1966); i Nozaki and Tanford 
(1971); J Wolfenden et al. (1981); k Weber and Lacey (1978); 
' Pli~ka et al. (1981); TM Fauch~re and Pli~ka (1983);" Janin (1979) 

froze. Woese et al. (1966) have been major propo- 
nents of theory (b), and more recently this theory 
has been discussed by Nagyvary and Fendler (1974). 
They proposed that the code evolved by interactions 
between amino acids, nucleotides, a n d  small mi- 
eelles and that a selective compartmentalization of 
amino acids and nucleotides according to their po- 
larities has taken place. Recently, Reuben and Polk 
(1980) have shown that the dissociation constants 
of the complexes of AMP with methyl esters of ami- 
no acids in aqueous solution exhibit correlations 
With features in the genetic code. The main argu- 
ments for theory (b) are the findings that U in the 
second codon position codes for amino acids with 
hydrophobic side chains and that amino acids coded 
for by C in the second codon position seem to have 
similar polar requirements (Woese et al. 1966). Some 
Other recognized regularities have been reported 
(Woese et al. 1966; Crick 1968; Jukes 1978). Weber 
and Lacey (1978), Lacey and Mullins (1983), and 
Jungck (1978) have reported correlations between 
the hydrophobicities of  amino acids and the prop- 
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erties of the anticodon nucleotides. Thus it seems 
that similar amino acids are coded for by the same 
nucleotides in some cases. We note that the rela- 
tionship between the genetic code and the physical- 
chemical properties of  the amino acids plays an im- 
portant role in theories (b)-(d). 

By inspection of the chemical and physical prop- 
erties of the amino acids, it is easy to recognize that 
a single variable (for example, a single hydropho- 
bicity scale) is not sufficient to characterize the sim- 
ilarity or dissimilarity among the amino acids. A 
multivariate description of the amino acids is better 
suited for characterization. This paper is the first in 
a series addressing the relationship between the 
physical--chemical properties of the amino acids and 
the genetic code based on a multivariate description 
of the amino acids and using multivariate statistical 
methods. 

Choice of Data 

The data set is compiled from the literature. Basi- 
cally the variables are arbitrarily chosen, since for 
the given problem it is reasonable to try to char- 
acterize the amino acids with many types of vari- 
ables. In the present case, the amino acids are char- 
acterized both free and as derivatives, at different 
pHs, and in different solvent systems. Size and the 
electronic properties of  the side chains also are rep- 
resented. We can expect that the different hydro- 
phobicity scales contain information on the hydro- 
gen bond donor and acceptor properties of the side 
chains. The variables used are listed in Table 1. Only 
variables for which measurements exist for most of 
the amino acids have been considered, and in the 
data set only two measurements are missing (the 
measurements of variable 13 for Cys and of variable 
16 for Pro). 

Principal Components Analysis (PCA) 

A single-variable description of the amino acids (for 
example, a hydrophobieity scale) can be visualized 
by plotting the measurements along a tally line. 
Amino acids that are similar with respect to the 
variable lie closer to each other on this line than do 
amino acids that have different properties. In the 
same way, if two or three variables (for example, 
two or three different hydrophobicity scales) are 
studied, the properties can be plotted against each 
other in two- or three-dimensional plots. By analogy 
to the one-dimensional plot, amino acids that lie 
close to each other in two- or three-dimensional 
plots can be considered more similar to each other 
than those far away from each other. This interpre- 
tation also holds in a multivariate space with more 
than three dimensions. However, if  one has a multi- 
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variate description of the amino acids (as in the 
present case, where we have 20 variables), no direct 
illustration of  the data set is possible. Different strat- 
egies for resolving this problem are possible. For 
example, pairwise plots of the variables can be stud- 
ied, but these will not give a comprehensive picture 
of the relationship among the amino acids and the 
plots will be numerous. It can be informative to 
illustrate a multivariate data set by plotting a few 
latent variables, which are linear combinations of  
the original variables, against each other. Thus the 
original data are projected onto a few two-dimen- 
sional planes. The latent variables are the coordi- 
nates in the planes. Latent variables can be deter- 
mined by PCA (see, e.g., Wold 1976, 1978; Wold 
and Sjrstrrm 1977; Mardia et al. 1979; Malinowski 
and Howery 1980; Wold et al. 1984). Karhunen- 
Loeve expansion, factor analysis, and singular-value 
decomposition are names for similar or closely re- 
lated techniques. 

The first principal component (PC) explains the 
main variance in the data, the second PC explains 
the next largest variance in the data, and so on. This 
means that the new dimensions will describe much 
more of  the variance in the data than the same num- 
ber of  original variables would. The PCA also acts 
as a filter in that random errors of measurement 
influence the first PCs very little. Furthermore, all 
or nearly all of the original variables will contribute 
to a few PCs. The PCA also shows which variables 
contribute to the new dimensions. By plotting the 
PC scores for each amino acid for, say, the first and 
second PCs and for the second and third PCs, a 
good illustration of the relationships among the ami- 
no acids can be obtained. In such plots similar sam- 
ples can be found as clusters or show covariance 
with each other. We can regard such two-dimen- 
sional plots as two-dimensional windows onto a 
multivariate space. 

The PCA model has the form 

A 

Xki = Xi q- ~ baitka -b eki (1) 
a=l 

Here xva are the measurements in the multivariate 
characterization of  the amino acids. The index k is 
used for the amino acids and the index i for the 
variables. From the measurements the parameters 
xi (the mean value for each variable), the loadings 
b~i, and the PC scores tk~ are determined in the pres- 
ent analysis by minimizing the squared sum of the 
residual (~ Y~ke2). The number of estimated PCs is 
given by A. The absolute value of b tells how much 
a variable contributes to the PC and the sign tells 
whether the original variable is negatively or posi- 
tively correlated with the PC. In the PCA the vari- 
ables are weighted according to their variances. To 

give all variables the same importance, the data are 
usually scaled so that all variables will have the same 
variance. This type of  scaling was used in the present 
analysis. 

Methods for describing classes in multivariate 
data and finding class differences usually are called 
pattern recognition (PaRC) methods (Wold 1976; 
Sjrstrrm and Kowalski 1979; Varmuza 1980; Wold 
et al. 1984). Numerous techniques are available for 
solving PaRC problems. In the present case, in which 
the number of amino acids in each case is few com- 
pared with the number of  variables, traditional PaRC 
methods like linear discriminant analysis and linear 
learning machines are not applicable (Sj6strOm and 
Kowalski 1979). The PCA does not have this draw- 
back. We have used P C A  to create two-dimensional 
projections (often called eigenvector projections) of 
the multivariate data set, with the aim of  illumi- 
nating the relation between the genetic code and the 
properties of  the amino acids. 

The PCA was done with the multivariate data 
analytical package SIMCA (Wold and Sjrstrrm 
1977; Wold et al. 1984) implemented on a micro- 
computer. This package utilizes an iterative PCA 
algorithm (NIPALS) in which the PCs are deter- 
mined consecutively. 

Sneath (1966) has previously presented a PCA of 
amino acids in connection with a quantitative struc- 
ture-activity study of  polypeptides. He described 
the amino acids with 134 qualitative variables. Ex- 
amples of these variables are the presence or absence 
of/~-CH2, "y-CH2, 6-CH2, r 00-NH2, and 
phenyl rings. A similarity matrix was calculated to 
which PCA was applied. However, continuous vari- 
ables and variables based on chemical and physical 
measurements contain more information than do 
qualitative measures. 

Other multivariate techniques such as cluster 
analysis and m u l t i d i m e n s i o n a l  scaling have recently 
been used in molecular genetics (see Rowe et al. 
1984; Swanson 1984). Cluster analysis has no ad- 
vantage over PCA, since PC plots can be inspected 
directly for groupings without previous assumptions 
about the number of classes and class structures, 
which must be made in cluster analysis. Multidi- 
mensional scaling is closely related to PCA in that 
it determines a number of so-called principal coor- 
dinates (similar to PCs) from multivariate data. 
However, multidimensional scaling is applicable 
only to the special case of symmetrical data matrices 
of the type (objects x objects) in which the elements 
are distances between pairs of objects. 

Results and Discussion 

A number of new dimensions were determined from 
the data set by PCA. Figure 1 presents plots of the 
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Fig. la,b. Plots of the first and second (a) and third and second (b) PCs against each other. The nucleotides in the second codon 
Position are given. Amino acids coded for by U, A, and C in this position form clusters in the plots. The U, A, and C classes are 
encircled so that the class structures may be found easily. 

Table 2. Scores (tk~) for the three first PCs 

Amino 
No. acid t~ tk2 tk3 
- - - . . . . ._  

1 Ala -0.24 - 1.74 -0.39 
2 Val -2.03 - 1.03 -2.33 
3 Leu -2.90 -0.22 - 1.01 
4 lie -3.22 -0.59 - 1.79 
5 Pro - 1.07 -0.82 0.83 
6 Phe -3.66 0.34 0.83 
7 Trp -4.41 2.18 2.32 
8 Met -2.20 -0.41 -0.38 
9 Lys 2.76 3.25 - 1.57 

10 Arg 2.85 4.59 -2.00 
11 His 2.00 0.61 1.63 
12 Gly 2.41 - 4 . 0 8  -2.47 
13 Ser 1.78 - 1.80 -0.45 
14 Thr 0.99 -0.80 - 1.38 
15 Cys 0.90 - 2.17 2.30 
16 Tyr -2.25 1.87 0.12 
17 Ash 2.57 0.19 2.00 
18 Gin 1.59 1.02 0.08 
19 Asp 2.10 -1.19 3.27 
20 Glu 2.10 0.60 0.39 

Table 3. Contribution of each variable (b~,) to the three first 
PCs 

Vari- 
able b ,  b2i bai mpow- 

1 -0.13 0.42 0.19 0.64 
2 -0.23 0.05 -0.31 0.30 
3 -0.13 -0.13 -0.12 0.03 
4 0.07 0.30 -0.29 0.32 
5 -0.13 0.47 0.03 0.75 
6 0.06 -0.06 0.28 0.06 
7 -0.11 -0.16 0.48 0.56 
8 -0.01 0.01 0.54 0.54 
9 - 0.09 0.19 0.08 0.03 

10 -0.16 0.13 0.01 0.04 
11 -0.15 0.30 0.03 0.22 
12 -0.16 0.11 -0.03 0.03 
13 -0.38 -0.04 -0.14 0.81 
14 0.32 0.01 0.24 0.51 
15 -0.35 0.13 0.05 0.51 
16 -0.23 -0.35 -0.15 0.67 
17 0.3t -0.16 -0.20 0.51 
18 -0.27 -0.17 0.17 0.35 
19 -0.36 -0.10 0.02 0.57 
20 -0.26 -0.33 0.03 0.55 

first a n d  second  a n d  second  a n d  th i rd  PCs agains t  

each other.  T h e  three  first PCs  descr ibe  27, 18, a n d  
13%, respect ively ,  o f  the va r i ance  in  the  data ,  for a 
total  o f  58%. T h e  three  PCs  are l is ted in  T a b l e  2 

and  the c o n t r i b u t i o n s  o f  each va r i ab le  [the b -va lues  
in m o d e l  (1)] to the  PCs are l is ted in  Tab l e  3. T h e  
var iab les  tha t  c o n t r i b u t e  m o s t  to the first PC  are 13, 
14, 15, 17, a n d  19, which  are the h y d r o p h o b i c i t y  

measures .  T h e  size var iab les ;  a d d i t i o n a l  i n f o r m a -  
t ion  f rom the h y d r o p h o b i c i t y  var iab les  1, 5, 14, a n d  
16; a n d  va r i ab le  4 (pI) are the m a i n  c o n t r i b u t i n g  

var iab les  to the  second  PC. T h e  t h i rd  P C  c o n t a i n s  
i n f o r m a t i o n  f r o m  the  e lec t ronic  descr ip tors  (var i -  
ables 2, 4, 7, a n d  8). Except  for  va r i ab les  3, 6, 9, 
10, a n d  12, all the va r i ab les  m a k e  cons ide rab le  con-  

, The modeling power (mpow) tells how much of the standard 
deviation of a variable is explained by the three-component PC 
model [A = 3 in model (1)]. Mpow = 1 means that the model 
explains all of the variation and mpow = 0, none of the variation 
for a variable 

t r i b u t i o n s  to the three  first PCs,  as seen f rom the  
m o d e l i n g  power  m e a s u r e  (mpow)  g iven  in  T a b l e  2. 

In  Fig. I the nuc l e o t i de s  in  the  s e c o n d  c o d o n  

pos i t i on  are g iven  for the  a m i n o  acids.  F r o m  these  
plots  we can  see tha t  the a m i n o  ac ids  wi th  A, U,  
a n d  C in  the s econd  c o d o n  p o s i t i o n  seem to f o r m  

par t ly  o v e r l a p p i n g  clusters.  C lose r  i n s p e c t i o n  re- 
veals  t ha t  this  ove r l ap  is a n  art ifact .  I n  Fig. 1 a, for 
example ,  Val  (po in t  2) a n d  P r o  (po in t  5) are close 
to each other ,  as are Ser (po in t  13) a n d  Asp  (po in t  
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19). However, this is not the case in Fig. lb. If  one 
merged Fig. l a and b to form a three-dimensional 
plot, the three classes would be well separated from 
each other. We also want to stress that the groupings 
found hold also for the second anticodon position 
because of the codon-anticodon base pairings A-U 
and G-C. However, in the following we refer only 
to the codon bases. 

Note that in Fig. 1 a Tyr (point 16) does not fall 
into the A class, despite having A in the second 
position. This is also confirmed by a SIMCA clas- 
sification (Wold 1976, 1978; Wold and Sjrstr6m 
1977) in the following way: A PCA model like (Eq. 
1) was determined from Lys (point 9), His (point 
11), Asn (point 17), Gin (point 18), Asp (point 19), 
and Glu (point 20). The PCA gives the typical profile 
of the behavior of these amino acids. Then whether 
Tyr fell into this profile was checked. This was not 
the case, which confirmed the atypical properties of 
Tyr compared with those of the other amino acids 
coded for by A in the second codon position. 

In contrast to the U, A, and C classes, the amino 
acids coded for by G in the second codon position 
seem to behave randomly in the plots. The quite 
different amino acids Cys (point 15), Trp (point 7), 
Arg (point 10), Ser (point 13), and Gly (point 12) 
are coded for by G. In the plots Trp and Arg are 
distant from Cys, Ser, and Gly. Furthermore, Ser 
has two alternative nucleotides (G or C) in the sec- 
ond codon position and falls into the C class. 

Thus we have a partially asymmetric classifica- 
tion problem (Dunn and Wold 1980) with three 
well-defined classes with inherent similarity and a 
fourth "non-class." From an information-theoreti- 
cal point of  view this is sufficient for a unique class 
assignment of all 20 amino acids. Biologically this 
partial class asymmetry is interesting because it al- 
lows or is an indication of the inclusion of  arbitrary 
new amino acids into the non-class defined by G in 
the second codon position. 

The difference between the U, A, and C classes 
has also been confirmed by so-called partial least- 
squares (PLS) discriminant analysis (Wold et al. 
1984). With the PLS method it is possible to find 
the optimal class-separating latent variables (Sjr- 
strrm et al. 1985). However, we have chosen not to 
present such plots here to save the reader from a 
lengthy presentation of methodology. PLS discrim- 
inant plots have been shown to be informative also 
in the study of  the relationship between the physi- 
cal-chemical properties of amino acids and the oth- 
er codon positions. The relationship between the 
suggested fourth discriminating nucleotide and the 
properties of  the amino acids will also be investi- 
gated with this method. 

In conclusion, the present investigation supports 
theories based on similarities between the amino 

acids coded for by the same nucleotide in the second 
codon or anticodon position. Such theories must 
also account for the found inconsistent behavior of 
the amino acids coded for by G (C) in the second 
codon (anticodon) position. Basically the present 
analysis cannot distinguish theories (b), (c), and (d) 
from each other. The atypical behavior of the G 
class is not in contradiction with theory (c), since 
relationships between the nucleotides and amino 
acid properties might also be partially asymmetric. 
The class-separating information provided by the 
hydrophobic i ty  and hydrophi l ic i ty  variables is 
probably relevant. These properties are important 
for theory (b) but probably also for theory (d). These 
two theories can in principle be distinguished if the 
properties of  the nucleotides also are studied in re- 
lation to the properties of the amino acids. Some 
support for such relations has been given by Weber 
and Lacey (1978) and Jungck (1978), as mentioned 
in the Introduction. A multivariate method like the 
PLS approach (Lindberg et al. 1983) is well suited 
to determining whether such relations are valid; we 
plan to conduct such investigations. 

The PCA of the amino acids supplies a quanti- 
tative metric for their study (Ninio 1983). It would 
be of  interest to investigate if  this metric is useful 
for describing relationships between the amino acid 
sequence and nucleation sites, secondary structures, 
and tertiary structures of proteins. The design of 
biologically active polypeptides (Kaiser and Krzdy 
1984) is also an area where a multivariate metric 
could be useful, since a multitude of variables prob- 
ably are important for determining the properties 
of polypeptides. Thus in a recent study (Hellberg et 
al., in press) we have found that this metric contains 
information predictive of the biological activity of 
bradykinins and some other peptide families. 
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